Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jidctfst.c
      4  *
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains a fast, not so accurate integer implementation of the
     10  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
     11  * must also perform dequantization of the input coefficients.
     12  *
     13  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
     14  * on each row (or vice versa, but it's more convenient to emit a row at
     15  * a time).  Direct algorithms are also available, but they are much more
     16  * complex and seem not to be any faster when reduced to code.
     17  *
     18  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     19  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     20  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     21  * JPEG textbook (see REFERENCES section in file README).  The following code
     22  * is based directly on figure 4-8 in P&M.
     23  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     24  * possible to arrange the computation so that many of the multiplies are
     25  * simple scalings of the final outputs.  These multiplies can then be
     26  * folded into the multiplications or divisions by the JPEG quantization
     27  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     28  * to be done in the DCT itself.
     29  * The primary disadvantage of this method is that with fixed-point math,
     30  * accuracy is lost due to imprecise representation of the scaled
     31  * quantization values.  The smaller the quantization table entry, the less
     32  * precise the scaled value, so this implementation does worse with high-
     33  * quality-setting files than with low-quality ones.
     34  */
     35 
     36 #define JPEG_INTERNALS
     37 #include "jinclude.h"
     38 #include "jpeglib.h"
     39 #include "jdct.h"		/* Private declarations for DCT subsystem */
     40 
     41 #ifdef DCT_IFAST_SUPPORTED
     42 
     43 
     44 /*
     45  * This module is specialized to the case DCTSIZE = 8.
     46  */
     47 
     48 #if DCTSIZE != 8
     49   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     50 #endif
     51 
     52 
     53 /* Scaling decisions are generally the same as in the LL&M algorithm;
     54  * see jidctint.c for more details.  However, we choose to descale
     55  * (right shift) multiplication products as soon as they are formed,
     56  * rather than carrying additional fractional bits into subsequent additions.
     57  * This compromises accuracy slightly, but it lets us save a few shifts.
     58  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
     59  * everywhere except in the multiplications proper; this saves a good deal
     60  * of work on 16-bit-int machines.
     61  *
     62  * The dequantized coefficients are not integers because the AA&N scaling
     63  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
     64  * so that the first and second IDCT rounds have the same input scaling.
     65  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
     66  * avoid a descaling shift; this compromises accuracy rather drastically
     67  * for small quantization table entries, but it saves a lot of shifts.
     68  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
     69  * so we use a much larger scaling factor to preserve accuracy.
     70  *
     71  * A final compromise is to represent the multiplicative constants to only
     72  * 8 fractional bits, rather than 13.  This saves some shifting work on some
     73  * machines, and may also reduce the cost of multiplication (since there
     74  * are fewer one-bits in the constants).
     75  */
     76 
     77 #if BITS_IN_JSAMPLE == 8
     78 #define CONST_BITS  8
     79 #define PASS1_BITS  2
     80 #else
     81 #define CONST_BITS  8
     82 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
     83 #endif
     84 
     85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     86  * causing a lot of useless floating-point operations at run time.
     87  * To get around this we use the following pre-calculated constants.
     88  * If you change CONST_BITS you may want to add appropriate values.
     89  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     90  */
     91 
     92 #if CONST_BITS == 8
     93 #define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
     94 #define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
     95 #define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
     96 #define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
     97 #else
     98 #define FIX_1_082392200  FIX(1.082392200)
     99 #define FIX_1_414213562  FIX(1.414213562)
    100 #define FIX_1_847759065  FIX(1.847759065)
    101 #define FIX_2_613125930  FIX(2.613125930)
    102 #endif
    103 
    104 
    105 /* We can gain a little more speed, with a further compromise in accuracy,
    106  * by omitting the addition in a descaling shift.  This yields an incorrectly
    107  * rounded result half the time...
    108  */
    109 
    110 #ifndef USE_ACCURATE_ROUNDING
    111 #undef DESCALE
    112 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
    113 #endif
    114 
    115 
    116 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
    117  * descale to yield a DCTELEM result.
    118  */
    119 
    120 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
    121 
    122 
    123 /* Dequantize a coefficient by multiplying it by the multiplier-table
    124  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
    125  * multiplication will do.  For 12-bit data, the multiplier table is
    126  * declared INT32, so a 32-bit multiply will be used.
    127  */
    128 
    129 #if BITS_IN_JSAMPLE == 8
    130 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
    131 #else
    132 #define DEQUANTIZE(coef,quantval)  \
    133 	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
    134 #endif
    135 
    136 
    137 /* Like DESCALE, but applies to a DCTELEM and produces an int.
    138  * We assume that int right shift is unsigned if INT32 right shift is.
    139  */
    140 
    141 #ifdef RIGHT_SHIFT_IS_UNSIGNED
    142 #define ISHIFT_TEMPS	DCTELEM ishift_temp;
    143 #if BITS_IN_JSAMPLE == 8
    144 #define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
    145 #else
    146 #define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
    147 #endif
    148 #define IRIGHT_SHIFT(x,shft)  \
    149     ((ishift_temp = (x)) < 0 ? \
    150      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
    151      (ishift_temp >> (shft)))
    152 #else
    153 #define ISHIFT_TEMPS
    154 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
    155 #endif
    156 
    157 #ifdef USE_ACCURATE_ROUNDING
    158 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
    159 #else
    160 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
    161 #endif
    162 
    163 
    164 /*
    165  * Perform dequantization and inverse DCT on one block of coefficients.
    166  */
    167 
    168 GLOBAL(void)
    169 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    170 		 JCOEFPTR coef_block,
    171 		 JSAMPARRAY output_buf, JDIMENSION output_col)
    172 {
    173   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    174   DCTELEM tmp10, tmp11, tmp12, tmp13;
    175   DCTELEM z5, z10, z11, z12, z13;
    176   JCOEFPTR inptr;
    177   IFAST_MULT_TYPE * quantptr;
    178   int * wsptr;
    179   JSAMPROW outptr;
    180   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    181   int ctr;
    182   int workspace[DCTSIZE2];	/* buffers data between passes */
    183   SHIFT_TEMPS			/* for DESCALE */
    184   ISHIFT_TEMPS			/* for IDESCALE */
    185 
    186   /* Pass 1: process columns from input, store into work array. */
    187 
    188   inptr = coef_block;
    189   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
    190   wsptr = workspace;
    191   for (ctr = DCTSIZE; ctr > 0; ctr--) {
    192     /* Due to quantization, we will usually find that many of the input
    193      * coefficients are zero, especially the AC terms.  We can exploit this
    194      * by short-circuiting the IDCT calculation for any column in which all
    195      * the AC terms are zero.  In that case each output is equal to the
    196      * DC coefficient (with scale factor as needed).
    197      * With typical images and quantization tables, half or more of the
    198      * column DCT calculations can be simplified this way.
    199      */
    200 
    201     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    202 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
    203 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
    204 	inptr[DCTSIZE*7] == 0) {
    205       /* AC terms all zero */
    206       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    207 
    208       wsptr[DCTSIZE*0] = dcval;
    209       wsptr[DCTSIZE*1] = dcval;
    210       wsptr[DCTSIZE*2] = dcval;
    211       wsptr[DCTSIZE*3] = dcval;
    212       wsptr[DCTSIZE*4] = dcval;
    213       wsptr[DCTSIZE*5] = dcval;
    214       wsptr[DCTSIZE*6] = dcval;
    215       wsptr[DCTSIZE*7] = dcval;
    216 
    217       inptr++;			/* advance pointers to next column */
    218       quantptr++;
    219       wsptr++;
    220       continue;
    221     }
    222 
    223     /* Even part */
    224 
    225     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    226     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    227     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    228     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    229 
    230     tmp10 = tmp0 + tmp2;	/* phase 3 */
    231     tmp11 = tmp0 - tmp2;
    232 
    233     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
    234     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
    235 
    236     tmp0 = tmp10 + tmp13;	/* phase 2 */
    237     tmp3 = tmp10 - tmp13;
    238     tmp1 = tmp11 + tmp12;
    239     tmp2 = tmp11 - tmp12;
    240 
    241     /* Odd part */
    242 
    243     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    244     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    245     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    246     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    247 
    248     z13 = tmp6 + tmp5;		/* phase 6 */
    249     z10 = tmp6 - tmp5;
    250     z11 = tmp4 + tmp7;
    251     z12 = tmp4 - tmp7;
    252 
    253     tmp7 = z11 + z13;		/* phase 5 */
    254     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
    255 
    256     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    257     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    258     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
    259 
    260     tmp6 = tmp12 - tmp7;	/* phase 2 */
    261     tmp5 = tmp11 - tmp6;
    262     tmp4 = tmp10 + tmp5;
    263 
    264     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
    265     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
    266     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
    267     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
    268     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
    269     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
    270     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
    271     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
    272 
    273     inptr++;			/* advance pointers to next column */
    274     quantptr++;
    275     wsptr++;
    276   }
    277 
    278   /* Pass 2: process rows from work array, store into output array. */
    279   /* Note that we must descale the results by a factor of 8 == 2**3, */
    280   /* and also undo the PASS1_BITS scaling. */
    281 
    282   wsptr = workspace;
    283   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    284     outptr = output_buf[ctr] + output_col;
    285     /* Rows of zeroes can be exploited in the same way as we did with columns.
    286      * However, the column calculation has created many nonzero AC terms, so
    287      * the simplification applies less often (typically 5% to 10% of the time).
    288      * On machines with very fast multiplication, it's possible that the
    289      * test takes more time than it's worth.  In that case this section
    290      * may be commented out.
    291      */
    292 
    293 #ifndef NO_ZERO_ROW_TEST
    294     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
    295 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    296       /* AC terms all zero */
    297       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
    298 				  & RANGE_MASK];
    299 
    300       outptr[0] = dcval;
    301       outptr[1] = dcval;
    302       outptr[2] = dcval;
    303       outptr[3] = dcval;
    304       outptr[4] = dcval;
    305       outptr[5] = dcval;
    306       outptr[6] = dcval;
    307       outptr[7] = dcval;
    308 
    309       wsptr += DCTSIZE;		/* advance pointer to next row */
    310       continue;
    311     }
    312 #endif
    313 
    314     /* Even part */
    315 
    316     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
    317     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
    318 
    319     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
    320     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
    321 	    - tmp13;
    322 
    323     tmp0 = tmp10 + tmp13;
    324     tmp3 = tmp10 - tmp13;
    325     tmp1 = tmp11 + tmp12;
    326     tmp2 = tmp11 - tmp12;
    327 
    328     /* Odd part */
    329 
    330     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
    331     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
    332     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
    333     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
    334 
    335     tmp7 = z11 + z13;		/* phase 5 */
    336     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
    337 
    338     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    339     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    340     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
    341 
    342     tmp6 = tmp12 - tmp7;	/* phase 2 */
    343     tmp5 = tmp11 - tmp6;
    344     tmp4 = tmp10 + tmp5;
    345 
    346     /* Final output stage: scale down by a factor of 8 and range-limit */
    347 
    348     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
    349 			    & RANGE_MASK];
    350     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
    351 			    & RANGE_MASK];
    352     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
    353 			    & RANGE_MASK];
    354     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
    355 			    & RANGE_MASK];
    356     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
    357 			    & RANGE_MASK];
    358     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
    359 			    & RANGE_MASK];
    360     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
    361 			    & RANGE_MASK];
    362     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
    363 			    & RANGE_MASK];
    364 
    365     wsptr += DCTSIZE;		/* advance pointer to next row */
    366   }
    367 }
    368 
    369 #endif /* DCT_IFAST_SUPPORTED */
    370 
    371 #endif //_FX_JPEG_TURBO_
    372