1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringMap.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/LineIterator.h" 48 #include "llvm/Support/MemoryBuffer.h" 49 #include "llvm/Support/Regex.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <cctype> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "sample-profile" 56 57 // Command line option to specify the file to read samples from. This is 58 // mainly used for debugging. 59 static cl::opt<std::string> SampleProfileFile( 60 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 63 "sample-profile-max-propagate-iterations", cl::init(100), 64 cl::desc("Maximum number of iterations to go through when propagating " 65 "sample block/edge weights through the CFG.")); 66 67 namespace { 68 /// \brief Represents the relative location of an instruction. 69 /// 70 /// Instruction locations are specified by the line offset from the 71 /// beginning of the function (marked by the line where the function 72 /// header is) and the discriminator value within that line. 73 /// 74 /// The discriminator value is useful to distinguish instructions 75 /// that are on the same line but belong to different basic blocks 76 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;"). 77 struct InstructionLocation { 78 InstructionLocation(int L, unsigned D) : LineOffset(L), Discriminator(D) {} 79 int LineOffset; 80 unsigned Discriminator; 81 }; 82 } 83 84 namespace llvm { 85 template <> struct DenseMapInfo<InstructionLocation> { 86 typedef DenseMapInfo<int> OffsetInfo; 87 typedef DenseMapInfo<unsigned> DiscriminatorInfo; 88 static inline InstructionLocation getEmptyKey() { 89 return InstructionLocation(OffsetInfo::getEmptyKey(), 90 DiscriminatorInfo::getEmptyKey()); 91 } 92 static inline InstructionLocation getTombstoneKey() { 93 return InstructionLocation(OffsetInfo::getTombstoneKey(), 94 DiscriminatorInfo::getTombstoneKey()); 95 } 96 static inline unsigned getHashValue(InstructionLocation Val) { 97 return DenseMapInfo<std::pair<int, unsigned>>::getHashValue( 98 std::pair<int, unsigned>(Val.LineOffset, Val.Discriminator)); 99 } 100 static inline bool isEqual(InstructionLocation LHS, InstructionLocation RHS) { 101 return LHS.LineOffset == RHS.LineOffset && 102 LHS.Discriminator == RHS.Discriminator; 103 } 104 }; 105 } 106 107 namespace { 108 typedef DenseMap<InstructionLocation, unsigned> BodySampleMap; 109 typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap; 110 typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap; 111 typedef std::pair<BasicBlock *, BasicBlock *> Edge; 112 typedef DenseMap<Edge, unsigned> EdgeWeightMap; 113 typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap; 114 115 /// \brief Representation of the runtime profile for a function. 116 /// 117 /// This data structure contains the runtime profile for a given 118 /// function. It contains the total number of samples collected 119 /// in the function and a map of samples collected in every statement. 120 class SampleFunctionProfile { 121 public: 122 SampleFunctionProfile() 123 : TotalSamples(0), TotalHeadSamples(0), HeaderLineno(0), DT(nullptr), 124 PDT(nullptr), LI(nullptr), Ctx(nullptr) {} 125 126 unsigned getFunctionLoc(Function &F); 127 bool emitAnnotations(Function &F, DominatorTree *DomTree, 128 PostDominatorTree *PostDomTree, LoopInfo *Loops); 129 unsigned getInstWeight(Instruction &I); 130 unsigned getBlockWeight(BasicBlock *B); 131 void addTotalSamples(unsigned Num) { TotalSamples += Num; } 132 void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; } 133 void addBodySamples(int LineOffset, unsigned Discriminator, unsigned Num) { 134 assert(LineOffset >= 0); 135 BodySamples[InstructionLocation(LineOffset, Discriminator)] += Num; 136 } 137 void print(raw_ostream &OS); 138 void printEdgeWeight(raw_ostream &OS, Edge E); 139 void printBlockWeight(raw_ostream &OS, BasicBlock *BB); 140 void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB); 141 bool computeBlockWeights(Function &F); 142 void findEquivalenceClasses(Function &F); 143 void findEquivalencesFor(BasicBlock *BB1, 144 SmallVector<BasicBlock *, 8> Descendants, 145 DominatorTreeBase<BasicBlock> *DomTree); 146 void propagateWeights(Function &F); 147 unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 148 void buildEdges(Function &F); 149 bool propagateThroughEdges(Function &F); 150 bool empty() { return BodySamples.empty(); } 151 152 protected: 153 /// \brief Total number of samples collected inside this function. 154 /// 155 /// Samples are cumulative, they include all the samples collected 156 /// inside this function and all its inlined callees. 157 unsigned TotalSamples; 158 159 /// \brief Total number of samples collected at the head of the function. 160 /// FIXME: Use head samples to estimate a cold/hot attribute for the function. 161 unsigned TotalHeadSamples; 162 163 /// \brief Line number for the function header. Used to compute relative 164 /// line numbers from the absolute line LOCs found in instruction locations. 165 /// The relative line numbers are needed to address the samples from the 166 /// profile file. 167 unsigned HeaderLineno; 168 169 /// \brief Map line offsets to collected samples. 170 /// 171 /// Each entry in this map contains the number of samples 172 /// collected at the corresponding line offset. All line locations 173 /// are an offset from the start of the function. 174 BodySampleMap BodySamples; 175 176 /// \brief Map basic blocks to their computed weights. 177 /// 178 /// The weight of a basic block is defined to be the maximum 179 /// of all the instruction weights in that block. 180 BlockWeightMap BlockWeights; 181 182 /// \brief Map edges to their computed weights. 183 /// 184 /// Edge weights are computed by propagating basic block weights in 185 /// SampleProfile::propagateWeights. 186 EdgeWeightMap EdgeWeights; 187 188 /// \brief Set of visited blocks during propagation. 189 SmallPtrSet<BasicBlock *, 128> VisitedBlocks; 190 191 /// \brief Set of visited edges during propagation. 192 SmallSet<Edge, 128> VisitedEdges; 193 194 /// \brief Equivalence classes for block weights. 195 /// 196 /// Two blocks BB1 and BB2 are in the same equivalence class if they 197 /// dominate and post-dominate each other, and they are in the same loop 198 /// nest. When this happens, the two blocks are guaranteed to execute 199 /// the same number of times. 200 EquivalenceClassMap EquivalenceClass; 201 202 /// \brief Dominance, post-dominance and loop information. 203 DominatorTree *DT; 204 PostDominatorTree *PDT; 205 LoopInfo *LI; 206 207 /// \brief Predecessors for each basic block in the CFG. 208 BlockEdgeMap Predecessors; 209 210 /// \brief Successors for each basic block in the CFG. 211 BlockEdgeMap Successors; 212 213 /// \brief LLVM context holding the debug data we need. 214 LLVMContext *Ctx; 215 }; 216 217 /// \brief Sample-based profile reader. 218 /// 219 /// Each profile contains sample counts for all the functions 220 /// executed. Inside each function, statements are annotated with the 221 /// collected samples on all the instructions associated with that 222 /// statement. 223 /// 224 /// For this to produce meaningful data, the program needs to be 225 /// compiled with some debug information (at minimum, line numbers: 226 /// -gline-tables-only). Otherwise, it will be impossible to match IR 227 /// instructions to the line numbers collected by the profiler. 228 /// 229 /// From the profile file, we are interested in collecting the 230 /// following information: 231 /// 232 /// * A list of functions included in the profile (mangled names). 233 /// 234 /// * For each function F: 235 /// 1. The total number of samples collected in F. 236 /// 237 /// 2. The samples collected at each line in F. To provide some 238 /// protection against source code shuffling, line numbers should 239 /// be relative to the start of the function. 240 class SampleModuleProfile { 241 public: 242 SampleModuleProfile(const Module &M, StringRef F) 243 : Profiles(0), Filename(F), M(M) {} 244 245 void dump(); 246 bool loadText(); 247 void loadNative() { llvm_unreachable("not implemented"); } 248 void printFunctionProfile(raw_ostream &OS, StringRef FName); 249 void dumpFunctionProfile(StringRef FName); 250 SampleFunctionProfile &getProfile(const Function &F) { 251 return Profiles[F.getName()]; 252 } 253 254 /// \brief Report a parse error message. 255 void reportParseError(int64_t LineNumber, Twine Msg) const { 256 DiagnosticInfoSampleProfile Diag(Filename.data(), LineNumber, Msg); 257 M.getContext().diagnose(Diag); 258 } 259 260 protected: 261 /// \brief Map every function to its associated profile. 262 /// 263 /// The profile of every function executed at runtime is collected 264 /// in the structure SampleFunctionProfile. This maps function objects 265 /// to their corresponding profiles. 266 StringMap<SampleFunctionProfile> Profiles; 267 268 /// \brief Path name to the file holding the profile data. 269 /// 270 /// The format of this file is defined by each profiler 271 /// independently. If possible, the profiler should have a text 272 /// version of the profile format to be used in constructing test 273 /// cases and debugging. 274 StringRef Filename; 275 276 /// \brief Module being compiled. Used mainly to access the current 277 /// LLVM context for diagnostics. 278 const Module &M; 279 }; 280 281 /// \brief Sample profile pass. 282 /// 283 /// This pass reads profile data from the file specified by 284 /// -sample-profile-file and annotates every affected function with the 285 /// profile information found in that file. 286 class SampleProfileLoader : public FunctionPass { 287 public: 288 // Class identification, replacement for typeinfo 289 static char ID; 290 291 SampleProfileLoader(StringRef Name = SampleProfileFile) 292 : FunctionPass(ID), Profiler(), Filename(Name), ProfileIsValid(false) { 293 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry()); 294 } 295 296 bool doInitialization(Module &M) override; 297 298 void dump() { Profiler->dump(); } 299 300 const char *getPassName() const override { return "Sample profile pass"; } 301 302 bool runOnFunction(Function &F) override; 303 304 void getAnalysisUsage(AnalysisUsage &AU) const override { 305 AU.setPreservesCFG(); 306 AU.addRequired<LoopInfo>(); 307 AU.addRequired<DominatorTreeWrapperPass>(); 308 AU.addRequired<PostDominatorTree>(); 309 } 310 311 protected: 312 /// \brief Profile reader object. 313 std::unique_ptr<SampleModuleProfile> Profiler; 314 315 /// \brief Name of the profile file to load. 316 StringRef Filename; 317 318 /// \brief Flag indicating whether the profile input loaded successfully. 319 bool ProfileIsValid; 320 }; 321 } 322 323 /// \brief Print this function profile on stream \p OS. 324 /// 325 /// \param OS Stream to emit the output to. 326 void SampleFunctionProfile::print(raw_ostream &OS) { 327 OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size() 328 << " sampled lines\n"; 329 for (BodySampleMap::const_iterator SI = BodySamples.begin(), 330 SE = BodySamples.end(); 331 SI != SE; ++SI) 332 OS << "\tline offset: " << SI->first.LineOffset 333 << ", discriminator: " << SI->first.Discriminator 334 << ", number of samples: " << SI->second << "\n"; 335 OS << "\n"; 336 } 337 338 /// \brief Print the weight of edge \p E on stream \p OS. 339 /// 340 /// \param OS Stream to emit the output to. 341 /// \param E Edge to print. 342 void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) { 343 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 344 << "]: " << EdgeWeights[E] << "\n"; 345 } 346 347 /// \brief Print the equivalence class of block \p BB on stream \p OS. 348 /// 349 /// \param OS Stream to emit the output to. 350 /// \param BB Block to print. 351 void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS, 352 BasicBlock *BB) { 353 BasicBlock *Equiv = EquivalenceClass[BB]; 354 OS << "equivalence[" << BB->getName() 355 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 356 } 357 358 /// \brief Print the weight of block \p BB on stream \p OS. 359 /// 360 /// \param OS Stream to emit the output to. 361 /// \param BB Block to print. 362 void SampleFunctionProfile::printBlockWeight(raw_ostream &OS, BasicBlock *BB) { 363 OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n"; 364 } 365 366 /// \brief Print the function profile for \p FName on stream \p OS. 367 /// 368 /// \param OS Stream to emit the output to. 369 /// \param FName Name of the function to print. 370 void SampleModuleProfile::printFunctionProfile(raw_ostream &OS, 371 StringRef FName) { 372 OS << "Function: " << FName << ":\n"; 373 Profiles[FName].print(OS); 374 } 375 376 /// \brief Dump the function profile for \p FName. 377 /// 378 /// \param FName Name of the function to print. 379 void SampleModuleProfile::dumpFunctionProfile(StringRef FName) { 380 printFunctionProfile(dbgs(), FName); 381 } 382 383 /// \brief Dump all the function profiles found. 384 void SampleModuleProfile::dump() { 385 for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(), 386 E = Profiles.end(); 387 I != E; ++I) 388 dumpFunctionProfile(I->getKey()); 389 } 390 391 /// \brief Load samples from a text file. 392 /// 393 /// The file contains a list of samples for every function executed at 394 /// runtime. Each function profile has the following format: 395 /// 396 /// function1:total_samples:total_head_samples 397 /// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ] 398 /// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ] 399 /// ... 400 /// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ] 401 /// 402 /// Function names must be mangled in order for the profile loader to 403 /// match them in the current translation unit. The two numbers in the 404 /// function header specify how many total samples were accumulated in 405 /// the function (first number), and the total number of samples accumulated 406 /// at the prologue of the function (second number). This head sample 407 /// count provides an indicator of how frequent is the function invoked. 408 /// 409 /// Each sampled line may contain several items. Some are optional 410 /// (marked below): 411 /// 412 /// a- Source line offset. This number represents the line number 413 /// in the function where the sample was collected. The line number 414 /// is always relative to the line where symbol of the function 415 /// is defined. So, if the function has its header at line 280, 416 /// the offset 13 is at line 293 in the file. 417 /// 418 /// b- [OPTIONAL] Discriminator. This is used if the sampled program 419 /// was compiled with DWARF discriminator support 420 /// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators) 421 /// 422 /// c- Number of samples. This is the number of samples collected by 423 /// the profiler at this source location. 424 /// 425 /// d- [OPTIONAL] Potential call targets and samples. If present, this 426 /// line contains a call instruction. This models both direct and 427 /// indirect calls. Each called target is listed together with the 428 /// number of samples. For example, 429 /// 430 /// 130: 7 foo:3 bar:2 baz:7 431 /// 432 /// The above means that at relative line offset 130 there is a 433 /// call instruction that calls one of foo(), bar() and baz(). With 434 /// baz() being the relatively more frequent call target. 435 /// 436 /// FIXME: This is currently unhandled, but it has a lot of 437 /// potential for aiding the inliner. 438 /// 439 /// 440 /// Since this is a flat profile, a function that shows up more than 441 /// once gets all its samples aggregated across all its instances. 442 /// 443 /// FIXME: flat profiles are too imprecise to provide good optimization 444 /// opportunities. Convert them to context-sensitive profile. 445 /// 446 /// This textual representation is useful to generate unit tests and 447 /// for debugging purposes, but it should not be used to generate 448 /// profiles for large programs, as the representation is extremely 449 /// inefficient. 450 /// 451 /// \returns true if the file was loaded successfully, false otherwise. 452 bool SampleModuleProfile::loadText() { 453 ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr = 454 MemoryBuffer::getFile(Filename); 455 if (std::error_code EC = BufferOrErr.getError()) { 456 std::string Msg(EC.message()); 457 M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg)); 458 return false; 459 } 460 std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get()); 461 line_iterator LineIt(*Buffer, '#'); 462 463 // Read the profile of each function. Since each function may be 464 // mentioned more than once, and we are collecting flat profiles, 465 // accumulate samples as we parse them. 466 Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$"); 467 Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$"); 468 while (!LineIt.is_at_eof()) { 469 // Read the header of each function. 470 // 471 // Note that for function identifiers we are actually expecting 472 // mangled names, but we may not always get them. This happens when 473 // the compiler decides not to emit the function (e.g., it was inlined 474 // and removed). In this case, the binary will not have the linkage 475 // name for the function, so the profiler will emit the function's 476 // unmangled name, which may contain characters like ':' and '>' in its 477 // name (member functions, templates, etc). 478 // 479 // The only requirement we place on the identifier, then, is that it 480 // should not begin with a number. 481 SmallVector<StringRef, 3> Matches; 482 if (!HeadRE.match(*LineIt, &Matches)) { 483 reportParseError(LineIt.line_number(), 484 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 485 return false; 486 } 487 assert(Matches.size() == 4); 488 StringRef FName = Matches[1]; 489 unsigned NumSamples, NumHeadSamples; 490 Matches[2].getAsInteger(10, NumSamples); 491 Matches[3].getAsInteger(10, NumHeadSamples); 492 Profiles[FName] = SampleFunctionProfile(); 493 SampleFunctionProfile &FProfile = Profiles[FName]; 494 FProfile.addTotalSamples(NumSamples); 495 FProfile.addHeadSamples(NumHeadSamples); 496 ++LineIt; 497 498 // Now read the body. The body of the function ends when we reach 499 // EOF or when we see the start of the next function. 500 while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) { 501 if (!LineSample.match(*LineIt, &Matches)) { 502 reportParseError( 503 LineIt.line_number(), 504 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt); 505 return false; 506 } 507 assert(Matches.size() == 5); 508 unsigned LineOffset, NumSamples, Discriminator = 0; 509 Matches[1].getAsInteger(10, LineOffset); 510 if (Matches[2] != "") 511 Matches[2].getAsInteger(10, Discriminator); 512 Matches[3].getAsInteger(10, NumSamples); 513 514 // FIXME: Handle called targets (in Matches[4]). 515 516 // When dealing with instruction weights, we use the value 517 // zero to indicate the absence of a sample. If we read an 518 // actual zero from the profile file, return it as 1 to 519 // avoid the confusion later on. 520 if (NumSamples == 0) 521 NumSamples = 1; 522 FProfile.addBodySamples(LineOffset, Discriminator, NumSamples); 523 ++LineIt; 524 } 525 } 526 527 return true; 528 } 529 530 /// \brief Get the weight for an instruction. 531 /// 532 /// The "weight" of an instruction \p Inst is the number of samples 533 /// collected on that instruction at runtime. To retrieve it, we 534 /// need to compute the line number of \p Inst relative to the start of its 535 /// function. We use HeaderLineno to compute the offset. We then 536 /// look up the samples collected for \p Inst using BodySamples. 537 /// 538 /// \param Inst Instruction to query. 539 /// 540 /// \returns The profiled weight of I. 541 unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) { 542 DebugLoc DLoc = Inst.getDebugLoc(); 543 unsigned Lineno = DLoc.getLine(); 544 if (Lineno < HeaderLineno) 545 return 0; 546 547 DILocation DIL(DLoc.getAsMDNode(*Ctx)); 548 int LOffset = Lineno - HeaderLineno; 549 unsigned Discriminator = DIL.getDiscriminator(); 550 unsigned Weight = 551 BodySamples.lookup(InstructionLocation(LOffset, Discriminator)); 552 DEBUG(dbgs() << " " << Lineno << "." << Discriminator << ":" << Inst 553 << " (line offset: " << LOffset << "." << Discriminator 554 << " - weight: " << Weight << ")\n"); 555 return Weight; 556 } 557 558 /// \brief Compute the weight of a basic block. 559 /// 560 /// The weight of basic block \p B is the maximum weight of all the 561 /// instructions in B. The weight of \p B is computed and cached in 562 /// the BlockWeights map. 563 /// 564 /// \param B The basic block to query. 565 /// 566 /// \returns The computed weight of B. 567 unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) { 568 // If we've computed B's weight before, return it. 569 std::pair<BlockWeightMap::iterator, bool> Entry = 570 BlockWeights.insert(std::make_pair(B, 0)); 571 if (!Entry.second) 572 return Entry.first->second; 573 574 // Otherwise, compute and cache B's weight. 575 unsigned Weight = 0; 576 for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) { 577 unsigned InstWeight = getInstWeight(*I); 578 if (InstWeight > Weight) 579 Weight = InstWeight; 580 } 581 Entry.first->second = Weight; 582 return Weight; 583 } 584 585 /// \brief Compute and store the weights of every basic block. 586 /// 587 /// This populates the BlockWeights map by computing 588 /// the weights of every basic block in the CFG. 589 /// 590 /// \param F The function to query. 591 bool SampleFunctionProfile::computeBlockWeights(Function &F) { 592 bool Changed = false; 593 DEBUG(dbgs() << "Block weights\n"); 594 for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) { 595 unsigned Weight = getBlockWeight(B); 596 Changed |= (Weight > 0); 597 DEBUG(printBlockWeight(dbgs(), B)); 598 } 599 600 return Changed; 601 } 602 603 /// \brief Find equivalence classes for the given block. 604 /// 605 /// This finds all the blocks that are guaranteed to execute the same 606 /// number of times as \p BB1. To do this, it traverses all the the 607 /// descendants of \p BB1 in the dominator or post-dominator tree. 608 /// 609 /// A block BB2 will be in the same equivalence class as \p BB1 if 610 /// the following holds: 611 /// 612 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 613 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 614 /// dominate BB1 in the post-dominator tree. 615 /// 616 /// 2- Both BB2 and \p BB1 must be in the same loop. 617 /// 618 /// For every block BB2 that meets those two requirements, we set BB2's 619 /// equivalence class to \p BB1. 620 /// 621 /// \param BB1 Block to check. 622 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 623 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 624 /// with blocks from \p BB1's dominator tree, then 625 /// this is the post-dominator tree, and vice versa. 626 void SampleFunctionProfile::findEquivalencesFor( 627 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants, 628 DominatorTreeBase<BasicBlock> *DomTree) { 629 for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(), 630 E = Descendants.end(); 631 I != E; ++I) { 632 BasicBlock *BB2 = *I; 633 bool IsDomParent = DomTree->dominates(BB2, BB1); 634 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 635 if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent && 636 IsInSameLoop) { 637 EquivalenceClass[BB2] = BB1; 638 639 // If BB2 is heavier than BB1, make BB2 have the same weight 640 // as BB1. 641 // 642 // Note that we don't worry about the opposite situation here 643 // (when BB2 is lighter than BB1). We will deal with this 644 // during the propagation phase. Right now, we just want to 645 // make sure that BB1 has the largest weight of all the 646 // members of its equivalence set. 647 unsigned &BB1Weight = BlockWeights[BB1]; 648 unsigned &BB2Weight = BlockWeights[BB2]; 649 BB1Weight = std::max(BB1Weight, BB2Weight); 650 } 651 } 652 } 653 654 /// \brief Find equivalence classes. 655 /// 656 /// Since samples may be missing from blocks, we can fill in the gaps by setting 657 /// the weights of all the blocks in the same equivalence class to the same 658 /// weight. To compute the concept of equivalence, we use dominance and loop 659 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 660 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 661 /// 662 /// \param F The function to query. 663 void SampleFunctionProfile::findEquivalenceClasses(Function &F) { 664 SmallVector<BasicBlock *, 8> DominatedBBs; 665 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 666 // Find equivalence sets based on dominance and post-dominance information. 667 for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) { 668 BasicBlock *BB1 = B; 669 670 // Compute BB1's equivalence class once. 671 if (EquivalenceClass.count(BB1)) { 672 DEBUG(printBlockEquivalence(dbgs(), BB1)); 673 continue; 674 } 675 676 // By default, blocks are in their own equivalence class. 677 EquivalenceClass[BB1] = BB1; 678 679 // Traverse all the blocks dominated by BB1. We are looking for 680 // every basic block BB2 such that: 681 // 682 // 1- BB1 dominates BB2. 683 // 2- BB2 post-dominates BB1. 684 // 3- BB1 and BB2 are in the same loop nest. 685 // 686 // If all those conditions hold, it means that BB2 is executed 687 // as many times as BB1, so they are placed in the same equivalence 688 // class by making BB2's equivalence class be BB1. 689 DominatedBBs.clear(); 690 DT->getDescendants(BB1, DominatedBBs); 691 findEquivalencesFor(BB1, DominatedBBs, PDT->DT); 692 693 // Repeat the same logic for all the blocks post-dominated by BB1. 694 // We are looking for every basic block BB2 such that: 695 // 696 // 1- BB1 post-dominates BB2. 697 // 2- BB2 dominates BB1. 698 // 3- BB1 and BB2 are in the same loop nest. 699 // 700 // If all those conditions hold, BB2's equivalence class is BB1. 701 DominatedBBs.clear(); 702 PDT->getDescendants(BB1, DominatedBBs); 703 findEquivalencesFor(BB1, DominatedBBs, DT); 704 705 DEBUG(printBlockEquivalence(dbgs(), BB1)); 706 } 707 708 // Assign weights to equivalence classes. 709 // 710 // All the basic blocks in the same equivalence class will execute 711 // the same number of times. Since we know that the head block in 712 // each equivalence class has the largest weight, assign that weight 713 // to all the blocks in that equivalence class. 714 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 715 for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) { 716 BasicBlock *BB = B; 717 BasicBlock *EquivBB = EquivalenceClass[BB]; 718 if (BB != EquivBB) 719 BlockWeights[BB] = BlockWeights[EquivBB]; 720 DEBUG(printBlockWeight(dbgs(), BB)); 721 } 722 } 723 724 /// \brief Visit the given edge to decide if it has a valid weight. 725 /// 726 /// If \p E has not been visited before, we copy to \p UnknownEdge 727 /// and increment the count of unknown edges. 728 /// 729 /// \param E Edge to visit. 730 /// \param NumUnknownEdges Current number of unknown edges. 731 /// \param UnknownEdge Set if E has not been visited before. 732 /// 733 /// \returns E's weight, if known. Otherwise, return 0. 734 unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges, 735 Edge *UnknownEdge) { 736 if (!VisitedEdges.count(E)) { 737 (*NumUnknownEdges)++; 738 *UnknownEdge = E; 739 return 0; 740 } 741 742 return EdgeWeights[E]; 743 } 744 745 /// \brief Propagate weights through incoming/outgoing edges. 746 /// 747 /// If the weight of a basic block is known, and there is only one edge 748 /// with an unknown weight, we can calculate the weight of that edge. 749 /// 750 /// Similarly, if all the edges have a known count, we can calculate the 751 /// count of the basic block, if needed. 752 /// 753 /// \param F Function to process. 754 /// 755 /// \returns True if new weights were assigned to edges or blocks. 756 bool SampleFunctionProfile::propagateThroughEdges(Function &F) { 757 bool Changed = false; 758 DEBUG(dbgs() << "\nPropagation through edges\n"); 759 for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) { 760 BasicBlock *BB = BI; 761 762 // Visit all the predecessor and successor edges to determine 763 // which ones have a weight assigned already. Note that it doesn't 764 // matter that we only keep track of a single unknown edge. The 765 // only case we are interested in handling is when only a single 766 // edge is unknown (see setEdgeOrBlockWeight). 767 for (unsigned i = 0; i < 2; i++) { 768 unsigned TotalWeight = 0; 769 unsigned NumUnknownEdges = 0; 770 Edge UnknownEdge, SelfReferentialEdge; 771 772 if (i == 0) { 773 // First, visit all predecessor edges. 774 for (size_t I = 0; I < Predecessors[BB].size(); I++) { 775 Edge E = std::make_pair(Predecessors[BB][I], BB); 776 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 777 if (E.first == E.second) 778 SelfReferentialEdge = E; 779 } 780 } else { 781 // On the second round, visit all successor edges. 782 for (size_t I = 0; I < Successors[BB].size(); I++) { 783 Edge E = std::make_pair(BB, Successors[BB][I]); 784 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 785 } 786 } 787 788 // After visiting all the edges, there are three cases that we 789 // can handle immediately: 790 // 791 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 792 // In this case, we simply check that the sum of all the edges 793 // is the same as BB's weight. If not, we change BB's weight 794 // to match. Additionally, if BB had not been visited before, 795 // we mark it visited. 796 // 797 // - Only one edge is unknown and BB has already been visited. 798 // In this case, we can compute the weight of the edge by 799 // subtracting the total block weight from all the known 800 // edge weights. If the edges weight more than BB, then the 801 // edge of the last remaining edge is set to zero. 802 // 803 // - There exists a self-referential edge and the weight of BB is 804 // known. In this case, this edge can be based on BB's weight. 805 // We add up all the other known edges and set the weight on 806 // the self-referential edge as we did in the previous case. 807 // 808 // In any other case, we must continue iterating. Eventually, 809 // all edges will get a weight, or iteration will stop when 810 // it reaches SampleProfileMaxPropagateIterations. 811 if (NumUnknownEdges <= 1) { 812 unsigned &BBWeight = BlockWeights[BB]; 813 if (NumUnknownEdges == 0) { 814 // If we already know the weight of all edges, the weight of the 815 // basic block can be computed. It should be no larger than the sum 816 // of all edge weights. 817 if (TotalWeight > BBWeight) { 818 BBWeight = TotalWeight; 819 Changed = true; 820 DEBUG(dbgs() << "All edge weights for " << BB->getName() 821 << " known. Set weight for block: "; 822 printBlockWeight(dbgs(), BB);); 823 } 824 if (VisitedBlocks.insert(BB)) 825 Changed = true; 826 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) { 827 // If there is a single unknown edge and the block has been 828 // visited, then we can compute E's weight. 829 if (BBWeight >= TotalWeight) 830 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 831 else 832 EdgeWeights[UnknownEdge] = 0; 833 VisitedEdges.insert(UnknownEdge); 834 Changed = true; 835 DEBUG(dbgs() << "Set weight for edge: "; 836 printEdgeWeight(dbgs(), UnknownEdge)); 837 } 838 } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) { 839 unsigned &BBWeight = BlockWeights[BB]; 840 // We have a self-referential edge and the weight of BB is known. 841 if (BBWeight >= TotalWeight) 842 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 843 else 844 EdgeWeights[SelfReferentialEdge] = 0; 845 VisitedEdges.insert(SelfReferentialEdge); 846 Changed = true; 847 DEBUG(dbgs() << "Set self-referential edge weight to: "; 848 printEdgeWeight(dbgs(), SelfReferentialEdge)); 849 } 850 } 851 } 852 853 return Changed; 854 } 855 856 /// \brief Build in/out edge lists for each basic block in the CFG. 857 /// 858 /// We are interested in unique edges. If a block B1 has multiple 859 /// edges to another block B2, we only add a single B1->B2 edge. 860 void SampleFunctionProfile::buildEdges(Function &F) { 861 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 862 BasicBlock *B1 = I; 863 864 // Add predecessors for B1. 865 SmallPtrSet<BasicBlock *, 16> Visited; 866 if (!Predecessors[B1].empty()) 867 llvm_unreachable("Found a stale predecessors list in a basic block."); 868 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 869 BasicBlock *B2 = *PI; 870 if (Visited.insert(B2)) 871 Predecessors[B1].push_back(B2); 872 } 873 874 // Add successors for B1. 875 Visited.clear(); 876 if (!Successors[B1].empty()) 877 llvm_unreachable("Found a stale successors list in a basic block."); 878 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 879 BasicBlock *B2 = *SI; 880 if (Visited.insert(B2)) 881 Successors[B1].push_back(B2); 882 } 883 } 884 } 885 886 /// \brief Propagate weights into edges 887 /// 888 /// The following rules are applied to every block B in the CFG: 889 /// 890 /// - If B has a single predecessor/successor, then the weight 891 /// of that edge is the weight of the block. 892 /// 893 /// - If all incoming or outgoing edges are known except one, and the 894 /// weight of the block is already known, the weight of the unknown 895 /// edge will be the weight of the block minus the sum of all the known 896 /// edges. If the sum of all the known edges is larger than B's weight, 897 /// we set the unknown edge weight to zero. 898 /// 899 /// - If there is a self-referential edge, and the weight of the block is 900 /// known, the weight for that edge is set to the weight of the block 901 /// minus the weight of the other incoming edges to that block (if 902 /// known). 903 void SampleFunctionProfile::propagateWeights(Function &F) { 904 bool Changed = true; 905 unsigned i = 0; 906 907 // Before propagation starts, build, for each block, a list of 908 // unique predecessors and successors. This is necessary to handle 909 // identical edges in multiway branches. Since we visit all blocks and all 910 // edges of the CFG, it is cleaner to build these lists once at the start 911 // of the pass. 912 buildEdges(F); 913 914 // Propagate until we converge or we go past the iteration limit. 915 while (Changed && i++ < SampleProfileMaxPropagateIterations) { 916 Changed = propagateThroughEdges(F); 917 } 918 919 // Generate MD_prof metadata for every branch instruction using the 920 // edge weights computed during propagation. 921 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 922 MDBuilder MDB(F.getContext()); 923 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 924 BasicBlock *B = I; 925 TerminatorInst *TI = B->getTerminator(); 926 if (TI->getNumSuccessors() == 1) 927 continue; 928 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 929 continue; 930 931 DEBUG(dbgs() << "\nGetting weights for branch at line " 932 << TI->getDebugLoc().getLine() << ".\n"); 933 SmallVector<unsigned, 4> Weights; 934 bool AllWeightsZero = true; 935 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 936 BasicBlock *Succ = TI->getSuccessor(I); 937 Edge E = std::make_pair(B, Succ); 938 unsigned Weight = EdgeWeights[E]; 939 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 940 Weights.push_back(Weight); 941 if (Weight != 0) 942 AllWeightsZero = false; 943 } 944 945 // Only set weights if there is at least one non-zero weight. 946 // In any other case, let the analyzer set weights. 947 if (!AllWeightsZero) { 948 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 949 TI->setMetadata(llvm::LLVMContext::MD_prof, 950 MDB.createBranchWeights(Weights)); 951 } else { 952 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 953 } 954 } 955 } 956 957 /// \brief Get the line number for the function header. 958 /// 959 /// This looks up function \p F in the current compilation unit and 960 /// retrieves the line number where the function is defined. This is 961 /// line 0 for all the samples read from the profile file. Every line 962 /// number is relative to this line. 963 /// 964 /// \param F Function object to query. 965 /// 966 /// \returns the line number where \p F is defined. If it returns 0, 967 /// it means that there is no debug information available for \p F. 968 unsigned SampleFunctionProfile::getFunctionLoc(Function &F) { 969 NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu"); 970 if (CUNodes) { 971 for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) { 972 DICompileUnit CU(CUNodes->getOperand(I)); 973 DIArray Subprograms = CU.getSubprograms(); 974 for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) { 975 DISubprogram Subprogram(Subprograms.getElement(J)); 976 if (Subprogram.describes(&F)) 977 return Subprogram.getLineNumber(); 978 } 979 } 980 } 981 982 F.getContext().diagnose(DiagnosticInfoSampleProfile( 983 "No debug information found in function " + F.getName())); 984 return 0; 985 } 986 987 /// \brief Generate branch weight metadata for all branches in \p F. 988 /// 989 /// Branch weights are computed out of instruction samples using a 990 /// propagation heuristic. Propagation proceeds in 3 phases: 991 /// 992 /// 1- Assignment of block weights. All the basic blocks in the function 993 /// are initial assigned the same weight as their most frequently 994 /// executed instruction. 995 /// 996 /// 2- Creation of equivalence classes. Since samples may be missing from 997 /// blocks, we can fill in the gaps by setting the weights of all the 998 /// blocks in the same equivalence class to the same weight. To compute 999 /// the concept of equivalence, we use dominance and loop information. 1000 /// Two blocks B1 and B2 are in the same equivalence class if B1 1001 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1002 /// 1003 /// 3- Propagation of block weights into edges. This uses a simple 1004 /// propagation heuristic. The following rules are applied to every 1005 /// block B in the CFG: 1006 /// 1007 /// - If B has a single predecessor/successor, then the weight 1008 /// of that edge is the weight of the block. 1009 /// 1010 /// - If all the edges are known except one, and the weight of the 1011 /// block is already known, the weight of the unknown edge will 1012 /// be the weight of the block minus the sum of all the known 1013 /// edges. If the sum of all the known edges is larger than B's weight, 1014 /// we set the unknown edge weight to zero. 1015 /// 1016 /// - If there is a self-referential edge, and the weight of the block is 1017 /// known, the weight for that edge is set to the weight of the block 1018 /// minus the weight of the other incoming edges to that block (if 1019 /// known). 1020 /// 1021 /// Since this propagation is not guaranteed to finalize for every CFG, we 1022 /// only allow it to proceed for a limited number of iterations (controlled 1023 /// by -sample-profile-max-propagate-iterations). 1024 /// 1025 /// FIXME: Try to replace this propagation heuristic with a scheme 1026 /// that is guaranteed to finalize. A work-list approach similar to 1027 /// the standard value propagation algorithm used by SSA-CCP might 1028 /// work here. 1029 /// 1030 /// Once all the branch weights are computed, we emit the MD_prof 1031 /// metadata on B using the computed values for each of its branches. 1032 /// 1033 /// \param F The function to query. 1034 /// 1035 /// \returns true if \p F was modified. Returns false, otherwise. 1036 bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree, 1037 PostDominatorTree *PostDomTree, 1038 LoopInfo *Loops) { 1039 bool Changed = false; 1040 1041 // Initialize invariants used during computation and propagation. 1042 HeaderLineno = getFunctionLoc(F); 1043 if (HeaderLineno == 0) 1044 return false; 1045 1046 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1047 << ": " << HeaderLineno << "\n"); 1048 DT = DomTree; 1049 PDT = PostDomTree; 1050 LI = Loops; 1051 Ctx = &F.getParent()->getContext(); 1052 1053 // Compute basic block weights. 1054 Changed |= computeBlockWeights(F); 1055 1056 if (Changed) { 1057 // Find equivalence classes. 1058 findEquivalenceClasses(F); 1059 1060 // Propagate weights to all edges. 1061 propagateWeights(F); 1062 } 1063 1064 return Changed; 1065 } 1066 1067 char SampleProfileLoader::ID = 0; 1068 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile", 1069 "Sample Profile loader", false, false) 1070 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1071 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree) 1072 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 1073 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators) 1074 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile", 1075 "Sample Profile loader", false, false) 1076 1077 bool SampleProfileLoader::doInitialization(Module &M) { 1078 Profiler.reset(new SampleModuleProfile(M, Filename)); 1079 ProfileIsValid = Profiler->loadText(); 1080 return true; 1081 } 1082 1083 FunctionPass *llvm::createSampleProfileLoaderPass() { 1084 return new SampleProfileLoader(SampleProfileFile); 1085 } 1086 1087 FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1088 return new SampleProfileLoader(Name); 1089 } 1090 1091 bool SampleProfileLoader::runOnFunction(Function &F) { 1092 if (!ProfileIsValid) 1093 return false; 1094 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1095 PostDominatorTree *PDT = &getAnalysis<PostDominatorTree>(); 1096 LoopInfo *LI = &getAnalysis<LoopInfo>(); 1097 SampleFunctionProfile &FunctionProfile = Profiler->getProfile(F); 1098 if (!FunctionProfile.empty()) 1099 return FunctionProfile.emitAnnotations(F, DT, PDT, LI); 1100 return false; 1101 } 1102