Home | History | Annotate | Download | only in ssl
      1 /* ssl/s3_cbc.c */
      2 /* ====================================================================
      3  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 
     56 #include "../crypto/constant_time_locl.h"
     57 #include "ssl_locl.h"
     58 
     59 #include <openssl/md5.h>
     60 #include <openssl/sha.h>
     61 
     62 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
     63  * field. (SHA-384/512 have 128-bit length.) */
     64 #define MAX_HASH_BIT_COUNT_BYTES 16
     65 
     66 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
     67  * Currently SHA-384/512 has a 128-byte block size and that's the largest
     68  * supported by TLS.) */
     69 #define MAX_HASH_BLOCK_SIZE 128
     70 
     71 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
     72  * record in |rec| by updating |rec->length| in constant time.
     73  *
     74  * block_size: the block size of the cipher used to encrypt the record.
     75  * returns:
     76  *   0: (in non-constant time) if the record is publicly invalid.
     77  *   1: if the padding was valid
     78  *  -1: otherwise. */
     79 int ssl3_cbc_remove_padding(const SSL* s,
     80 			    SSL3_RECORD *rec,
     81 			    unsigned block_size,
     82 			    unsigned mac_size)
     83 	{
     84 	unsigned padding_length, good;
     85 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
     86 
     87 	/* These lengths are all public so we can test them in non-constant
     88 	 * time. */
     89 	if (overhead > rec->length)
     90 		return 0;
     91 
     92 	padding_length = rec->data[rec->length-1];
     93 	good = constant_time_ge(rec->length, padding_length+overhead);
     94 	/* SSLv3 requires that the padding is minimal. */
     95 	good &= constant_time_ge(block_size, padding_length+1);
     96 	padding_length = good & (padding_length+1);
     97 	rec->length -= padding_length;
     98 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
     99 	return constant_time_select_int(good, 1, -1);
    100 	}
    101 
    102 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
    103  * record in |rec| in constant time and returns 1 if the padding is valid and
    104  * -1 otherwise. It also removes any explicit IV from the start of the record
    105  * without leaking any timing about whether there was enough space after the
    106  * padding was removed.
    107  *
    108  * block_size: the block size of the cipher used to encrypt the record.
    109  * returns:
    110  *   0: (in non-constant time) if the record is publicly invalid.
    111  *   1: if the padding was valid
    112  *  -1: otherwise. */
    113 int tls1_cbc_remove_padding(const SSL* s,
    114 			    SSL3_RECORD *rec,
    115 			    unsigned block_size,
    116 			    unsigned mac_size)
    117 	{
    118 	unsigned padding_length, good, to_check, i;
    119 	const unsigned overhead = 1 /* padding length byte */ + mac_size;
    120 	/* Check if version requires explicit IV */
    121 	if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
    122 		{
    123 		/* These lengths are all public so we can test them in
    124 		 * non-constant time.
    125 		 */
    126 		if (overhead + block_size > rec->length)
    127 			return 0;
    128 		/* We can now safely skip explicit IV */
    129 		rec->data += block_size;
    130 		rec->input += block_size;
    131 		rec->length -= block_size;
    132 		}
    133 	else if (overhead > rec->length)
    134 		return 0;
    135 
    136 	padding_length = rec->data[rec->length-1];
    137 
    138 	/* NB: if compression is in operation the first packet may not be of
    139 	 * even length so the padding bug check cannot be performed. This bug
    140 	 * workaround has been around since SSLeay so hopefully it is either
    141 	 * fixed now or no buggy implementation supports compression [steve]
    142 	 */
    143 	if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
    144 		{
    145 		/* First packet is even in size, so check */
    146 		if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
    147 		    !(padding_length & 1))
    148 			{
    149 			s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
    150 			}
    151 		if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
    152 		    padding_length > 0)
    153 			{
    154 			padding_length--;
    155 			}
    156 		}
    157 
    158 	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
    159 		{
    160 		/* padding is already verified */
    161 		rec->length -= padding_length + 1;
    162 		return 1;
    163 		}
    164 
    165 	good = constant_time_ge(rec->length, overhead+padding_length);
    166 	/* The padding consists of a length byte at the end of the record and
    167 	 * then that many bytes of padding, all with the same value as the
    168 	 * length byte. Thus, with the length byte included, there are i+1
    169 	 * bytes of padding.
    170 	 *
    171 	 * We can't check just |padding_length+1| bytes because that leaks
    172 	 * decrypted information. Therefore we always have to check the maximum
    173 	 * amount of padding possible. (Again, the length of the record is
    174 	 * public information so we can use it.) */
    175 	to_check = 255; /* maximum amount of padding. */
    176 	if (to_check > rec->length-1)
    177 		to_check = rec->length-1;
    178 
    179 	for (i = 0; i < to_check; i++)
    180 		{
    181 		unsigned char mask = constant_time_ge_8(padding_length, i);
    182 		unsigned char b = rec->data[rec->length-1-i];
    183 		/* The final |padding_length+1| bytes should all have the value
    184 		 * |padding_length|. Therefore the XOR should be zero. */
    185 		good &= ~(mask&(padding_length ^ b));
    186 		}
    187 
    188 	/* If any of the final |padding_length+1| bytes had the wrong value,
    189 	 * one or more of the lower eight bits of |good| will be cleared.
    190 	 */
    191 	good = constant_time_eq(0xff, good & 0xff);
    192 	padding_length = good & (padding_length+1);
    193 	rec->length -= padding_length;
    194 	rec->type |= padding_length<<8;	/* kludge: pass padding length */
    195 
    196 	return constant_time_select_int(good, 1, -1);
    197 	}
    198 
    199 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
    200  * constant time (independent of the concrete value of rec->length, which may
    201  * vary within a 256-byte window).
    202  *
    203  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
    204  * this function.
    205  *
    206  * On entry:
    207  *   rec->orig_len >= md_size
    208  *   md_size <= EVP_MAX_MD_SIZE
    209  *
    210  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
    211  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
    212  * a single or pair of cache-lines, then the variable memory accesses don't
    213  * actually affect the timing. CPUs with smaller cache-lines [if any] are
    214  * not multi-core and are not considered vulnerable to cache-timing attacks.
    215  */
    216 #define CBC_MAC_ROTATE_IN_PLACE
    217 
    218 void ssl3_cbc_copy_mac(unsigned char* out,
    219 		       const SSL3_RECORD *rec,
    220 		       unsigned md_size,unsigned orig_len)
    221 	{
    222 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    223 	unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
    224 	unsigned char *rotated_mac;
    225 #else
    226 	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
    227 #endif
    228 
    229 	/* mac_end is the index of |rec->data| just after the end of the MAC. */
    230 	unsigned mac_end = rec->length;
    231 	unsigned mac_start = mac_end - md_size;
    232 	/* scan_start contains the number of bytes that we can ignore because
    233 	 * the MAC's position can only vary by 255 bytes. */
    234 	unsigned scan_start = 0;
    235 	unsigned i, j;
    236 	unsigned div_spoiler;
    237 	unsigned rotate_offset;
    238 
    239 	OPENSSL_assert(orig_len >= md_size);
    240 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
    241 
    242 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    243 	rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
    244 #endif
    245 
    246 	/* This information is public so it's safe to branch based on it. */
    247 	if (orig_len > md_size + 255 + 1)
    248 		scan_start = orig_len - (md_size + 255 + 1);
    249 	/* div_spoiler contains a multiple of md_size that is used to cause the
    250 	 * modulo operation to be constant time. Without this, the time varies
    251 	 * based on the amount of padding when running on Intel chips at least.
    252 	 *
    253 	 * The aim of right-shifting md_size is so that the compiler doesn't
    254 	 * figure out that it can remove div_spoiler as that would require it
    255 	 * to prove that md_size is always even, which I hope is beyond it. */
    256 	div_spoiler = md_size >> 1;
    257 	div_spoiler <<= (sizeof(div_spoiler)-1)*8;
    258 	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
    259 
    260 	memset(rotated_mac, 0, md_size);
    261 	for (i = scan_start, j = 0; i < orig_len; i++)
    262 		{
    263 		unsigned char mac_started = constant_time_ge_8(i, mac_start);
    264 		unsigned char mac_ended = constant_time_ge_8(i, mac_end);
    265 		unsigned char b = rec->data[i];
    266 		rotated_mac[j++] |= b & mac_started & ~mac_ended;
    267 		j &= constant_time_lt(j,md_size);
    268 		}
    269 
    270 	/* Now rotate the MAC */
    271 #if defined(CBC_MAC_ROTATE_IN_PLACE)
    272 	j = 0;
    273 	for (i = 0; i < md_size; i++)
    274 		{
    275 		/* in case cache-line is 32 bytes, touch second line */
    276 		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
    277 		out[j++] = rotated_mac[rotate_offset++];
    278 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
    279 		}
    280 #else
    281 	memset(out, 0, md_size);
    282 	rotate_offset = md_size - rotate_offset;
    283 	rotate_offset &= constant_time_lt(rotate_offset,md_size);
    284 	for (i = 0; i < md_size; i++)
    285 		{
    286 		for (j = 0; j < md_size; j++)
    287 			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
    288 		rotate_offset++;
    289 		rotate_offset &= constant_time_lt(rotate_offset,md_size);
    290 		}
    291 #endif
    292 	}
    293 
    294 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
    295  * little-endian order. The value of p is advanced by four. */
    296 #define u32toLE(n, p) \
    297 	(*((p)++)=(unsigned char)(n), \
    298 	 *((p)++)=(unsigned char)(n>>8), \
    299 	 *((p)++)=(unsigned char)(n>>16), \
    300 	 *((p)++)=(unsigned char)(n>>24))
    301 
    302 /* These functions serialize the state of a hash and thus perform the standard
    303  * "final" operation without adding the padding and length that such a function
    304  * typically does. */
    305 static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
    306 	{
    307 	MD5_CTX *md5 = ctx;
    308 	u32toLE(md5->A, md_out);
    309 	u32toLE(md5->B, md_out);
    310 	u32toLE(md5->C, md_out);
    311 	u32toLE(md5->D, md_out);
    312 	}
    313 
    314 static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
    315 	{
    316 	SHA_CTX *sha1 = ctx;
    317 	l2n(sha1->h0, md_out);
    318 	l2n(sha1->h1, md_out);
    319 	l2n(sha1->h2, md_out);
    320 	l2n(sha1->h3, md_out);
    321 	l2n(sha1->h4, md_out);
    322 	}
    323 #define LARGEST_DIGEST_CTX SHA_CTX
    324 
    325 #ifndef OPENSSL_NO_SHA256
    326 static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
    327 	{
    328 	SHA256_CTX *sha256 = ctx;
    329 	unsigned i;
    330 
    331 	for (i = 0; i < 8; i++)
    332 		{
    333 		l2n(sha256->h[i], md_out);
    334 		}
    335 	}
    336 #undef  LARGEST_DIGEST_CTX
    337 #define LARGEST_DIGEST_CTX SHA256_CTX
    338 #endif
    339 
    340 #ifndef OPENSSL_NO_SHA512
    341 static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
    342 	{
    343 	SHA512_CTX *sha512 = ctx;
    344 	unsigned i;
    345 
    346 	for (i = 0; i < 8; i++)
    347 		{
    348 		l2n8(sha512->h[i], md_out);
    349 		}
    350 	}
    351 #undef  LARGEST_DIGEST_CTX
    352 #define LARGEST_DIGEST_CTX SHA512_CTX
    353 #endif
    354 
    355 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
    356  * which ssl3_cbc_digest_record supports. */
    357 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
    358 	{
    359 #ifdef OPENSSL_FIPS
    360 	if (FIPS_mode())
    361 		return 0;
    362 #endif
    363 	switch (EVP_MD_CTX_type(ctx))
    364 		{
    365 		case NID_md5:
    366 		case NID_sha1:
    367 #ifndef OPENSSL_NO_SHA256
    368 		case NID_sha224:
    369 		case NID_sha256:
    370 #endif
    371 #ifndef OPENSSL_NO_SHA512
    372 		case NID_sha384:
    373 		case NID_sha512:
    374 #endif
    375 			return 1;
    376 		default:
    377 			return 0;
    378 		}
    379 	}
    380 
    381 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
    382  * record.
    383  *
    384  *   ctx: the EVP_MD_CTX from which we take the hash function.
    385  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
    386  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
    387  *   md_out_size: if non-NULL, the number of output bytes is written here.
    388  *   header: the 13-byte, TLS record header.
    389  *   data: the record data itself, less any preceeding explicit IV.
    390  *   data_plus_mac_size: the secret, reported length of the data and MAC
    391  *     once the padding has been removed.
    392  *   data_plus_mac_plus_padding_size: the public length of the whole
    393  *     record, including padding.
    394  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
    395  *
    396  * On entry: by virtue of having been through one of the remove_padding
    397  * functions, above, we know that data_plus_mac_size is large enough to contain
    398  * a padding byte and MAC. (If the padding was invalid, it might contain the
    399  * padding too. ) */
    400 void ssl3_cbc_digest_record(
    401 	const EVP_MD_CTX *ctx,
    402 	unsigned char* md_out,
    403 	size_t* md_out_size,
    404 	const unsigned char header[13],
    405 	const unsigned char *data,
    406 	size_t data_plus_mac_size,
    407 	size_t data_plus_mac_plus_padding_size,
    408 	const unsigned char *mac_secret,
    409 	unsigned mac_secret_length,
    410 	char is_sslv3)
    411 	{
    412 	union {	double align;
    413 		unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
    414 	void (*md_final_raw)(void *ctx, unsigned char *md_out);
    415 	void (*md_transform)(void *ctx, const unsigned char *block);
    416 	unsigned md_size, md_block_size = 64;
    417 	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
    418 		 len, max_mac_bytes, num_blocks,
    419 		 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
    420 	unsigned int bits;	/* at most 18 bits */
    421 	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
    422 	/* hmac_pad is the masked HMAC key. */
    423 	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
    424 	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
    425 	unsigned char mac_out[EVP_MAX_MD_SIZE];
    426 	unsigned i, j, md_out_size_u;
    427 	EVP_MD_CTX md_ctx;
    428 	/* mdLengthSize is the number of bytes in the length field that terminates
    429 	* the hash. */
    430 	unsigned md_length_size = 8;
    431 	char length_is_big_endian = 1;
    432 
    433 	/* This is a, hopefully redundant, check that allows us to forget about
    434 	 * many possible overflows later in this function. */
    435 	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
    436 
    437 	switch (EVP_MD_CTX_type(ctx))
    438 		{
    439 		case NID_md5:
    440 			MD5_Init((MD5_CTX*)md_state.c);
    441 			md_final_raw = tls1_md5_final_raw;
    442 			md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
    443 			md_size = 16;
    444 			sslv3_pad_length = 48;
    445 			length_is_big_endian = 0;
    446 			break;
    447 		case NID_sha1:
    448 			SHA1_Init((SHA_CTX*)md_state.c);
    449 			md_final_raw = tls1_sha1_final_raw;
    450 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
    451 			md_size = 20;
    452 			break;
    453 #ifndef OPENSSL_NO_SHA256
    454 		case NID_sha224:
    455 			SHA224_Init((SHA256_CTX*)md_state.c);
    456 			md_final_raw = tls1_sha256_final_raw;
    457 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
    458 			md_size = 224/8;
    459 			break;
    460 		case NID_sha256:
    461 			SHA256_Init((SHA256_CTX*)md_state.c);
    462 			md_final_raw = tls1_sha256_final_raw;
    463 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
    464 			md_size = 32;
    465 			break;
    466 #endif
    467 #ifndef OPENSSL_NO_SHA512
    468 		case NID_sha384:
    469 			SHA384_Init((SHA512_CTX*)md_state.c);
    470 			md_final_raw = tls1_sha512_final_raw;
    471 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
    472 			md_size = 384/8;
    473 			md_block_size = 128;
    474 			md_length_size = 16;
    475 			break;
    476 		case NID_sha512:
    477 			SHA512_Init((SHA512_CTX*)md_state.c);
    478 			md_final_raw = tls1_sha512_final_raw;
    479 			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
    480 			md_size = 64;
    481 			md_block_size = 128;
    482 			md_length_size = 16;
    483 			break;
    484 #endif
    485 		default:
    486 			/* ssl3_cbc_record_digest_supported should have been
    487 			 * called first to check that the hash function is
    488 			 * supported. */
    489 			OPENSSL_assert(0);
    490 			if (md_out_size)
    491 				*md_out_size = -1;
    492 			return;
    493 		}
    494 
    495 	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
    496 	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
    497 	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
    498 
    499 	header_length = 13;
    500 	if (is_sslv3)
    501 		{
    502 		header_length =
    503 			mac_secret_length +
    504 			sslv3_pad_length +
    505 			8 /* sequence number */ +
    506 			1 /* record type */ +
    507 			2 /* record length */;
    508 		}
    509 
    510 	/* variance_blocks is the number of blocks of the hash that we have to
    511 	 * calculate in constant time because they could be altered by the
    512 	 * padding value.
    513 	 *
    514 	 * In SSLv3, the padding must be minimal so the end of the plaintext
    515 	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
    516 	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
    517 	 * termination (0x80 + 64-bit length) don't fit in the final block, we
    518 	 * say that the final two blocks can vary based on the padding.
    519 	 *
    520 	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
    521 	 * required to be minimal. Therefore we say that the final six blocks
    522 	 * can vary based on the padding.
    523 	 *
    524 	 * Later in the function, if the message is short and there obviously
    525 	 * cannot be this many blocks then variance_blocks can be reduced. */
    526 	variance_blocks = is_sslv3 ? 2 : 6;
    527 	/* From now on we're dealing with the MAC, which conceptually has 13
    528 	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
    529 	 * (SSLv3) */
    530 	len = data_plus_mac_plus_padding_size + header_length;
    531 	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
    532 	* |header|, assuming that there's no padding. */
    533 	max_mac_bytes = len - md_size - 1;
    534 	/* num_blocks is the maximum number of hash blocks. */
    535 	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
    536 	/* In order to calculate the MAC in constant time we have to handle
    537 	 * the final blocks specially because the padding value could cause the
    538 	 * end to appear somewhere in the final |variance_blocks| blocks and we
    539 	 * can't leak where. However, |num_starting_blocks| worth of data can
    540 	 * be hashed right away because no padding value can affect whether
    541 	 * they are plaintext. */
    542 	num_starting_blocks = 0;
    543 	/* k is the starting byte offset into the conceptual header||data where
    544 	 * we start processing. */
    545 	k = 0;
    546 	/* mac_end_offset is the index just past the end of the data to be
    547 	 * MACed. */
    548 	mac_end_offset = data_plus_mac_size + header_length - md_size;
    549 	/* c is the index of the 0x80 byte in the final hash block that
    550 	 * contains application data. */
    551 	c = mac_end_offset % md_block_size;
    552 	/* index_a is the hash block number that contains the 0x80 terminating
    553 	 * value. */
    554 	index_a = mac_end_offset / md_block_size;
    555 	/* index_b is the hash block number that contains the 64-bit hash
    556 	 * length, in bits. */
    557 	index_b = (mac_end_offset + md_length_size) / md_block_size;
    558 	/* bits is the hash-length in bits. It includes the additional hash
    559 	 * block for the masked HMAC key, or whole of |header| in the case of
    560 	 * SSLv3. */
    561 
    562 	/* For SSLv3, if we're going to have any starting blocks then we need
    563 	 * at least two because the header is larger than a single block. */
    564 	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
    565 		{
    566 		num_starting_blocks = num_blocks - variance_blocks;
    567 		k = md_block_size*num_starting_blocks;
    568 		}
    569 
    570 	bits = 8*mac_end_offset;
    571 	if (!is_sslv3)
    572 		{
    573 		/* Compute the initial HMAC block. For SSLv3, the padding and
    574 		 * secret bytes are included in |header| because they take more
    575 		 * than a single block. */
    576 		bits += 8*md_block_size;
    577 		memset(hmac_pad, 0, md_block_size);
    578 		OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
    579 		memcpy(hmac_pad, mac_secret, mac_secret_length);
    580 		for (i = 0; i < md_block_size; i++)
    581 			hmac_pad[i] ^= 0x36;
    582 
    583 		md_transform(md_state.c, hmac_pad);
    584 		}
    585 
    586 	if (length_is_big_endian)
    587 		{
    588 		memset(length_bytes,0,md_length_size-4);
    589 		length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
    590 		length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
    591 		length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
    592 		length_bytes[md_length_size-1] = (unsigned char)bits;
    593 		}
    594 	else
    595 		{
    596 		memset(length_bytes,0,md_length_size);
    597 		length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
    598 		length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
    599 		length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
    600 		length_bytes[md_length_size-8] = (unsigned char)bits;
    601 		}
    602 
    603 	if (k > 0)
    604 		{
    605 		if (is_sslv3)
    606 			{
    607 			/* The SSLv3 header is larger than a single block.
    608 			 * overhang is the number of bytes beyond a single
    609 			 * block that the header consumes: either 7 bytes
    610 			 * (SHA1) or 11 bytes (MD5). */
    611 			unsigned overhang = header_length-md_block_size;
    612 			md_transform(md_state.c, header);
    613 			memcpy(first_block, header + md_block_size, overhang);
    614 			memcpy(first_block + overhang, data, md_block_size-overhang);
    615 			md_transform(md_state.c, first_block);
    616 			for (i = 1; i < k/md_block_size - 1; i++)
    617 				md_transform(md_state.c, data + md_block_size*i - overhang);
    618 			}
    619 		else
    620 			{
    621 			/* k is a multiple of md_block_size. */
    622 			memcpy(first_block, header, 13);
    623 			memcpy(first_block+13, data, md_block_size-13);
    624 			md_transform(md_state.c, first_block);
    625 			for (i = 1; i < k/md_block_size; i++)
    626 				md_transform(md_state.c, data + md_block_size*i - 13);
    627 			}
    628 		}
    629 
    630 	memset(mac_out, 0, sizeof(mac_out));
    631 
    632 	/* We now process the final hash blocks. For each block, we construct
    633 	 * it in constant time. If the |i==index_a| then we'll include the 0x80
    634 	 * bytes and zero pad etc. For each block we selectively copy it, in
    635 	 * constant time, to |mac_out|. */
    636 	for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
    637 		{
    638 		unsigned char block[MAX_HASH_BLOCK_SIZE];
    639 		unsigned char is_block_a = constant_time_eq_8(i, index_a);
    640 		unsigned char is_block_b = constant_time_eq_8(i, index_b);
    641 		for (j = 0; j < md_block_size; j++)
    642 			{
    643 			unsigned char b = 0, is_past_c, is_past_cp1;
    644 			if (k < header_length)
    645 				b = header[k];
    646 			else if (k < data_plus_mac_plus_padding_size + header_length)
    647 				b = data[k-header_length];
    648 			k++;
    649 
    650 			is_past_c = is_block_a & constant_time_ge_8(j, c);
    651 			is_past_cp1 = is_block_a & constant_time_ge_8(j, c+1);
    652 			/* If this is the block containing the end of the
    653 			 * application data, and we are at the offset for the
    654 			 * 0x80 value, then overwrite b with 0x80. */
    655                         b =  constant_time_select_8(is_past_c, 0x80, b);
    656 			/* If this the the block containing the end of the
    657 			 * application data and we're past the 0x80 value then
    658 			 * just write zero. */
    659 			b = b&~is_past_cp1;
    660 			/* If this is index_b (the final block), but not
    661 			 * index_a (the end of the data), then the 64-bit
    662 			 * length didn't fit into index_a and we're having to
    663 			 * add an extra block of zeros. */
    664 			b &= ~is_block_b | is_block_a;
    665 
    666 			/* The final bytes of one of the blocks contains the
    667 			 * length. */
    668 			if (j >= md_block_size - md_length_size)
    669 				{
    670 				/* If this is index_b, write a length byte. */
    671 				b = constant_time_select_8(
    672 					is_block_b, length_bytes[j-(md_block_size-md_length_size)], b);
    673 				}
    674 			block[j] = b;
    675 			}
    676 
    677 		md_transform(md_state.c, block);
    678 		md_final_raw(md_state.c, block);
    679 		/* If this is index_b, copy the hash value to |mac_out|. */
    680 		for (j = 0; j < md_size; j++)
    681 			mac_out[j] |= block[j]&is_block_b;
    682 		}
    683 
    684 	EVP_MD_CTX_init(&md_ctx);
    685 	EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
    686 	if (is_sslv3)
    687 		{
    688 		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
    689 		memset(hmac_pad, 0x5c, sslv3_pad_length);
    690 
    691 		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
    692 		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
    693 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
    694 		}
    695 	else
    696 		{
    697 		/* Complete the HMAC in the standard manner. */
    698 		for (i = 0; i < md_block_size; i++)
    699 			hmac_pad[i] ^= 0x6a;
    700 
    701 		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
    702 		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
    703 		}
    704 	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
    705 	if (md_out_size)
    706 		*md_out_size = md_out_size_u;
    707 	EVP_MD_CTX_cleanup(&md_ctx);
    708 	}
    709 
    710 #ifdef OPENSSL_FIPS
    711 
    712 /* Due to the need to use EVP in FIPS mode we can't reimplement digests but
    713  * we can ensure the number of blocks processed is equal for all cases
    714  * by digesting additional data.
    715  */
    716 
    717 void tls_fips_digest_extra(
    718 	const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
    719 	const unsigned char *data, size_t data_len, size_t orig_len)
    720 	{
    721 	size_t block_size, digest_pad, blocks_data, blocks_orig;
    722 	if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
    723 		return;
    724 	block_size = EVP_MD_CTX_block_size(mac_ctx);
    725 	/* We are in FIPS mode if we get this far so we know we have only SHA*
    726 	 * digests and TLS to deal with.
    727 	 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
    728 	 * otherwise.
    729 	 * Additional header is 13 bytes. To get the number of digest blocks
    730 	 * processed round up the amount of data plus padding to the nearest
    731 	 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
    732 	 * So we have:
    733 	 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
    734 	 * equivalently:
    735 	 * blocks = (payload_len + digest_pad + 12)/block_size + 1
    736 	 * HMAC adds a constant overhead.
    737 	 * We're ultimately only interested in differences so this becomes
    738 	 * blocks = (payload_len + 29)/128
    739 	 * for SHA384/SHA512 and
    740 	 * blocks = (payload_len + 21)/64
    741 	 * otherwise.
    742 	 */
    743 	digest_pad = block_size == 64 ? 21 : 29;
    744 	blocks_orig = (orig_len + digest_pad)/block_size;
    745 	blocks_data = (data_len + digest_pad)/block_size;
    746 	/* MAC enough blocks to make up the difference between the original
    747 	 * and actual lengths plus one extra block to ensure this is never a
    748 	 * no op. The "data" pointer should always have enough space to
    749 	 * perform this operation as it is large enough for a maximum
    750 	 * length TLS buffer.
    751 	 */
    752 	EVP_DigestSignUpdate(mac_ctx, data,
    753 				(blocks_orig - blocks_data + 1) * block_size);
    754 	}
    755 #endif
    756