Home | History | Annotate | Download | only in IPO
      1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass deletes dead arguments from internal functions.  Dead argument
     11 // elimination removes arguments which are directly dead, as well as arguments
     12 // only passed into function calls as dead arguments of other functions.  This
     13 // pass also deletes dead return values in a similar way.
     14 //
     15 // This pass is often useful as a cleanup pass to run after aggressive
     16 // interprocedural passes, which add possibly-dead arguments or return values.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/IPO.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/ADT/StringExtras.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/CallingConv.h"
     27 #include "llvm/IR/Constant.h"
     28 #include "llvm/IR/DIBuilder.h"
     29 #include "llvm/IR/DebugInfo.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Instructions.h"
     32 #include "llvm/IR/IntrinsicInst.h"
     33 #include "llvm/IR/LLVMContext.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/Pass.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <map>
     39 #include <set>
     40 #include <tuple>
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "deadargelim"
     44 
     45 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
     46 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
     47 STATISTIC(NumArgumentsReplacedWithUndef,
     48           "Number of unread args replaced with undef");
     49 namespace {
     50   /// DAE - The dead argument elimination pass.
     51   ///
     52   class DAE : public ModulePass {
     53   public:
     54 
     55     /// Struct that represents (part of) either a return value or a function
     56     /// argument.  Used so that arguments and return values can be used
     57     /// interchangeably.
     58     struct RetOrArg {
     59       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
     60                IsArg(IsArg) {}
     61       const Function *F;
     62       unsigned Idx;
     63       bool IsArg;
     64 
     65       /// Make RetOrArg comparable, so we can put it into a map.
     66       bool operator<(const RetOrArg &O) const {
     67         return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
     68       }
     69 
     70       /// Make RetOrArg comparable, so we can easily iterate the multimap.
     71       bool operator==(const RetOrArg &O) const {
     72         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
     73       }
     74 
     75       std::string getDescription() const {
     76         return std::string((IsArg ? "Argument #" : "Return value #"))
     77                + utostr(Idx) + " of function " + F->getName().str();
     78       }
     79     };
     80 
     81     /// Liveness enum - During our initial pass over the program, we determine
     82     /// that things are either alive or maybe alive. We don't mark anything
     83     /// explicitly dead (even if we know they are), since anything not alive
     84     /// with no registered uses (in Uses) will never be marked alive and will
     85     /// thus become dead in the end.
     86     enum Liveness { Live, MaybeLive };
     87 
     88     /// Convenience wrapper
     89     RetOrArg CreateRet(const Function *F, unsigned Idx) {
     90       return RetOrArg(F, Idx, false);
     91     }
     92     /// Convenience wrapper
     93     RetOrArg CreateArg(const Function *F, unsigned Idx) {
     94       return RetOrArg(F, Idx, true);
     95     }
     96 
     97     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
     98     /// This maps a return value or argument to any MaybeLive return values or
     99     /// arguments it uses. This allows the MaybeLive values to be marked live
    100     /// when any of its users is marked live.
    101     /// For example (indices are left out for clarity):
    102     ///  - Uses[ret F] = ret G
    103     ///    This means that F calls G, and F returns the value returned by G.
    104     ///  - Uses[arg F] = ret G
    105     ///    This means that some function calls G and passes its result as an
    106     ///    argument to F.
    107     ///  - Uses[ret F] = arg F
    108     ///    This means that F returns one of its own arguments.
    109     ///  - Uses[arg F] = arg G
    110     ///    This means that G calls F and passes one of its own (G's) arguments
    111     ///    directly to F.
    112     UseMap Uses;
    113 
    114     typedef std::set<RetOrArg> LiveSet;
    115     typedef std::set<const Function*> LiveFuncSet;
    116 
    117     /// This set contains all values that have been determined to be live.
    118     LiveSet LiveValues;
    119     /// This set contains all values that are cannot be changed in any way.
    120     LiveFuncSet LiveFunctions;
    121 
    122     typedef SmallVector<RetOrArg, 5> UseVector;
    123 
    124     // Map each LLVM function to corresponding metadata with debug info. If
    125     // the function is replaced with another one, we should patch the pointer
    126     // to LLVM function in metadata.
    127     // As the code generation for module is finished (and DIBuilder is
    128     // finalized) we assume that subprogram descriptors won't be changed, and
    129     // they are stored in map for short duration anyway.
    130     DenseMap<const Function *, DISubprogram> FunctionDIs;
    131 
    132   protected:
    133     // DAH uses this to specify a different ID.
    134     explicit DAE(char &ID) : ModulePass(ID) {}
    135 
    136   public:
    137     static char ID; // Pass identification, replacement for typeid
    138     DAE() : ModulePass(ID) {
    139       initializeDAEPass(*PassRegistry::getPassRegistry());
    140     }
    141 
    142     bool runOnModule(Module &M) override;
    143 
    144     virtual bool ShouldHackArguments() const { return false; }
    145 
    146   private:
    147     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
    148     Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
    149                        unsigned RetValNum = 0);
    150     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
    151 
    152     void SurveyFunction(const Function &F);
    153     void MarkValue(const RetOrArg &RA, Liveness L,
    154                    const UseVector &MaybeLiveUses);
    155     void MarkLive(const RetOrArg &RA);
    156     void MarkLive(const Function &F);
    157     void PropagateLiveness(const RetOrArg &RA);
    158     bool RemoveDeadStuffFromFunction(Function *F);
    159     bool DeleteDeadVarargs(Function &Fn);
    160     bool RemoveDeadArgumentsFromCallers(Function &Fn);
    161   };
    162 }
    163 
    164 
    165 char DAE::ID = 0;
    166 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
    167 
    168 namespace {
    169   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
    170   /// deletes arguments to functions which are external.  This is only for use
    171   /// by bugpoint.
    172   struct DAH : public DAE {
    173     static char ID;
    174     DAH() : DAE(ID) {}
    175 
    176     bool ShouldHackArguments() const override { return true; }
    177   };
    178 }
    179 
    180 char DAH::ID = 0;
    181 INITIALIZE_PASS(DAH, "deadarghaX0r",
    182                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
    183                 false, false)
    184 
    185 /// createDeadArgEliminationPass - This pass removes arguments from functions
    186 /// which are not used by the body of the function.
    187 ///
    188 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
    189 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
    190 
    191 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
    192 /// llvm.vastart is never called, the varargs list is dead for the function.
    193 bool DAE::DeleteDeadVarargs(Function &Fn) {
    194   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
    195   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
    196 
    197   // Ensure that the function is only directly called.
    198   if (Fn.hasAddressTaken())
    199     return false;
    200 
    201   // Okay, we know we can transform this function if safe.  Scan its body
    202   // looking for calls to llvm.vastart.
    203   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    204     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    205       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    206         if (II->getIntrinsicID() == Intrinsic::vastart)
    207           return false;
    208       }
    209     }
    210   }
    211 
    212   // If we get here, there are no calls to llvm.vastart in the function body,
    213   // remove the "..." and adjust all the calls.
    214 
    215   // Start by computing a new prototype for the function, which is the same as
    216   // the old function, but doesn't have isVarArg set.
    217   FunctionType *FTy = Fn.getFunctionType();
    218 
    219   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
    220   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
    221                                                 Params, false);
    222   unsigned NumArgs = Params.size();
    223 
    224   // Create the new function body and insert it into the module...
    225   Function *NF = Function::Create(NFTy, Fn.getLinkage());
    226   NF->copyAttributesFrom(&Fn);
    227   Fn.getParent()->getFunctionList().insert(&Fn, NF);
    228   NF->takeName(&Fn);
    229 
    230   // Loop over all of the callers of the function, transforming the call sites
    231   // to pass in a smaller number of arguments into the new function.
    232   //
    233   std::vector<Value*> Args;
    234   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
    235     CallSite CS(*I++);
    236     if (!CS)
    237       continue;
    238     Instruction *Call = CS.getInstruction();
    239 
    240     // Pass all the same arguments.
    241     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
    242 
    243     // Drop any attributes that were on the vararg arguments.
    244     AttributeSet PAL = CS.getAttributes();
    245     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
    246       SmallVector<AttributeSet, 8> AttributesVec;
    247       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
    248         AttributesVec.push_back(PAL.getSlotAttributes(i));
    249       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    250         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
    251                                                   PAL.getFnAttributes()));
    252       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
    253     }
    254 
    255     Instruction *New;
    256     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    257       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    258                                Args, "", Call);
    259       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    260       cast<InvokeInst>(New)->setAttributes(PAL);
    261     } else {
    262       New = CallInst::Create(NF, Args, "", Call);
    263       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    264       cast<CallInst>(New)->setAttributes(PAL);
    265       if (cast<CallInst>(Call)->isTailCall())
    266         cast<CallInst>(New)->setTailCall();
    267     }
    268     New->setDebugLoc(Call->getDebugLoc());
    269 
    270     Args.clear();
    271 
    272     if (!Call->use_empty())
    273       Call->replaceAllUsesWith(New);
    274 
    275     New->takeName(Call);
    276 
    277     // Finally, remove the old call from the program, reducing the use-count of
    278     // F.
    279     Call->eraseFromParent();
    280   }
    281 
    282   // Since we have now created the new function, splice the body of the old
    283   // function right into the new function, leaving the old rotting hulk of the
    284   // function empty.
    285   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
    286 
    287   // Loop over the argument list, transferring uses of the old arguments over to
    288   // the new arguments, also transferring over the names as well.  While we're at
    289   // it, remove the dead arguments from the DeadArguments list.
    290   //
    291   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
    292        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    293     // Move the name and users over to the new version.
    294     I->replaceAllUsesWith(I2);
    295     I2->takeName(I);
    296   }
    297 
    298   // Patch the pointer to LLVM function in debug info descriptor.
    299   auto DI = FunctionDIs.find(&Fn);
    300   if (DI != FunctionDIs.end())
    301     DI->second.replaceFunction(NF);
    302 
    303   // Fix up any BlockAddresses that refer to the function.
    304   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
    305   // Delete the bitcast that we just created, so that NF does not
    306   // appear to be address-taken.
    307   NF->removeDeadConstantUsers();
    308   // Finally, nuke the old function.
    309   Fn.eraseFromParent();
    310   return true;
    311 }
    312 
    313 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
    314 /// arguments that are unused, and changes the caller parameters to be undefined
    315 /// instead.
    316 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
    317 {
    318   if (Fn.isDeclaration() || Fn.mayBeOverridden())
    319     return false;
    320 
    321   // Functions with local linkage should already have been handled, except the
    322   // fragile (variadic) ones which we can improve here.
    323   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
    324     return false;
    325 
    326   // If a function seen at compile time is not necessarily the one linked to
    327   // the binary being built, it is illegal to change the actual arguments
    328   // passed to it. These functions can be captured by isWeakForLinker().
    329   // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
    330   // doesn't include linkage types like AvailableExternallyLinkage and
    331   // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
    332   // *EQUIVALENT* globals that can be merged at link-time. However, the
    333   // semantic of *EQUIVALENT*-functions includes parameters. Changing
    334   // parameters breaks this assumption.
    335   //
    336   if (Fn.isWeakForLinker())
    337     return false;
    338 
    339   if (Fn.use_empty())
    340     return false;
    341 
    342   SmallVector<unsigned, 8> UnusedArgs;
    343   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
    344        I != E; ++I) {
    345     Argument *Arg = I;
    346 
    347     if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
    348       UnusedArgs.push_back(Arg->getArgNo());
    349   }
    350 
    351   if (UnusedArgs.empty())
    352     return false;
    353 
    354   bool Changed = false;
    355 
    356   for (Use &U : Fn.uses()) {
    357     CallSite CS(U.getUser());
    358     if (!CS || !CS.isCallee(&U))
    359       continue;
    360 
    361     // Now go through all unused args and replace them with "undef".
    362     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
    363       unsigned ArgNo = UnusedArgs[I];
    364 
    365       Value *Arg = CS.getArgument(ArgNo);
    366       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
    367       ++NumArgumentsReplacedWithUndef;
    368       Changed = true;
    369     }
    370   }
    371 
    372   return Changed;
    373 }
    374 
    375 /// Convenience function that returns the number of return values. It returns 0
    376 /// for void functions and 1 for functions not returning a struct. It returns
    377 /// the number of struct elements for functions returning a struct.
    378 static unsigned NumRetVals(const Function *F) {
    379   if (F->getReturnType()->isVoidTy())
    380     return 0;
    381   else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
    382     return STy->getNumElements();
    383   else
    384     return 1;
    385 }
    386 
    387 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
    388 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
    389 /// liveness of Use.
    390 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
    391   // We're live if our use or its Function is already marked as live.
    392   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    393     return Live;
    394 
    395   // We're maybe live otherwise, but remember that we must become live if
    396   // Use becomes live.
    397   MaybeLiveUses.push_back(Use);
    398   return MaybeLive;
    399 }
    400 
    401 
    402 /// SurveyUse - This looks at a single use of an argument or return value
    403 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
    404 /// if it causes the used value to become MaybeLive.
    405 ///
    406 /// RetValNum is the return value number to use when this use is used in a
    407 /// return instruction. This is used in the recursion, you should always leave
    408 /// it at 0.
    409 DAE::Liveness DAE::SurveyUse(const Use *U,
    410                              UseVector &MaybeLiveUses, unsigned RetValNum) {
    411     const User *V = U->getUser();
    412     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
    413       // The value is returned from a function. It's only live when the
    414       // function's return value is live. We use RetValNum here, for the case
    415       // that U is really a use of an insertvalue instruction that uses the
    416       // original Use.
    417       RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
    418       // We might be live, depending on the liveness of Use.
    419       return MarkIfNotLive(Use, MaybeLiveUses);
    420     }
    421     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
    422       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
    423           && IV->hasIndices())
    424         // The use we are examining is inserted into an aggregate. Our liveness
    425         // depends on all uses of that aggregate, but if it is used as a return
    426         // value, only index at which we were inserted counts.
    427         RetValNum = *IV->idx_begin();
    428 
    429       // Note that if we are used as the aggregate operand to the insertvalue,
    430       // we don't change RetValNum, but do survey all our uses.
    431 
    432       Liveness Result = MaybeLive;
    433       for (const Use &UU : IV->uses()) {
    434         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
    435         if (Result == Live)
    436           break;
    437       }
    438       return Result;
    439     }
    440 
    441     if (ImmutableCallSite CS = V) {
    442       const Function *F = CS.getCalledFunction();
    443       if (F) {
    444         // Used in a direct call.
    445 
    446         // Find the argument number. We know for sure that this use is an
    447         // argument, since if it was the function argument this would be an
    448         // indirect call and the we know can't be looking at a value of the
    449         // label type (for the invoke instruction).
    450         unsigned ArgNo = CS.getArgumentNo(U);
    451 
    452         if (ArgNo >= F->getFunctionType()->getNumParams())
    453           // The value is passed in through a vararg! Must be live.
    454           return Live;
    455 
    456         assert(CS.getArgument(ArgNo)
    457                == CS->getOperand(U->getOperandNo())
    458                && "Argument is not where we expected it");
    459 
    460         // Value passed to a normal call. It's only live when the corresponding
    461         // argument to the called function turns out live.
    462         RetOrArg Use = CreateArg(F, ArgNo);
    463         return MarkIfNotLive(Use, MaybeLiveUses);
    464       }
    465     }
    466     // Used in any other way? Value must be live.
    467     return Live;
    468 }
    469 
    470 /// SurveyUses - This looks at all the uses of the given value
    471 /// Returns the Liveness deduced from the uses of this value.
    472 ///
    473 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
    474 /// the result is Live, MaybeLiveUses might be modified but its content should
    475 /// be ignored (since it might not be complete).
    476 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
    477   // Assume it's dead (which will only hold if there are no uses at all..).
    478   Liveness Result = MaybeLive;
    479   // Check each use.
    480   for (const Use &U : V->uses()) {
    481     Result = SurveyUse(&U, MaybeLiveUses);
    482     if (Result == Live)
    483       break;
    484   }
    485   return Result;
    486 }
    487 
    488 // SurveyFunction - This performs the initial survey of the specified function,
    489 // checking out whether or not it uses any of its incoming arguments or whether
    490 // any callers use the return value.  This fills in the LiveValues set and Uses
    491 // map.
    492 //
    493 // We consider arguments of non-internal functions to be intrinsically alive as
    494 // well as arguments to functions which have their "address taken".
    495 //
    496 void DAE::SurveyFunction(const Function &F) {
    497   // Functions with inalloca parameters are expecting args in a particular
    498   // register and memory layout.
    499   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
    500     MarkLive(F);
    501     return;
    502   }
    503 
    504   unsigned RetCount = NumRetVals(&F);
    505   // Assume all return values are dead
    506   typedef SmallVector<Liveness, 5> RetVals;
    507   RetVals RetValLiveness(RetCount, MaybeLive);
    508 
    509   typedef SmallVector<UseVector, 5> RetUses;
    510   // These vectors map each return value to the uses that make it MaybeLive, so
    511   // we can add those to the Uses map if the return value really turns out to be
    512   // MaybeLive. Initialized to a list of RetCount empty lists.
    513   RetUses MaybeLiveRetUses(RetCount);
    514 
    515   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    516     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
    517       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
    518           != F.getFunctionType()->getReturnType()) {
    519         // We don't support old style multiple return values.
    520         MarkLive(F);
    521         return;
    522       }
    523 
    524   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
    525     MarkLive(F);
    526     return;
    527   }
    528 
    529   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
    530   // Keep track of the number of live retvals, so we can skip checks once all
    531   // of them turn out to be live.
    532   unsigned NumLiveRetVals = 0;
    533   Type *STy = dyn_cast<StructType>(F.getReturnType());
    534   // Loop all uses of the function.
    535   for (const Use &U : F.uses()) {
    536     // If the function is PASSED IN as an argument, its address has been
    537     // taken.
    538     ImmutableCallSite CS(U.getUser());
    539     if (!CS || !CS.isCallee(&U)) {
    540       MarkLive(F);
    541       return;
    542     }
    543 
    544     // If this use is anything other than a call site, the function is alive.
    545     const Instruction *TheCall = CS.getInstruction();
    546     if (!TheCall) {   // Not a direct call site?
    547       MarkLive(F);
    548       return;
    549     }
    550 
    551     // If we end up here, we are looking at a direct call to our function.
    552 
    553     // Now, check how our return value(s) is/are used in this caller. Don't
    554     // bother checking return values if all of them are live already.
    555     if (NumLiveRetVals != RetCount) {
    556       if (STy) {
    557         // Check all uses of the return value.
    558         for (const User *U : TheCall->users()) {
    559           const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U);
    560           if (Ext && Ext->hasIndices()) {
    561             // This use uses a part of our return value, survey the uses of
    562             // that part and store the results for this index only.
    563             unsigned Idx = *Ext->idx_begin();
    564             if (RetValLiveness[Idx] != Live) {
    565               RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
    566               if (RetValLiveness[Idx] == Live)
    567                 NumLiveRetVals++;
    568             }
    569           } else {
    570             // Used by something else than extractvalue. Mark all return
    571             // values as live.
    572             for (unsigned i = 0; i != RetCount; ++i )
    573               RetValLiveness[i] = Live;
    574             NumLiveRetVals = RetCount;
    575             break;
    576           }
    577         }
    578       } else {
    579         // Single return value
    580         RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
    581         if (RetValLiveness[0] == Live)
    582           NumLiveRetVals = RetCount;
    583       }
    584     }
    585   }
    586 
    587   // Now we've inspected all callers, record the liveness of our return values.
    588   for (unsigned i = 0; i != RetCount; ++i)
    589     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
    590 
    591   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
    592 
    593   // Now, check all of our arguments.
    594   unsigned i = 0;
    595   UseVector MaybeLiveArgUses;
    596   for (Function::const_arg_iterator AI = F.arg_begin(),
    597        E = F.arg_end(); AI != E; ++AI, ++i) {
    598     Liveness Result;
    599     if (F.getFunctionType()->isVarArg()) {
    600       // Variadic functions will already have a va_arg function expanded inside
    601       // them, making them potentially very sensitive to ABI changes resulting
    602       // from removing arguments entirely, so don't. For example AArch64 handles
    603       // register and stack HFAs very differently, and this is reflected in the
    604       // IR which has already been generated.
    605       Result = Live;
    606     } else {
    607       // See what the effect of this use is (recording any uses that cause
    608       // MaybeLive in MaybeLiveArgUses).
    609       Result = SurveyUses(AI, MaybeLiveArgUses);
    610     }
    611 
    612     // Mark the result.
    613     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    614     // Clear the vector again for the next iteration.
    615     MaybeLiveArgUses.clear();
    616   }
    617 }
    618 
    619 /// MarkValue - This function marks the liveness of RA depending on L. If L is
    620 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
    621 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
    622 /// live later on.
    623 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
    624                     const UseVector &MaybeLiveUses) {
    625   switch (L) {
    626     case Live: MarkLive(RA); break;
    627     case MaybeLive:
    628     {
    629       // Note any uses of this value, so this return value can be
    630       // marked live whenever one of the uses becomes live.
    631       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
    632            UE = MaybeLiveUses.end(); UI != UE; ++UI)
    633         Uses.insert(std::make_pair(*UI, RA));
    634       break;
    635     }
    636   }
    637 }
    638 
    639 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
    640 /// changed in any way. Additionally,
    641 /// mark any values that are used as this function's parameters or by its return
    642 /// values (according to Uses) live as well.
    643 void DAE::MarkLive(const Function &F) {
    644   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
    645   // Mark the function as live.
    646   LiveFunctions.insert(&F);
    647   // Mark all arguments as live.
    648   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    649     PropagateLiveness(CreateArg(&F, i));
    650   // Mark all return values as live.
    651   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    652     PropagateLiveness(CreateRet(&F, i));
    653 }
    654 
    655 /// MarkLive - Mark the given return value or argument as live. Additionally,
    656 /// mark any values that are used by this value (according to Uses) live as
    657 /// well.
    658 void DAE::MarkLive(const RetOrArg &RA) {
    659   if (LiveFunctions.count(RA.F))
    660     return; // Function was already marked Live.
    661 
    662   if (!LiveValues.insert(RA).second)
    663     return; // We were already marked Live.
    664 
    665   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
    666   PropagateLiveness(RA);
    667 }
    668 
    669 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
    670 /// to any other values it uses (according to Uses).
    671 void DAE::PropagateLiveness(const RetOrArg &RA) {
    672   // We don't use upper_bound (or equal_range) here, because our recursive call
    673   // to ourselves is likely to cause the upper_bound (which is the first value
    674   // not belonging to RA) to become erased and the iterator invalidated.
    675   UseMap::iterator Begin = Uses.lower_bound(RA);
    676   UseMap::iterator E = Uses.end();
    677   UseMap::iterator I;
    678   for (I = Begin; I != E && I->first == RA; ++I)
    679     MarkLive(I->second);
    680 
    681   // Erase RA from the Uses map (from the lower bound to wherever we ended up
    682   // after the loop).
    683   Uses.erase(Begin, I);
    684 }
    685 
    686 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
    687 // that are not in LiveValues. Transform the function and all of the callees of
    688 // the function to not have these arguments and return values.
    689 //
    690 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
    691   // Don't modify fully live functions
    692   if (LiveFunctions.count(F))
    693     return false;
    694 
    695   // Start by computing a new prototype for the function, which is the same as
    696   // the old function, but has fewer arguments and a different return type.
    697   FunctionType *FTy = F->getFunctionType();
    698   std::vector<Type*> Params;
    699 
    700   // Keep track of if we have a live 'returned' argument
    701   bool HasLiveReturnedArg = false;
    702 
    703   // Set up to build a new list of parameter attributes.
    704   SmallVector<AttributeSet, 8> AttributesVec;
    705   const AttributeSet &PAL = F->getAttributes();
    706 
    707   // Remember which arguments are still alive.
    708   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
    709   // Construct the new parameter list from non-dead arguments. Also construct
    710   // a new set of parameter attributes to correspond. Skip the first parameter
    711   // attribute, since that belongs to the return value.
    712   unsigned i = 0;
    713   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    714        I != E; ++I, ++i) {
    715     RetOrArg Arg = CreateArg(F, i);
    716     if (LiveValues.erase(Arg)) {
    717       Params.push_back(I->getType());
    718       ArgAlive[i] = true;
    719 
    720       // Get the original parameter attributes (skipping the first one, that is
    721       // for the return value.
    722       if (PAL.hasAttributes(i + 1)) {
    723         AttrBuilder B(PAL, i + 1);
    724         if (B.contains(Attribute::Returned))
    725           HasLiveReturnedArg = true;
    726         AttributesVec.
    727           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
    728       }
    729     } else {
    730       ++NumArgumentsEliminated;
    731       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
    732             << ") from " << F->getName() << "\n");
    733     }
    734   }
    735 
    736   // Find out the new return value.
    737   Type *RetTy = FTy->getReturnType();
    738   Type *NRetTy = nullptr;
    739   unsigned RetCount = NumRetVals(F);
    740 
    741   // -1 means unused, other numbers are the new index
    742   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
    743   std::vector<Type*> RetTypes;
    744 
    745   // If there is a function with a live 'returned' argument but a dead return
    746   // value, then there are two possible actions:
    747   // 1) Eliminate the return value and take off the 'returned' attribute on the
    748   //    argument.
    749   // 2) Retain the 'returned' attribute and treat the return value (but not the
    750   //    entire function) as live so that it is not eliminated.
    751   //
    752   // It's not clear in the general case which option is more profitable because,
    753   // even in the absence of explicit uses of the return value, code generation
    754   // is free to use the 'returned' attribute to do things like eliding
    755   // save/restores of registers across calls. Whether or not this happens is
    756   // target and ABI-specific as well as depending on the amount of register
    757   // pressure, so there's no good way for an IR-level pass to figure this out.
    758   //
    759   // Fortunately, the only places where 'returned' is currently generated by
    760   // the FE are places where 'returned' is basically free and almost always a
    761   // performance win, so the second option can just be used always for now.
    762   //
    763   // This should be revisited if 'returned' is ever applied more liberally.
    764   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
    765     NRetTy = RetTy;
    766   } else {
    767     StructType *STy = dyn_cast<StructType>(RetTy);
    768     if (STy)
    769       // Look at each of the original return values individually.
    770       for (unsigned i = 0; i != RetCount; ++i) {
    771         RetOrArg Ret = CreateRet(F, i);
    772         if (LiveValues.erase(Ret)) {
    773           RetTypes.push_back(STy->getElementType(i));
    774           NewRetIdxs[i] = RetTypes.size() - 1;
    775         } else {
    776           ++NumRetValsEliminated;
    777           DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
    778                 << F->getName() << "\n");
    779         }
    780       }
    781     else
    782       // We used to return a single value.
    783       if (LiveValues.erase(CreateRet(F, 0))) {
    784         RetTypes.push_back(RetTy);
    785         NewRetIdxs[0] = 0;
    786       } else {
    787         DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
    788               << "\n");
    789         ++NumRetValsEliminated;
    790       }
    791     if (RetTypes.size() > 1)
    792       // More than one return type? Return a struct with them. Also, if we used
    793       // to return a struct and didn't change the number of return values,
    794       // return a struct again. This prevents changing {something} into
    795       // something and {} into void.
    796       // Make the new struct packed if we used to return a packed struct
    797       // already.
    798       NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    799     else if (RetTypes.size() == 1)
    800       // One return type? Just a simple value then, but only if we didn't use to
    801       // return a struct with that simple value before.
    802       NRetTy = RetTypes.front();
    803     else if (RetTypes.size() == 0)
    804       // No return types? Make it void, but only if we didn't use to return {}.
    805       NRetTy = Type::getVoidTy(F->getContext());
    806   }
    807 
    808   assert(NRetTy && "No new return type found?");
    809 
    810   // The existing function return attributes.
    811   AttributeSet RAttrs = PAL.getRetAttributes();
    812 
    813   // Remove any incompatible attributes, but only if we removed all return
    814   // values. Otherwise, ensure that we don't have any conflicting attributes
    815   // here. Currently, this should not be possible, but special handling might be
    816   // required when new return value attributes are added.
    817   if (NRetTy->isVoidTy())
    818     RAttrs =
    819       AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
    820                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    821          removeAttributes(AttributeFuncs::
    822                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    823                           AttributeSet::ReturnIndex));
    824   else
    825     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    826              hasAttributes(AttributeFuncs::
    827                            typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
    828                            AttributeSet::ReturnIndex) &&
    829            "Return attributes no longer compatible?");
    830 
    831   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    832     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
    833 
    834   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    835     AttributesVec.push_back(AttributeSet::get(F->getContext(),
    836                                               PAL.getFnAttributes()));
    837 
    838   // Reconstruct the AttributesList based on the vector we constructed.
    839   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
    840 
    841   // Create the new function type based on the recomputed parameters.
    842   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
    843 
    844   // No change?
    845   if (NFTy == FTy)
    846     return false;
    847 
    848   // Create the new function body and insert it into the module...
    849   Function *NF = Function::Create(NFTy, F->getLinkage());
    850   NF->copyAttributesFrom(F);
    851   NF->setAttributes(NewPAL);
    852   // Insert the new function before the old function, so we won't be processing
    853   // it again.
    854   F->getParent()->getFunctionList().insert(F, NF);
    855   NF->takeName(F);
    856 
    857   // Loop over all of the callers of the function, transforming the call sites
    858   // to pass in a smaller number of arguments into the new function.
    859   //
    860   std::vector<Value*> Args;
    861   while (!F->use_empty()) {
    862     CallSite CS(F->user_back());
    863     Instruction *Call = CS.getInstruction();
    864 
    865     AttributesVec.clear();
    866     const AttributeSet &CallPAL = CS.getAttributes();
    867 
    868     // The call return attributes.
    869     AttributeSet RAttrs = CallPAL.getRetAttributes();
    870 
    871     // Adjust in case the function was changed to return void.
    872     RAttrs =
    873       AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
    874                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
    875         removeAttributes(AttributeFuncs::
    876                          typeIncompatible(NF->getReturnType(),
    877                                           AttributeSet::ReturnIndex),
    878                          AttributeSet::ReturnIndex));
    879     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    880       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
    881 
    882     // Declare these outside of the loops, so we can reuse them for the second
    883     // loop, which loops the varargs.
    884     CallSite::arg_iterator I = CS.arg_begin();
    885     unsigned i = 0;
    886     // Loop over those operands, corresponding to the normal arguments to the
    887     // original function, and add those that are still alive.
    888     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
    889       if (ArgAlive[i]) {
    890         Args.push_back(*I);
    891         // Get original parameter attributes, but skip return attributes.
    892         if (CallPAL.hasAttributes(i + 1)) {
    893           AttrBuilder B(CallPAL, i + 1);
    894           // If the return type has changed, then get rid of 'returned' on the
    895           // call site. The alternative is to make all 'returned' attributes on
    896           // call sites keep the return value alive just like 'returned'
    897           // attributes on function declaration but it's less clearly a win
    898           // and this is not an expected case anyway
    899           if (NRetTy != RetTy && B.contains(Attribute::Returned))
    900             B.removeAttribute(Attribute::Returned);
    901           AttributesVec.
    902             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    903         }
    904       }
    905 
    906     // Push any varargs arguments on the list. Don't forget their attributes.
    907     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
    908       Args.push_back(*I);
    909       if (CallPAL.hasAttributes(i + 1)) {
    910         AttrBuilder B(CallPAL, i + 1);
    911         AttributesVec.
    912           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
    913       }
    914     }
    915 
    916     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
    917       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
    918                                                 CallPAL.getFnAttributes()));
    919 
    920     // Reconstruct the AttributesList based on the vector we constructed.
    921     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
    922 
    923     Instruction *New;
    924     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    925       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    926                                Args, "", Call);
    927       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    928       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    929     } else {
    930       New = CallInst::Create(NF, Args, "", Call);
    931       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    932       cast<CallInst>(New)->setAttributes(NewCallPAL);
    933       if (cast<CallInst>(Call)->isTailCall())
    934         cast<CallInst>(New)->setTailCall();
    935     }
    936     New->setDebugLoc(Call->getDebugLoc());
    937 
    938     Args.clear();
    939 
    940     if (!Call->use_empty()) {
    941       if (New->getType() == Call->getType()) {
    942         // Return type not changed? Just replace users then.
    943         Call->replaceAllUsesWith(New);
    944         New->takeName(Call);
    945       } else if (New->getType()->isVoidTy()) {
    946         // Our return value has uses, but they will get removed later on.
    947         // Replace by null for now.
    948         if (!Call->getType()->isX86_MMXTy())
    949           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    950       } else {
    951         assert(RetTy->isStructTy() &&
    952                "Return type changed, but not into a void. The old return type"
    953                " must have been a struct!");
    954         Instruction *InsertPt = Call;
    955         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    956           BasicBlock::iterator IP = II->getNormalDest()->begin();
    957           while (isa<PHINode>(IP)) ++IP;
    958           InsertPt = IP;
    959         }
    960 
    961         // We used to return a struct. Instead of doing smart stuff with all the
    962         // uses of this struct, we will just rebuild it using
    963         // extract/insertvalue chaining and let instcombine clean that up.
    964         //
    965         // Start out building up our return value from undef
    966         Value *RetVal = UndefValue::get(RetTy);
    967         for (unsigned i = 0; i != RetCount; ++i)
    968           if (NewRetIdxs[i] != -1) {
    969             Value *V;
    970             if (RetTypes.size() > 1)
    971               // We are still returning a struct, so extract the value from our
    972               // return value
    973               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
    974                                            InsertPt);
    975             else
    976               // We are now returning a single element, so just insert that
    977               V = New;
    978             // Insert the value at the old position
    979             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
    980           }
    981         // Now, replace all uses of the old call instruction with the return
    982         // struct we built
    983         Call->replaceAllUsesWith(RetVal);
    984         New->takeName(Call);
    985       }
    986     }
    987 
    988     // Finally, remove the old call from the program, reducing the use-count of
    989     // F.
    990     Call->eraseFromParent();
    991   }
    992 
    993   // Since we have now created the new function, splice the body of the old
    994   // function right into the new function, leaving the old rotting hulk of the
    995   // function empty.
    996   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    997 
    998   // Loop over the argument list, transferring uses of the old arguments over to
    999   // the new arguments, also transferring over the names as well.
   1000   i = 0;
   1001   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
   1002        I2 = NF->arg_begin(); I != E; ++I, ++i)
   1003     if (ArgAlive[i]) {
   1004       // If this is a live argument, move the name and users over to the new
   1005       // version.
   1006       I->replaceAllUsesWith(I2);
   1007       I2->takeName(I);
   1008       ++I2;
   1009     } else {
   1010       // If this argument is dead, replace any uses of it with null constants
   1011       // (these are guaranteed to become unused later on).
   1012       if (!I->getType()->isX86_MMXTy())
   1013         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
   1014     }
   1015 
   1016   // If we change the return value of the function we must rewrite any return
   1017   // instructions.  Check this now.
   1018   if (F->getReturnType() != NF->getReturnType())
   1019     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
   1020       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   1021         Value *RetVal;
   1022 
   1023         if (NFTy->getReturnType()->isVoidTy()) {
   1024           RetVal = nullptr;
   1025         } else {
   1026           assert (RetTy->isStructTy());
   1027           // The original return value was a struct, insert
   1028           // extractvalue/insertvalue chains to extract only the values we need
   1029           // to return and insert them into our new result.
   1030           // This does generate messy code, but we'll let it to instcombine to
   1031           // clean that up.
   1032           Value *OldRet = RI->getOperand(0);
   1033           // Start out building up our return value from undef
   1034           RetVal = UndefValue::get(NRetTy);
   1035           for (unsigned i = 0; i != RetCount; ++i)
   1036             if (NewRetIdxs[i] != -1) {
   1037               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
   1038                                                               "oldret", RI);
   1039               if (RetTypes.size() > 1) {
   1040                 // We're still returning a struct, so reinsert the value into
   1041                 // our new return value at the new index
   1042 
   1043                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
   1044                                                  "newret", RI);
   1045               } else {
   1046                 // We are now only returning a simple value, so just return the
   1047                 // extracted value.
   1048                 RetVal = EV;
   1049               }
   1050             }
   1051         }
   1052         // Replace the return instruction with one returning the new return
   1053         // value (possibly 0 if we became void).
   1054         ReturnInst::Create(F->getContext(), RetVal, RI);
   1055         BB->getInstList().erase(RI);
   1056       }
   1057 
   1058   // Patch the pointer to LLVM function in debug info descriptor.
   1059   auto DI = FunctionDIs.find(F);
   1060   if (DI != FunctionDIs.end())
   1061     DI->second.replaceFunction(NF);
   1062 
   1063   // Now that the old function is dead, delete it.
   1064   F->eraseFromParent();
   1065 
   1066   return true;
   1067 }
   1068 
   1069 bool DAE::runOnModule(Module &M) {
   1070   bool Changed = false;
   1071 
   1072   // Collect debug info descriptors for functions.
   1073   FunctionDIs = makeSubprogramMap(M);
   1074 
   1075   // First pass: Do a simple check to see if any functions can have their "..."
   1076   // removed.  We can do this if they never call va_start.  This loop cannot be
   1077   // fused with the next loop, because deleting a function invalidates
   1078   // information computed while surveying other functions.
   1079   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
   1080   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1081     Function &F = *I++;
   1082     if (F.getFunctionType()->isVarArg())
   1083       Changed |= DeleteDeadVarargs(F);
   1084   }
   1085 
   1086   // Second phase:loop through the module, determining which arguments are live.
   1087   // We assume all arguments are dead unless proven otherwise (allowing us to
   1088   // determine that dead arguments passed into recursive functions are dead).
   1089   //
   1090   DEBUG(dbgs() << "DAE - Determining liveness\n");
   1091   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
   1092     SurveyFunction(*I);
   1093 
   1094   // Now, remove all dead arguments and return values from each function in
   1095   // turn.
   1096   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1097     // Increment now, because the function will probably get removed (ie.
   1098     // replaced by a new one).
   1099     Function *F = I++;
   1100     Changed |= RemoveDeadStuffFromFunction(F);
   1101   }
   1102 
   1103   // Finally, look for any unused parameters in functions with non-local
   1104   // linkage and replace the passed in parameters with undef.
   1105   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
   1106     Function& F = *I;
   1107 
   1108     Changed |= RemoveDeadArgumentsFromCallers(F);
   1109   }
   1110 
   1111   return Changed;
   1112 }
   1113