1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the DefaultJITMemoryManager class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/JITMemoryManager.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Config/config.h" 19 #include "llvm/IR/GlobalValue.h" 20 #include "llvm/Support/Allocator.h" 21 #include "llvm/Support/Compiler.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/DynamicLibrary.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/Memory.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <cassert> 28 #include <climits> 29 #include <cstring> 30 #include <vector> 31 32 #if defined(__linux__) 33 #if defined(HAVE_SYS_STAT_H) 34 #include <sys/stat.h> 35 #endif 36 #include <fcntl.h> 37 #include <unistd.h> 38 #endif 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "jit" 43 44 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT"); 45 46 JITMemoryManager::~JITMemoryManager() {} 47 48 //===----------------------------------------------------------------------===// 49 // Memory Block Implementation. 50 //===----------------------------------------------------------------------===// 51 52 namespace { 53 /// MemoryRangeHeader - For a range of memory, this is the header that we put 54 /// on the block of memory. It is carefully crafted to be one word of memory. 55 /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader 56 /// which starts with this. 57 struct FreeRangeHeader; 58 struct MemoryRangeHeader { 59 /// ThisAllocated - This is true if this block is currently allocated. If 60 /// not, this can be converted to a FreeRangeHeader. 61 unsigned ThisAllocated : 1; 62 63 /// PrevAllocated - Keep track of whether the block immediately before us is 64 /// allocated. If not, the word immediately before this header is the size 65 /// of the previous block. 66 unsigned PrevAllocated : 1; 67 68 /// BlockSize - This is the size in bytes of this memory block, 69 /// including this header. 70 uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2); 71 72 73 /// getBlockAfter - Return the memory block immediately after this one. 74 /// 75 MemoryRangeHeader &getBlockAfter() const { 76 return *reinterpret_cast<MemoryRangeHeader *>( 77 reinterpret_cast<char*>( 78 const_cast<MemoryRangeHeader *>(this))+BlockSize); 79 } 80 81 /// getFreeBlockBefore - If the block before this one is free, return it, 82 /// otherwise return null. 83 FreeRangeHeader *getFreeBlockBefore() const { 84 if (PrevAllocated) return nullptr; 85 intptr_t PrevSize = reinterpret_cast<intptr_t *>( 86 const_cast<MemoryRangeHeader *>(this))[-1]; 87 return reinterpret_cast<FreeRangeHeader *>( 88 reinterpret_cast<char*>( 89 const_cast<MemoryRangeHeader *>(this))-PrevSize); 90 } 91 92 /// FreeBlock - Turn an allocated block into a free block, adjusting 93 /// bits in the object headers, and adding an end of region memory block. 94 FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); 95 96 /// TrimAllocationToSize - If this allocated block is significantly larger 97 /// than NewSize, split it into two pieces (where the former is NewSize 98 /// bytes, including the header), and add the new block to the free list. 99 FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, 100 uint64_t NewSize); 101 }; 102 103 /// FreeRangeHeader - For a memory block that isn't already allocated, this 104 /// keeps track of the current block and has a pointer to the next free block. 105 /// Free blocks are kept on a circularly linked list. 106 struct FreeRangeHeader : public MemoryRangeHeader { 107 FreeRangeHeader *Prev; 108 FreeRangeHeader *Next; 109 110 /// getMinBlockSize - Get the minimum size for a memory block. Blocks 111 /// smaller than this size cannot be created. 112 static unsigned getMinBlockSize() { 113 return sizeof(FreeRangeHeader)+sizeof(intptr_t); 114 } 115 116 /// SetEndOfBlockSizeMarker - The word at the end of every free block is 117 /// known to be the size of the free block. Set it for this block. 118 void SetEndOfBlockSizeMarker() { 119 void *EndOfBlock = (char*)this + BlockSize; 120 ((intptr_t *)EndOfBlock)[-1] = BlockSize; 121 } 122 123 FreeRangeHeader *RemoveFromFreeList() { 124 assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); 125 Next->Prev = Prev; 126 return Prev->Next = Next; 127 } 128 129 void AddToFreeList(FreeRangeHeader *FreeList) { 130 Next = FreeList; 131 Prev = FreeList->Prev; 132 Prev->Next = this; 133 Next->Prev = this; 134 } 135 136 /// GrowBlock - The block after this block just got deallocated. Merge it 137 /// into the current block. 138 void GrowBlock(uintptr_t NewSize); 139 140 /// AllocateBlock - Mark this entire block allocated, updating freelists 141 /// etc. This returns a pointer to the circular free-list. 142 FreeRangeHeader *AllocateBlock(); 143 }; 144 } 145 146 147 /// AllocateBlock - Mark this entire block allocated, updating freelists 148 /// etc. This returns a pointer to the circular free-list. 149 FreeRangeHeader *FreeRangeHeader::AllocateBlock() { 150 assert(!ThisAllocated && !getBlockAfter().PrevAllocated && 151 "Cannot allocate an allocated block!"); 152 // Mark this block allocated. 153 ThisAllocated = 1; 154 getBlockAfter().PrevAllocated = 1; 155 156 // Remove it from the free list. 157 return RemoveFromFreeList(); 158 } 159 160 /// FreeBlock - Turn an allocated block into a free block, adjusting 161 /// bits in the object headers, and adding an end of region memory block. 162 /// If possible, coalesce this block with neighboring blocks. Return the 163 /// FreeRangeHeader to allocate from. 164 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { 165 MemoryRangeHeader *FollowingBlock = &getBlockAfter(); 166 assert(ThisAllocated && "This block is already free!"); 167 assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); 168 169 FreeRangeHeader *FreeListToReturn = FreeList; 170 171 // If the block after this one is free, merge it into this block. 172 if (!FollowingBlock->ThisAllocated) { 173 FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; 174 // "FreeList" always needs to be a valid free block. If we're about to 175 // coalesce with it, update our notion of what the free list is. 176 if (&FollowingFreeBlock == FreeList) { 177 FreeList = FollowingFreeBlock.Next; 178 FreeListToReturn = nullptr; 179 assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); 180 } 181 FollowingFreeBlock.RemoveFromFreeList(); 182 183 // Include the following block into this one. 184 BlockSize += FollowingFreeBlock.BlockSize; 185 FollowingBlock = &FollowingFreeBlock.getBlockAfter(); 186 187 // Tell the block after the block we are coalescing that this block is 188 // allocated. 189 FollowingBlock->PrevAllocated = 1; 190 } 191 192 assert(FollowingBlock->ThisAllocated && "Missed coalescing?"); 193 194 if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { 195 PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); 196 return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; 197 } 198 199 // Otherwise, mark this block free. 200 FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; 201 FollowingBlock->PrevAllocated = 0; 202 FreeBlock.ThisAllocated = 0; 203 204 // Link this into the linked list of free blocks. 205 FreeBlock.AddToFreeList(FreeList); 206 207 // Add a marker at the end of the block, indicating the size of this free 208 // block. 209 FreeBlock.SetEndOfBlockSizeMarker(); 210 return FreeListToReturn ? FreeListToReturn : &FreeBlock; 211 } 212 213 /// GrowBlock - The block after this block just got deallocated. Merge it 214 /// into the current block. 215 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { 216 assert(NewSize > BlockSize && "Not growing block?"); 217 BlockSize = NewSize; 218 SetEndOfBlockSizeMarker(); 219 getBlockAfter().PrevAllocated = 0; 220 } 221 222 /// TrimAllocationToSize - If this allocated block is significantly larger 223 /// than NewSize, split it into two pieces (where the former is NewSize 224 /// bytes, including the header), and add the new block to the free list. 225 FreeRangeHeader *MemoryRangeHeader:: 226 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { 227 assert(ThisAllocated && getBlockAfter().PrevAllocated && 228 "Cannot deallocate part of an allocated block!"); 229 230 // Don't allow blocks to be trimmed below minimum required size 231 NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize); 232 233 // Round up size for alignment of header. 234 unsigned HeaderAlign = __alignof(FreeRangeHeader); 235 NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); 236 237 // Size is now the size of the block we will remove from the start of the 238 // current block. 239 assert(NewSize <= BlockSize && 240 "Allocating more space from this block than exists!"); 241 242 // If splitting this block will cause the remainder to be too small, do not 243 // split the block. 244 if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) 245 return FreeList; 246 247 // Otherwise, we splice the required number of bytes out of this block, form 248 // a new block immediately after it, then mark this block allocated. 249 MemoryRangeHeader &FormerNextBlock = getBlockAfter(); 250 251 // Change the size of this block. 252 BlockSize = NewSize; 253 254 // Get the new block we just sliced out and turn it into a free block. 255 FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); 256 NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; 257 NewNextBlock.ThisAllocated = 0; 258 NewNextBlock.PrevAllocated = 1; 259 NewNextBlock.SetEndOfBlockSizeMarker(); 260 FormerNextBlock.PrevAllocated = 0; 261 NewNextBlock.AddToFreeList(FreeList); 262 return &NewNextBlock; 263 } 264 265 //===----------------------------------------------------------------------===// 266 // Memory Block Implementation. 267 //===----------------------------------------------------------------------===// 268 269 namespace { 270 271 class DefaultJITMemoryManager; 272 273 class JITAllocator { 274 DefaultJITMemoryManager &JMM; 275 public: 276 JITAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } 277 void *Allocate(size_t Size, size_t /*Alignment*/); 278 void Deallocate(void *Slab, size_t Size); 279 }; 280 281 /// DefaultJITMemoryManager - Manage memory for the JIT code generation. 282 /// This splits a large block of MAP_NORESERVE'd memory into two 283 /// sections, one for function stubs, one for the functions themselves. We 284 /// have to do this because we may need to emit a function stub while in the 285 /// middle of emitting a function, and we don't know how large the function we 286 /// are emitting is. 287 class DefaultJITMemoryManager : public JITMemoryManager { 288 public: 289 /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at 290 /// least this much unless more is requested. Currently, in 512k slabs. 291 static const size_t DefaultCodeSlabSize = 512 * 1024; 292 293 /// DefaultSlabSize - Allocate globals and stubs into slabs of 64K (probably 294 /// 16 pages) unless we get an allocation above SizeThreshold. 295 static const size_t DefaultSlabSize = 64 * 1024; 296 297 /// DefaultSizeThreshold - For any allocation larger than 16K (probably 298 /// 4 pages), we should allocate a separate slab to avoid wasted space at 299 /// the end of a normal slab. 300 static const size_t DefaultSizeThreshold = 16 * 1024; 301 302 private: 303 // Whether to poison freed memory. 304 bool PoisonMemory; 305 306 /// LastSlab - This points to the last slab allocated and is used as the 307 /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all 308 /// stubs, data, and code contiguously in memory. In general, however, this 309 /// is not possible because the NearBlock parameter is ignored on Windows 310 /// platforms and even on Unix it works on a best-effort pasis. 311 sys::MemoryBlock LastSlab; 312 313 // Memory slabs allocated by the JIT. We refer to them as slabs so we don't 314 // confuse them with the blocks of memory described above. 315 std::vector<sys::MemoryBlock> CodeSlabs; 316 BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize, 317 DefaultSizeThreshold> StubAllocator; 318 BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize, 319 DefaultSizeThreshold> DataAllocator; 320 321 // Circular list of free blocks. 322 FreeRangeHeader *FreeMemoryList; 323 324 // When emitting code into a memory block, this is the block. 325 MemoryRangeHeader *CurBlock; 326 327 uint8_t *GOTBase; // Target Specific reserved memory 328 public: 329 DefaultJITMemoryManager(); 330 ~DefaultJITMemoryManager(); 331 332 /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the 333 /// last slab it allocated, so that subsequent allocations follow it. 334 sys::MemoryBlock allocateNewSlab(size_t size); 335 336 /// getPointerToNamedFunction - This method returns the address of the 337 /// specified function by using the dlsym function call. 338 void *getPointerToNamedFunction(const std::string &Name, 339 bool AbortOnFailure = true) override; 340 341 void AllocateGOT() override; 342 343 // Testing methods. 344 bool CheckInvariants(std::string &ErrorStr) override; 345 size_t GetDefaultCodeSlabSize() override { return DefaultCodeSlabSize; } 346 size_t GetDefaultDataSlabSize() override { return DefaultSlabSize; } 347 size_t GetDefaultStubSlabSize() override { return DefaultSlabSize; } 348 unsigned GetNumCodeSlabs() override { return CodeSlabs.size(); } 349 unsigned GetNumDataSlabs() override { return DataAllocator.GetNumSlabs(); } 350 unsigned GetNumStubSlabs() override { return StubAllocator.GetNumSlabs(); } 351 352 /// startFunctionBody - When a function starts, allocate a block of free 353 /// executable memory, returning a pointer to it and its actual size. 354 uint8_t *startFunctionBody(const Function *F, 355 uintptr_t &ActualSize) override { 356 357 FreeRangeHeader* candidateBlock = FreeMemoryList; 358 FreeRangeHeader* head = FreeMemoryList; 359 FreeRangeHeader* iter = head->Next; 360 361 uintptr_t largest = candidateBlock->BlockSize; 362 363 // Search for the largest free block 364 while (iter != head) { 365 if (iter->BlockSize > largest) { 366 largest = iter->BlockSize; 367 candidateBlock = iter; 368 } 369 iter = iter->Next; 370 } 371 372 largest = largest - sizeof(MemoryRangeHeader); 373 374 // If this block isn't big enough for the allocation desired, allocate 375 // another block of memory and add it to the free list. 376 if (largest < ActualSize || 377 largest <= FreeRangeHeader::getMinBlockSize()) { 378 DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); 379 candidateBlock = allocateNewCodeSlab((size_t)ActualSize); 380 } 381 382 // Select this candidate block for allocation 383 CurBlock = candidateBlock; 384 385 // Allocate the entire memory block. 386 FreeMemoryList = candidateBlock->AllocateBlock(); 387 ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader); 388 return (uint8_t *)(CurBlock + 1); 389 } 390 391 /// allocateNewCodeSlab - Helper method to allocate a new slab of code 392 /// memory from the OS and add it to the free list. Returns the new 393 /// FreeRangeHeader at the base of the slab. 394 FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) { 395 // If the user needs at least MinSize free memory, then we account for 396 // two MemoryRangeHeaders: the one in the user's block, and the one at the 397 // end of the slab. 398 size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader); 399 size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin); 400 sys::MemoryBlock B = allocateNewSlab(SlabSize); 401 CodeSlabs.push_back(B); 402 char *MemBase = (char*)(B.base()); 403 404 // Put a tiny allocated block at the end of the memory chunk, so when 405 // FreeBlock calls getBlockAfter it doesn't fall off the end. 406 MemoryRangeHeader *EndBlock = 407 (MemoryRangeHeader*)(MemBase + B.size()) - 1; 408 EndBlock->ThisAllocated = 1; 409 EndBlock->PrevAllocated = 0; 410 EndBlock->BlockSize = sizeof(MemoryRangeHeader); 411 412 // Start out with a vast new block of free memory. 413 FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase; 414 NewBlock->ThisAllocated = 0; 415 // Make sure getFreeBlockBefore doesn't look into unmapped memory. 416 NewBlock->PrevAllocated = 1; 417 NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock; 418 NewBlock->SetEndOfBlockSizeMarker(); 419 NewBlock->AddToFreeList(FreeMemoryList); 420 421 assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize && 422 "The block was too small!"); 423 return NewBlock; 424 } 425 426 /// endFunctionBody - The function F is now allocated, and takes the memory 427 /// in the range [FunctionStart,FunctionEnd). 428 void endFunctionBody(const Function *F, uint8_t *FunctionStart, 429 uint8_t *FunctionEnd) override { 430 assert(FunctionEnd > FunctionStart); 431 assert(FunctionStart == (uint8_t *)(CurBlock+1) && 432 "Mismatched function start/end!"); 433 434 uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock; 435 436 // Release the memory at the end of this block that isn't needed. 437 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); 438 } 439 440 /// allocateSpace - Allocate a memory block of the given size. This method 441 /// cannot be called between calls to startFunctionBody and endFunctionBody. 442 uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) override { 443 CurBlock = FreeMemoryList; 444 FreeMemoryList = FreeMemoryList->AllocateBlock(); 445 446 uint8_t *result = (uint8_t *)(CurBlock + 1); 447 448 if (Alignment == 0) Alignment = 1; 449 result = (uint8_t*)(((intptr_t)result+Alignment-1) & 450 ~(intptr_t)(Alignment-1)); 451 452 uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock; 453 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); 454 455 return result; 456 } 457 458 /// allocateStub - Allocate memory for a function stub. 459 uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, 460 unsigned Alignment) override { 461 return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment); 462 } 463 464 /// allocateGlobal - Allocate memory for a global. 465 uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) override { 466 return (uint8_t*)DataAllocator.Allocate(Size, Alignment); 467 } 468 469 /// allocateCodeSection - Allocate memory for a code section. 470 uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, 471 unsigned SectionID, 472 StringRef SectionName) override { 473 // Grow the required block size to account for the block header 474 Size += sizeof(*CurBlock); 475 476 // Alignment handling. 477 if (!Alignment) 478 Alignment = 16; 479 Size += Alignment - 1; 480 481 FreeRangeHeader* candidateBlock = FreeMemoryList; 482 FreeRangeHeader* head = FreeMemoryList; 483 FreeRangeHeader* iter = head->Next; 484 485 uintptr_t largest = candidateBlock->BlockSize; 486 487 // Search for the largest free block. 488 while (iter != head) { 489 if (iter->BlockSize > largest) { 490 largest = iter->BlockSize; 491 candidateBlock = iter; 492 } 493 iter = iter->Next; 494 } 495 496 largest = largest - sizeof(MemoryRangeHeader); 497 498 // If this block isn't big enough for the allocation desired, allocate 499 // another block of memory and add it to the free list. 500 if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) { 501 DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); 502 candidateBlock = allocateNewCodeSlab((size_t)Size); 503 } 504 505 // Select this candidate block for allocation 506 CurBlock = candidateBlock; 507 508 // Allocate the entire memory block. 509 FreeMemoryList = candidateBlock->AllocateBlock(); 510 // Release the memory at the end of this block that isn't needed. 511 FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size); 512 uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock); 513 return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment); 514 } 515 516 /// allocateDataSection - Allocate memory for a data section. 517 uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, 518 unsigned SectionID, StringRef SectionName, 519 bool IsReadOnly) override { 520 return (uint8_t*)DataAllocator.Allocate(Size, Alignment); 521 } 522 523 bool finalizeMemory(std::string *ErrMsg) override { 524 return false; 525 } 526 527 uint8_t *getGOTBase() const override { 528 return GOTBase; 529 } 530 531 void deallocateBlock(void *Block) { 532 // Find the block that is allocated for this function. 533 MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1; 534 assert(MemRange->ThisAllocated && "Block isn't allocated!"); 535 536 // Fill the buffer with garbage! 537 if (PoisonMemory) { 538 memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)); 539 } 540 541 // Free the memory. 542 FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); 543 } 544 545 /// deallocateFunctionBody - Deallocate all memory for the specified 546 /// function body. 547 void deallocateFunctionBody(void *Body) override { 548 if (Body) deallocateBlock(Body); 549 } 550 551 /// setMemoryWritable - When code generation is in progress, 552 /// the code pages may need permissions changed. 553 void setMemoryWritable() override { 554 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) 555 sys::Memory::setWritable(CodeSlabs[i]); 556 } 557 /// setMemoryExecutable - When code generation is done and we're ready to 558 /// start execution, the code pages may need permissions changed. 559 void setMemoryExecutable() override { 560 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) 561 sys::Memory::setExecutable(CodeSlabs[i]); 562 } 563 564 /// setPoisonMemory - Controls whether we write garbage over freed memory. 565 /// 566 void setPoisonMemory(bool poison) override { 567 PoisonMemory = poison; 568 } 569 }; 570 } 571 572 void *JITAllocator::Allocate(size_t Size, size_t /*Alignment*/) { 573 sys::MemoryBlock B = JMM.allocateNewSlab(Size); 574 return B.base(); 575 } 576 577 void JITAllocator::Deallocate(void *Slab, size_t Size) { 578 sys::MemoryBlock B(Slab, Size); 579 sys::Memory::ReleaseRWX(B); 580 } 581 582 DefaultJITMemoryManager::DefaultJITMemoryManager() 583 : 584 #ifdef NDEBUG 585 PoisonMemory(false), 586 #else 587 PoisonMemory(true), 588 #endif 589 LastSlab(nullptr, 0), StubAllocator(*this), DataAllocator(*this) { 590 591 // Allocate space for code. 592 sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize); 593 CodeSlabs.push_back(MemBlock); 594 uint8_t *MemBase = (uint8_t*)MemBlock.base(); 595 596 // We set up the memory chunk with 4 mem regions, like this: 597 // [ START 598 // [ Free #0 ] -> Large space to allocate functions from. 599 // [ Allocated #1 ] -> Tiny space to separate regions. 600 // [ Free #2 ] -> Tiny space so there is always at least 1 free block. 601 // [ Allocated #3 ] -> Tiny space to prevent looking past end of block. 602 // END ] 603 // 604 // The last three blocks are never deallocated or touched. 605 606 // Add MemoryRangeHeader to the end of the memory region, indicating that 607 // the space after the block of memory is allocated. This is block #3. 608 MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; 609 Mem3->ThisAllocated = 1; 610 Mem3->PrevAllocated = 0; 611 Mem3->BlockSize = sizeof(MemoryRangeHeader); 612 613 /// Add a tiny free region so that the free list always has one entry. 614 FreeRangeHeader *Mem2 = 615 (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); 616 Mem2->ThisAllocated = 0; 617 Mem2->PrevAllocated = 1; 618 Mem2->BlockSize = FreeRangeHeader::getMinBlockSize(); 619 Mem2->SetEndOfBlockSizeMarker(); 620 Mem2->Prev = Mem2; // Mem2 *is* the free list for now. 621 Mem2->Next = Mem2; 622 623 /// Add a tiny allocated region so that Mem2 is never coalesced away. 624 MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; 625 Mem1->ThisAllocated = 1; 626 Mem1->PrevAllocated = 0; 627 Mem1->BlockSize = sizeof(MemoryRangeHeader); 628 629 // Add a FreeRangeHeader to the start of the function body region, indicating 630 // that the space is free. Mark the previous block allocated so we never look 631 // at it. 632 FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase; 633 Mem0->ThisAllocated = 0; 634 Mem0->PrevAllocated = 1; 635 Mem0->BlockSize = (char*)Mem1-(char*)Mem0; 636 Mem0->SetEndOfBlockSizeMarker(); 637 Mem0->AddToFreeList(Mem2); 638 639 // Start out with the freelist pointing to Mem0. 640 FreeMemoryList = Mem0; 641 642 GOTBase = nullptr; 643 } 644 645 void DefaultJITMemoryManager::AllocateGOT() { 646 assert(!GOTBase && "Cannot allocate the got multiple times"); 647 GOTBase = new uint8_t[sizeof(void*) * 8192]; 648 HasGOT = true; 649 } 650 651 DefaultJITMemoryManager::~DefaultJITMemoryManager() { 652 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) 653 sys::Memory::ReleaseRWX(CodeSlabs[i]); 654 655 delete[] GOTBase; 656 } 657 658 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) { 659 // Allocate a new block close to the last one. 660 std::string ErrMsg; 661 sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : nullptr; 662 sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg); 663 if (!B.base()) { 664 report_fatal_error("Allocation failed when allocating new memory in the" 665 " JIT\n" + Twine(ErrMsg)); 666 } 667 LastSlab = B; 668 ++NumSlabs; 669 // Initialize the slab to garbage when debugging. 670 if (PoisonMemory) { 671 memset(B.base(), 0xCD, B.size()); 672 } 673 return B; 674 } 675 676 /// CheckInvariants - For testing only. Return "" if all internal invariants 677 /// are preserved, and a helpful error message otherwise. For free and 678 /// allocated blocks, make sure that adding BlockSize gives a valid block. 679 /// For free blocks, make sure they're in the free list and that their end of 680 /// block size marker is correct. This function should return an error before 681 /// accessing bad memory. This function is defined here instead of in 682 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the 683 /// implementation details of DefaultJITMemoryManager. 684 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) { 685 raw_string_ostream Err(ErrorStr); 686 687 // Construct a the set of FreeRangeHeader pointers so we can query it 688 // efficiently. 689 llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet; 690 FreeRangeHeader* FreeHead = FreeMemoryList; 691 FreeRangeHeader* FreeRange = FreeHead; 692 693 do { 694 // Check that the free range pointer is in the blocks we've allocated. 695 bool Found = false; 696 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), 697 E = CodeSlabs.end(); I != E && !Found; ++I) { 698 char *Start = (char*)I->base(); 699 char *End = Start + I->size(); 700 Found = (Start <= (char*)FreeRange && (char*)FreeRange < End); 701 } 702 if (!Found) { 703 Err << "Corrupt free list; points to " << FreeRange; 704 return false; 705 } 706 707 if (FreeRange->Next->Prev != FreeRange) { 708 Err << "Next and Prev pointers do not match."; 709 return false; 710 } 711 712 // Otherwise, add it to the set. 713 FreeHdrSet.insert(FreeRange); 714 FreeRange = FreeRange->Next; 715 } while (FreeRange != FreeHead); 716 717 // Go over each block, and look at each MemoryRangeHeader. 718 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), 719 E = CodeSlabs.end(); I != E; ++I) { 720 char *Start = (char*)I->base(); 721 char *End = Start + I->size(); 722 723 // Check each memory range. 724 for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = nullptr; 725 Start <= (char*)Hdr && (char*)Hdr < End; 726 Hdr = &Hdr->getBlockAfter()) { 727 if (Hdr->ThisAllocated == 0) { 728 // Check that this range is in the free list. 729 if (!FreeHdrSet.count(Hdr)) { 730 Err << "Found free header at " << Hdr << " that is not in free list."; 731 return false; 732 } 733 734 // Now make sure the size marker at the end of the block is correct. 735 uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1; 736 if (!(Start <= (char*)Marker && (char*)Marker < End)) { 737 Err << "Block size in header points out of current MemoryBlock."; 738 return false; 739 } 740 if (Hdr->BlockSize != *Marker) { 741 Err << "End of block size marker (" << *Marker << ") " 742 << "and BlockSize (" << Hdr->BlockSize << ") don't match."; 743 return false; 744 } 745 } 746 747 if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) { 748 Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != " 749 << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")"; 750 return false; 751 } else if (!LastHdr && !Hdr->PrevAllocated) { 752 Err << "The first header should have PrevAllocated true."; 753 return false; 754 } 755 756 // Remember the last header. 757 LastHdr = Hdr; 758 } 759 } 760 761 // All invariants are preserved. 762 return true; 763 } 764 765 //===----------------------------------------------------------------------===// 766 // getPointerToNamedFunction() implementation. 767 //===----------------------------------------------------------------------===// 768 769 // AtExitHandlers - List of functions to call when the program exits, 770 // registered with the atexit() library function. 771 static std::vector<void (*)()> AtExitHandlers; 772 773 /// runAtExitHandlers - Run any functions registered by the program's 774 /// calls to atexit(3), which we intercept and store in 775 /// AtExitHandlers. 776 /// 777 static void runAtExitHandlers() { 778 while (!AtExitHandlers.empty()) { 779 void (*Fn)() = AtExitHandlers.back(); 780 AtExitHandlers.pop_back(); 781 Fn(); 782 } 783 } 784 785 //===----------------------------------------------------------------------===// 786 // Function stubs that are invoked instead of certain library calls 787 // 788 // Force the following functions to be linked in to anything that uses the 789 // JIT. This is a hack designed to work around the all-too-clever Glibc 790 // strategy of making these functions work differently when inlined vs. when 791 // not inlined, and hiding their real definitions in a separate archive file 792 // that the dynamic linker can't see. For more info, search for 793 // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274. 794 #if defined(__linux__) && defined(__GLIBC__) 795 /* stat functions are redirecting to __xstat with a version number. On x86-64 796 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat' 797 * available as an exported symbol, so we have to add it explicitly. 798 */ 799 namespace { 800 class StatSymbols { 801 public: 802 StatSymbols() { 803 sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat); 804 sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat); 805 sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat); 806 sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64); 807 sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64); 808 sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64); 809 sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64); 810 sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64); 811 sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64); 812 sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit); 813 sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod); 814 } 815 }; 816 } 817 static StatSymbols initStatSymbols; 818 #endif // __linux__ 819 820 // jit_exit - Used to intercept the "exit" library call. 821 static void jit_exit(int Status) { 822 runAtExitHandlers(); // Run atexit handlers... 823 exit(Status); 824 } 825 826 // jit_atexit - Used to intercept the "atexit" library call. 827 static int jit_atexit(void (*Fn)()) { 828 AtExitHandlers.push_back(Fn); // Take note of atexit handler... 829 return 0; // Always successful 830 } 831 832 static int jit_noop() { 833 return 0; 834 } 835 836 //===----------------------------------------------------------------------===// 837 // 838 /// getPointerToNamedFunction - This method returns the address of the specified 839 /// function by using the dynamic loader interface. As such it is only useful 840 /// for resolving library symbols, not code generated symbols. 841 /// 842 void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name, 843 bool AbortOnFailure) { 844 // Check to see if this is one of the functions we want to intercept. Note, 845 // we cast to intptr_t here to silence a -pedantic warning that complains 846 // about casting a function pointer to a normal pointer. 847 if (Name == "exit") return (void*)(intptr_t)&jit_exit; 848 if (Name == "atexit") return (void*)(intptr_t)&jit_atexit; 849 850 // We should not invoke parent's ctors/dtors from generated main()! 851 // On Mingw and Cygwin, the symbol __main is resolved to 852 // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors 853 // (and register wrong callee's dtors with atexit(3)). 854 // We expect ExecutionEngine::runStaticConstructorsDestructors() 855 // is called before ExecutionEngine::runFunctionAsMain() is called. 856 if (Name == "__main") return (void*)(intptr_t)&jit_noop; 857 858 const char *NameStr = Name.c_str(); 859 // If this is an asm specifier, skip the sentinal. 860 if (NameStr[0] == 1) ++NameStr; 861 862 // If it's an external function, look it up in the process image... 863 void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr); 864 if (Ptr) return Ptr; 865 866 // If it wasn't found and if it starts with an underscore ('_') character, 867 // try again without the underscore. 868 if (NameStr[0] == '_') { 869 Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1); 870 if (Ptr) return Ptr; 871 } 872 873 // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These 874 // are references to hidden visibility symbols that dlsym cannot resolve. 875 // If we have one of these, strip off $LDBLStub and try again. 876 #if defined(__APPLE__) && defined(__ppc__) 877 if (Name.size() > 9 && Name[Name.size()-9] == '$' && 878 memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) { 879 // First try turning $LDBLStub into $LDBL128. If that fails, strip it off. 880 // This mirrors logic in libSystemStubs.a. 881 std::string Prefix = std::string(Name.begin(), Name.end()-9); 882 if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false)) 883 return Ptr; 884 if (void *Ptr = getPointerToNamedFunction(Prefix, false)) 885 return Ptr; 886 } 887 #endif 888 889 if (AbortOnFailure) { 890 report_fatal_error("Program used external function '"+Name+ 891 "' which could not be resolved!"); 892 } 893 return nullptr; 894 } 895 896 897 898 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() { 899 return new DefaultJITMemoryManager(); 900 } 901 902 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize; 903 const size_t DefaultJITMemoryManager::DefaultSlabSize; 904 const size_t DefaultJITMemoryManager::DefaultSizeThreshold; 905