Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 #
      3 # Copyright (c) 2010-2011 Intel Corp.
      4 #   Author: Vinodh.Gopal (at] intel.com
      5 #           Jim Guilford
      6 #           Erdinc.Ozturk (at] intel.com
      7 #           Maxim.Perminov (at] intel.com
      8 #
      9 # More information about algorithm used can be found at:
     10 #   http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
     11 #
     12 # ====================================================================
     13 # Copyright (c) 2011 The OpenSSL Project.  All rights reserved.
     14 #
     15 # Redistribution and use in source and binary forms, with or without
     16 # modification, are permitted provided that the following conditions
     17 # are met:
     18 #
     19 # 1. Redistributions of source code must retain the above copyright
     20 #    notice, this list of conditions and the following disclaimer.
     21 #
     22 # 2. Redistributions in binary form must reproduce the above copyright
     23 #    notice, this list of conditions and the following disclaimer in
     24 #    the documentation and/or other materials provided with the
     25 #    distribution.
     26 #
     27 # 3. All advertising materials mentioning features or use of this
     28 #    software must display the following acknowledgment:
     29 #    "This product includes software developed by the OpenSSL Project
     30 #    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
     31 #
     32 # 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     33 #    endorse or promote products derived from this software without
     34 #    prior written permission. For written permission, please contact
     35 #    licensing (at] OpenSSL.org.
     36 #
     37 # 5. Products derived from this software may not be called "OpenSSL"
     38 #    nor may "OpenSSL" appear in their names without prior written
     39 #    permission of the OpenSSL Project.
     40 #
     41 # 6. Redistributions of any form whatsoever must retain the following
     42 #    acknowledgment:
     43 #    "This product includes software developed by the OpenSSL Project
     44 #    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
     45 #
     46 # THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     47 # EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     49 # PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     50 # ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     51 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     52 # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     53 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54 # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     55 # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     56 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     57 # OF THE POSSIBILITY OF SUCH DAMAGE.
     58 # ====================================================================
     59 
     60 $flavour = shift;
     61 $output  = shift;
     62 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
     63 
     64 my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
     65 
     66 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     67 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
     68 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
     69 die "can't locate x86_64-xlate.pl";
     70 
     71 open OUT,"| \"$^X\" $xlate $flavour $output";
     72 *STDOUT=*OUT;
     73 
     74 use strict;
     75 my $code=".text\n\n";
     76 my $m=0;
     77 
     78 #
     79 # Define x512 macros
     80 #
     81 
     82 #MULSTEP_512_ADD	MACRO	x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2
     83 #
     84 # uses rax, rdx, and args
     85 sub MULSTEP_512_ADD
     86 {
     87  my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_;
     88  my @X=@$x;	# make a copy
     89 $code.=<<___;
     90 	 mov	(+8*0)($SRC2), %rax
     91 	 mul	$OP			# rdx:rax = %OP * [0]
     92 	 mov	($ASRC), $X[0]
     93 	 add	%rax, $X[0]
     94 	 adc	\$0, %rdx
     95 	 mov	$X[0], $DST
     96 ___
     97 for(my $i=1;$i<8;$i++) {
     98 $code.=<<___;
     99 	 mov	%rdx, $TMP
    100 
    101 	 mov	(+8*$i)($SRC2), %rax
    102 	 mul	$OP			# rdx:rax = %OP * [$i]
    103 	 mov	(+8*$i)($ASRC), $X[$i]
    104 	 add	%rax, $X[$i]
    105 	 adc	\$0, %rdx
    106 	 add	$TMP, $X[$i]
    107 	 adc	\$0, %rdx
    108 ___
    109 }
    110 $code.=<<___;
    111 	 mov	%rdx, $X[0]
    112 ___
    113 }
    114 
    115 #MULSTEP_512	MACRO	x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp
    116 #
    117 # uses rax, rdx, and args
    118 sub MULSTEP_512
    119 {
    120  my ($x, $DST, $SRC2, $OP, $TMP)=@_;
    121  my @X=@$x;	# make a copy
    122 $code.=<<___;
    123 	 mov	(+8*0)($SRC2), %rax
    124 	 mul	$OP			# rdx:rax = %OP * [0]
    125 	 add	%rax, $X[0]
    126 	 adc	\$0, %rdx
    127 	 mov	$X[0], $DST
    128 ___
    129 for(my $i=1;$i<8;$i++) {
    130 $code.=<<___;
    131 	 mov	%rdx, $TMP
    132 
    133 	 mov	(+8*$i)($SRC2), %rax
    134 	 mul	$OP			# rdx:rax = %OP * [$i]
    135 	 add	%rax, $X[$i]
    136 	 adc	\$0, %rdx
    137 	 add	$TMP, $X[$i]
    138 	 adc	\$0, %rdx
    139 ___
    140 }
    141 $code.=<<___;
    142 	 mov	%rdx, $X[0]
    143 ___
    144 }
    145 
    146 #
    147 # Swizzle Macros
    148 #
    149 
    150 # macro to copy data from flat space to swizzled table
    151 #MACRO swizzle	pDst, pSrc, tmp1, tmp2
    152 # pDst and pSrc are modified
    153 sub swizzle
    154 {
    155  my ($pDst, $pSrc, $cnt, $d0)=@_;
    156 $code.=<<___;
    157 	 mov	\$8, $cnt
    158 loop_$m:
    159 	 mov	($pSrc), $d0
    160 	 mov	$d0#w, ($pDst)
    161 	 shr	\$16, $d0
    162 	 mov	$d0#w, (+64*1)($pDst)
    163 	 shr	\$16, $d0
    164 	 mov	$d0#w, (+64*2)($pDst)
    165 	 shr	\$16, $d0
    166 	 mov	$d0#w, (+64*3)($pDst)
    167 	 lea	8($pSrc), $pSrc
    168 	 lea	64*4($pDst), $pDst
    169 	 dec	$cnt
    170 	 jnz	loop_$m
    171 ___
    172 
    173  $m++;
    174 }
    175 
    176 # macro to copy data from swizzled table to  flat space
    177 #MACRO unswizzle	pDst, pSrc, tmp*3
    178 sub unswizzle
    179 {
    180  my ($pDst, $pSrc, $cnt, $d0, $d1)=@_;
    181 $code.=<<___;
    182 	 mov	\$4, $cnt
    183 loop_$m:
    184 	 movzxw	(+64*3+256*0)($pSrc), $d0
    185 	 movzxw	(+64*3+256*1)($pSrc), $d1
    186 	 shl	\$16, $d0
    187 	 shl	\$16, $d1
    188 	 mov	(+64*2+256*0)($pSrc), $d0#w
    189 	 mov	(+64*2+256*1)($pSrc), $d1#w
    190 	 shl	\$16, $d0
    191 	 shl	\$16, $d1
    192 	 mov	(+64*1+256*0)($pSrc), $d0#w
    193 	 mov	(+64*1+256*1)($pSrc), $d1#w
    194 	 shl	\$16, $d0
    195 	 shl	\$16, $d1
    196 	 mov	(+64*0+256*0)($pSrc), $d0#w
    197 	 mov	(+64*0+256*1)($pSrc), $d1#w
    198 	 mov	$d0, (+8*0)($pDst)
    199 	 mov	$d1, (+8*1)($pDst)
    200 	 lea	256*2($pSrc), $pSrc
    201 	 lea	8*2($pDst), $pDst
    202 	 sub	\$1, $cnt
    203 	 jnz	loop_$m
    204 ___
    205 
    206  $m++;
    207 }
    208 
    209 #
    210 # Data Structures
    211 #
    212 
    213 # Reduce Data
    214 #
    215 #
    216 # Offset  Value
    217 # 0C0     Carries
    218 # 0B8     X2[10]
    219 # 0B0     X2[9]
    220 # 0A8     X2[8]
    221 # 0A0     X2[7]
    222 # 098     X2[6]
    223 # 090     X2[5]
    224 # 088     X2[4]
    225 # 080     X2[3]
    226 # 078     X2[2]
    227 # 070     X2[1]
    228 # 068     X2[0]
    229 # 060     X1[12]  P[10]
    230 # 058     X1[11]  P[9]  Z[8]
    231 # 050     X1[10]  P[8]  Z[7]
    232 # 048     X1[9]   P[7]  Z[6]
    233 # 040     X1[8]   P[6]  Z[5]
    234 # 038     X1[7]   P[5]  Z[4]
    235 # 030     X1[6]   P[4]  Z[3]
    236 # 028     X1[5]   P[3]  Z[2]
    237 # 020     X1[4]   P[2]  Z[1]
    238 # 018     X1[3]   P[1]  Z[0]
    239 # 010     X1[2]   P[0]  Y[2]
    240 # 008     X1[1]   Q[1]  Y[1]
    241 # 000     X1[0]   Q[0]  Y[0]
    242 
    243 my $X1_offset           =  0;			# 13 qwords
    244 my $X2_offset           =  $X1_offset + 13*8;			# 11 qwords
    245 my $Carries_offset      =  $X2_offset + 11*8;			# 1 qword
    246 my $Q_offset            =  0;			# 2 qwords
    247 my $P_offset            =  $Q_offset + 2*8;			# 11 qwords
    248 my $Y_offset            =  0;			# 3 qwords
    249 my $Z_offset            =  $Y_offset + 3*8;			# 9 qwords
    250 
    251 my $Red_Data_Size       =  $Carries_offset + 1*8;			# (25 qwords)
    252 
    253 #
    254 # Stack Frame
    255 #
    256 #
    257 # offset	value
    258 # ...		<old stack contents>
    259 # ...
    260 # 280		Garray
    261 
    262 # 278		tmp16[15]
    263 # ...		...
    264 # 200		tmp16[0]
    265 
    266 # 1F8		tmp[7]
    267 # ...		...
    268 # 1C0		tmp[0]
    269 
    270 # 1B8		GT[7]
    271 # ...		...
    272 # 180		GT[0]
    273 
    274 # 178		Reduce Data
    275 # ...		...
    276 # 0B8		Reduce Data
    277 # 0B0		reserved
    278 # 0A8		reserved
    279 # 0A0		reserved
    280 # 098		reserved
    281 # 090		reserved
    282 # 088		reduce result addr
    283 # 080		exp[8]
    284 
    285 # ...
    286 # 048		exp[1]
    287 # 040		exp[0]
    288 
    289 # 038		reserved
    290 # 030		loop_idx
    291 # 028		pg
    292 # 020		i
    293 # 018		pData	; arg 4
    294 # 010		pG	; arg 2
    295 # 008		pResult	; arg 1
    296 # 000		rsp	; stack pointer before subtract
    297 
    298 my $rsp_offset          =  0;
    299 my $pResult_offset      =  8*1 + $rsp_offset;
    300 my $pG_offset           =  8*1 + $pResult_offset;
    301 my $pData_offset        =  8*1 + $pG_offset;
    302 my $i_offset            =  8*1 + $pData_offset;
    303 my $pg_offset           =  8*1 + $i_offset;
    304 my $loop_idx_offset     =  8*1 + $pg_offset;
    305 my $reserved1_offset    =  8*1 + $loop_idx_offset;
    306 my $exp_offset          =  8*1 + $reserved1_offset;
    307 my $red_result_addr_offset=  8*9 + $exp_offset;
    308 my $reserved2_offset    =  8*1 + $red_result_addr_offset;
    309 my $Reduce_Data_offset  =  8*5 + $reserved2_offset;
    310 my $GT_offset           =  $Red_Data_Size + $Reduce_Data_offset;
    311 my $tmp_offset          =  8*8 + $GT_offset;
    312 my $tmp16_offset        =  8*8 + $tmp_offset;
    313 my $garray_offset       =  8*16 + $tmp16_offset;
    314 my $mem_size            =  8*8*32 + $garray_offset;
    315 
    316 #
    317 # Offsets within Reduce Data
    318 #
    319 #
    320 #	struct MODF_2FOLD_MONT_512_C1_DATA {
    321 #	UINT64 t[8][8];
    322 #	UINT64 m[8];
    323 #	UINT64 m1[8]; /* 2^768 % m */
    324 #	UINT64 m2[8]; /* 2^640 % m */
    325 #	UINT64 k1[2]; /* (- 1/m) % 2^128 */
    326 #	};
    327 
    328 my $T                   =  0;
    329 my $M                   =  512;			# = 8 * 8 * 8
    330 my $M1                  =  576;			# = 8 * 8 * 9 /* += 8 * 8 */
    331 my $M2                  =  640;			# = 8 * 8 * 10 /* += 8 * 8 */
    332 my $K1                  =  704;			# = 8 * 8 * 11 /* += 8 * 8 */
    333 
    334 #
    335 #   FUNCTIONS
    336 #
    337 
    338 {{{
    339 #
    340 # MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords)
    341 #                       and add 512-bits (8 qwords)
    342 #                       to get 640 bits (10 qwords)
    343 # Input: 128-bit mul source: [rdi+8*1], rbp
    344 #        512-bit mul source: [rsi+8*n]
    345 #        512-bit add source: r15, r14, ..., r9, r8
    346 # Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0]
    347 # Clobbers all regs except: rcx, rsi, rdi
    348 $code.=<<___;
    349 .type	MULADD_128x512,\@abi-omnipotent
    350 .align	16
    351 MULADD_128x512:
    352 ___
    353 	&MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx");
    354 $code.=<<___;
    355 	 mov	(+8*1)(%rdi), %rbp
    356 ___
    357 	&MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx");
    358 $code.=<<___;
    359 	 ret
    360 .size	MULADD_128x512,.-MULADD_128x512
    361 ___
    362 }}}
    363 
    364 {{{
    365 #MULADD_256x512	MACRO	pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0
    366 #
    367 # Inputs: pDst: Destination  (768 bits, 12 qwords)
    368 #         pA:   Multiplicand (1024 bits, 16 qwords)
    369 #         pB:   Multiplicand (512 bits, 8 qwords)
    370 # Dst = Ah * B + Al
    371 # where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits)
    372 # Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0]
    373 # Uses registers: arguments, RAX, RDX
    374 sub MULADD_256x512
    375 {
    376  my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_;
    377 $code.=<<___;
    378 	mov	(+8*12)($pA), $OP
    379 ___
    380 	&MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP);
    381 	push(@$X,shift(@$X));
    382 
    383 $code.=<<___;
    384 	 mov	(+8*13)($pA), $OP
    385 ___
    386 	&MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP);
    387 	push(@$X,shift(@$X));
    388 
    389 $code.=<<___;
    390 	 mov	(+8*14)($pA), $OP
    391 ___
    392 	&MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP);
    393 	push(@$X,shift(@$X));
    394 
    395 $code.=<<___;
    396 	 mov	(+8*15)($pA), $OP
    397 ___
    398 	&MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP);
    399 	push(@$X,shift(@$X));
    400 }
    401 
    402 #
    403 # mont_reduce(UINT64 *x,  /* 1024 bits, 16 qwords */
    404 #	       UINT64 *m,  /*  512 bits,  8 qwords */
    405 #	       MODF_2FOLD_MONT_512_C1_DATA *data,
    406 #             UINT64 *r)  /*  512 bits,  8 qwords */
    407 # Input:  x (number to be reduced): tmp16 (Implicit)
    408 #         m (modulus):              [pM]  (Implicit)
    409 #         data (reduce data):       [pData] (Implicit)
    410 # Output: r (result):		     Address in [red_res_addr]
    411 #         result also in: r9, r8, r15, r14, r13, r12, r11, r10
    412 
    413 my @X=map("%r$_",(8..15));
    414 
    415 $code.=<<___;
    416 .type	mont_reduce,\@abi-omnipotent
    417 .align	16
    418 mont_reduce:
    419 ___
    420 
    421 my $STACK_DEPTH         =  8;
    422 	#
    423 	# X1 = Xh * M1 + Xl
    424 $code.=<<___;
    425 	 lea	(+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi			# pX1 (Dst) 769 bits, 13 qwords
    426 	 mov	(+$pData_offset+$STACK_DEPTH)(%rsp), %rsi			# pM1 (Bsrc) 512 bits, 8 qwords
    427 	 add	\$$M1, %rsi
    428 	 lea	(+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx			# X (Asrc) 1024 bits, 16 qwords
    429 
    430 ___
    431 
    432 	&MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X);	# rotates @X 4 times
    433 	# results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0]
    434 
    435 $code.=<<___;
    436 	 xor	%rax, %rax
    437 	# X1 += xl
    438 	 add	(+8*8)(%rcx), $X[4]
    439 	 adc	(+8*9)(%rcx), $X[5]
    440 	 adc	(+8*10)(%rcx), $X[6]
    441 	 adc	(+8*11)(%rcx), $X[7]
    442 	 adc	\$0, %rax
    443 	# X1 is now rax, r11-r8, r15-r12, tmp16[3:0]
    444 
    445 	#
    446 	# check for carry ;; carry stored in rax
    447 	 mov	$X[4], (+8*8)(%rdi)			# rdi points to X1
    448 	 mov	$X[5], (+8*9)(%rdi)
    449 	 mov	$X[6], %rbp
    450 	 mov	$X[7], (+8*11)(%rdi)
    451 
    452 	 mov	%rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
    453 
    454 	 mov	(+8*0)(%rdi), $X[4]
    455 	 mov	(+8*1)(%rdi), $X[5]
    456 	 mov	(+8*2)(%rdi), $X[6]
    457 	 mov	(+8*3)(%rdi), $X[7]
    458 
    459 	# X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8
    460 	# rdi -> X1
    461 	# rsi -> M1
    462 
    463 	#
    464 	# X2 = Xh * M2 + Xl
    465 	# do first part (X2 = Xh * M2)
    466 	 add	\$8*10, %rdi			# rdi -> pXh ; 128 bits, 2 qwords
    467 				#        Xh is actually { [rdi+8*1], rbp }
    468 	 add	\$`$M2-$M1`, %rsi			# rsi -> M2
    469 	 lea	(+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx			# rcx -> pX2 ; 641 bits, 11 qwords
    470 ___
    471 	unshift(@X,pop(@X));	unshift(@X,pop(@X));
    472 $code.=<<___;
    473 
    474 	 call	MULADD_128x512			# args in rcx, rdi / rbp, rsi, r15-r8
    475 	# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
    476 	 mov	(+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax
    477 
    478 	# X2 += Xl
    479 	 add	(+8*8-8*10)(%rdi), $X[6]		# (-8*10) is to adjust rdi -> Xh to Xl
    480 	 adc	(+8*9-8*10)(%rdi), $X[7]
    481 	 mov	$X[6], (+8*8)(%rcx)
    482 	 mov	$X[7], (+8*9)(%rcx)
    483 
    484 	 adc	%rax, %rax
    485 	 mov	%rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
    486 
    487 	 lea	(+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi			# rdi -> pQ ; 128 bits, 2 qwords
    488 	 add	\$`$K1-$M2`, %rsi			# rsi -> pK1 ; 128 bits, 2 qwords
    489 
    490 	# MUL_128x128t128	rdi, rcx, rsi	; Q = X2 * K1 (bottom half)
    491 	# B1:B0 = rsi[1:0] = K1[1:0]
    492 	# A1:A0 = rcx[1:0] = X2[1:0]
    493 	# Result = rdi[1],rbp = Q[1],rbp
    494 	 mov	(%rsi), %r8			# B0
    495 	 mov	(+8*1)(%rsi), %rbx			# B1
    496 
    497 	 mov	(%rcx), %rax			# A0
    498 	 mul	%r8			# B0
    499 	 mov	%rax, %rbp
    500 	 mov	%rdx, %r9
    501 
    502 	 mov	(+8*1)(%rcx), %rax			# A1
    503 	 mul	%r8			# B0
    504 	 add	%rax, %r9
    505 
    506 	 mov	(%rcx), %rax			# A0
    507 	 mul	%rbx			# B1
    508 	 add	%rax, %r9
    509 
    510 	 mov	%r9, (+8*1)(%rdi)
    511 	# end MUL_128x128t128
    512 
    513 	 sub	\$`$K1-$M`, %rsi
    514 
    515 	 mov	(%rcx), $X[6]
    516 	 mov	(+8*1)(%rcx), $X[7]			# r9:r8 = X2[1:0]
    517 
    518 	 call	MULADD_128x512			# args in rcx, rdi / rbp, rsi, r15-r8
    519 	# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
    520 
    521 	# load first half of m to rdx, rdi, rbx, rax
    522 	# moved this here for efficiency
    523 	 mov	(+8*0)(%rsi), %rax
    524 	 mov	(+8*1)(%rsi), %rbx
    525 	 mov	(+8*2)(%rsi), %rdi
    526 	 mov	(+8*3)(%rsi), %rdx
    527 
    528 	# continue with reduction
    529 	 mov	(+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp
    530 
    531 	 add	(+8*8)(%rcx), $X[6]
    532 	 adc	(+8*9)(%rcx), $X[7]
    533 
    534 	#accumulate the final carry to rbp
    535 	 adc	%rbp, %rbp
    536 
    537 	# Add in overflow corrections: R = (X2>>128) += T[overflow]
    538 	# R = {r9, r8, r15, r14, ..., r10}
    539 	 shl	\$3, %rbp
    540 	 mov	(+$pData_offset+$STACK_DEPTH)(%rsp), %rcx			# rsi -> Data (and points to T)
    541 	 add	%rcx, %rbp			# pT ; 512 bits, 8 qwords, spread out
    542 
    543 	# rsi will be used to generate a mask after the addition
    544 	 xor	%rsi, %rsi
    545 
    546 	 add	(+8*8*0)(%rbp), $X[0]
    547 	 adc	(+8*8*1)(%rbp), $X[1]
    548 	 adc	(+8*8*2)(%rbp), $X[2]
    549 	 adc	(+8*8*3)(%rbp), $X[3]
    550 	 adc	(+8*8*4)(%rbp), $X[4]
    551 	 adc	(+8*8*5)(%rbp), $X[5]
    552 	 adc	(+8*8*6)(%rbp), $X[6]
    553 	 adc	(+8*8*7)(%rbp), $X[7]
    554 
    555 	# if there is a carry:	rsi = 0xFFFFFFFFFFFFFFFF
    556 	# if carry is clear:	rsi = 0x0000000000000000
    557 	 sbb	\$0, %rsi
    558 
    559 	# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
    560 	 and	%rsi, %rax
    561 	 and	%rsi, %rbx
    562 	 and	%rsi, %rdi
    563 	 and	%rsi, %rdx
    564 
    565 	 mov	\$1, %rbp
    566 	 sub	%rax, $X[0]
    567 	 sbb	%rbx, $X[1]
    568 	 sbb	%rdi, $X[2]
    569 	 sbb	%rdx, $X[3]
    570 
    571 	# if there is a borrow:		rbp = 0
    572 	# if there is no borrow:	rbp = 1
    573 	# this is used to save the borrows in between the first half and the 2nd half of the subtraction of m
    574 	 sbb	\$0, %rbp
    575 
    576 	#load second half of m to rdx, rdi, rbx, rax
    577 
    578 	 add	\$$M, %rcx
    579 	 mov	(+8*4)(%rcx), %rax
    580 	 mov	(+8*5)(%rcx), %rbx
    581 	 mov	(+8*6)(%rcx), %rdi
    582 	 mov	(+8*7)(%rcx), %rdx
    583 
    584 	# use the rsi mask as before
    585 	# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
    586 	 and	%rsi, %rax
    587 	 and	%rsi, %rbx
    588 	 and	%rsi, %rdi
    589 	 and	%rsi, %rdx
    590 
    591 	# if rbp = 0, there was a borrow before, it is moved to the carry flag
    592 	# if rbp = 1, there was not a borrow before, carry flag is cleared
    593 	 sub	\$1, %rbp
    594 
    595 	 sbb	%rax, $X[4]
    596 	 sbb	%rbx, $X[5]
    597 	 sbb	%rdi, $X[6]
    598 	 sbb	%rdx, $X[7]
    599 
    600 	# write R back to memory
    601 
    602 	 mov	(+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi
    603 	 mov	$X[0], (+8*0)(%rsi)
    604 	 mov	$X[1], (+8*1)(%rsi)
    605 	 mov	$X[2], (+8*2)(%rsi)
    606 	 mov	$X[3], (+8*3)(%rsi)
    607 	 mov	$X[4], (+8*4)(%rsi)
    608 	 mov	$X[5], (+8*5)(%rsi)
    609 	 mov	$X[6], (+8*6)(%rsi)
    610 	 mov	$X[7], (+8*7)(%rsi)
    611 
    612 	 ret
    613 .size	mont_reduce,.-mont_reduce
    614 ___
    615 }}}
    616 
    617 {{{
    618 #MUL_512x512	MACRO	pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2
    619 #
    620 # Inputs: pDst: Destination  (1024 bits, 16 qwords)
    621 #         pA:   Multiplicand (512 bits, 8 qwords)
    622 #         pB:   Multiplicand (512 bits, 8 qwords)
    623 # Uses registers rax, rdx, args
    624 #   B operand in [pB] and also in x7...x0
    625 sub MUL_512x512
    626 {
    627  my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_;
    628  my ($pDst,  $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
    629  my @X=@$x;	# make a copy
    630 
    631 $code.=<<___;
    632 	 mov	(+8*0)($pA), $OP
    633 
    634 	 mov	$X[0], %rax
    635 	 mul	$OP			# rdx:rax = %OP * [0]
    636 	 mov	%rax, (+$pDst_o+8*0)($pDst)
    637 	 mov	%rdx, $X[0]
    638 ___
    639 for(my $i=1;$i<8;$i++) {
    640 $code.=<<___;
    641 	 mov	$X[$i], %rax
    642 	 mul	$OP			# rdx:rax = %OP * [$i]
    643 	 add	%rax, $X[$i-1]
    644 	 adc	\$0, %rdx
    645 	 mov	%rdx, $X[$i]
    646 ___
    647 }
    648 
    649 for(my $i=1;$i<8;$i++) {
    650 $code.=<<___;
    651 	 mov	(+8*$i)($pA), $OP
    652 ___
    653 
    654 	&MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP);
    655 	push(@X,shift(@X));
    656 }
    657 
    658 $code.=<<___;
    659 	 mov	$X[0], (+$pDst_o+8*8)($pDst)
    660 	 mov	$X[1], (+$pDst_o+8*9)($pDst)
    661 	 mov	$X[2], (+$pDst_o+8*10)($pDst)
    662 	 mov	$X[3], (+$pDst_o+8*11)($pDst)
    663 	 mov	$X[4], (+$pDst_o+8*12)($pDst)
    664 	 mov	$X[5], (+$pDst_o+8*13)($pDst)
    665 	 mov	$X[6], (+$pDst_o+8*14)($pDst)
    666 	 mov	$X[7], (+$pDst_o+8*15)($pDst)
    667 ___
    668 }
    669 
    670 #
    671 # mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits)
    672 # Input:  src1: Address of source 1: rdi
    673 #         src2: Address of source 2: rsi
    674 # Output: dst:  Address of destination: [red_res_addr]
    675 #    src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10
    676 # Temp:   Clobbers [tmp16], all registers
    677 $code.=<<___;
    678 .type	mont_mul_a3b,\@abi-omnipotent
    679 .align	16
    680 mont_mul_a3b:
    681 	#
    682 	# multiply tmp = src1 * src2
    683 	# For multiply: dst = rcx, src1 = rdi, src2 = rsi
    684 	# stack depth is extra 8 from call
    685 ___
    686 	&MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx");
    687 $code.=<<___;
    688 	#
    689 	# Dst = tmp % m
    690 	# Call reduce(tmp, m, data, dst)
    691 
    692 	# tail recursion optimization: jmp to mont_reduce and return from there
    693 	 jmp	mont_reduce
    694 	# call	mont_reduce
    695 	# ret
    696 .size	mont_mul_a3b,.-mont_mul_a3b
    697 ___
    698 }}}
    699 
    700 {{{
    701 #SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4
    702 #
    703 # Input in memory [pA] and also in x7...x0
    704 # Uses all argument registers plus rax and rdx
    705 #
    706 # This version computes all of the off-diagonal terms into memory,
    707 # and then it adds in the diagonal terms
    708 
    709 sub SQR_512
    710 {
    711  my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_;
    712  my ($pDst,  $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
    713  my @X=@$x;	# make a copy
    714 $code.=<<___;
    715 	# ------------------
    716 	# first pass 01...07
    717 	# ------------------
    718 	 mov	$X[0], $A
    719 
    720 	 mov	$X[1],%rax
    721 	 mul	$A
    722 	 mov	%rax, (+$pDst_o+8*1)($pDst)
    723 ___
    724 for(my $i=2;$i<8;$i++) {
    725 $code.=<<___;
    726 	 mov	%rdx, $X[$i-2]
    727 	 mov	$X[$i],%rax
    728 	 mul	$A
    729 	 add	%rax, $X[$i-2]
    730 	 adc	\$0, %rdx
    731 ___
    732 }
    733 $code.=<<___;
    734 	 mov	%rdx, $x7
    735 
    736 	 mov	$X[0], (+$pDst_o+8*2)($pDst)
    737 
    738 	# ------------------
    739 	# second pass 12...17
    740 	# ------------------
    741 
    742 	 mov	(+8*1)($pA), $A
    743 
    744 	 mov	(+8*2)($pA),%rax
    745 	 mul	$A
    746 	 add	%rax, $X[1]
    747 	 adc	\$0, %rdx
    748 	 mov	$X[1], (+$pDst_o+8*3)($pDst)
    749 
    750 	 mov	%rdx, $X[0]
    751 	 mov	(+8*3)($pA),%rax
    752 	 mul	$A
    753 	 add	%rax, $X[2]
    754 	 adc	\$0, %rdx
    755 	 add	$X[0], $X[2]
    756 	 adc	\$0, %rdx
    757 	 mov	$X[2], (+$pDst_o+8*4)($pDst)
    758 
    759 	 mov	%rdx, $X[0]
    760 	 mov	(+8*4)($pA),%rax
    761 	 mul	$A
    762 	 add	%rax, $X[3]
    763 	 adc	\$0, %rdx
    764 	 add	$X[0], $X[3]
    765 	 adc	\$0, %rdx
    766 
    767 	 mov	%rdx, $X[0]
    768 	 mov	(+8*5)($pA),%rax
    769 	 mul	$A
    770 	 add	%rax, $X[4]
    771 	 adc	\$0, %rdx
    772 	 add	$X[0], $X[4]
    773 	 adc	\$0, %rdx
    774 
    775 	 mov	%rdx, $X[0]
    776 	 mov	$X[6],%rax
    777 	 mul	$A
    778 	 add	%rax, $X[5]
    779 	 adc	\$0, %rdx
    780 	 add	$X[0], $X[5]
    781 	 adc	\$0, %rdx
    782 
    783 	 mov	%rdx, $X[0]
    784 	 mov	$X[7],%rax
    785 	 mul	$A
    786 	 add	%rax, $x7
    787 	 adc	\$0, %rdx
    788 	 add	$X[0], $x7
    789 	 adc	\$0, %rdx
    790 
    791 	 mov	%rdx, $X[1]
    792 
    793 	# ------------------
    794 	# third pass 23...27
    795 	# ------------------
    796 	 mov	(+8*2)($pA), $A
    797 
    798 	 mov	(+8*3)($pA),%rax
    799 	 mul	$A
    800 	 add	%rax, $X[3]
    801 	 adc	\$0, %rdx
    802 	 mov	$X[3], (+$pDst_o+8*5)($pDst)
    803 
    804 	 mov	%rdx, $X[0]
    805 	 mov	(+8*4)($pA),%rax
    806 	 mul	$A
    807 	 add	%rax, $X[4]
    808 	 adc	\$0, %rdx
    809 	 add	$X[0], $X[4]
    810 	 adc	\$0, %rdx
    811 	 mov	$X[4], (+$pDst_o+8*6)($pDst)
    812 
    813 	 mov	%rdx, $X[0]
    814 	 mov	(+8*5)($pA),%rax
    815 	 mul	$A
    816 	 add	%rax, $X[5]
    817 	 adc	\$0, %rdx
    818 	 add	$X[0], $X[5]
    819 	 adc	\$0, %rdx
    820 
    821 	 mov	%rdx, $X[0]
    822 	 mov	$X[6],%rax
    823 	 mul	$A
    824 	 add	%rax, $x7
    825 	 adc	\$0, %rdx
    826 	 add	$X[0], $x7
    827 	 adc	\$0, %rdx
    828 
    829 	 mov	%rdx, $X[0]
    830 	 mov	$X[7],%rax
    831 	 mul	$A
    832 	 add	%rax, $X[1]
    833 	 adc	\$0, %rdx
    834 	 add	$X[0], $X[1]
    835 	 adc	\$0, %rdx
    836 
    837 	 mov	%rdx, $X[2]
    838 
    839 	# ------------------
    840 	# fourth pass 34...37
    841 	# ------------------
    842 
    843 	 mov	(+8*3)($pA), $A
    844 
    845 	 mov	(+8*4)($pA),%rax
    846 	 mul	$A
    847 	 add	%rax, $X[5]
    848 	 adc	\$0, %rdx
    849 	 mov	$X[5], (+$pDst_o+8*7)($pDst)
    850 
    851 	 mov	%rdx, $X[0]
    852 	 mov	(+8*5)($pA),%rax
    853 	 mul	$A
    854 	 add	%rax, $x7
    855 	 adc	\$0, %rdx
    856 	 add	$X[0], $x7
    857 	 adc	\$0, %rdx
    858 	 mov	$x7, (+$pDst_o+8*8)($pDst)
    859 
    860 	 mov	%rdx, $X[0]
    861 	 mov	$X[6],%rax
    862 	 mul	$A
    863 	 add	%rax, $X[1]
    864 	 adc	\$0, %rdx
    865 	 add	$X[0], $X[1]
    866 	 adc	\$0, %rdx
    867 
    868 	 mov	%rdx, $X[0]
    869 	 mov	$X[7],%rax
    870 	 mul	$A
    871 	 add	%rax, $X[2]
    872 	 adc	\$0, %rdx
    873 	 add	$X[0], $X[2]
    874 	 adc	\$0, %rdx
    875 
    876 	 mov	%rdx, $X[5]
    877 
    878 	# ------------------
    879 	# fifth pass 45...47
    880 	# ------------------
    881 	 mov	(+8*4)($pA), $A
    882 
    883 	 mov	(+8*5)($pA),%rax
    884 	 mul	$A
    885 	 add	%rax, $X[1]
    886 	 adc	\$0, %rdx
    887 	 mov	$X[1], (+$pDst_o+8*9)($pDst)
    888 
    889 	 mov	%rdx, $X[0]
    890 	 mov	$X[6],%rax
    891 	 mul	$A
    892 	 add	%rax, $X[2]
    893 	 adc	\$0, %rdx
    894 	 add	$X[0], $X[2]
    895 	 adc	\$0, %rdx
    896 	 mov	$X[2], (+$pDst_o+8*10)($pDst)
    897 
    898 	 mov	%rdx, $X[0]
    899 	 mov	$X[7],%rax
    900 	 mul	$A
    901 	 add	%rax, $X[5]
    902 	 adc	\$0, %rdx
    903 	 add	$X[0], $X[5]
    904 	 adc	\$0, %rdx
    905 
    906 	 mov	%rdx, $X[1]
    907 
    908 	# ------------------
    909 	# sixth pass 56...57
    910 	# ------------------
    911 	 mov	(+8*5)($pA), $A
    912 
    913 	 mov	$X[6],%rax
    914 	 mul	$A
    915 	 add	%rax, $X[5]
    916 	 adc	\$0, %rdx
    917 	 mov	$X[5], (+$pDst_o+8*11)($pDst)
    918 
    919 	 mov	%rdx, $X[0]
    920 	 mov	$X[7],%rax
    921 	 mul	$A
    922 	 add	%rax, $X[1]
    923 	 adc	\$0, %rdx
    924 	 add	$X[0], $X[1]
    925 	 adc	\$0, %rdx
    926 	 mov	$X[1], (+$pDst_o+8*12)($pDst)
    927 
    928 	 mov	%rdx, $X[2]
    929 
    930 	# ------------------
    931 	# seventh pass 67
    932 	# ------------------
    933 	 mov	$X[6], $A
    934 
    935 	 mov	$X[7],%rax
    936 	 mul	$A
    937 	 add	%rax, $X[2]
    938 	 adc	\$0, %rdx
    939 	 mov	$X[2], (+$pDst_o+8*13)($pDst)
    940 
    941 	 mov	%rdx, (+$pDst_o+8*14)($pDst)
    942 
    943 	# start finalize (add	in squares, and double off-terms)
    944 	 mov	(+$pDst_o+8*1)($pDst), $X[0]
    945 	 mov	(+$pDst_o+8*2)($pDst), $X[1]
    946 	 mov	(+$pDst_o+8*3)($pDst), $X[2]
    947 	 mov	(+$pDst_o+8*4)($pDst), $X[3]
    948 	 mov	(+$pDst_o+8*5)($pDst), $X[4]
    949 	 mov	(+$pDst_o+8*6)($pDst), $X[5]
    950 
    951 	 mov	(+8*3)($pA), %rax
    952 	 mul	%rax
    953 	 mov	%rax, $x6
    954 	 mov	%rdx, $X[6]
    955 
    956 	 add	$X[0], $X[0]
    957 	 adc	$X[1], $X[1]
    958 	 adc	$X[2], $X[2]
    959 	 adc	$X[3], $X[3]
    960 	 adc	$X[4], $X[4]
    961 	 adc	$X[5], $X[5]
    962 	 adc	\$0, $X[6]
    963 
    964 	 mov	(+8*0)($pA), %rax
    965 	 mul	%rax
    966 	 mov	%rax, (+$pDst_o+8*0)($pDst)
    967 	 mov	%rdx, $A
    968 
    969 	 mov	(+8*1)($pA), %rax
    970 	 mul	%rax
    971 
    972 	 add	$A, $X[0]
    973 	 adc	%rax, $X[1]
    974 	 adc	\$0, %rdx
    975 
    976 	 mov	%rdx, $A
    977 	 mov	$X[0], (+$pDst_o+8*1)($pDst)
    978 	 mov	$X[1], (+$pDst_o+8*2)($pDst)
    979 
    980 	 mov	(+8*2)($pA), %rax
    981 	 mul	%rax
    982 
    983 	 add	$A, $X[2]
    984 	 adc	%rax, $X[3]
    985 	 adc	\$0, %rdx
    986 
    987 	 mov	%rdx, $A
    988 
    989 	 mov	$X[2], (+$pDst_o+8*3)($pDst)
    990 	 mov	$X[3], (+$pDst_o+8*4)($pDst)
    991 
    992 	 xor	$tmp, $tmp
    993 	 add	$A, $X[4]
    994 	 adc	$x6, $X[5]
    995 	 adc	\$0, $tmp
    996 
    997 	 mov	$X[4], (+$pDst_o+8*5)($pDst)
    998 	 mov	$X[5], (+$pDst_o+8*6)($pDst)
    999 
   1000 	# %%tmp has 0/1 in column 7
   1001 	# %%A6 has a full value in column 7
   1002 
   1003 	 mov	(+$pDst_o+8*7)($pDst), $X[0]
   1004 	 mov	(+$pDst_o+8*8)($pDst), $X[1]
   1005 	 mov	(+$pDst_o+8*9)($pDst), $X[2]
   1006 	 mov	(+$pDst_o+8*10)($pDst), $X[3]
   1007 	 mov	(+$pDst_o+8*11)($pDst), $X[4]
   1008 	 mov	(+$pDst_o+8*12)($pDst), $X[5]
   1009 	 mov	(+$pDst_o+8*13)($pDst), $x6
   1010 	 mov	(+$pDst_o+8*14)($pDst), $x7
   1011 
   1012 	 mov	$X[7], %rax
   1013 	 mul	%rax
   1014 	 mov	%rax, $X[7]
   1015 	 mov	%rdx, $A
   1016 
   1017 	 add	$X[0], $X[0]
   1018 	 adc	$X[1], $X[1]
   1019 	 adc	$X[2], $X[2]
   1020 	 adc	$X[3], $X[3]
   1021 	 adc	$X[4], $X[4]
   1022 	 adc	$X[5], $X[5]
   1023 	 adc	$x6, $x6
   1024 	 adc	$x7, $x7
   1025 	 adc	\$0, $A
   1026 
   1027 	 add	$tmp, $X[0]
   1028 
   1029 	 mov	(+8*4)($pA), %rax
   1030 	 mul	%rax
   1031 
   1032 	 add	$X[6], $X[0]
   1033 	 adc	%rax, $X[1]
   1034 	 adc	\$0, %rdx
   1035 
   1036 	 mov	%rdx, $tmp
   1037 
   1038 	 mov	$X[0], (+$pDst_o+8*7)($pDst)
   1039 	 mov	$X[1], (+$pDst_o+8*8)($pDst)
   1040 
   1041 	 mov	(+8*5)($pA), %rax
   1042 	 mul	%rax
   1043 
   1044 	 add	$tmp, $X[2]
   1045 	 adc	%rax, $X[3]
   1046 	 adc	\$0, %rdx
   1047 
   1048 	 mov	%rdx, $tmp
   1049 
   1050 	 mov	$X[2], (+$pDst_o+8*9)($pDst)
   1051 	 mov	$X[3], (+$pDst_o+8*10)($pDst)
   1052 
   1053 	 mov	(+8*6)($pA), %rax
   1054 	 mul	%rax
   1055 
   1056 	 add	$tmp, $X[4]
   1057 	 adc	%rax, $X[5]
   1058 	 adc	\$0, %rdx
   1059 
   1060 	 mov	$X[4], (+$pDst_o+8*11)($pDst)
   1061 	 mov	$X[5], (+$pDst_o+8*12)($pDst)
   1062 
   1063 	 add	%rdx, $x6
   1064 	 adc	$X[7], $x7
   1065 	 adc	\$0, $A
   1066 
   1067 	 mov	$x6, (+$pDst_o+8*13)($pDst)
   1068 	 mov	$x7, (+$pDst_o+8*14)($pDst)
   1069 	 mov	$A, (+$pDst_o+8*15)($pDst)
   1070 ___
   1071 }
   1072 
   1073 #
   1074 # sqr_reduce: subroutine to compute Result = reduce(Result * Result)
   1075 #
   1076 # input and result also in: r9, r8, r15, r14, r13, r12, r11, r10
   1077 #
   1078 $code.=<<___;
   1079 .type	sqr_reduce,\@abi-omnipotent
   1080 .align	16
   1081 sqr_reduce:
   1082 	 mov	(+$pResult_offset+8)(%rsp), %rcx
   1083 ___
   1084 	&SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%rbx", "%rbp", "%rsi", "%rdi");
   1085 $code.=<<___;
   1086 	# tail recursion optimization: jmp to mont_reduce and return from there
   1087 	 jmp	mont_reduce
   1088 	# call	mont_reduce
   1089 	# ret
   1090 .size	sqr_reduce,.-sqr_reduce
   1091 ___
   1092 }}}
   1093 
   1094 #
   1095 # MAIN FUNCTION
   1096 #
   1097 
   1098 #mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
   1099 #           UINT64 *g,   /* 512 bits, 8 qwords */
   1100 #           UINT64 *exp, /* 512 bits, 8 qwords */
   1101 #           struct mod_ctx_512 *data)
   1102 
   1103 # window size = 5
   1104 # table size = 2^5 = 32
   1105 #table_entries	equ	32
   1106 #table_size	equ	table_entries * 8
   1107 $code.=<<___;
   1108 .globl	mod_exp_512
   1109 .type	mod_exp_512,\@function,4
   1110 mod_exp_512:
   1111 	 push	%rbp
   1112 	 push	%rbx
   1113 	 push	%r12
   1114 	 push	%r13
   1115 	 push	%r14
   1116 	 push	%r15
   1117 
   1118 	# adjust stack down and then align it with cache boundary
   1119 	 mov	%rsp, %r8
   1120 	 sub	\$$mem_size, %rsp
   1121 	 and	\$-64, %rsp
   1122 
   1123 	# store previous stack pointer and arguments
   1124 	 mov	%r8, (+$rsp_offset)(%rsp)
   1125 	 mov	%rdi, (+$pResult_offset)(%rsp)
   1126 	 mov	%rsi, (+$pG_offset)(%rsp)
   1127 	 mov	%rcx, (+$pData_offset)(%rsp)
   1128 .Lbody:
   1129 	# transform g into montgomery space
   1130 	# GT = reduce(g * C2) = reduce(g * (2^256))
   1131 	# reduce expects to have the input in [tmp16]
   1132 	 pxor	%xmm4, %xmm4
   1133 	 movdqu	(+16*0)(%rsi), %xmm0
   1134 	 movdqu	(+16*1)(%rsi), %xmm1
   1135 	 movdqu	(+16*2)(%rsi), %xmm2
   1136 	 movdqu	(+16*3)(%rsi), %xmm3
   1137 	 movdqa	%xmm4, (+$tmp16_offset+16*0)(%rsp)
   1138 	 movdqa	%xmm4, (+$tmp16_offset+16*1)(%rsp)
   1139 	 movdqa	%xmm4, (+$tmp16_offset+16*6)(%rsp)
   1140 	 movdqa	%xmm4, (+$tmp16_offset+16*7)(%rsp)
   1141 	 movdqa	%xmm0, (+$tmp16_offset+16*2)(%rsp)
   1142 	 movdqa	%xmm1, (+$tmp16_offset+16*3)(%rsp)
   1143 	 movdqa	%xmm2, (+$tmp16_offset+16*4)(%rsp)
   1144 	 movdqa	%xmm3, (+$tmp16_offset+16*5)(%rsp)
   1145 
   1146 	# load pExp before rdx gets blown away
   1147 	 movdqu	(+16*0)(%rdx), %xmm0
   1148 	 movdqu	(+16*1)(%rdx), %xmm1
   1149 	 movdqu	(+16*2)(%rdx), %xmm2
   1150 	 movdqu	(+16*3)(%rdx), %xmm3
   1151 
   1152 	 lea	(+$GT_offset)(%rsp), %rbx
   1153 	 mov	%rbx, (+$red_result_addr_offset)(%rsp)
   1154 	 call	mont_reduce
   1155 
   1156 	# Initialize tmp = C
   1157 	 lea	(+$tmp_offset)(%rsp), %rcx
   1158 	 xor	%rax, %rax
   1159 	 mov	%rax, (+8*0)(%rcx)
   1160 	 mov	%rax, (+8*1)(%rcx)
   1161 	 mov	%rax, (+8*3)(%rcx)
   1162 	 mov	%rax, (+8*4)(%rcx)
   1163 	 mov	%rax, (+8*5)(%rcx)
   1164 	 mov	%rax, (+8*6)(%rcx)
   1165 	 mov	%rax, (+8*7)(%rcx)
   1166 	 mov	%rax, (+$exp_offset+8*8)(%rsp)
   1167 	 movq	\$1, (+8*2)(%rcx)
   1168 
   1169 	 lea	(+$garray_offset)(%rsp), %rbp
   1170 	 mov	%rcx, %rsi			# pTmp
   1171 	 mov	%rbp, %rdi			# Garray[][0]
   1172 ___
   1173 
   1174 	&swizzle("%rdi", "%rcx", "%rax", "%rbx");
   1175 
   1176 	# for (rax = 31; rax != 0; rax--) {
   1177 	#     tmp = reduce(tmp * G)
   1178 	#     swizzle(pg, tmp);
   1179 	#     pg += 2; }
   1180 $code.=<<___;
   1181 	 mov	\$31, %rax
   1182 	 mov	%rax, (+$i_offset)(%rsp)
   1183 	 mov	%rbp, (+$pg_offset)(%rsp)
   1184 	# rsi -> pTmp
   1185 	 mov	%rsi, (+$red_result_addr_offset)(%rsp)
   1186 	 mov	(+8*0)(%rsi), %r10
   1187 	 mov	(+8*1)(%rsi), %r11
   1188 	 mov	(+8*2)(%rsi), %r12
   1189 	 mov	(+8*3)(%rsi), %r13
   1190 	 mov	(+8*4)(%rsi), %r14
   1191 	 mov	(+8*5)(%rsi), %r15
   1192 	 mov	(+8*6)(%rsi), %r8
   1193 	 mov	(+8*7)(%rsi), %r9
   1194 init_loop:
   1195 	 lea	(+$GT_offset)(%rsp), %rdi
   1196 	 call	mont_mul_a3b
   1197 	 lea	(+$tmp_offset)(%rsp), %rsi
   1198 	 mov	(+$pg_offset)(%rsp), %rbp
   1199 	 add	\$2, %rbp
   1200 	 mov	%rbp, (+$pg_offset)(%rsp)
   1201 	 mov	%rsi, %rcx			# rcx = rsi = addr of tmp
   1202 ___
   1203 
   1204 	&swizzle("%rbp", "%rcx", "%rax", "%rbx");
   1205 $code.=<<___;
   1206 	 mov	(+$i_offset)(%rsp), %rax
   1207 	 sub	\$1, %rax
   1208 	 mov	%rax, (+$i_offset)(%rsp)
   1209 	 jne	init_loop
   1210 
   1211 	#
   1212 	# Copy exponent onto stack
   1213 	 movdqa	%xmm0, (+$exp_offset+16*0)(%rsp)
   1214 	 movdqa	%xmm1, (+$exp_offset+16*1)(%rsp)
   1215 	 movdqa	%xmm2, (+$exp_offset+16*2)(%rsp)
   1216 	 movdqa	%xmm3, (+$exp_offset+16*3)(%rsp)
   1217 
   1218 
   1219 	#
   1220 	# Do exponentiation
   1221 	# Initialize result to G[exp{511:507}]
   1222 	 mov	(+$exp_offset+62)(%rsp), %eax
   1223 	 mov	%rax, %rdx
   1224 	 shr	\$11, %rax
   1225 	 and	\$0x07FF, %edx
   1226 	 mov	%edx, (+$exp_offset+62)(%rsp)
   1227 	 lea	(+$garray_offset)(%rsp,%rax,2), %rsi
   1228 	 mov	(+$pResult_offset)(%rsp), %rdx
   1229 ___
   1230 
   1231 	&unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
   1232 
   1233 	#
   1234 	# Loop variables
   1235 	# rcx = [loop_idx] = index: 510-5 to 0 by 5
   1236 $code.=<<___;
   1237 	 movq	\$505, (+$loop_idx_offset)(%rsp)
   1238 
   1239 	 mov	(+$pResult_offset)(%rsp), %rcx
   1240 	 mov	%rcx, (+$red_result_addr_offset)(%rsp)
   1241 	 mov	(+8*0)(%rcx), %r10
   1242 	 mov	(+8*1)(%rcx), %r11
   1243 	 mov	(+8*2)(%rcx), %r12
   1244 	 mov	(+8*3)(%rcx), %r13
   1245 	 mov	(+8*4)(%rcx), %r14
   1246 	 mov	(+8*5)(%rcx), %r15
   1247 	 mov	(+8*6)(%rcx), %r8
   1248 	 mov	(+8*7)(%rcx), %r9
   1249 	 jmp	sqr_2
   1250 
   1251 main_loop_a3b:
   1252 	 call	sqr_reduce
   1253 	 call	sqr_reduce
   1254 	 call	sqr_reduce
   1255 sqr_2:
   1256 	 call	sqr_reduce
   1257 	 call	sqr_reduce
   1258 
   1259 	#
   1260 	# Do multiply, first look up proper value in Garray
   1261 	 mov	(+$loop_idx_offset)(%rsp), %rcx			# bit index
   1262 	 mov	%rcx, %rax
   1263 	 shr	\$4, %rax			# rax is word pointer
   1264 	 mov	(+$exp_offset)(%rsp,%rax,2), %edx
   1265 	 and	\$15, %rcx
   1266 	 shrq	%cl, %rdx
   1267 	 and	\$0x1F, %rdx
   1268 
   1269 	 lea	(+$garray_offset)(%rsp,%rdx,2), %rsi
   1270 	 lea	(+$tmp_offset)(%rsp), %rdx
   1271 	 mov	%rdx, %rdi
   1272 ___
   1273 
   1274 	&unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
   1275 	# rdi = tmp = pG
   1276 
   1277 	#
   1278 	# Call mod_mul_a1(pDst,  pSrc1, pSrc2, pM, pData)
   1279 	#                 result result pG     M   Data
   1280 $code.=<<___;
   1281 	 mov	(+$pResult_offset)(%rsp), %rsi
   1282 	 call	mont_mul_a3b
   1283 
   1284 	#
   1285 	# finish loop
   1286 	 mov	(+$loop_idx_offset)(%rsp), %rcx
   1287 	 sub	\$5, %rcx
   1288 	 mov	%rcx, (+$loop_idx_offset)(%rsp)
   1289 	 jge	main_loop_a3b
   1290 
   1291 	#
   1292 
   1293 end_main_loop_a3b:
   1294 	# transform result out of Montgomery space
   1295 	# result = reduce(result)
   1296 	 mov	(+$pResult_offset)(%rsp), %rdx
   1297 	 pxor	%xmm4, %xmm4
   1298 	 movdqu	(+16*0)(%rdx), %xmm0
   1299 	 movdqu	(+16*1)(%rdx), %xmm1
   1300 	 movdqu	(+16*2)(%rdx), %xmm2
   1301 	 movdqu	(+16*3)(%rdx), %xmm3
   1302 	 movdqa	%xmm4, (+$tmp16_offset+16*4)(%rsp)
   1303 	 movdqa	%xmm4, (+$tmp16_offset+16*5)(%rsp)
   1304 	 movdqa	%xmm4, (+$tmp16_offset+16*6)(%rsp)
   1305 	 movdqa	%xmm4, (+$tmp16_offset+16*7)(%rsp)
   1306 	 movdqa	%xmm0, (+$tmp16_offset+16*0)(%rsp)
   1307 	 movdqa	%xmm1, (+$tmp16_offset+16*1)(%rsp)
   1308 	 movdqa	%xmm2, (+$tmp16_offset+16*2)(%rsp)
   1309 	 movdqa	%xmm3, (+$tmp16_offset+16*3)(%rsp)
   1310 	 call	mont_reduce
   1311 
   1312 	# If result > m, subract m
   1313 	# load result into r15:r8
   1314 	 mov	(+$pResult_offset)(%rsp), %rax
   1315 	 mov	(+8*0)(%rax), %r8
   1316 	 mov	(+8*1)(%rax), %r9
   1317 	 mov	(+8*2)(%rax), %r10
   1318 	 mov	(+8*3)(%rax), %r11
   1319 	 mov	(+8*4)(%rax), %r12
   1320 	 mov	(+8*5)(%rax), %r13
   1321 	 mov	(+8*6)(%rax), %r14
   1322 	 mov	(+8*7)(%rax), %r15
   1323 
   1324 	# subtract m
   1325 	 mov	(+$pData_offset)(%rsp), %rbx
   1326 	 add	\$$M, %rbx
   1327 
   1328 	 sub	(+8*0)(%rbx), %r8
   1329 	 sbb	(+8*1)(%rbx), %r9
   1330 	 sbb	(+8*2)(%rbx), %r10
   1331 	 sbb	(+8*3)(%rbx), %r11
   1332 	 sbb	(+8*4)(%rbx), %r12
   1333 	 sbb	(+8*5)(%rbx), %r13
   1334 	 sbb	(+8*6)(%rbx), %r14
   1335 	 sbb	(+8*7)(%rbx), %r15
   1336 
   1337 	# if Carry is clear, replace result with difference
   1338 	 mov	(+8*0)(%rax), %rsi
   1339 	 mov	(+8*1)(%rax), %rdi
   1340 	 mov	(+8*2)(%rax), %rcx
   1341 	 mov	(+8*3)(%rax), %rdx
   1342 	 cmovnc	%r8, %rsi
   1343 	 cmovnc	%r9, %rdi
   1344 	 cmovnc	%r10, %rcx
   1345 	 cmovnc	%r11, %rdx
   1346 	 mov	%rsi, (+8*0)(%rax)
   1347 	 mov	%rdi, (+8*1)(%rax)
   1348 	 mov	%rcx, (+8*2)(%rax)
   1349 	 mov	%rdx, (+8*3)(%rax)
   1350 
   1351 	 mov	(+8*4)(%rax), %rsi
   1352 	 mov	(+8*5)(%rax), %rdi
   1353 	 mov	(+8*6)(%rax), %rcx
   1354 	 mov	(+8*7)(%rax), %rdx
   1355 	 cmovnc	%r12, %rsi
   1356 	 cmovnc	%r13, %rdi
   1357 	 cmovnc	%r14, %rcx
   1358 	 cmovnc	%r15, %rdx
   1359 	 mov	%rsi, (+8*4)(%rax)
   1360 	 mov	%rdi, (+8*5)(%rax)
   1361 	 mov	%rcx, (+8*6)(%rax)
   1362 	 mov	%rdx, (+8*7)(%rax)
   1363 
   1364 	 mov	(+$rsp_offset)(%rsp), %rsi
   1365 	 mov	0(%rsi),%r15
   1366 	 mov	8(%rsi),%r14
   1367 	 mov	16(%rsi),%r13
   1368 	 mov	24(%rsi),%r12
   1369 	 mov	32(%rsi),%rbx
   1370 	 mov	40(%rsi),%rbp
   1371 	 lea	48(%rsi),%rsp
   1372 .Lepilogue:
   1373 	 ret
   1374 .size mod_exp_512, . - mod_exp_512
   1375 ___
   1376 
   1377 if ($win64) {
   1378 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
   1379 #		CONTEXT *context,DISPATCHER_CONTEXT *disp)
   1380 my $rec="%rcx";
   1381 my $frame="%rdx";
   1382 my $context="%r8";
   1383 my $disp="%r9";
   1384 
   1385 $code.=<<___;
   1386 .extern	__imp_RtlVirtualUnwind
   1387 .type	mod_exp_512_se_handler,\@abi-omnipotent
   1388 .align	16
   1389 mod_exp_512_se_handler:
   1390 	push	%rsi
   1391 	push	%rdi
   1392 	push	%rbx
   1393 	push	%rbp
   1394 	push	%r12
   1395 	push	%r13
   1396 	push	%r14
   1397 	push	%r15
   1398 	pushfq
   1399 	sub	\$64,%rsp
   1400 
   1401 	mov	120($context),%rax	# pull context->Rax
   1402 	mov	248($context),%rbx	# pull context->Rip
   1403 
   1404 	lea	.Lbody(%rip),%r10
   1405 	cmp	%r10,%rbx		# context->Rip<prologue label
   1406 	jb	.Lin_prologue
   1407 
   1408 	mov	152($context),%rax	# pull context->Rsp
   1409 
   1410 	lea	.Lepilogue(%rip),%r10
   1411 	cmp	%r10,%rbx		# context->Rip>=epilogue label
   1412 	jae	.Lin_prologue
   1413 
   1414 	mov	$rsp_offset(%rax),%rax	# pull saved Rsp
   1415 
   1416 	mov	32(%rax),%rbx
   1417 	mov	40(%rax),%rbp
   1418 	mov	24(%rax),%r12
   1419 	mov	16(%rax),%r13
   1420 	mov	8(%rax),%r14
   1421 	mov	0(%rax),%r15
   1422 	lea	48(%rax),%rax
   1423 	mov	%rbx,144($context)	# restore context->Rbx
   1424 	mov	%rbp,160($context)	# restore context->Rbp
   1425 	mov	%r12,216($context)	# restore context->R12
   1426 	mov	%r13,224($context)	# restore context->R13
   1427 	mov	%r14,232($context)	# restore context->R14
   1428 	mov	%r15,240($context)	# restore context->R15
   1429 
   1430 .Lin_prologue:
   1431 	mov	8(%rax),%rdi
   1432 	mov	16(%rax),%rsi
   1433 	mov	%rax,152($context)	# restore context->Rsp
   1434 	mov	%rsi,168($context)	# restore context->Rsi
   1435 	mov	%rdi,176($context)	# restore context->Rdi
   1436 
   1437 	mov	40($disp),%rdi		# disp->ContextRecord
   1438 	mov	$context,%rsi		# context
   1439 	mov	\$154,%ecx		# sizeof(CONTEXT)
   1440 	.long	0xa548f3fc		# cld; rep movsq
   1441 
   1442 	mov	$disp,%rsi
   1443 	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
   1444 	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
   1445 	mov	0(%rsi),%r8		# arg3, disp->ControlPc
   1446 	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
   1447 	mov	40(%rsi),%r10		# disp->ContextRecord
   1448 	lea	56(%rsi),%r11		# &disp->HandlerData
   1449 	lea	24(%rsi),%r12		# &disp->EstablisherFrame
   1450 	mov	%r10,32(%rsp)		# arg5
   1451 	mov	%r11,40(%rsp)		# arg6
   1452 	mov	%r12,48(%rsp)		# arg7
   1453 	mov	%rcx,56(%rsp)		# arg8, (NULL)
   1454 	call	*__imp_RtlVirtualUnwind(%rip)
   1455 
   1456 	mov	\$1,%eax		# ExceptionContinueSearch
   1457 	add	\$64,%rsp
   1458 	popfq
   1459 	pop	%r15
   1460 	pop	%r14
   1461 	pop	%r13
   1462 	pop	%r12
   1463 	pop	%rbp
   1464 	pop	%rbx
   1465 	pop	%rdi
   1466 	pop	%rsi
   1467 	ret
   1468 .size	mod_exp_512_se_handler,.-mod_exp_512_se_handler
   1469 
   1470 .section	.pdata
   1471 .align	4
   1472 	.rva	.LSEH_begin_mod_exp_512
   1473 	.rva	.LSEH_end_mod_exp_512
   1474 	.rva	.LSEH_info_mod_exp_512
   1475 
   1476 .section	.xdata
   1477 .align	8
   1478 .LSEH_info_mod_exp_512:
   1479 	.byte	9,0,0,0
   1480 	.rva	mod_exp_512_se_handler
   1481 ___
   1482 }
   1483 
   1484 sub reg_part {
   1485 my ($reg,$conv)=@_;
   1486     if ($reg =~ /%r[0-9]+/)	{ $reg .= $conv; }
   1487     elsif ($conv eq "b")	{ $reg =~ s/%[er]([^x]+)x?/%$1l/;	}
   1488     elsif ($conv eq "w")	{ $reg =~ s/%[er](.+)/%$1/;		}
   1489     elsif ($conv eq "d")	{ $reg =~ s/%[er](.+)/%e$1/;		}
   1490     return $reg;
   1491 }
   1492 
   1493 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
   1494 $code =~ s/\`([^\`]*)\`/eval $1/gem;
   1495 $code =~ s/(\(\+[^)]+\))/eval $1/gem;
   1496 print $code;
   1497 close STDOUT;
   1498