Home | History | Annotate | Download | only in Utils
      1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LowerSwitch transformation rewrites switch instructions with a sequence
     11 // of branches, which allows targets to get away with not implementing the
     12 // switch instruction until it is convenient.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/LLVMContext.h"
     23 #include "llvm/IR/CFG.h"
     24 #include "llvm/Pass.h"
     25 #include "llvm/Support/Compiler.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "lower-switch"
     33 
     34 namespace {
     35   /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
     36   /// instructions.
     37   class LowerSwitch : public FunctionPass {
     38   public:
     39     static char ID; // Pass identification, replacement for typeid
     40     LowerSwitch() : FunctionPass(ID) {
     41       initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
     42     }
     43 
     44     bool runOnFunction(Function &F) override;
     45 
     46     void getAnalysisUsage(AnalysisUsage &AU) const override {
     47       // This is a cluster of orthogonal Transforms
     48       AU.addPreserved<UnifyFunctionExitNodes>();
     49       AU.addPreserved("mem2reg");
     50       AU.addPreservedID(LowerInvokePassID);
     51     }
     52 
     53     struct CaseRange {
     54       Constant* Low;
     55       Constant* High;
     56       BasicBlock* BB;
     57 
     58       CaseRange(Constant *low = nullptr, Constant *high = nullptr,
     59                 BasicBlock *bb = nullptr) :
     60         Low(low), High(high), BB(bb) { }
     61     };
     62 
     63     typedef std::vector<CaseRange> CaseVector;
     64     typedef std::vector<CaseRange>::iterator CaseItr;
     65   private:
     66     void processSwitchInst(SwitchInst *SI);
     67 
     68     BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
     69                               ConstantInt *LowerBound, ConstantInt *UpperBound,
     70                               Value *Val, BasicBlock *OrigBlock,
     71                               BasicBlock *Default);
     72     BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
     73                              BasicBlock *Default);
     74     unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
     75   };
     76 
     77   /// The comparison function for sorting the switch case values in the vector.
     78   /// WARNING: Case ranges should be disjoint!
     79   struct CaseCmp {
     80     bool operator () (const LowerSwitch::CaseRange& C1,
     81                       const LowerSwitch::CaseRange& C2) {
     82 
     83       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
     84       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
     85       return CI1->getValue().slt(CI2->getValue());
     86     }
     87   };
     88 }
     89 
     90 char LowerSwitch::ID = 0;
     91 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
     92                 "Lower SwitchInst's to branches", false, false)
     93 
     94 // Publicly exposed interface to pass...
     95 char &llvm::LowerSwitchID = LowerSwitch::ID;
     96 // createLowerSwitchPass - Interface to this file...
     97 FunctionPass *llvm::createLowerSwitchPass() {
     98   return new LowerSwitch();
     99 }
    100 
    101 bool LowerSwitch::runOnFunction(Function &F) {
    102   bool Changed = false;
    103 
    104   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    105     BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
    106 
    107     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
    108       Changed = true;
    109       processSwitchInst(SI);
    110     }
    111   }
    112 
    113   return Changed;
    114 }
    115 
    116 // operator<< - Used for debugging purposes.
    117 //
    118 static raw_ostream& operator<<(raw_ostream &O,
    119                                const LowerSwitch::CaseVector &C)
    120     LLVM_ATTRIBUTE_USED;
    121 static raw_ostream& operator<<(raw_ostream &O,
    122                                const LowerSwitch::CaseVector &C) {
    123   O << "[";
    124 
    125   for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
    126          E = C.end(); B != E; ) {
    127     O << *B->Low << " -" << *B->High;
    128     if (++B != E) O << ", ";
    129   }
    130 
    131   return O << "]";
    132 }
    133 
    134 // switchConvert - Convert the switch statement into a binary lookup of
    135 // the case values. The function recursively builds this tree.
    136 // LowerBound and UpperBound are used to keep track of the bounds for Val
    137 // that have already been checked by a block emitted by one of the previous
    138 // calls to switchConvert in the call stack.
    139 BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
    140                                        ConstantInt *LowerBound,
    141                                        ConstantInt *UpperBound, Value *Val,
    142                                        BasicBlock *OrigBlock,
    143                                        BasicBlock *Default) {
    144   unsigned Size = End - Begin;
    145 
    146   if (Size == 1) {
    147     // Check if the Case Range is perfectly squeezed in between
    148     // already checked Upper and Lower bounds. If it is then we can avoid
    149     // emitting the code that checks if the value actually falls in the range
    150     // because the bounds already tell us so.
    151     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
    152       return Begin->BB;
    153     }
    154     return newLeafBlock(*Begin, Val, OrigBlock, Default);
    155   }
    156 
    157   unsigned Mid = Size / 2;
    158   std::vector<CaseRange> LHS(Begin, Begin + Mid);
    159   DEBUG(dbgs() << "LHS: " << LHS << "\n");
    160   std::vector<CaseRange> RHS(Begin + Mid, End);
    161   DEBUG(dbgs() << "RHS: " << RHS << "\n");
    162 
    163   CaseRange &Pivot = *(Begin + Mid);
    164   DEBUG(dbgs() << "Pivot ==> "
    165                << cast<ConstantInt>(Pivot.Low)->getValue()
    166                << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n");
    167 
    168   // NewLowerBound here should never be the integer minimal value.
    169   // This is because it is computed from a case range that is never
    170   // the smallest, so there is always a case range that has at least
    171   // a smaller value.
    172   ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low);
    173   ConstantInt *NewUpperBound;
    174 
    175   // If we don't have a Default block then it means that we can never
    176   // have a value outside of a case range, so set the UpperBound to the highest
    177   // value in the LHS part of the case ranges.
    178   if (Default != nullptr) {
    179     // Because NewLowerBound is never the smallest representable integer
    180     // it is safe here to subtract one.
    181     NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
    182                                      NewLowerBound->getValue() - 1);
    183   } else {
    184     CaseItr LastLHS = LHS.begin() + LHS.size() - 1;
    185     NewUpperBound = cast<ConstantInt>(LastLHS->High);
    186   }
    187 
    188   DEBUG(dbgs() << "LHS Bounds ==> ";
    189         if (LowerBound) {
    190           dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue();
    191         } else {
    192           dbgs() << "NONE";
    193         }
    194         dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
    195         dbgs() << "RHS Bounds ==> ";
    196         dbgs() << NewLowerBound->getSExtValue() << " - ";
    197         if (UpperBound) {
    198           dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n";
    199         } else {
    200           dbgs() << "NONE\n";
    201         });
    202 
    203   BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
    204                                       NewUpperBound, Val, OrigBlock, Default);
    205   BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
    206                                       UpperBound, Val, OrigBlock, Default);
    207 
    208   // Create a new node that checks if the value is < pivot. Go to the
    209   // left branch if it is and right branch if not.
    210   Function* F = OrigBlock->getParent();
    211   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
    212   Function::iterator FI = OrigBlock;
    213   F->getBasicBlockList().insert(++FI, NewNode);
    214 
    215   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
    216                                 Val, Pivot.Low, "Pivot");
    217   NewNode->getInstList().push_back(Comp);
    218   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
    219   return NewNode;
    220 }
    221 
    222 // newLeafBlock - Create a new leaf block for the binary lookup tree. It
    223 // checks if the switch's value == the case's value. If not, then it
    224 // jumps to the default branch. At this point in the tree, the value
    225 // can't be another valid case value, so the jump to the "default" branch
    226 // is warranted.
    227 //
    228 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
    229                                       BasicBlock* OrigBlock,
    230                                       BasicBlock* Default)
    231 {
    232   Function* F = OrigBlock->getParent();
    233   BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
    234   Function::iterator FI = OrigBlock;
    235   F->getBasicBlockList().insert(++FI, NewLeaf);
    236 
    237   // Emit comparison
    238   ICmpInst* Comp = nullptr;
    239   if (Leaf.Low == Leaf.High) {
    240     // Make the seteq instruction...
    241     Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
    242                         Leaf.Low, "SwitchLeaf");
    243   } else {
    244     // Make range comparison
    245     if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
    246       // Val >= Min && Val <= Hi --> Val <= Hi
    247       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
    248                           "SwitchLeaf");
    249     } else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
    250       // Val >= 0 && Val <= Hi --> Val <=u Hi
    251       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
    252                           "SwitchLeaf");
    253     } else {
    254       // Emit V-Lo <=u Hi-Lo
    255       Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
    256       Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
    257                                                    Val->getName()+".off",
    258                                                    NewLeaf);
    259       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
    260       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
    261                           "SwitchLeaf");
    262     }
    263   }
    264 
    265   // Make the conditional branch...
    266   BasicBlock* Succ = Leaf.BB;
    267   BranchInst::Create(Succ, Default, Comp, NewLeaf);
    268 
    269   // If there were any PHI nodes in this successor, rewrite one entry
    270   // from OrigBlock to come from NewLeaf.
    271   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    272     PHINode* PN = cast<PHINode>(I);
    273     // Remove all but one incoming entries from the cluster
    274     uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
    275                      cast<ConstantInt>(Leaf.Low)->getSExtValue();
    276     for (uint64_t j = 0; j < Range; ++j) {
    277       PN->removeIncomingValue(OrigBlock);
    278     }
    279 
    280     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    281     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    282     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
    283   }
    284 
    285   return NewLeaf;
    286 }
    287 
    288 // Clusterify - Transform simple list of Cases into list of CaseRange's
    289 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
    290   unsigned numCmps = 0;
    291 
    292   // Start with "simple" cases
    293   for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    294     Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
    295                               i.getCaseSuccessor()));
    296 
    297   std::sort(Cases.begin(), Cases.end(), CaseCmp());
    298 
    299   // Merge case into clusters
    300   if (Cases.size()>=2)
    301     for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
    302          J != Cases.end();) {
    303       int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
    304       int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
    305       BasicBlock* nextBB = J->BB;
    306       BasicBlock* currentBB = I->BB;
    307 
    308       // If the two neighboring cases go to the same destination, merge them
    309       // into a single case.
    310       if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
    311         I->High = J->High;
    312         J = Cases.erase(J);
    313       } else {
    314         I = J++;
    315       }
    316     }
    317 
    318   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
    319     if (I->Low != I->High)
    320       // A range counts double, since it requires two compares.
    321       ++numCmps;
    322   }
    323 
    324   return numCmps;
    325 }
    326 
    327 // processSwitchInst - Replace the specified switch instruction with a sequence
    328 // of chained if-then insts in a balanced binary search.
    329 //
    330 void LowerSwitch::processSwitchInst(SwitchInst *SI) {
    331   BasicBlock *CurBlock = SI->getParent();
    332   BasicBlock *OrigBlock = CurBlock;
    333   Function *F = CurBlock->getParent();
    334   Value *Val = SI->getCondition();  // The value we are switching on...
    335   BasicBlock* Default = SI->getDefaultDest();
    336 
    337   // If there is only the default destination, don't bother with the code below.
    338   if (!SI->getNumCases()) {
    339     BranchInst::Create(SI->getDefaultDest(), CurBlock);
    340     CurBlock->getInstList().erase(SI);
    341     return;
    342   }
    343 
    344   const bool DefaultIsUnreachable =
    345       Default->size() == 1 && isa<UnreachableInst>(Default->getTerminator());
    346   // Create a new, empty default block so that the new hierarchy of
    347   // if-then statements go to this and the PHI nodes are happy.
    348   // if the default block is set as an unreachable we avoid creating one
    349   // because will never be a valid target.
    350   BasicBlock *NewDefault = nullptr;
    351   if (!DefaultIsUnreachable) {
    352     NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
    353     F->getBasicBlockList().insert(Default, NewDefault);
    354 
    355     BranchInst::Create(Default, NewDefault);
    356   }
    357   // If there is an entry in any PHI nodes for the default edge, make sure
    358   // to update them as well.
    359   for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
    360     PHINode *PN = cast<PHINode>(I);
    361     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    362     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    363     PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
    364   }
    365 
    366   // Prepare cases vector.
    367   CaseVector Cases;
    368   unsigned numCmps = Clusterify(Cases, SI);
    369 
    370   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
    371                << ". Total compares: " << numCmps << "\n");
    372   DEBUG(dbgs() << "Cases: " << Cases << "\n");
    373   (void)numCmps;
    374 
    375   ConstantInt *UpperBound = nullptr;
    376   ConstantInt *LowerBound = nullptr;
    377 
    378   // Optimize the condition where Default is an unreachable block. In this case
    379   // we can make the bounds tightly fitted around the case value ranges,
    380   // because we know that the value passed to the switch should always be
    381   // exactly one of the case values.
    382   if (DefaultIsUnreachable) {
    383     CaseItr LastCase = Cases.begin() + Cases.size() - 1;
    384     UpperBound = cast<ConstantInt>(LastCase->High);
    385     LowerBound = cast<ConstantInt>(Cases.begin()->Low);
    386   }
    387   BasicBlock *SwitchBlock =
    388       switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
    389                     OrigBlock, NewDefault);
    390 
    391   // Branch to our shiny new if-then stuff...
    392   BranchInst::Create(SwitchBlock, OrigBlock);
    393 
    394   // We are now done with the switch instruction, delete it.
    395   CurBlock->getInstList().erase(SI);
    396 
    397   pred_iterator PI = pred_begin(Default), E = pred_end(Default);
    398   // If the Default block has no more predecessors just remove it
    399   if (PI == E) {
    400     DeleteDeadBlock(Default);
    401   }
    402 }
    403