Home | History | Annotate | Download | only in Utils
      1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SSAUpdater class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Utils/SSAUpdater.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/TinyPtrVector.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/IR/CFG.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Instructions.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     25 #include "llvm/Transforms/Utils/Local.h"
     26 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
     27 
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "ssaupdater"
     31 
     32 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
     33 static AvailableValsTy &getAvailableVals(void *AV) {
     34   return *static_cast<AvailableValsTy*>(AV);
     35 }
     36 
     37 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
     38   : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {}
     39 
     40 SSAUpdater::~SSAUpdater() {
     41   delete static_cast<AvailableValsTy*>(AV);
     42 }
     43 
     44 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
     45   if (!AV)
     46     AV = new AvailableValsTy();
     47   else
     48     getAvailableVals(AV).clear();
     49   ProtoType = Ty;
     50   ProtoName = Name;
     51 }
     52 
     53 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
     54   return getAvailableVals(AV).count(BB);
     55 }
     56 
     57 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
     58   assert(ProtoType && "Need to initialize SSAUpdater");
     59   assert(ProtoType == V->getType() &&
     60          "All rewritten values must have the same type");
     61   getAvailableVals(AV)[BB] = V;
     62 }
     63 
     64 static bool IsEquivalentPHI(PHINode *PHI,
     65                           SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
     66   unsigned PHINumValues = PHI->getNumIncomingValues();
     67   if (PHINumValues != ValueMapping.size())
     68     return false;
     69 
     70   // Scan the phi to see if it matches.
     71   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
     72     if (ValueMapping[PHI->getIncomingBlock(i)] !=
     73         PHI->getIncomingValue(i)) {
     74       return false;
     75     }
     76 
     77   return true;
     78 }
     79 
     80 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
     81   Value *Res = GetValueAtEndOfBlockInternal(BB);
     82   return Res;
     83 }
     84 
     85 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
     86   // If there is no definition of the renamed variable in this block, just use
     87   // GetValueAtEndOfBlock to do our work.
     88   if (!HasValueForBlock(BB))
     89     return GetValueAtEndOfBlock(BB);
     90 
     91   // Otherwise, we have the hard case.  Get the live-in values for each
     92   // predecessor.
     93   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
     94   Value *SingularValue = nullptr;
     95 
     96   // We can get our predecessor info by walking the pred_iterator list, but it
     97   // is relatively slow.  If we already have PHI nodes in this block, walk one
     98   // of them to get the predecessor list instead.
     99   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    100     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
    101       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
    102       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    103       PredValues.push_back(std::make_pair(PredBB, PredVal));
    104 
    105       // Compute SingularValue.
    106       if (i == 0)
    107         SingularValue = PredVal;
    108       else if (PredVal != SingularValue)
    109         SingularValue = nullptr;
    110     }
    111   } else {
    112     bool isFirstPred = true;
    113     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    114       BasicBlock *PredBB = *PI;
    115       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    116       PredValues.push_back(std::make_pair(PredBB, PredVal));
    117 
    118       // Compute SingularValue.
    119       if (isFirstPred) {
    120         SingularValue = PredVal;
    121         isFirstPred = false;
    122       } else if (PredVal != SingularValue)
    123         SingularValue = nullptr;
    124     }
    125   }
    126 
    127   // If there are no predecessors, just return undef.
    128   if (PredValues.empty())
    129     return UndefValue::get(ProtoType);
    130 
    131   // Otherwise, if all the merged values are the same, just use it.
    132   if (SingularValue)
    133     return SingularValue;
    134 
    135   // Otherwise, we do need a PHI: check to see if we already have one available
    136   // in this block that produces the right value.
    137   if (isa<PHINode>(BB->begin())) {
    138     SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
    139                                                        PredValues.end());
    140     PHINode *SomePHI;
    141     for (BasicBlock::iterator It = BB->begin();
    142          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
    143       if (IsEquivalentPHI(SomePHI, ValueMapping))
    144         return SomePHI;
    145     }
    146   }
    147 
    148   // Ok, we have no way out, insert a new one now.
    149   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
    150                                          ProtoName, &BB->front());
    151 
    152   // Fill in all the predecessors of the PHI.
    153   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
    154     InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
    155 
    156   // See if the PHI node can be merged to a single value.  This can happen in
    157   // loop cases when we get a PHI of itself and one other value.
    158   if (Value *V = SimplifyInstruction(InsertedPHI)) {
    159     InsertedPHI->eraseFromParent();
    160     return V;
    161   }
    162 
    163   // Set the DebugLoc of the inserted PHI, if available.
    164   DebugLoc DL;
    165   if (const Instruction *I = BB->getFirstNonPHI())
    166       DL = I->getDebugLoc();
    167   InsertedPHI->setDebugLoc(DL);
    168 
    169   // If the client wants to know about all new instructions, tell it.
    170   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
    171 
    172   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
    173   return InsertedPHI;
    174 }
    175 
    176 void SSAUpdater::RewriteUse(Use &U) {
    177   Instruction *User = cast<Instruction>(U.getUser());
    178 
    179   Value *V;
    180   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    181     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    182   else
    183     V = GetValueInMiddleOfBlock(User->getParent());
    184 
    185   // Notify that users of the existing value that it is being replaced.
    186   Value *OldVal = U.get();
    187   if (OldVal != V && OldVal->hasValueHandle())
    188     ValueHandleBase::ValueIsRAUWd(OldVal, V);
    189 
    190   U.set(V);
    191 }
    192 
    193 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
    194   Instruction *User = cast<Instruction>(U.getUser());
    195 
    196   Value *V;
    197   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    198     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    199   else
    200     V = GetValueAtEndOfBlock(User->getParent());
    201 
    202   U.set(V);
    203 }
    204 
    205 namespace llvm {
    206 template<>
    207 class SSAUpdaterTraits<SSAUpdater> {
    208 public:
    209   typedef BasicBlock BlkT;
    210   typedef Value *ValT;
    211   typedef PHINode PhiT;
    212 
    213   typedef succ_iterator BlkSucc_iterator;
    214   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
    215   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
    216 
    217   class PHI_iterator {
    218   private:
    219     PHINode *PHI;
    220     unsigned idx;
    221 
    222   public:
    223     explicit PHI_iterator(PHINode *P) // begin iterator
    224       : PHI(P), idx(0) {}
    225     PHI_iterator(PHINode *P, bool) // end iterator
    226       : PHI(P), idx(PHI->getNumIncomingValues()) {}
    227 
    228     PHI_iterator &operator++() { ++idx; return *this; }
    229     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    230     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
    231     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
    232     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
    233   };
    234 
    235   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
    236   static PHI_iterator PHI_end(PhiT *PHI) {
    237     return PHI_iterator(PHI, true);
    238   }
    239 
    240   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
    241   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
    242   static void FindPredecessorBlocks(BasicBlock *BB,
    243                                     SmallVectorImpl<BasicBlock*> *Preds) {
    244     // We can get our predecessor info by walking the pred_iterator list,
    245     // but it is relatively slow.  If we already have PHI nodes in this
    246     // block, walk one of them to get the predecessor list instead.
    247     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    248       for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
    249         Preds->push_back(SomePhi->getIncomingBlock(PI));
    250     } else {
    251       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    252         Preds->push_back(*PI);
    253     }
    254   }
    255 
    256   /// GetUndefVal - Get an undefined value of the same type as the value
    257   /// being handled.
    258   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
    259     return UndefValue::get(Updater->ProtoType);
    260   }
    261 
    262   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
    263   /// Reserve space for the operands but do not fill them in yet.
    264   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
    265                                SSAUpdater *Updater) {
    266     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
    267                                    Updater->ProtoName, &BB->front());
    268     return PHI;
    269   }
    270 
    271   /// AddPHIOperand - Add the specified value as an operand of the PHI for
    272   /// the specified predecessor block.
    273   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
    274     PHI->addIncoming(Val, Pred);
    275   }
    276 
    277   /// InstrIsPHI - Check if an instruction is a PHI.
    278   ///
    279   static PHINode *InstrIsPHI(Instruction *I) {
    280     return dyn_cast<PHINode>(I);
    281   }
    282 
    283   /// ValueIsPHI - Check if a value is a PHI.
    284   ///
    285   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
    286     return dyn_cast<PHINode>(Val);
    287   }
    288 
    289   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
    290   /// operands, i.e., it was just added.
    291   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
    292     PHINode *PHI = ValueIsPHI(Val, Updater);
    293     if (PHI && PHI->getNumIncomingValues() == 0)
    294       return PHI;
    295     return nullptr;
    296   }
    297 
    298   /// GetPHIValue - For the specified PHI instruction, return the value
    299   /// that it defines.
    300   static Value *GetPHIValue(PHINode *PHI) {
    301     return PHI;
    302   }
    303 };
    304 
    305 } // End llvm namespace
    306 
    307 /// Check to see if AvailableVals has an entry for the specified BB and if so,
    308 /// return it.  If not, construct SSA form by first calculating the required
    309 /// placement of PHIs and then inserting new PHIs where needed.
    310 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
    311   AvailableValsTy &AvailableVals = getAvailableVals(AV);
    312   if (Value *V = AvailableVals[BB])
    313     return V;
    314 
    315   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
    316   return Impl.GetValue(BB);
    317 }
    318 
    319 //===----------------------------------------------------------------------===//
    320 // LoadAndStorePromoter Implementation
    321 //===----------------------------------------------------------------------===//
    322 
    323 LoadAndStorePromoter::
    324 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
    325                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
    326   if (Insts.empty()) return;
    327 
    328   Value *SomeVal;
    329   if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
    330     SomeVal = LI;
    331   else
    332     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
    333 
    334   if (BaseName.empty())
    335     BaseName = SomeVal->getName();
    336   SSA.Initialize(SomeVal->getType(), BaseName);
    337 }
    338 
    339 
    340 void LoadAndStorePromoter::
    341 run(const SmallVectorImpl<Instruction*> &Insts) const {
    342 
    343   // First step: bucket up uses of the alloca by the block they occur in.
    344   // This is important because we have to handle multiple defs/uses in a block
    345   // ourselves: SSAUpdater is purely for cross-block references.
    346   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
    347 
    348   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    349     Instruction *User = Insts[i];
    350     UsesByBlock[User->getParent()].push_back(User);
    351   }
    352 
    353   // Okay, now we can iterate over all the blocks in the function with uses,
    354   // processing them.  Keep track of which loads are loading a live-in value.
    355   // Walk the uses in the use-list order to be determinstic.
    356   SmallVector<LoadInst*, 32> LiveInLoads;
    357   DenseMap<Value*, Value*> ReplacedLoads;
    358 
    359   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    360     Instruction *User = Insts[i];
    361     BasicBlock *BB = User->getParent();
    362     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
    363 
    364     // If this block has already been processed, ignore this repeat use.
    365     if (BlockUses.empty()) continue;
    366 
    367     // Okay, this is the first use in the block.  If this block just has a
    368     // single user in it, we can rewrite it trivially.
    369     if (BlockUses.size() == 1) {
    370       // If it is a store, it is a trivial def of the value in the block.
    371       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    372         updateDebugInfo(SI);
    373         SSA.AddAvailableValue(BB, SI->getOperand(0));
    374       } else
    375         // Otherwise it is a load, queue it to rewrite as a live-in load.
    376         LiveInLoads.push_back(cast<LoadInst>(User));
    377       BlockUses.clear();
    378       continue;
    379     }
    380 
    381     // Otherwise, check to see if this block is all loads.
    382     bool HasStore = false;
    383     for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
    384       if (isa<StoreInst>(BlockUses[i])) {
    385         HasStore = true;
    386         break;
    387       }
    388     }
    389 
    390     // If so, we can queue them all as live in loads.  We don't have an
    391     // efficient way to tell which on is first in the block and don't want to
    392     // scan large blocks, so just add all loads as live ins.
    393     if (!HasStore) {
    394       for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
    395         LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
    396       BlockUses.clear();
    397       continue;
    398     }
    399 
    400     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
    401     // Since SSAUpdater is purely for cross-block values, we need to determine
    402     // the order of these instructions in the block.  If the first use in the
    403     // block is a load, then it uses the live in value.  The last store defines
    404     // the live out value.  We handle this by doing a linear scan of the block.
    405     Value *StoredValue = nullptr;
    406     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
    407       if (LoadInst *L = dyn_cast<LoadInst>(II)) {
    408         // If this is a load from an unrelated pointer, ignore it.
    409         if (!isInstInList(L, Insts)) continue;
    410 
    411         // If we haven't seen a store yet, this is a live in use, otherwise
    412         // use the stored value.
    413         if (StoredValue) {
    414           replaceLoadWithValue(L, StoredValue);
    415           L->replaceAllUsesWith(StoredValue);
    416           ReplacedLoads[L] = StoredValue;
    417         } else {
    418           LiveInLoads.push_back(L);
    419         }
    420         continue;
    421       }
    422 
    423       if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
    424         // If this is a store to an unrelated pointer, ignore it.
    425         if (!isInstInList(SI, Insts)) continue;
    426         updateDebugInfo(SI);
    427 
    428         // Remember that this is the active value in the block.
    429         StoredValue = SI->getOperand(0);
    430       }
    431     }
    432 
    433     // The last stored value that happened is the live-out for the block.
    434     assert(StoredValue && "Already checked that there is a store in block");
    435     SSA.AddAvailableValue(BB, StoredValue);
    436     BlockUses.clear();
    437   }
    438 
    439   // Okay, now we rewrite all loads that use live-in values in the loop,
    440   // inserting PHI nodes as necessary.
    441   for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
    442     LoadInst *ALoad = LiveInLoads[i];
    443     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
    444     replaceLoadWithValue(ALoad, NewVal);
    445 
    446     // Avoid assertions in unreachable code.
    447     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
    448     ALoad->replaceAllUsesWith(NewVal);
    449     ReplacedLoads[ALoad] = NewVal;
    450   }
    451 
    452   // Allow the client to do stuff before we start nuking things.
    453   doExtraRewritesBeforeFinalDeletion();
    454 
    455   // Now that everything is rewritten, delete the old instructions from the
    456   // function.  They should all be dead now.
    457   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    458     Instruction *User = Insts[i];
    459 
    460     // If this is a load that still has uses, then the load must have been added
    461     // as a live value in the SSAUpdate data structure for a block (e.g. because
    462     // the loaded value was stored later).  In this case, we need to recursively
    463     // propagate the updates until we get to the real value.
    464     if (!User->use_empty()) {
    465       Value *NewVal = ReplacedLoads[User];
    466       assert(NewVal && "not a replaced load?");
    467 
    468       // Propagate down to the ultimate replacee.  The intermediately loads
    469       // could theoretically already have been deleted, so we don't want to
    470       // dereference the Value*'s.
    471       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
    472       while (RLI != ReplacedLoads.end()) {
    473         NewVal = RLI->second;
    474         RLI = ReplacedLoads.find(NewVal);
    475       }
    476 
    477       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
    478       User->replaceAllUsesWith(NewVal);
    479     }
    480 
    481     instructionDeleted(User);
    482     User->eraseFromParent();
    483   }
    484 }
    485 
    486 bool
    487 LoadAndStorePromoter::isInstInList(Instruction *I,
    488                                    const SmallVectorImpl<Instruction*> &Insts)
    489                                    const {
    490   return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
    491 }
    492