Home | History | Annotate | Download | only in CodeGen
      1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the spill code placement analysis.
     11 //
     12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
     13 // basic blocks are weighted by the block frequency and added to become the node
     14 // bias.
     15 //
     16 // Transparent basic blocks have the variable live through, but don't care if it
     17 // is spilled or in a register. These blocks become connections in the Hopfield
     18 // network, again weighted by block frequency.
     19 //
     20 // The Hopfield network minimizes (possibly locally) its energy function:
     21 //
     22 //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
     23 //
     24 // The energy function represents the expected spill code execution frequency,
     25 // or the cost of spilling. This is a Lyapunov function which never increases
     26 // when a node is updated. It is guaranteed to converge to a local minimum.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "SpillPlacement.h"
     31 #include "llvm/ADT/BitVector.h"
     32 #include "llvm/CodeGen/EdgeBundles.h"
     33 #include "llvm/CodeGen/MachineBasicBlock.h"
     34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     35 #include "llvm/CodeGen/MachineFunction.h"
     36 #include "llvm/CodeGen/MachineLoopInfo.h"
     37 #include "llvm/CodeGen/Passes.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/Format.h"
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "spillplacement"
     44 
     45 char SpillPlacement::ID = 0;
     46 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
     47                       "Spill Code Placement Analysis", true, true)
     48 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
     49 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
     50 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
     51                     "Spill Code Placement Analysis", true, true)
     52 
     53 char &llvm::SpillPlacementID = SpillPlacement::ID;
     54 
     55 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
     56   AU.setPreservesAll();
     57   AU.addRequired<MachineBlockFrequencyInfo>();
     58   AU.addRequiredTransitive<EdgeBundles>();
     59   AU.addRequiredTransitive<MachineLoopInfo>();
     60   MachineFunctionPass::getAnalysisUsage(AU);
     61 }
     62 
     63 namespace {
     64 static BlockFrequency Threshold;
     65 }
     66 
     67 /// Decision threshold. A node gets the output value 0 if the weighted sum of
     68 /// its inputs falls in the open interval (-Threshold;Threshold).
     69 static BlockFrequency getThreshold() { return Threshold; }
     70 
     71 /// \brief Set the threshold for a given entry frequency.
     72 ///
     73 /// Set the threshold relative to \c Entry.  Since the threshold is used as a
     74 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
     75 /// threshold.
     76 static void setThreshold(const BlockFrequency &Entry) {
     77   // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
     78   // it.  Divide by 2^13, rounding as appropriate.
     79   uint64_t Freq = Entry.getFrequency();
     80   uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
     81   Threshold = std::max(UINT64_C(1), Scaled);
     82 }
     83 
     84 /// Node - Each edge bundle corresponds to a Hopfield node.
     85 ///
     86 /// The node contains precomputed frequency data that only depends on the CFG,
     87 /// but Bias and Links are computed each time placeSpills is called.
     88 ///
     89 /// The node Value is positive when the variable should be in a register. The
     90 /// value can change when linked nodes change, but convergence is very fast
     91 /// because all weights are positive.
     92 ///
     93 struct SpillPlacement::Node {
     94   /// BiasN - Sum of blocks that prefer a spill.
     95   BlockFrequency BiasN;
     96   /// BiasP - Sum of blocks that prefer a register.
     97   BlockFrequency BiasP;
     98 
     99   /// Value - Output value of this node computed from the Bias and links.
    100   /// This is always on of the values {-1, 0, 1}. A positive number means the
    101   /// variable should go in a register through this bundle.
    102   int Value;
    103 
    104   typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
    105 
    106   /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
    107   /// bundles. The weights are all positive block frequencies.
    108   LinkVector Links;
    109 
    110   /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
    111   BlockFrequency SumLinkWeights;
    112 
    113   /// preferReg - Return true when this node prefers to be in a register.
    114   bool preferReg() const {
    115     // Undecided nodes (Value==0) go on the stack.
    116     return Value > 0;
    117   }
    118 
    119   /// mustSpill - Return True if this node is so biased that it must spill.
    120   bool mustSpill() const {
    121     // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
    122     // BiasN is saturated when MustSpill is set, make sure this still returns
    123     // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
    124     return BiasN >= BiasP + SumLinkWeights;
    125   }
    126 
    127   /// clear - Reset per-query data, but preserve frequencies that only depend on
    128   // the CFG.
    129   void clear() {
    130     BiasN = BiasP = Value = 0;
    131     SumLinkWeights = getThreshold();
    132     Links.clear();
    133   }
    134 
    135   /// addLink - Add a link to bundle b with weight w.
    136   void addLink(unsigned b, BlockFrequency w) {
    137     // Update cached sum.
    138     SumLinkWeights += w;
    139 
    140     // There can be multiple links to the same bundle, add them up.
    141     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
    142       if (I->second == b) {
    143         I->first += w;
    144         return;
    145       }
    146     // This must be the first link to b.
    147     Links.push_back(std::make_pair(w, b));
    148   }
    149 
    150   /// addBias - Bias this node.
    151   void addBias(BlockFrequency freq, BorderConstraint direction) {
    152     switch (direction) {
    153     default:
    154       break;
    155     case PrefReg:
    156       BiasP += freq;
    157       break;
    158     case PrefSpill:
    159       BiasN += freq;
    160       break;
    161     case MustSpill:
    162       BiasN = BlockFrequency::getMaxFrequency();
    163       break;
    164     }
    165   }
    166 
    167   /// update - Recompute Value from Bias and Links. Return true when node
    168   /// preference changes.
    169   bool update(const Node nodes[]) {
    170     // Compute the weighted sum of inputs.
    171     BlockFrequency SumN = BiasN;
    172     BlockFrequency SumP = BiasP;
    173     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
    174       if (nodes[I->second].Value == -1)
    175         SumN += I->first;
    176       else if (nodes[I->second].Value == 1)
    177         SumP += I->first;
    178     }
    179 
    180     // Each weighted sum is going to be less than the total frequency of the
    181     // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
    182     // will add a dead zone around 0 for two reasons:
    183     //
    184     //  1. It avoids arbitrary bias when all links are 0 as is possible during
    185     //     initial iterations.
    186     //  2. It helps tame rounding errors when the links nominally sum to 0.
    187     //
    188     bool Before = preferReg();
    189     if (SumN >= SumP + getThreshold())
    190       Value = -1;
    191     else if (SumP >= SumN + getThreshold())
    192       Value = 1;
    193     else
    194       Value = 0;
    195     return Before != preferReg();
    196   }
    197 };
    198 
    199 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
    200   MF = &mf;
    201   bundles = &getAnalysis<EdgeBundles>();
    202   loops = &getAnalysis<MachineLoopInfo>();
    203 
    204   assert(!nodes && "Leaking node array");
    205   nodes = new Node[bundles->getNumBundles()];
    206 
    207   // Compute total ingoing and outgoing block frequencies for all bundles.
    208   BlockFrequencies.resize(mf.getNumBlockIDs());
    209   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
    210   setThreshold(MBFI->getEntryFreq());
    211   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
    212     unsigned Num = I->getNumber();
    213     BlockFrequencies[Num] = MBFI->getBlockFreq(I);
    214   }
    215 
    216   // We never change the function.
    217   return false;
    218 }
    219 
    220 void SpillPlacement::releaseMemory() {
    221   delete[] nodes;
    222   nodes = nullptr;
    223 }
    224 
    225 /// activate - mark node n as active if it wasn't already.
    226 void SpillPlacement::activate(unsigned n) {
    227   if (ActiveNodes->test(n))
    228     return;
    229   ActiveNodes->set(n);
    230   nodes[n].clear();
    231 
    232   // Very large bundles usually come from big switches, indirect branches,
    233   // landing pads, or loops with many 'continue' statements. It is difficult to
    234   // allocate registers when so many different blocks are involved.
    235   //
    236   // Give a small negative bias to large bundles such that a substantial
    237   // fraction of the connected blocks need to be interested before we consider
    238   // expanding the region through the bundle. This helps compile time by
    239   // limiting the number of blocks visited and the number of links in the
    240   // Hopfield network.
    241   if (bundles->getBlocks(n).size() > 100) {
    242     nodes[n].BiasP = 0;
    243     nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
    244   }
    245 }
    246 
    247 
    248 /// addConstraints - Compute node biases and weights from a set of constraints.
    249 /// Set a bit in NodeMask for each active node.
    250 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
    251   for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
    252        E = LiveBlocks.end(); I != E; ++I) {
    253     BlockFrequency Freq = BlockFrequencies[I->Number];
    254 
    255     // Live-in to block?
    256     if (I->Entry != DontCare) {
    257       unsigned ib = bundles->getBundle(I->Number, 0);
    258       activate(ib);
    259       nodes[ib].addBias(Freq, I->Entry);
    260     }
    261 
    262     // Live-out from block?
    263     if (I->Exit != DontCare) {
    264       unsigned ob = bundles->getBundle(I->Number, 1);
    265       activate(ob);
    266       nodes[ob].addBias(Freq, I->Exit);
    267     }
    268   }
    269 }
    270 
    271 /// addPrefSpill - Same as addConstraints(PrefSpill)
    272 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
    273   for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
    274        I != E; ++I) {
    275     BlockFrequency Freq = BlockFrequencies[*I];
    276     if (Strong)
    277       Freq += Freq;
    278     unsigned ib = bundles->getBundle(*I, 0);
    279     unsigned ob = bundles->getBundle(*I, 1);
    280     activate(ib);
    281     activate(ob);
    282     nodes[ib].addBias(Freq, PrefSpill);
    283     nodes[ob].addBias(Freq, PrefSpill);
    284   }
    285 }
    286 
    287 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
    288   for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
    289        ++I) {
    290     unsigned Number = *I;
    291     unsigned ib = bundles->getBundle(Number, 0);
    292     unsigned ob = bundles->getBundle(Number, 1);
    293 
    294     // Ignore self-loops.
    295     if (ib == ob)
    296       continue;
    297     activate(ib);
    298     activate(ob);
    299     if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
    300       Linked.push_back(ib);
    301     if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
    302       Linked.push_back(ob);
    303     BlockFrequency Freq = BlockFrequencies[Number];
    304     nodes[ib].addLink(ob, Freq);
    305     nodes[ob].addLink(ib, Freq);
    306   }
    307 }
    308 
    309 bool SpillPlacement::scanActiveBundles() {
    310   Linked.clear();
    311   RecentPositive.clear();
    312   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
    313     nodes[n].update(nodes);
    314     // A node that must spill, or a node without any links is not going to
    315     // change its value ever again, so exclude it from iterations.
    316     if (nodes[n].mustSpill())
    317       continue;
    318     if (!nodes[n].Links.empty())
    319       Linked.push_back(n);
    320     if (nodes[n].preferReg())
    321       RecentPositive.push_back(n);
    322   }
    323   return !RecentPositive.empty();
    324 }
    325 
    326 /// iterate - Repeatedly update the Hopfield nodes until stability or the
    327 /// maximum number of iterations is reached.
    328 /// @param Linked - Numbers of linked nodes that need updating.
    329 void SpillPlacement::iterate() {
    330   // First update the recently positive nodes. They have likely received new
    331   // negative bias that will turn them off.
    332   while (!RecentPositive.empty())
    333     nodes[RecentPositive.pop_back_val()].update(nodes);
    334 
    335   if (Linked.empty())
    336     return;
    337 
    338   // Run up to 10 iterations. The edge bundle numbering is closely related to
    339   // basic block numbering, so there is a strong tendency towards chains of
    340   // linked nodes with sequential numbers. By scanning the linked nodes
    341   // backwards and forwards, we make it very likely that a single node can
    342   // affect the entire network in a single iteration. That means very fast
    343   // convergence, usually in a single iteration.
    344   for (unsigned iteration = 0; iteration != 10; ++iteration) {
    345     // Scan backwards, skipping the last node when iteration is not zero. When
    346     // iteration is not zero, the last node was just updated.
    347     bool Changed = false;
    348     for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
    349            iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
    350            E = Linked.rend(); I != E; ++I) {
    351       unsigned n = *I;
    352       if (nodes[n].update(nodes)) {
    353         Changed = true;
    354         if (nodes[n].preferReg())
    355           RecentPositive.push_back(n);
    356       }
    357     }
    358     if (!Changed || !RecentPositive.empty())
    359       return;
    360 
    361     // Scan forwards, skipping the first node which was just updated.
    362     Changed = false;
    363     for (SmallVectorImpl<unsigned>::const_iterator I =
    364            std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
    365       unsigned n = *I;
    366       if (nodes[n].update(nodes)) {
    367         Changed = true;
    368         if (nodes[n].preferReg())
    369           RecentPositive.push_back(n);
    370       }
    371     }
    372     if (!Changed || !RecentPositive.empty())
    373       return;
    374   }
    375 }
    376 
    377 void SpillPlacement::prepare(BitVector &RegBundles) {
    378   Linked.clear();
    379   RecentPositive.clear();
    380   // Reuse RegBundles as our ActiveNodes vector.
    381   ActiveNodes = &RegBundles;
    382   ActiveNodes->clear();
    383   ActiveNodes->resize(bundles->getNumBundles());
    384 }
    385 
    386 bool
    387 SpillPlacement::finish() {
    388   assert(ActiveNodes && "Call prepare() first");
    389 
    390   // Write preferences back to ActiveNodes.
    391   bool Perfect = true;
    392   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
    393     if (!nodes[n].preferReg()) {
    394       ActiveNodes->reset(n);
    395       Perfect = false;
    396     }
    397   ActiveNodes = nullptr;
    398   return Perfect;
    399 }
    400