Home | History | Annotate | Download | only in JIT
      1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/ExecutionEngine/JIT.h"
     11 #include "llvm/ADT/SmallPtrSet.h"
     12 #include "llvm/AsmParser/Parser.h"
     13 #include "llvm/Bitcode/ReaderWriter.h"
     14 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     15 #include "llvm/IR/BasicBlock.h"
     16 #include "llvm/IR/Constant.h"
     17 #include "llvm/IR/Constants.h"
     18 #include "llvm/IR/DerivedTypes.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/IR/GlobalValue.h"
     21 #include "llvm/IR/GlobalVariable.h"
     22 #include "llvm/IR/IRBuilder.h"
     23 #include "llvm/IR/LLVMContext.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/IR/Type.h"
     26 #include "llvm/IR/TypeBuilder.h"
     27 #include "llvm/Support/MemoryBuffer.h"
     28 #include "llvm/Support/SourceMgr.h"
     29 #include "llvm/Support/TargetSelect.h"
     30 #include "gtest/gtest.h"
     31 #include <vector>
     32 
     33 using namespace llvm;
     34 
     35 // This variable is intentionally defined differently in the statically-compiled
     36 // program from the IR input to the JIT to assert that the JIT doesn't use its
     37 // definition.  Note that this variable must be defined even on platforms where
     38 // JIT tests are disabled as it is referenced from the .def file.
     39 extern "C" int32_t JITTest_AvailableExternallyGlobal;
     40 int32_t JITTest_AvailableExternallyGlobal LLVM_ATTRIBUTE_USED = 42;
     41 
     42 // This function is intentionally defined differently in the statically-compiled
     43 // program from the IR input to the JIT to assert that the JIT doesn't use its
     44 // definition.  Note that this function must be defined even on platforms where
     45 // JIT tests are disabled as it is referenced from the .def file.
     46 extern "C" int32_t JITTest_AvailableExternallyFunction() LLVM_ATTRIBUTE_USED;
     47 extern "C" int32_t JITTest_AvailableExternallyFunction() {
     48   return 42;
     49 }
     50 
     51 namespace {
     52 
     53 // Tests on ARM, PowerPC and SystemZ disabled as we're running the old jit
     54 #if !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__) \
     55                       && !defined(__aarch64__)
     56 
     57 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
     58   std::vector<Type*> params;
     59   FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
     60                                               params, false);
     61   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
     62   BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
     63   IRBuilder<> builder(Entry);
     64   Value *Load = builder.CreateLoad(G);
     65   Type *GTy = G->getType()->getElementType();
     66   Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
     67   builder.CreateStore(Add, G);
     68   builder.CreateRet(Add);
     69   return F;
     70 }
     71 
     72 std::string DumpFunction(const Function *F) {
     73   std::string Result;
     74   raw_string_ostream(Result) << "" << *F;
     75   return Result;
     76 }
     77 
     78 class RecordingJITMemoryManager : public JITMemoryManager {
     79   const std::unique_ptr<JITMemoryManager> Base;
     80 
     81 public:
     82   RecordingJITMemoryManager()
     83     : Base(JITMemoryManager::CreateDefaultMemManager()) {
     84     stubsAllocated = 0;
     85   }
     86   virtual void *getPointerToNamedFunction(const std::string &Name,
     87                                           bool AbortOnFailure = true) {
     88     return Base->getPointerToNamedFunction(Name, AbortOnFailure);
     89   }
     90 
     91   virtual void setMemoryWritable() { Base->setMemoryWritable(); }
     92   virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
     93   virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
     94   virtual void AllocateGOT() { Base->AllocateGOT(); }
     95   virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
     96   struct StartFunctionBodyCall {
     97     StartFunctionBodyCall(uint8_t *Result, const Function *F,
     98                           uintptr_t ActualSize, uintptr_t ActualSizeResult)
     99       : Result(Result), F(F), F_dump(DumpFunction(F)),
    100         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
    101     uint8_t *Result;
    102     const Function *F;
    103     std::string F_dump;
    104     uintptr_t ActualSize;
    105     uintptr_t ActualSizeResult;
    106   };
    107   std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
    108   virtual uint8_t *startFunctionBody(const Function *F,
    109                                      uintptr_t &ActualSize) {
    110     uintptr_t InitialActualSize = ActualSize;
    111     uint8_t *Result = Base->startFunctionBody(F, ActualSize);
    112     startFunctionBodyCalls.push_back(
    113       StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
    114     return Result;
    115   }
    116   int stubsAllocated;
    117   uint8_t *allocateStub(const GlobalValue *F, unsigned StubSize,
    118                         unsigned Alignment) override {
    119     stubsAllocated++;
    120     return Base->allocateStub(F, StubSize, Alignment);
    121   }
    122   struct EndFunctionBodyCall {
    123     EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
    124                         uint8_t *FunctionEnd)
    125       : F(F), F_dump(DumpFunction(F)),
    126         FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
    127     const Function *F;
    128     std::string F_dump;
    129     uint8_t *FunctionStart;
    130     uint8_t *FunctionEnd;
    131   };
    132   std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
    133   virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    134                                uint8_t *FunctionEnd) {
    135     endFunctionBodyCalls.push_back(
    136       EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
    137     Base->endFunctionBody(F, FunctionStart, FunctionEnd);
    138   }
    139   virtual uint8_t *allocateDataSection(
    140     uintptr_t Size, unsigned Alignment, unsigned SectionID,
    141     StringRef SectionName, bool IsReadOnly) {
    142     return Base->allocateDataSection(
    143       Size, Alignment, SectionID, SectionName, IsReadOnly);
    144   }
    145   virtual uint8_t *allocateCodeSection(
    146     uintptr_t Size, unsigned Alignment, unsigned SectionID,
    147     StringRef SectionName) {
    148     return Base->allocateCodeSection(
    149       Size, Alignment, SectionID, SectionName);
    150   }
    151   virtual bool finalizeMemory(std::string *ErrMsg) { return false; }
    152   virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    153     return Base->allocateSpace(Size, Alignment);
    154   }
    155   virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    156     return Base->allocateGlobal(Size, Alignment);
    157   }
    158   struct DeallocateFunctionBodyCall {
    159     DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
    160     const void *Body;
    161   };
    162   std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
    163   virtual void deallocateFunctionBody(void *Body) {
    164     deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
    165     Base->deallocateFunctionBody(Body);
    166   }
    167 };
    168 
    169 bool LoadAssemblyInto(Module *M, const char *assembly) {
    170   SMDiagnostic Error;
    171   bool success =
    172     nullptr != ParseAssemblyString(assembly, M, Error, M->getContext());
    173   std::string errMsg;
    174   raw_string_ostream os(errMsg);
    175   Error.print("", os);
    176   EXPECT_TRUE(success) << os.str();
    177   return success;
    178 }
    179 
    180 class JITTest : public testing::Test {
    181  protected:
    182   virtual RecordingJITMemoryManager *createMemoryManager() {
    183     return new RecordingJITMemoryManager;
    184   }
    185 
    186   virtual void SetUp() {
    187     M = new Module("<main>", Context);
    188     RJMM = createMemoryManager();
    189     RJMM->setPoisonMemory(true);
    190     std::string Error;
    191     TargetOptions Options;
    192     TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
    193                  .setJITMemoryManager(RJMM)
    194                  .setErrorStr(&Error)
    195                  .setTargetOptions(Options).create());
    196     ASSERT_TRUE(TheJIT.get() != nullptr) << Error;
    197   }
    198 
    199   void LoadAssembly(const char *assembly) {
    200     LoadAssemblyInto(M, assembly);
    201   }
    202 
    203   LLVMContext Context;
    204   Module *M;  // Owned by ExecutionEngine.
    205   RecordingJITMemoryManager *RJMM;
    206   std::unique_ptr<ExecutionEngine> TheJIT;
    207 };
    208 
    209 // Regression test for a bug.  The JIT used to allocate globals inside the same
    210 // memory block used for the function, and when the function code was freed,
    211 // the global was left in the same place.  This test allocates a function
    212 // that uses and global, deallocates it, and then makes sure that the global
    213 // stays alive after that.
    214 TEST(JIT, GlobalInFunction) {
    215   LLVMContext context;
    216   Module *M = new Module("<main>", context);
    217 
    218   JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
    219   // Tell the memory manager to poison freed memory so that accessing freed
    220   // memory is more easily tested.
    221   MemMgr->setPoisonMemory(true);
    222   std::string Error;
    223   std::unique_ptr<ExecutionEngine> JIT(EngineBuilder(M)
    224                                            .setEngineKind(EngineKind::JIT)
    225                                            .setErrorStr(&Error)
    226                                            .setJITMemoryManager(MemMgr)
    227                                            // The next line enables the fix:
    228                                            .setAllocateGVsWithCode(false)
    229                                            .create());
    230   ASSERT_EQ(Error, "");
    231 
    232   // Create a global variable.
    233   Type *GTy = Type::getInt32Ty(context);
    234   GlobalVariable *G = new GlobalVariable(
    235       *M,
    236       GTy,
    237       false,  // Not constant.
    238       GlobalValue::InternalLinkage,
    239       Constant::getNullValue(GTy),
    240       "myglobal");
    241 
    242   // Make a function that points to a global.
    243   Function *F1 = makeReturnGlobal("F1", G, M);
    244 
    245   // Get the pointer to the native code to force it to JIT the function and
    246   // allocate space for the global.
    247   void (*F1Ptr)() =
    248       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
    249 
    250   // Since F1 was codegen'd, a pointer to G should be available.
    251   int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
    252   ASSERT_NE((int32_t*)nullptr, GPtr);
    253   EXPECT_EQ(0, *GPtr);
    254 
    255   // F1() should increment G.
    256   F1Ptr();
    257   EXPECT_EQ(1, *GPtr);
    258 
    259   // Make a second function identical to the first, referring to the same
    260   // global.
    261   Function *F2 = makeReturnGlobal("F2", G, M);
    262   void (*F2Ptr)() =
    263       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
    264 
    265   // F2() should increment G.
    266   F2Ptr();
    267   EXPECT_EQ(2, *GPtr);
    268 
    269   // Deallocate F1.
    270   JIT->freeMachineCodeForFunction(F1);
    271 
    272   // F2() should *still* increment G.
    273   F2Ptr();
    274   EXPECT_EQ(3, *GPtr);
    275 }
    276 
    277 int PlusOne(int arg) {
    278   return arg + 1;
    279 }
    280 
    281 TEST_F(JITTest, FarCallToKnownFunction) {
    282   // x86-64 can only make direct calls to functions within 32 bits of
    283   // the current PC.  To call anything farther away, we have to load
    284   // the address into a register and call through the register.  The
    285   // current JIT does this by allocating a stub for any far call.
    286   // There was a bug in which the JIT tried to emit a direct call when
    287   // the target was already in the JIT's global mappings and lazy
    288   // compilation was disabled.
    289 
    290   Function *KnownFunction = Function::Create(
    291       TypeBuilder<int(int), false>::get(Context),
    292       GlobalValue::ExternalLinkage, "known", M);
    293   TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
    294 
    295   // int test() { return known(7); }
    296   Function *TestFunction = Function::Create(
    297       TypeBuilder<int(), false>::get(Context),
    298       GlobalValue::ExternalLinkage, "test", M);
    299   BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
    300   IRBuilder<> Builder(Entry);
    301   Value *result = Builder.CreateCall(
    302       KnownFunction,
    303       ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
    304   Builder.CreateRet(result);
    305 
    306   TheJIT->DisableLazyCompilation(true);
    307   int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
    308       (intptr_t)TheJIT->getPointerToFunction(TestFunction));
    309   // This used to crash in trying to call PlusOne().
    310   EXPECT_EQ(8, TestFunctionPtr());
    311 }
    312 
    313 // Test a function C which calls A and B which call each other.
    314 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
    315   TheJIT->DisableLazyCompilation(true);
    316 
    317   FunctionType *Func1Ty =
    318       cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
    319   std::vector<Type*> arg_types;
    320   arg_types.push_back(Type::getInt1Ty(Context));
    321   FunctionType *FuncTy = FunctionType::get(
    322       Type::getVoidTy(Context), arg_types, false);
    323   Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
    324                                      "func1", M);
    325   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    326                                      "func2", M);
    327   Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
    328                                      "func3", M);
    329   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    330   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    331   BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
    332   BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
    333   BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
    334   BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
    335   BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
    336 
    337   // Make Func1 call Func2(0) and Func3(0).
    338   IRBuilder<> Builder(Block1);
    339   Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
    340   Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
    341   Builder.CreateRetVoid();
    342 
    343   // void Func2(bool b) { if (b) { Func3(false); return; } return; }
    344   Builder.SetInsertPoint(Block2);
    345   Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
    346   Builder.SetInsertPoint(True2);
    347   Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
    348   Builder.CreateRetVoid();
    349   Builder.SetInsertPoint(False2);
    350   Builder.CreateRetVoid();
    351 
    352   // void Func3(bool b) { if (b) { Func2(false); return; } return; }
    353   Builder.SetInsertPoint(Block3);
    354   Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
    355   Builder.SetInsertPoint(True3);
    356   Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
    357   Builder.CreateRetVoid();
    358   Builder.SetInsertPoint(False3);
    359   Builder.CreateRetVoid();
    360 
    361   // Compile the function to native code
    362   void (*F1Ptr)() =
    363      reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
    364 
    365   F1Ptr();
    366 }
    367 
    368 // Regression test for PR5162.  This used to trigger an AssertingVH inside the
    369 // JIT's Function to stub mapping.
    370 TEST_F(JITTest, NonLazyLeaksNoStubs) {
    371   TheJIT->DisableLazyCompilation(true);
    372 
    373   // Create two functions with a single basic block each.
    374   FunctionType *FuncTy =
    375       cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
    376   Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
    377                                      "func1", M);
    378   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    379                                      "func2", M);
    380   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    381   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    382 
    383   // The first function calls the second and returns the result
    384   IRBuilder<> Builder(Block1);
    385   Value *Result = Builder.CreateCall(Func2);
    386   Builder.CreateRet(Result);
    387 
    388   // The second function just returns a constant
    389   Builder.SetInsertPoint(Block2);
    390   Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
    391 
    392   // Compile the function to native code
    393   (void)TheJIT->getPointerToFunction(Func1);
    394 
    395   // Free the JIT state for the functions
    396   TheJIT->freeMachineCodeForFunction(Func1);
    397   TheJIT->freeMachineCodeForFunction(Func2);
    398 
    399   // Delete the first function (and show that is has no users)
    400   EXPECT_EQ(Func1->getNumUses(), 0u);
    401   Func1->eraseFromParent();
    402 
    403   // Delete the second function (and show that it has no users - it had one,
    404   // func1 but that's gone now)
    405   EXPECT_EQ(Func2->getNumUses(), 0u);
    406   Func2->eraseFromParent();
    407 }
    408 
    409 TEST_F(JITTest, ModuleDeletion) {
    410   TheJIT->DisableLazyCompilation(false);
    411   LoadAssembly("define void @main() { "
    412                "  call i32 @computeVal() "
    413                "  ret void "
    414                "} "
    415                " "
    416                "define internal i32 @computeVal()  { "
    417                "  ret i32 0 "
    418                "} ");
    419   Function *func = M->getFunction("main");
    420   TheJIT->getPointerToFunction(func);
    421   TheJIT->removeModule(M);
    422   delete M;
    423 
    424   SmallPtrSet<const void*, 2> FunctionsDeallocated;
    425   for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
    426        i != e; ++i) {
    427     FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
    428   }
    429   for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
    430     EXPECT_TRUE(FunctionsDeallocated.count(
    431                   RJMM->startFunctionBodyCalls[i].Result))
    432       << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
    433   }
    434   EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
    435             RJMM->deallocateFunctionBodyCalls.size());
    436 }
    437 
    438 // ARM, MIPS and PPC still emit stubs for calls since the target may be
    439 // too far away to call directly.  This #if can probably be removed when
    440 // http://llvm.org/PR5201 is fixed.
    441 #if !defined(__arm__) && !defined(__mips__) && \
    442     !defined(__powerpc__) && !defined(__ppc__) && !defined(__aarch64__)
    443 typedef int (*FooPtr) ();
    444 
    445 TEST_F(JITTest, NoStubs) {
    446   LoadAssembly("define void @bar() {"
    447 	       "entry: "
    448 	       "ret void"
    449 	       "}"
    450 	       " "
    451 	       "define i32 @foo() {"
    452 	       "entry:"
    453 	       "call void @bar()"
    454 	       "ret i32 undef"
    455 	       "}"
    456 	       " "
    457 	       "define i32 @main() {"
    458 	       "entry:"
    459 	       "%0 = call i32 @foo()"
    460 	       "call void @bar()"
    461 	       "ret i32 undef"
    462 	       "}");
    463   Function *foo = M->getFunction("foo");
    464   uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
    465   FooPtr ptr = (FooPtr)(tmp);
    466 
    467   (ptr)();
    468 
    469   // We should now allocate no more stubs, we have the code to foo
    470   // and the existing stub for bar.
    471   int stubsBefore = RJMM->stubsAllocated;
    472   Function *func = M->getFunction("main");
    473   TheJIT->getPointerToFunction(func);
    474 
    475   Function *bar = M->getFunction("bar");
    476   TheJIT->getPointerToFunction(bar);
    477 
    478   ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
    479 }
    480 #endif  // !ARM && !PPC
    481 
    482 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
    483   TheJIT->DisableLazyCompilation(true);
    484   LoadAssembly("define i8()* @get_foo_addr() { "
    485                "  ret i8()* @foo "
    486                "} "
    487                " "
    488                "define i8 @foo() { "
    489                "  ret i8 42 "
    490                "} ");
    491   Function *F_get_foo_addr = M->getFunction("get_foo_addr");
    492 
    493   typedef char(*fooT)();
    494   fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
    495       (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
    496   fooT foo_addr = get_foo_addr();
    497 
    498   // Now free get_foo_addr.  This should not free the machine code for foo or
    499   // any call stub returned as foo's canonical address.
    500   TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
    501 
    502   // Check by calling the reported address of foo.
    503   EXPECT_EQ(42, foo_addr());
    504 
    505   // The reported address should also be the same as the result of a subsequent
    506   // getPointerToFunction(foo).
    507 #if 0
    508   // Fails until PR5126 is fixed:
    509   Function *F_foo = M->getFunction("foo");
    510   fooT foo = reinterpret_cast<fooT>(
    511       (intptr_t)TheJIT->getPointerToFunction(F_foo));
    512   EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
    513 #endif
    514 }
    515 
    516 // ARM does not have an implementation of replaceMachineCodeForFunction(),
    517 // so recompileAndRelinkFunction doesn't work.
    518 #if !defined(__arm__) && !defined(__aarch64__)
    519 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
    520   Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
    521                                  GlobalValue::ExternalLinkage, "test", M);
    522   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
    523   IRBuilder<> Builder(Entry);
    524   Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
    525   Builder.CreateRet(Val);
    526 
    527   TheJIT->DisableLazyCompilation(true);
    528   // Compile the function once, and make sure it works.
    529   int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
    530     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    531   EXPECT_EQ(1, OrigFPtr());
    532 
    533   // Now change the function to return a different value.
    534   Entry->eraseFromParent();
    535   BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
    536   Builder.SetInsertPoint(NewEntry);
    537   Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
    538   Builder.CreateRet(Val);
    539   // Recompile it, which should produce a new function pointer _and_ update the
    540   // old one.
    541   int (*NewFPtr)() = reinterpret_cast<int(*)()>(
    542     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    543 
    544   EXPECT_EQ(2, NewFPtr())
    545     << "The new pointer should call the new version of the function";
    546   EXPECT_EQ(2, OrigFPtr())
    547     << "The old pointer's target should now jump to the new version";
    548 }
    549 #endif  // !defined(__arm__)
    550 
    551 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
    552   TheJIT->DisableLazyCompilation(true);
    553   LoadAssembly("@JITTest_AvailableExternallyGlobal = "
    554                "  available_externally global i32 7 "
    555                " "
    556                "define i32 @loader() { "
    557                "  %result = load i32* @JITTest_AvailableExternallyGlobal "
    558                "  ret i32 %result "
    559                "} ");
    560   Function *loaderIR = M->getFunction("loader");
    561 
    562   int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
    563     (intptr_t)TheJIT->getPointerToFunction(loaderIR));
    564   EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
    565                           << " not 7 from the IR version.";
    566 }
    567 
    568 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
    569   TheJIT->DisableLazyCompilation(true);
    570   LoadAssembly("define available_externally i32 "
    571                "    @JITTest_AvailableExternallyFunction() { "
    572                "  ret i32 7 "
    573                "} "
    574                " "
    575                "define i32 @func() { "
    576                "  %result = tail call i32 "
    577                "    @JITTest_AvailableExternallyFunction() "
    578                "  ret i32 %result "
    579                "} ");
    580   Function *funcIR = M->getFunction("func");
    581 
    582   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    583     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    584   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    585                         << " not 7 from the IR version.";
    586 }
    587 
    588 TEST_F(JITTest, EscapedLazyStubStillCallable) {
    589   TheJIT->DisableLazyCompilation(false);
    590   LoadAssembly("define internal i32 @stubbed() { "
    591                "  ret i32 42 "
    592                "} "
    593                " "
    594                "define i32()* @get_stub() { "
    595                "  ret i32()* @stubbed "
    596                "} ");
    597   typedef int32_t(*StubTy)();
    598 
    599   // Call get_stub() to get the address of @stubbed without actually JITting it.
    600   Function *get_stubIR = M->getFunction("get_stub");
    601   StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
    602     (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
    603   StubTy stubbed = get_stub();
    604   // Now get_stubIR is the only reference to stubbed's stub.
    605   get_stubIR->eraseFromParent();
    606   // Now there are no references inside the JIT, but we've got a pointer outside
    607   // it.  The stub should be callable and return the right value.
    608   EXPECT_EQ(42, stubbed());
    609 }
    610 
    611 // Converts the LLVM assembly to bitcode and returns it in a std::string.  An
    612 // empty string indicates an error.
    613 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
    614   Module TempModule("TempModule", Context);
    615   if (!LoadAssemblyInto(&TempModule, Assembly)) {
    616     return "";
    617   }
    618 
    619   std::string Result;
    620   raw_string_ostream OS(Result);
    621   WriteBitcodeToFile(&TempModule, OS);
    622   OS.flush();
    623   return Result;
    624 }
    625 
    626 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
    627 // lazily.  The associated Module (owned by the ExecutionEngine) is returned in
    628 // M.  Both will be NULL on an error.  Bitcode must live at least as long as the
    629 // ExecutionEngine.
    630 ExecutionEngine *getJITFromBitcode(
    631   LLVMContext &Context, const std::string &Bitcode, Module *&M) {
    632   // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
    633   MemoryBuffer *BitcodeBuffer =
    634     MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
    635   ErrorOr<Module*> ModuleOrErr = getLazyBitcodeModule(BitcodeBuffer, Context);
    636   if (std::error_code EC = ModuleOrErr.getError()) {
    637     ADD_FAILURE() << EC.message();
    638     delete BitcodeBuffer;
    639     return nullptr;
    640   }
    641   M = ModuleOrErr.get();
    642   std::string errMsg;
    643   ExecutionEngine *TheJIT = EngineBuilder(M)
    644     .setEngineKind(EngineKind::JIT)
    645     .setErrorStr(&errMsg)
    646     .create();
    647   if (TheJIT == nullptr) {
    648     ADD_FAILURE() << errMsg;
    649     delete M;
    650     M = nullptr;
    651     return nullptr;
    652   }
    653   return TheJIT;
    654 }
    655 
    656 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
    657   LLVMContext Context;
    658   const std::string Bitcode =
    659     AssembleToBitcode(Context,
    660                       "define available_externally i32 "
    661                       "    @JITTest_AvailableExternallyFunction() { "
    662                       "  ret i32 7 "
    663                       "} "
    664                       " "
    665                       "define i32 @func() { "
    666                       "  %result = tail call i32 "
    667                       "    @JITTest_AvailableExternallyFunction() "
    668                       "  ret i32 %result "
    669                       "} ");
    670   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    671   Module *M;
    672   std::unique_ptr<ExecutionEngine> TheJIT(
    673       getJITFromBitcode(Context, Bitcode, M));
    674   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    675   TheJIT->DisableLazyCompilation(true);
    676 
    677   Function *funcIR = M->getFunction("func");
    678   Function *availableFunctionIR =
    679     M->getFunction("JITTest_AvailableExternallyFunction");
    680 
    681   // Double-check that the available_externally function is still unmaterialized
    682   // when getPointerToFunction needs to find out if it's available_externally.
    683   EXPECT_TRUE(availableFunctionIR->isMaterializable());
    684 
    685   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    686     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    687   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    688                         << " not 7 from the IR version.";
    689 }
    690 
    691 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
    692   LLVMContext Context;
    693   const std::string Bitcode =
    694     AssembleToBitcode(Context,
    695                       "define i32 @recur1(i32 %a) { "
    696                       "  %zero = icmp eq i32 %a, 0 "
    697                       "  br i1 %zero, label %done, label %notdone "
    698                       "done: "
    699                       "  ret i32 3 "
    700                       "notdone: "
    701                       "  %am1 = sub i32 %a, 1 "
    702                       "  %result = call i32 @recur2(i32 %am1) "
    703                       "  ret i32 %result "
    704                       "} "
    705                       " "
    706                       "define i32 @recur2(i32 %b) { "
    707                       "  %result = call i32 @recur1(i32 %b) "
    708                       "  ret i32 %result "
    709                       "} ");
    710   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    711   Module *M;
    712   std::unique_ptr<ExecutionEngine> TheJIT(
    713       getJITFromBitcode(Context, Bitcode, M));
    714   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    715   TheJIT->DisableLazyCompilation(true);
    716 
    717   Function *recur1IR = M->getFunction("recur1");
    718   Function *recur2IR = M->getFunction("recur2");
    719   EXPECT_TRUE(recur1IR->isMaterializable());
    720   EXPECT_TRUE(recur2IR->isMaterializable());
    721 
    722   int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
    723     (intptr_t)TheJIT->getPointerToFunction(recur1IR));
    724   EXPECT_EQ(3, recur1(4));
    725 }
    726 #endif // !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__)
    727 
    728 }
    729