Home | History | Annotate | Download | only in ARM
      1 //===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the JIT interfaces for the ARM target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARMJITInfo.h"
     15 #include "ARMConstantPoolValue.h"
     16 #include "ARMMachineFunctionInfo.h"
     17 #include "ARMRelocations.h"
     18 #include "MCTargetDesc/ARMBaseInfo.h"
     19 #include "llvm/CodeGen/JITCodeEmitter.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/Memory.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include <cstdlib>
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "jit"
     29 
     30 void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
     31   report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
     32 }
     33 
     34 /// JITCompilerFunction - This contains the address of the JIT function used to
     35 /// compile a function lazily.
     36 static TargetJITInfo::JITCompilerFn JITCompilerFunction;
     37 
     38 // Get the ASMPREFIX for the current host.  This is often '_'.
     39 #ifndef __USER_LABEL_PREFIX__
     40 #define __USER_LABEL_PREFIX__
     41 #endif
     42 #define GETASMPREFIX2(X) #X
     43 #define GETASMPREFIX(X) GETASMPREFIX2(X)
     44 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
     45 
     46 // CompilationCallback stub - We can't use a C function with inline assembly in
     47 // it, because the prolog/epilog inserted by GCC won't work for us. (We need
     48 // to preserve more context and manipulate the stack directly).  Instead,
     49 // write our own wrapper, which does things our way, so we have complete
     50 // control over register saving and restoring.
     51 extern "C" {
     52 #if defined(__arm__)
     53   void ARMCompilationCallback();
     54   asm(
     55     ".text\n"
     56     ".align 2\n"
     57     ".globl " ASMPREFIX "ARMCompilationCallback\n"
     58     ASMPREFIX "ARMCompilationCallback:\n"
     59     // Save caller saved registers since they may contain stuff
     60     // for the real target function right now. We have to act as if this
     61     // whole compilation callback doesn't exist as far as the caller is
     62     // concerned, so we can't just preserve the callee saved regs.
     63     "stmdb sp!, {r0, r1, r2, r3, lr}\n"
     64 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
     65     "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
     66 #endif
     67     // The LR contains the address of the stub function on entry.
     68     // pass it as the argument to the C part of the callback
     69     "mov  r0, lr\n"
     70     "sub  sp, sp, #4\n"
     71     // Call the C portion of the callback
     72     "bl   " ASMPREFIX "ARMCompilationCallbackC\n"
     73     "add  sp, sp, #4\n"
     74     // Restoring the LR to the return address of the function that invoked
     75     // the stub and de-allocating the stack space for it requires us to
     76     // swap the two saved LR values on the stack, as they're backwards
     77     // for what we need since the pop instruction has a pre-determined
     78     // order for the registers.
     79     //      +--------+
     80     //   0  | LR     | Original return address
     81     //      +--------+
     82     //   1  | LR     | Stub address (start of stub)
     83     // 2-5  | R3..R0 | Saved registers (we need to preserve all regs)
     84     // 6-20 | D0..D7 | Saved VFP registers
     85     //      +--------+
     86     //
     87 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
     88     // Restore VFP caller-saved registers.
     89     "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
     90 #endif
     91     //
     92     //      We need to exchange the values in slots 0 and 1 so we can
     93     //      return to the address in slot 1 with the address in slot 0
     94     //      restored to the LR.
     95     "ldr  r0, [sp,#20]\n"
     96     "ldr  r1, [sp,#16]\n"
     97     "str  r1, [sp,#20]\n"
     98     "str  r0, [sp,#16]\n"
     99     // Return to the (newly modified) stub to invoke the real function.
    100     // The above twiddling of the saved return addresses allows us to
    101     // deallocate everything, including the LR the stub saved, with two
    102     // updating load instructions.
    103     "ldmia  sp!, {r0, r1, r2, r3, lr}\n"
    104     "ldr    pc, [sp], #4\n"
    105       );
    106 #else  // Not an ARM host
    107   void ARMCompilationCallback() {
    108     llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
    109   }
    110 #endif
    111 }
    112 
    113 /// ARMCompilationCallbackC - This is the target-specific function invoked
    114 /// by the function stub when we did not know the real target of a call.
    115 /// This function must locate the start of the stub or call site and pass
    116 /// it into the JIT compiler function.
    117 extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
    118   // Get the address of the compiled code for this function.
    119   intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
    120 
    121   // Rewrite the call target... so that we don't end up here every time we
    122   // execute the call. We're replacing the first two instructions of the
    123   // stub with:
    124   //   ldr pc, [pc,#-4]
    125   //   <addr>
    126   if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
    127     llvm_unreachable("ERROR: Unable to mark stub writable");
    128   }
    129   *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4]
    130   *(intptr_t *)(StubAddr+4) = NewVal;
    131   if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
    132     llvm_unreachable("ERROR: Unable to mark stub executable");
    133   }
    134 }
    135 
    136 TargetJITInfo::LazyResolverFn
    137 ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
    138   JITCompilerFunction = F;
    139   return ARMCompilationCallback;
    140 }
    141 
    142 void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
    143                                              JITCodeEmitter &JCE) {
    144   uint8_t Buffer[4];
    145   uint8_t *Cur = Buffer;
    146   MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
    147   void *PtrAddr = JCE.allocIndirectGV(
    148       GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
    149   addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
    150   return PtrAddr;
    151 }
    152 
    153 TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
    154   // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
    155   // 4-byte address.  See emitFunctionStub for details.
    156   StubLayout Result = {16, 4};
    157   return Result;
    158 }
    159 
    160 void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
    161                                    JITCodeEmitter &JCE) {
    162   void *Addr;
    163   // If this is just a call to an external function, emit a branch instead of a
    164   // call.  The code is the same except for one bit of the last instruction.
    165   if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
    166     // Branch to the corresponding function addr.
    167     if (IsPIC) {
    168       // The stub is 16-byte size and 4-aligned.
    169       intptr_t LazyPtr = getIndirectSymAddr(Fn);
    170       if (!LazyPtr) {
    171         // In PIC mode, the function stub is loading a lazy-ptr.
    172         LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
    173         DEBUG(if (F)
    174                 errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
    175                        << "] for GV '" << F->getName() << "'\n";
    176               else
    177                 errs() << "JIT: Stub emitted at [" << LazyPtr
    178                        << "] for external function at '" << Fn << "'\n");
    179       }
    180       JCE.emitAlignment(4);
    181       Addr = (void*)JCE.getCurrentPCValue();
    182       if (!sys::Memory::setRangeWritable(Addr, 16)) {
    183         llvm_unreachable("ERROR: Unable to mark stub writable");
    184       }
    185       JCE.emitWordLE(0xe59fc004);            // ldr ip, [pc, #+4]
    186       JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip
    187       JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip]
    188       JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8));  // func - (L_func$scv+8)
    189       sys::Memory::InvalidateInstructionCache(Addr, 16);
    190       if (!sys::Memory::setRangeExecutable(Addr, 16)) {
    191         llvm_unreachable("ERROR: Unable to mark stub executable");
    192       }
    193     } else {
    194       // The stub is 8-byte size and 4-aligned.
    195       JCE.emitAlignment(4);
    196       Addr = (void*)JCE.getCurrentPCValue();
    197       if (!sys::Memory::setRangeWritable(Addr, 8)) {
    198         llvm_unreachable("ERROR: Unable to mark stub writable");
    199       }
    200       JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4]
    201       JCE.emitWordLE((intptr_t)Fn);  // addr of function
    202       sys::Memory::InvalidateInstructionCache(Addr, 8);
    203       if (!sys::Memory::setRangeExecutable(Addr, 8)) {
    204         llvm_unreachable("ERROR: Unable to mark stub executable");
    205       }
    206     }
    207   } else {
    208     // The compilation callback will overwrite the first two words of this
    209     // stub with indirect branch instructions targeting the compiled code.
    210     // This stub sets the return address to restart the stub, so that
    211     // the new branch will be invoked when we come back.
    212     //
    213     // Branch and link to the compilation callback.
    214     // The stub is 16-byte size and 4-byte aligned.
    215     JCE.emitAlignment(4);
    216     Addr = (void*)JCE.getCurrentPCValue();
    217     if (!sys::Memory::setRangeWritable(Addr, 16)) {
    218       llvm_unreachable("ERROR: Unable to mark stub writable");
    219     }
    220     // Save LR so the callback can determine which stub called it.
    221     // The compilation callback is responsible for popping this prior
    222     // to returning.
    223     JCE.emitWordLE(0xe92d4000); // push {lr}
    224     // Set the return address to go back to the start of this stub.
    225     JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
    226     // Invoke the compilation callback.
    227     JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
    228     // The address of the compilation callback.
    229     JCE.emitWordLE((intptr_t)ARMCompilationCallback);
    230     sys::Memory::InvalidateInstructionCache(Addr, 16);
    231     if (!sys::Memory::setRangeExecutable(Addr, 16)) {
    232       llvm_unreachable("ERROR: Unable to mark stub executable");
    233     }
    234   }
    235 
    236   return Addr;
    237 }
    238 
    239 intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
    240   ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
    241   switch (RT) {
    242   default:
    243     return (intptr_t)(MR->getResultPointer());
    244   case ARM::reloc_arm_pic_jt:
    245     // Destination address - jump table base.
    246     return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
    247   case ARM::reloc_arm_jt_base:
    248     // Jump table base address.
    249     return getJumpTableBaseAddr(MR->getJumpTableIndex());
    250   case ARM::reloc_arm_cp_entry:
    251   case ARM::reloc_arm_vfp_cp_entry:
    252     // Constant pool entry address.
    253     return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
    254   case ARM::reloc_arm_machine_cp_entry: {
    255     ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
    256     assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
    257            "Can't handle this machine constant pool entry yet!");
    258     intptr_t Addr = (intptr_t)(MR->getResultPointer());
    259     Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
    260     return Addr;
    261   }
    262   }
    263 }
    264 
    265 /// relocate - Before the JIT can run a block of code that has been emitted,
    266 /// it must rewrite the code to contain the actual addresses of any
    267 /// referenced global symbols.
    268 void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
    269                           unsigned NumRelocs, unsigned char* GOTBase) {
    270   for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
    271     void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
    272     intptr_t ResultPtr = resolveRelocDestAddr(MR);
    273     switch ((ARM::RelocationType)MR->getRelocationType()) {
    274     case ARM::reloc_arm_cp_entry:
    275     case ARM::reloc_arm_vfp_cp_entry:
    276     case ARM::reloc_arm_relative: {
    277       // It is necessary to calculate the correct PC relative value. We
    278       // subtract the base addr from the target addr to form a byte offset.
    279       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
    280       // If the result is positive, set bit U(23) to 1.
    281       if (ResultPtr >= 0)
    282         *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
    283       else {
    284         // Otherwise, obtain the absolute value and set bit U(23) to 0.
    285         *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
    286         ResultPtr = - ResultPtr;
    287       }
    288       // Set the immed value calculated.
    289       // VFP immediate offset is multiplied by 4.
    290       if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
    291         ResultPtr = ResultPtr >> 2;
    292       *((intptr_t*)RelocPos) |= ResultPtr;
    293       // Set register Rn to PC (which is register 15 on all architectures).
    294       // FIXME: This avoids the need for register info in the JIT class.
    295       *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
    296       break;
    297     }
    298     case ARM::reloc_arm_pic_jt:
    299     case ARM::reloc_arm_machine_cp_entry:
    300     case ARM::reloc_arm_absolute: {
    301       // These addresses have already been resolved.
    302       *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
    303       break;
    304     }
    305     case ARM::reloc_arm_branch: {
    306       // It is necessary to calculate the correct value of signed_immed_24
    307       // field. We subtract the base addr from the target addr to form a
    308       // byte offset, which must be inside the range -33554432 and +33554428.
    309       // Then, we set the signed_immed_24 field of the instruction to bits
    310       // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
    311       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
    312       ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
    313       assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
    314       *((intptr_t*)RelocPos) |= ResultPtr;
    315       break;
    316     }
    317     case ARM::reloc_arm_jt_base: {
    318       // JT base - (instruction addr + 8)
    319       ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
    320       *((intptr_t*)RelocPos) |= ResultPtr;
    321       break;
    322     }
    323     case ARM::reloc_arm_movw: {
    324       ResultPtr = ResultPtr & 0xFFFF;
    325       *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
    326       *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
    327       break;
    328     }
    329     case ARM::reloc_arm_movt: {
    330       ResultPtr = (ResultPtr >> 16) & 0xFFFF;
    331       *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
    332       *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
    333       break;
    334     }
    335     }
    336   }
    337 }
    338 
    339 void ARMJITInfo::Initialize(const MachineFunction &MF, bool isPIC) {
    340   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    341   ConstPoolId2AddrMap.resize(AFI->getNumPICLabels());
    342   JumpTableId2AddrMap.resize(AFI->getNumJumpTables());
    343   IsPIC = isPIC;
    344 }
    345