Home | History | Annotate | Download | only in Scalar
      1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
      2 //
      3 //                      The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SampleProfileLoader transformation. This pass
     11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
     12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
     13 // profile information in the given profile.
     14 //
     15 // This pass generates branch weight annotations on the IR:
     16 //
     17 // - prof: Represents branch weights. This annotation is added to branches
     18 //      to indicate the weights of each edge coming out of the branch.
     19 //      The weight of each edge is the weight of the target block for
     20 //      that edge. The weight of a block B is computed as the maximum
     21 //      number of samples found in B.
     22 //
     23 //===----------------------------------------------------------------------===//
     24 
     25 #include "llvm/Transforms/Scalar.h"
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/ADT/SmallPtrSet.h"
     28 #include "llvm/ADT/SmallSet.h"
     29 #include "llvm/ADT/StringMap.h"
     30 #include "llvm/ADT/StringRef.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/Analysis/PostDominators.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DebugInfo.h"
     35 #include "llvm/IR/DiagnosticInfo.h"
     36 #include "llvm/IR/Dominators.h"
     37 #include "llvm/IR/Function.h"
     38 #include "llvm/IR/InstIterator.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/LLVMContext.h"
     41 #include "llvm/IR/MDBuilder.h"
     42 #include "llvm/IR/Metadata.h"
     43 #include "llvm/IR/Module.h"
     44 #include "llvm/Pass.h"
     45 #include "llvm/Support/CommandLine.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/LineIterator.h"
     48 #include "llvm/Support/MemoryBuffer.h"
     49 #include "llvm/Support/Regex.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 #include <cctype>
     52 
     53 using namespace llvm;
     54 
     55 #define DEBUG_TYPE "sample-profile"
     56 
     57 // Command line option to specify the file to read samples from. This is
     58 // mainly used for debugging.
     59 static cl::opt<std::string> SampleProfileFile(
     60     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
     61     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
     62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
     63     "sample-profile-max-propagate-iterations", cl::init(100),
     64     cl::desc("Maximum number of iterations to go through when propagating "
     65              "sample block/edge weights through the CFG."));
     66 
     67 namespace {
     68 /// \brief Represents the relative location of an instruction.
     69 ///
     70 /// Instruction locations are specified by the line offset from the
     71 /// beginning of the function (marked by the line where the function
     72 /// header is) and the discriminator value within that line.
     73 ///
     74 /// The discriminator value is useful to distinguish instructions
     75 /// that are on the same line but belong to different basic blocks
     76 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
     77 struct InstructionLocation {
     78   InstructionLocation(int L, unsigned D) : LineOffset(L), Discriminator(D) {}
     79   int LineOffset;
     80   unsigned Discriminator;
     81 };
     82 }
     83 
     84 namespace llvm {
     85 template <> struct DenseMapInfo<InstructionLocation> {
     86   typedef DenseMapInfo<int> OffsetInfo;
     87   typedef DenseMapInfo<unsigned> DiscriminatorInfo;
     88   static inline InstructionLocation getEmptyKey() {
     89     return InstructionLocation(OffsetInfo::getEmptyKey(),
     90                                DiscriminatorInfo::getEmptyKey());
     91   }
     92   static inline InstructionLocation getTombstoneKey() {
     93     return InstructionLocation(OffsetInfo::getTombstoneKey(),
     94                                DiscriminatorInfo::getTombstoneKey());
     95   }
     96   static inline unsigned getHashValue(InstructionLocation Val) {
     97     return DenseMapInfo<std::pair<int, unsigned>>::getHashValue(
     98         std::pair<int, unsigned>(Val.LineOffset, Val.Discriminator));
     99   }
    100   static inline bool isEqual(InstructionLocation LHS, InstructionLocation RHS) {
    101     return LHS.LineOffset == RHS.LineOffset &&
    102            LHS.Discriminator == RHS.Discriminator;
    103   }
    104 };
    105 }
    106 
    107 namespace {
    108 typedef DenseMap<InstructionLocation, unsigned> BodySampleMap;
    109 typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
    110 typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
    111 typedef std::pair<BasicBlock *, BasicBlock *> Edge;
    112 typedef DenseMap<Edge, unsigned> EdgeWeightMap;
    113 typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
    114 
    115 /// \brief Representation of the runtime profile for a function.
    116 ///
    117 /// This data structure contains the runtime profile for a given
    118 /// function. It contains the total number of samples collected
    119 /// in the function and a map of samples collected in every statement.
    120 class SampleFunctionProfile {
    121 public:
    122   SampleFunctionProfile()
    123       : TotalSamples(0), TotalHeadSamples(0), HeaderLineno(0), DT(nullptr),
    124         PDT(nullptr), LI(nullptr), Ctx(nullptr) {}
    125 
    126   unsigned getFunctionLoc(Function &F);
    127   bool emitAnnotations(Function &F, DominatorTree *DomTree,
    128                        PostDominatorTree *PostDomTree, LoopInfo *Loops);
    129   unsigned getInstWeight(Instruction &I);
    130   unsigned getBlockWeight(BasicBlock *B);
    131   void addTotalSamples(unsigned Num) { TotalSamples += Num; }
    132   void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; }
    133   void addBodySamples(int LineOffset, unsigned Discriminator, unsigned Num) {
    134     assert(LineOffset >= 0);
    135     BodySamples[InstructionLocation(LineOffset, Discriminator)] += Num;
    136   }
    137   void print(raw_ostream &OS);
    138   void printEdgeWeight(raw_ostream &OS, Edge E);
    139   void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
    140   void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
    141   bool computeBlockWeights(Function &F);
    142   void findEquivalenceClasses(Function &F);
    143   void findEquivalencesFor(BasicBlock *BB1,
    144                            SmallVector<BasicBlock *, 8> Descendants,
    145                            DominatorTreeBase<BasicBlock> *DomTree);
    146   void propagateWeights(Function &F);
    147   unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
    148   void buildEdges(Function &F);
    149   bool propagateThroughEdges(Function &F);
    150   bool empty() { return BodySamples.empty(); }
    151 
    152 protected:
    153   /// \brief Total number of samples collected inside this function.
    154   ///
    155   /// Samples are cumulative, they include all the samples collected
    156   /// inside this function and all its inlined callees.
    157   unsigned TotalSamples;
    158 
    159   /// \brief Total number of samples collected at the head of the function.
    160   /// FIXME: Use head samples to estimate a cold/hot attribute for the function.
    161   unsigned TotalHeadSamples;
    162 
    163   /// \brief Line number for the function header. Used to compute relative
    164   /// line numbers from the absolute line LOCs found in instruction locations.
    165   /// The relative line numbers are needed to address the samples from the
    166   /// profile file.
    167   unsigned HeaderLineno;
    168 
    169   /// \brief Map line offsets to collected samples.
    170   ///
    171   /// Each entry in this map contains the number of samples
    172   /// collected at the corresponding line offset. All line locations
    173   /// are an offset from the start of the function.
    174   BodySampleMap BodySamples;
    175 
    176   /// \brief Map basic blocks to their computed weights.
    177   ///
    178   /// The weight of a basic block is defined to be the maximum
    179   /// of all the instruction weights in that block.
    180   BlockWeightMap BlockWeights;
    181 
    182   /// \brief Map edges to their computed weights.
    183   ///
    184   /// Edge weights are computed by propagating basic block weights in
    185   /// SampleProfile::propagateWeights.
    186   EdgeWeightMap EdgeWeights;
    187 
    188   /// \brief Set of visited blocks during propagation.
    189   SmallPtrSet<BasicBlock *, 128> VisitedBlocks;
    190 
    191   /// \brief Set of visited edges during propagation.
    192   SmallSet<Edge, 128> VisitedEdges;
    193 
    194   /// \brief Equivalence classes for block weights.
    195   ///
    196   /// Two blocks BB1 and BB2 are in the same equivalence class if they
    197   /// dominate and post-dominate each other, and they are in the same loop
    198   /// nest. When this happens, the two blocks are guaranteed to execute
    199   /// the same number of times.
    200   EquivalenceClassMap EquivalenceClass;
    201 
    202   /// \brief Dominance, post-dominance and loop information.
    203   DominatorTree *DT;
    204   PostDominatorTree *PDT;
    205   LoopInfo *LI;
    206 
    207   /// \brief Predecessors for each basic block in the CFG.
    208   BlockEdgeMap Predecessors;
    209 
    210   /// \brief Successors for each basic block in the CFG.
    211   BlockEdgeMap Successors;
    212 
    213   /// \brief LLVM context holding the debug data we need.
    214   LLVMContext *Ctx;
    215 };
    216 
    217 /// \brief Sample-based profile reader.
    218 ///
    219 /// Each profile contains sample counts for all the functions
    220 /// executed. Inside each function, statements are annotated with the
    221 /// collected samples on all the instructions associated with that
    222 /// statement.
    223 ///
    224 /// For this to produce meaningful data, the program needs to be
    225 /// compiled with some debug information (at minimum, line numbers:
    226 /// -gline-tables-only). Otherwise, it will be impossible to match IR
    227 /// instructions to the line numbers collected by the profiler.
    228 ///
    229 /// From the profile file, we are interested in collecting the
    230 /// following information:
    231 ///
    232 /// * A list of functions included in the profile (mangled names).
    233 ///
    234 /// * For each function F:
    235 ///   1. The total number of samples collected in F.
    236 ///
    237 ///   2. The samples collected at each line in F. To provide some
    238 ///      protection against source code shuffling, line numbers should
    239 ///      be relative to the start of the function.
    240 class SampleModuleProfile {
    241 public:
    242   SampleModuleProfile(const Module &M, StringRef F)
    243       : Profiles(0), Filename(F), M(M) {}
    244 
    245   void dump();
    246   bool loadText();
    247   void loadNative() { llvm_unreachable("not implemented"); }
    248   void printFunctionProfile(raw_ostream &OS, StringRef FName);
    249   void dumpFunctionProfile(StringRef FName);
    250   SampleFunctionProfile &getProfile(const Function &F) {
    251     return Profiles[F.getName()];
    252   }
    253 
    254   /// \brief Report a parse error message.
    255   void reportParseError(int64_t LineNumber, Twine Msg) const {
    256     DiagnosticInfoSampleProfile Diag(Filename.data(), LineNumber, Msg);
    257     M.getContext().diagnose(Diag);
    258   }
    259 
    260 protected:
    261   /// \brief Map every function to its associated profile.
    262   ///
    263   /// The profile of every function executed at runtime is collected
    264   /// in the structure SampleFunctionProfile. This maps function objects
    265   /// to their corresponding profiles.
    266   StringMap<SampleFunctionProfile> Profiles;
    267 
    268   /// \brief Path name to the file holding the profile data.
    269   ///
    270   /// The format of this file is defined by each profiler
    271   /// independently. If possible, the profiler should have a text
    272   /// version of the profile format to be used in constructing test
    273   /// cases and debugging.
    274   StringRef Filename;
    275 
    276   /// \brief Module being compiled. Used mainly to access the current
    277   /// LLVM context for diagnostics.
    278   const Module &M;
    279 };
    280 
    281 /// \brief Sample profile pass.
    282 ///
    283 /// This pass reads profile data from the file specified by
    284 /// -sample-profile-file and annotates every affected function with the
    285 /// profile information found in that file.
    286 class SampleProfileLoader : public FunctionPass {
    287 public:
    288   // Class identification, replacement for typeinfo
    289   static char ID;
    290 
    291   SampleProfileLoader(StringRef Name = SampleProfileFile)
    292       : FunctionPass(ID), Profiler(), Filename(Name), ProfileIsValid(false) {
    293     initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
    294   }
    295 
    296   bool doInitialization(Module &M) override;
    297 
    298   void dump() { Profiler->dump(); }
    299 
    300   const char *getPassName() const override { return "Sample profile pass"; }
    301 
    302   bool runOnFunction(Function &F) override;
    303 
    304   void getAnalysisUsage(AnalysisUsage &AU) const override {
    305     AU.setPreservesCFG();
    306     AU.addRequired<LoopInfo>();
    307     AU.addRequired<DominatorTreeWrapperPass>();
    308     AU.addRequired<PostDominatorTree>();
    309   }
    310 
    311 protected:
    312   /// \brief Profile reader object.
    313   std::unique_ptr<SampleModuleProfile> Profiler;
    314 
    315   /// \brief Name of the profile file to load.
    316   StringRef Filename;
    317 
    318   /// \brief Flag indicating whether the profile input loaded successfully.
    319   bool ProfileIsValid;
    320 };
    321 }
    322 
    323 /// \brief Print this function profile on stream \p OS.
    324 ///
    325 /// \param OS Stream to emit the output to.
    326 void SampleFunctionProfile::print(raw_ostream &OS) {
    327   OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
    328      << " sampled lines\n";
    329   for (BodySampleMap::const_iterator SI = BodySamples.begin(),
    330                                      SE = BodySamples.end();
    331        SI != SE; ++SI)
    332     OS << "\tline offset: " << SI->first.LineOffset
    333        << ", discriminator: " << SI->first.Discriminator
    334        << ", number of samples: " << SI->second << "\n";
    335   OS << "\n";
    336 }
    337 
    338 /// \brief Print the weight of edge \p E on stream \p OS.
    339 ///
    340 /// \param OS  Stream to emit the output to.
    341 /// \param E  Edge to print.
    342 void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) {
    343   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
    344      << "]: " << EdgeWeights[E] << "\n";
    345 }
    346 
    347 /// \brief Print the equivalence class of block \p BB on stream \p OS.
    348 ///
    349 /// \param OS  Stream to emit the output to.
    350 /// \param BB  Block to print.
    351 void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS,
    352                                                   BasicBlock *BB) {
    353   BasicBlock *Equiv = EquivalenceClass[BB];
    354   OS << "equivalence[" << BB->getName()
    355      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
    356 }
    357 
    358 /// \brief Print the weight of block \p BB on stream \p OS.
    359 ///
    360 /// \param OS  Stream to emit the output to.
    361 /// \param BB  Block to print.
    362 void SampleFunctionProfile::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
    363   OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
    364 }
    365 
    366 /// \brief Print the function profile for \p FName on stream \p OS.
    367 ///
    368 /// \param OS Stream to emit the output to.
    369 /// \param FName Name of the function to print.
    370 void SampleModuleProfile::printFunctionProfile(raw_ostream &OS,
    371                                                StringRef FName) {
    372   OS << "Function: " << FName << ":\n";
    373   Profiles[FName].print(OS);
    374 }
    375 
    376 /// \brief Dump the function profile for \p FName.
    377 ///
    378 /// \param FName Name of the function to print.
    379 void SampleModuleProfile::dumpFunctionProfile(StringRef FName) {
    380   printFunctionProfile(dbgs(), FName);
    381 }
    382 
    383 /// \brief Dump all the function profiles found.
    384 void SampleModuleProfile::dump() {
    385   for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(),
    386                                                         E = Profiles.end();
    387        I != E; ++I)
    388     dumpFunctionProfile(I->getKey());
    389 }
    390 
    391 /// \brief Load samples from a text file.
    392 ///
    393 /// The file contains a list of samples for every function executed at
    394 /// runtime. Each function profile has the following format:
    395 ///
    396 ///    function1:total_samples:total_head_samples
    397 ///    offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
    398 ///    offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
    399 ///    ...
    400 ///    offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
    401 ///
    402 /// Function names must be mangled in order for the profile loader to
    403 /// match them in the current translation unit. The two numbers in the
    404 /// function header specify how many total samples were accumulated in
    405 /// the function (first number), and the total number of samples accumulated
    406 /// at the prologue of the function (second number). This head sample
    407 /// count provides an indicator of how frequent is the function invoked.
    408 ///
    409 /// Each sampled line may contain several items. Some are optional
    410 /// (marked below):
    411 ///
    412 /// a- Source line offset. This number represents the line number
    413 ///    in the function where the sample was collected. The line number
    414 ///    is always relative to the line where symbol of the function
    415 ///    is defined. So, if the function has its header at line 280,
    416 ///    the offset 13 is at line 293 in the file.
    417 ///
    418 /// b- [OPTIONAL] Discriminator. This is used if the sampled program
    419 ///    was compiled with DWARF discriminator support
    420 ///    (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators)
    421 ///
    422 /// c- Number of samples. This is the number of samples collected by
    423 ///    the profiler at this source location.
    424 ///
    425 /// d- [OPTIONAL] Potential call targets and samples. If present, this
    426 ///    line contains a call instruction. This models both direct and
    427 ///    indirect calls. Each called target is listed together with the
    428 ///    number of samples. For example,
    429 ///
    430 ///    130: 7  foo:3  bar:2  baz:7
    431 ///
    432 ///    The above means that at relative line offset 130 there is a
    433 ///    call instruction that calls one of foo(), bar() and baz(). With
    434 ///    baz() being the relatively more frequent call target.
    435 ///
    436 ///    FIXME: This is currently unhandled, but it has a lot of
    437 ///           potential for aiding the inliner.
    438 ///
    439 ///
    440 /// Since this is a flat profile, a function that shows up more than
    441 /// once gets all its samples aggregated across all its instances.
    442 ///
    443 /// FIXME: flat profiles are too imprecise to provide good optimization
    444 ///        opportunities. Convert them to context-sensitive profile.
    445 ///
    446 /// This textual representation is useful to generate unit tests and
    447 /// for debugging purposes, but it should not be used to generate
    448 /// profiles for large programs, as the representation is extremely
    449 /// inefficient.
    450 ///
    451 /// \returns true if the file was loaded successfully, false otherwise.
    452 bool SampleModuleProfile::loadText() {
    453   ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
    454       MemoryBuffer::getFile(Filename);
    455   if (std::error_code EC = BufferOrErr.getError()) {
    456     std::string Msg(EC.message());
    457     M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
    458     return false;
    459   }
    460   std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
    461   line_iterator LineIt(*Buffer, '#');
    462 
    463   // Read the profile of each function. Since each function may be
    464   // mentioned more than once, and we are collecting flat profiles,
    465   // accumulate samples as we parse them.
    466   Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
    467   Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
    468   while (!LineIt.is_at_eof()) {
    469     // Read the header of each function.
    470     //
    471     // Note that for function identifiers we are actually expecting
    472     // mangled names, but we may not always get them. This happens when
    473     // the compiler decides not to emit the function (e.g., it was inlined
    474     // and removed). In this case, the binary will not have the linkage
    475     // name for the function, so the profiler will emit the function's
    476     // unmangled name, which may contain characters like ':' and '>' in its
    477     // name (member functions, templates, etc).
    478     //
    479     // The only requirement we place on the identifier, then, is that it
    480     // should not begin with a number.
    481     SmallVector<StringRef, 3> Matches;
    482     if (!HeadRE.match(*LineIt, &Matches)) {
    483       reportParseError(LineIt.line_number(),
    484                        "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
    485       return false;
    486     }
    487     assert(Matches.size() == 4);
    488     StringRef FName = Matches[1];
    489     unsigned NumSamples, NumHeadSamples;
    490     Matches[2].getAsInteger(10, NumSamples);
    491     Matches[3].getAsInteger(10, NumHeadSamples);
    492     Profiles[FName] = SampleFunctionProfile();
    493     SampleFunctionProfile &FProfile = Profiles[FName];
    494     FProfile.addTotalSamples(NumSamples);
    495     FProfile.addHeadSamples(NumHeadSamples);
    496     ++LineIt;
    497 
    498     // Now read the body. The body of the function ends when we reach
    499     // EOF or when we see the start of the next function.
    500     while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
    501       if (!LineSample.match(*LineIt, &Matches)) {
    502         reportParseError(
    503             LineIt.line_number(),
    504             "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
    505         return false;
    506       }
    507       assert(Matches.size() == 5);
    508       unsigned LineOffset, NumSamples, Discriminator = 0;
    509       Matches[1].getAsInteger(10, LineOffset);
    510       if (Matches[2] != "")
    511         Matches[2].getAsInteger(10, Discriminator);
    512       Matches[3].getAsInteger(10, NumSamples);
    513 
    514       // FIXME: Handle called targets (in Matches[4]).
    515 
    516       // When dealing with instruction weights, we use the value
    517       // zero to indicate the absence of a sample. If we read an
    518       // actual zero from the profile file, return it as 1 to
    519       // avoid the confusion later on.
    520       if (NumSamples == 0)
    521         NumSamples = 1;
    522       FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
    523       ++LineIt;
    524     }
    525   }
    526 
    527   return true;
    528 }
    529 
    530 /// \brief Get the weight for an instruction.
    531 ///
    532 /// The "weight" of an instruction \p Inst is the number of samples
    533 /// collected on that instruction at runtime. To retrieve it, we
    534 /// need to compute the line number of \p Inst relative to the start of its
    535 /// function. We use HeaderLineno to compute the offset. We then
    536 /// look up the samples collected for \p Inst using BodySamples.
    537 ///
    538 /// \param Inst Instruction to query.
    539 ///
    540 /// \returns The profiled weight of I.
    541 unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
    542   DebugLoc DLoc = Inst.getDebugLoc();
    543   unsigned Lineno = DLoc.getLine();
    544   if (Lineno < HeaderLineno)
    545     return 0;
    546 
    547   DILocation DIL(DLoc.getAsMDNode(*Ctx));
    548   int LOffset = Lineno - HeaderLineno;
    549   unsigned Discriminator = DIL.getDiscriminator();
    550   unsigned Weight =
    551       BodySamples.lookup(InstructionLocation(LOffset, Discriminator));
    552   DEBUG(dbgs() << "    " << Lineno << "." << Discriminator << ":" << Inst
    553                << " (line offset: " << LOffset << "." << Discriminator
    554                << " - weight: " << Weight << ")\n");
    555   return Weight;
    556 }
    557 
    558 /// \brief Compute the weight of a basic block.
    559 ///
    560 /// The weight of basic block \p B is the maximum weight of all the
    561 /// instructions in B. The weight of \p B is computed and cached in
    562 /// the BlockWeights map.
    563 ///
    564 /// \param B The basic block to query.
    565 ///
    566 /// \returns The computed weight of B.
    567 unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) {
    568   // If we've computed B's weight before, return it.
    569   std::pair<BlockWeightMap::iterator, bool> Entry =
    570       BlockWeights.insert(std::make_pair(B, 0));
    571   if (!Entry.second)
    572     return Entry.first->second;
    573 
    574   // Otherwise, compute and cache B's weight.
    575   unsigned Weight = 0;
    576   for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
    577     unsigned InstWeight = getInstWeight(*I);
    578     if (InstWeight > Weight)
    579       Weight = InstWeight;
    580   }
    581   Entry.first->second = Weight;
    582   return Weight;
    583 }
    584 
    585 /// \brief Compute and store the weights of every basic block.
    586 ///
    587 /// This populates the BlockWeights map by computing
    588 /// the weights of every basic block in the CFG.
    589 ///
    590 /// \param F The function to query.
    591 bool SampleFunctionProfile::computeBlockWeights(Function &F) {
    592   bool Changed = false;
    593   DEBUG(dbgs() << "Block weights\n");
    594   for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
    595     unsigned Weight = getBlockWeight(B);
    596     Changed |= (Weight > 0);
    597     DEBUG(printBlockWeight(dbgs(), B));
    598   }
    599 
    600   return Changed;
    601 }
    602 
    603 /// \brief Find equivalence classes for the given block.
    604 ///
    605 /// This finds all the blocks that are guaranteed to execute the same
    606 /// number of times as \p BB1. To do this, it traverses all the the
    607 /// descendants of \p BB1 in the dominator or post-dominator tree.
    608 ///
    609 /// A block BB2 will be in the same equivalence class as \p BB1 if
    610 /// the following holds:
    611 ///
    612 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
    613 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
    614 ///    dominate BB1 in the post-dominator tree.
    615 ///
    616 /// 2- Both BB2 and \p BB1 must be in the same loop.
    617 ///
    618 /// For every block BB2 that meets those two requirements, we set BB2's
    619 /// equivalence class to \p BB1.
    620 ///
    621 /// \param BB1  Block to check.
    622 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
    623 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
    624 ///                 with blocks from \p BB1's dominator tree, then
    625 ///                 this is the post-dominator tree, and vice versa.
    626 void SampleFunctionProfile::findEquivalencesFor(
    627     BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
    628     DominatorTreeBase<BasicBlock> *DomTree) {
    629   for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(),
    630                                                E = Descendants.end();
    631        I != E; ++I) {
    632     BasicBlock *BB2 = *I;
    633     bool IsDomParent = DomTree->dominates(BB2, BB1);
    634     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
    635     if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent &&
    636         IsInSameLoop) {
    637       EquivalenceClass[BB2] = BB1;
    638 
    639       // If BB2 is heavier than BB1, make BB2 have the same weight
    640       // as BB1.
    641       //
    642       // Note that we don't worry about the opposite situation here
    643       // (when BB2 is lighter than BB1). We will deal with this
    644       // during the propagation phase. Right now, we just want to
    645       // make sure that BB1 has the largest weight of all the
    646       // members of its equivalence set.
    647       unsigned &BB1Weight = BlockWeights[BB1];
    648       unsigned &BB2Weight = BlockWeights[BB2];
    649       BB1Weight = std::max(BB1Weight, BB2Weight);
    650     }
    651   }
    652 }
    653 
    654 /// \brief Find equivalence classes.
    655 ///
    656 /// Since samples may be missing from blocks, we can fill in the gaps by setting
    657 /// the weights of all the blocks in the same equivalence class to the same
    658 /// weight. To compute the concept of equivalence, we use dominance and loop
    659 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
    660 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
    661 ///
    662 /// \param F The function to query.
    663 void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
    664   SmallVector<BasicBlock *, 8> DominatedBBs;
    665   DEBUG(dbgs() << "\nBlock equivalence classes\n");
    666   // Find equivalence sets based on dominance and post-dominance information.
    667   for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
    668     BasicBlock *BB1 = B;
    669 
    670     // Compute BB1's equivalence class once.
    671     if (EquivalenceClass.count(BB1)) {
    672       DEBUG(printBlockEquivalence(dbgs(), BB1));
    673       continue;
    674     }
    675 
    676     // By default, blocks are in their own equivalence class.
    677     EquivalenceClass[BB1] = BB1;
    678 
    679     // Traverse all the blocks dominated by BB1. We are looking for
    680     // every basic block BB2 such that:
    681     //
    682     // 1- BB1 dominates BB2.
    683     // 2- BB2 post-dominates BB1.
    684     // 3- BB1 and BB2 are in the same loop nest.
    685     //
    686     // If all those conditions hold, it means that BB2 is executed
    687     // as many times as BB1, so they are placed in the same equivalence
    688     // class by making BB2's equivalence class be BB1.
    689     DominatedBBs.clear();
    690     DT->getDescendants(BB1, DominatedBBs);
    691     findEquivalencesFor(BB1, DominatedBBs, PDT->DT);
    692 
    693     // Repeat the same logic for all the blocks post-dominated by BB1.
    694     // We are looking for every basic block BB2 such that:
    695     //
    696     // 1- BB1 post-dominates BB2.
    697     // 2- BB2 dominates BB1.
    698     // 3- BB1 and BB2 are in the same loop nest.
    699     //
    700     // If all those conditions hold, BB2's equivalence class is BB1.
    701     DominatedBBs.clear();
    702     PDT->getDescendants(BB1, DominatedBBs);
    703     findEquivalencesFor(BB1, DominatedBBs, DT);
    704 
    705     DEBUG(printBlockEquivalence(dbgs(), BB1));
    706   }
    707 
    708   // Assign weights to equivalence classes.
    709   //
    710   // All the basic blocks in the same equivalence class will execute
    711   // the same number of times. Since we know that the head block in
    712   // each equivalence class has the largest weight, assign that weight
    713   // to all the blocks in that equivalence class.
    714   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
    715   for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
    716     BasicBlock *BB = B;
    717     BasicBlock *EquivBB = EquivalenceClass[BB];
    718     if (BB != EquivBB)
    719       BlockWeights[BB] = BlockWeights[EquivBB];
    720     DEBUG(printBlockWeight(dbgs(), BB));
    721   }
    722 }
    723 
    724 /// \brief Visit the given edge to decide if it has a valid weight.
    725 ///
    726 /// If \p E has not been visited before, we copy to \p UnknownEdge
    727 /// and increment the count of unknown edges.
    728 ///
    729 /// \param E  Edge to visit.
    730 /// \param NumUnknownEdges  Current number of unknown edges.
    731 /// \param UnknownEdge  Set if E has not been visited before.
    732 ///
    733 /// \returns E's weight, if known. Otherwise, return 0.
    734 unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges,
    735                                           Edge *UnknownEdge) {
    736   if (!VisitedEdges.count(E)) {
    737     (*NumUnknownEdges)++;
    738     *UnknownEdge = E;
    739     return 0;
    740   }
    741 
    742   return EdgeWeights[E];
    743 }
    744 
    745 /// \brief Propagate weights through incoming/outgoing edges.
    746 ///
    747 /// If the weight of a basic block is known, and there is only one edge
    748 /// with an unknown weight, we can calculate the weight of that edge.
    749 ///
    750 /// Similarly, if all the edges have a known count, we can calculate the
    751 /// count of the basic block, if needed.
    752 ///
    753 /// \param F  Function to process.
    754 ///
    755 /// \returns  True if new weights were assigned to edges or blocks.
    756 bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
    757   bool Changed = false;
    758   DEBUG(dbgs() << "\nPropagation through edges\n");
    759   for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) {
    760     BasicBlock *BB = BI;
    761 
    762     // Visit all the predecessor and successor edges to determine
    763     // which ones have a weight assigned already. Note that it doesn't
    764     // matter that we only keep track of a single unknown edge. The
    765     // only case we are interested in handling is when only a single
    766     // edge is unknown (see setEdgeOrBlockWeight).
    767     for (unsigned i = 0; i < 2; i++) {
    768       unsigned TotalWeight = 0;
    769       unsigned NumUnknownEdges = 0;
    770       Edge UnknownEdge, SelfReferentialEdge;
    771 
    772       if (i == 0) {
    773         // First, visit all predecessor edges.
    774         for (size_t I = 0; I < Predecessors[BB].size(); I++) {
    775           Edge E = std::make_pair(Predecessors[BB][I], BB);
    776           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
    777           if (E.first == E.second)
    778             SelfReferentialEdge = E;
    779         }
    780       } else {
    781         // On the second round, visit all successor edges.
    782         for (size_t I = 0; I < Successors[BB].size(); I++) {
    783           Edge E = std::make_pair(BB, Successors[BB][I]);
    784           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
    785         }
    786       }
    787 
    788       // After visiting all the edges, there are three cases that we
    789       // can handle immediately:
    790       //
    791       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
    792       //   In this case, we simply check that the sum of all the edges
    793       //   is the same as BB's weight. If not, we change BB's weight
    794       //   to match. Additionally, if BB had not been visited before,
    795       //   we mark it visited.
    796       //
    797       // - Only one edge is unknown and BB has already been visited.
    798       //   In this case, we can compute the weight of the edge by
    799       //   subtracting the total block weight from all the known
    800       //   edge weights. If the edges weight more than BB, then the
    801       //   edge of the last remaining edge is set to zero.
    802       //
    803       // - There exists a self-referential edge and the weight of BB is
    804       //   known. In this case, this edge can be based on BB's weight.
    805       //   We add up all the other known edges and set the weight on
    806       //   the self-referential edge as we did in the previous case.
    807       //
    808       // In any other case, we must continue iterating. Eventually,
    809       // all edges will get a weight, or iteration will stop when
    810       // it reaches SampleProfileMaxPropagateIterations.
    811       if (NumUnknownEdges <= 1) {
    812         unsigned &BBWeight = BlockWeights[BB];
    813         if (NumUnknownEdges == 0) {
    814           // If we already know the weight of all edges, the weight of the
    815           // basic block can be computed. It should be no larger than the sum
    816           // of all edge weights.
    817           if (TotalWeight > BBWeight) {
    818             BBWeight = TotalWeight;
    819             Changed = true;
    820             DEBUG(dbgs() << "All edge weights for " << BB->getName()
    821                          << " known. Set weight for block: ";
    822                   printBlockWeight(dbgs(), BB););
    823           }
    824           if (VisitedBlocks.insert(BB))
    825             Changed = true;
    826         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
    827           // If there is a single unknown edge and the block has been
    828           // visited, then we can compute E's weight.
    829           if (BBWeight >= TotalWeight)
    830             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
    831           else
    832             EdgeWeights[UnknownEdge] = 0;
    833           VisitedEdges.insert(UnknownEdge);
    834           Changed = true;
    835           DEBUG(dbgs() << "Set weight for edge: ";
    836                 printEdgeWeight(dbgs(), UnknownEdge));
    837         }
    838       } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
    839         unsigned &BBWeight = BlockWeights[BB];
    840         // We have a self-referential edge and the weight of BB is known.
    841         if (BBWeight >= TotalWeight)
    842           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
    843         else
    844           EdgeWeights[SelfReferentialEdge] = 0;
    845         VisitedEdges.insert(SelfReferentialEdge);
    846         Changed = true;
    847         DEBUG(dbgs() << "Set self-referential edge weight to: ";
    848               printEdgeWeight(dbgs(), SelfReferentialEdge));
    849       }
    850     }
    851   }
    852 
    853   return Changed;
    854 }
    855 
    856 /// \brief Build in/out edge lists for each basic block in the CFG.
    857 ///
    858 /// We are interested in unique edges. If a block B1 has multiple
    859 /// edges to another block B2, we only add a single B1->B2 edge.
    860 void SampleFunctionProfile::buildEdges(Function &F) {
    861   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    862     BasicBlock *B1 = I;
    863 
    864     // Add predecessors for B1.
    865     SmallPtrSet<BasicBlock *, 16> Visited;
    866     if (!Predecessors[B1].empty())
    867       llvm_unreachable("Found a stale predecessors list in a basic block.");
    868     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
    869       BasicBlock *B2 = *PI;
    870       if (Visited.insert(B2))
    871         Predecessors[B1].push_back(B2);
    872     }
    873 
    874     // Add successors for B1.
    875     Visited.clear();
    876     if (!Successors[B1].empty())
    877       llvm_unreachable("Found a stale successors list in a basic block.");
    878     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
    879       BasicBlock *B2 = *SI;
    880       if (Visited.insert(B2))
    881         Successors[B1].push_back(B2);
    882     }
    883   }
    884 }
    885 
    886 /// \brief Propagate weights into edges
    887 ///
    888 /// The following rules are applied to every block B in the CFG:
    889 ///
    890 /// - If B has a single predecessor/successor, then the weight
    891 ///   of that edge is the weight of the block.
    892 ///
    893 /// - If all incoming or outgoing edges are known except one, and the
    894 ///   weight of the block is already known, the weight of the unknown
    895 ///   edge will be the weight of the block minus the sum of all the known
    896 ///   edges. If the sum of all the known edges is larger than B's weight,
    897 ///   we set the unknown edge weight to zero.
    898 ///
    899 /// - If there is a self-referential edge, and the weight of the block is
    900 ///   known, the weight for that edge is set to the weight of the block
    901 ///   minus the weight of the other incoming edges to that block (if
    902 ///   known).
    903 void SampleFunctionProfile::propagateWeights(Function &F) {
    904   bool Changed = true;
    905   unsigned i = 0;
    906 
    907   // Before propagation starts, build, for each block, a list of
    908   // unique predecessors and successors. This is necessary to handle
    909   // identical edges in multiway branches. Since we visit all blocks and all
    910   // edges of the CFG, it is cleaner to build these lists once at the start
    911   // of the pass.
    912   buildEdges(F);
    913 
    914   // Propagate until we converge or we go past the iteration limit.
    915   while (Changed && i++ < SampleProfileMaxPropagateIterations) {
    916     Changed = propagateThroughEdges(F);
    917   }
    918 
    919   // Generate MD_prof metadata for every branch instruction using the
    920   // edge weights computed during propagation.
    921   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
    922   MDBuilder MDB(F.getContext());
    923   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    924     BasicBlock *B = I;
    925     TerminatorInst *TI = B->getTerminator();
    926     if (TI->getNumSuccessors() == 1)
    927       continue;
    928     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
    929       continue;
    930 
    931     DEBUG(dbgs() << "\nGetting weights for branch at line "
    932                  << TI->getDebugLoc().getLine() << ".\n");
    933     SmallVector<unsigned, 4> Weights;
    934     bool AllWeightsZero = true;
    935     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
    936       BasicBlock *Succ = TI->getSuccessor(I);
    937       Edge E = std::make_pair(B, Succ);
    938       unsigned Weight = EdgeWeights[E];
    939       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
    940       Weights.push_back(Weight);
    941       if (Weight != 0)
    942         AllWeightsZero = false;
    943     }
    944 
    945     // Only set weights if there is at least one non-zero weight.
    946     // In any other case, let the analyzer set weights.
    947     if (!AllWeightsZero) {
    948       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
    949       TI->setMetadata(llvm::LLVMContext::MD_prof,
    950                       MDB.createBranchWeights(Weights));
    951     } else {
    952       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
    953     }
    954   }
    955 }
    956 
    957 /// \brief Get the line number for the function header.
    958 ///
    959 /// This looks up function \p F in the current compilation unit and
    960 /// retrieves the line number where the function is defined. This is
    961 /// line 0 for all the samples read from the profile file. Every line
    962 /// number is relative to this line.
    963 ///
    964 /// \param F  Function object to query.
    965 ///
    966 /// \returns the line number where \p F is defined. If it returns 0,
    967 ///          it means that there is no debug information available for \p F.
    968 unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
    969   NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu");
    970   if (CUNodes) {
    971     for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) {
    972       DICompileUnit CU(CUNodes->getOperand(I));
    973       DIArray Subprograms = CU.getSubprograms();
    974       for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) {
    975         DISubprogram Subprogram(Subprograms.getElement(J));
    976         if (Subprogram.describes(&F))
    977           return Subprogram.getLineNumber();
    978       }
    979     }
    980   }
    981 
    982   F.getContext().diagnose(DiagnosticInfoSampleProfile(
    983       "No debug information found in function " + F.getName()));
    984   return 0;
    985 }
    986 
    987 /// \brief Generate branch weight metadata for all branches in \p F.
    988 ///
    989 /// Branch weights are computed out of instruction samples using a
    990 /// propagation heuristic. Propagation proceeds in 3 phases:
    991 ///
    992 /// 1- Assignment of block weights. All the basic blocks in the function
    993 ///    are initial assigned the same weight as their most frequently
    994 ///    executed instruction.
    995 ///
    996 /// 2- Creation of equivalence classes. Since samples may be missing from
    997 ///    blocks, we can fill in the gaps by setting the weights of all the
    998 ///    blocks in the same equivalence class to the same weight. To compute
    999 ///    the concept of equivalence, we use dominance and loop information.
   1000 ///    Two blocks B1 and B2 are in the same equivalence class if B1
   1001 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
   1002 ///
   1003 /// 3- Propagation of block weights into edges. This uses a simple
   1004 ///    propagation heuristic. The following rules are applied to every
   1005 ///    block B in the CFG:
   1006 ///
   1007 ///    - If B has a single predecessor/successor, then the weight
   1008 ///      of that edge is the weight of the block.
   1009 ///
   1010 ///    - If all the edges are known except one, and the weight of the
   1011 ///      block is already known, the weight of the unknown edge will
   1012 ///      be the weight of the block minus the sum of all the known
   1013 ///      edges. If the sum of all the known edges is larger than B's weight,
   1014 ///      we set the unknown edge weight to zero.
   1015 ///
   1016 ///    - If there is a self-referential edge, and the weight of the block is
   1017 ///      known, the weight for that edge is set to the weight of the block
   1018 ///      minus the weight of the other incoming edges to that block (if
   1019 ///      known).
   1020 ///
   1021 /// Since this propagation is not guaranteed to finalize for every CFG, we
   1022 /// only allow it to proceed for a limited number of iterations (controlled
   1023 /// by -sample-profile-max-propagate-iterations).
   1024 ///
   1025 /// FIXME: Try to replace this propagation heuristic with a scheme
   1026 /// that is guaranteed to finalize. A work-list approach similar to
   1027 /// the standard value propagation algorithm used by SSA-CCP might
   1028 /// work here.
   1029 ///
   1030 /// Once all the branch weights are computed, we emit the MD_prof
   1031 /// metadata on B using the computed values for each of its branches.
   1032 ///
   1033 /// \param F The function to query.
   1034 ///
   1035 /// \returns true if \p F was modified. Returns false, otherwise.
   1036 bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree,
   1037                                             PostDominatorTree *PostDomTree,
   1038                                             LoopInfo *Loops) {
   1039   bool Changed = false;
   1040 
   1041   // Initialize invariants used during computation and propagation.
   1042   HeaderLineno = getFunctionLoc(F);
   1043   if (HeaderLineno == 0)
   1044     return false;
   1045 
   1046   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
   1047                << ": " << HeaderLineno << "\n");
   1048   DT = DomTree;
   1049   PDT = PostDomTree;
   1050   LI = Loops;
   1051   Ctx = &F.getParent()->getContext();
   1052 
   1053   // Compute basic block weights.
   1054   Changed |= computeBlockWeights(F);
   1055 
   1056   if (Changed) {
   1057     // Find equivalence classes.
   1058     findEquivalenceClasses(F);
   1059 
   1060     // Propagate weights to all edges.
   1061     propagateWeights(F);
   1062   }
   1063 
   1064   return Changed;
   1065 }
   1066 
   1067 char SampleProfileLoader::ID = 0;
   1068 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
   1069                       "Sample Profile loader", false, false)
   1070 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   1071 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
   1072 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
   1073 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
   1074 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
   1075                     "Sample Profile loader", false, false)
   1076 
   1077 bool SampleProfileLoader::doInitialization(Module &M) {
   1078   Profiler.reset(new SampleModuleProfile(M, Filename));
   1079   ProfileIsValid = Profiler->loadText();
   1080   return true;
   1081 }
   1082 
   1083 FunctionPass *llvm::createSampleProfileLoaderPass() {
   1084   return new SampleProfileLoader(SampleProfileFile);
   1085 }
   1086 
   1087 FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
   1088   return new SampleProfileLoader(Name);
   1089 }
   1090 
   1091 bool SampleProfileLoader::runOnFunction(Function &F) {
   1092   if (!ProfileIsValid)
   1093     return false;
   1094   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1095   PostDominatorTree *PDT = &getAnalysis<PostDominatorTree>();
   1096   LoopInfo *LI = &getAnalysis<LoopInfo>();
   1097   SampleFunctionProfile &FunctionProfile = Profiler->getProfile(F);
   1098   if (!FunctionProfile.empty())
   1099     return FunctionProfile.emitAnnotations(F, DT, PDT, LI);
   1100   return false;
   1101 }
   1102