Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jidctint.c
      4  *
      5  * Copyright (C) 1991-1998, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains a slow-but-accurate integer implementation of the
     10  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
     11  * must also perform dequantization of the input coefficients.
     12  *
     13  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
     14  * on each row (or vice versa, but it's more convenient to emit a row at
     15  * a time).  Direct algorithms are also available, but they are much more
     16  * complex and seem not to be any faster when reduced to code.
     17  *
     18  * This implementation is based on an algorithm described in
     19  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
     20  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
     21  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
     22  * The primary algorithm described there uses 11 multiplies and 29 adds.
     23  * We use their alternate method with 12 multiplies and 32 adds.
     24  * The advantage of this method is that no data path contains more than one
     25  * multiplication; this allows a very simple and accurate implementation in
     26  * scaled fixed-point arithmetic, with a minimal number of shifts.
     27  */
     28 
     29 #define JPEG_INTERNALS
     30 #include "jinclude.h"
     31 #include "jpeglib.h"
     32 #include "jdct.h"		/* Private declarations for DCT subsystem */
     33 
     34 #ifdef DCT_ISLOW_SUPPORTED
     35 
     36 
     37 /*
     38  * This module is specialized to the case DCTSIZE = 8.
     39  */
     40 
     41 #if DCTSIZE != 8
     42   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     43 #endif
     44 
     45 
     46 /*
     47  * The poop on this scaling stuff is as follows:
     48  *
     49  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
     50  * larger than the true IDCT outputs.  The final outputs are therefore
     51  * a factor of N larger than desired; since N=8 this can be cured by
     52  * a simple right shift at the end of the algorithm.  The advantage of
     53  * this arrangement is that we save two multiplications per 1-D IDCT,
     54  * because the y0 and y4 inputs need not be divided by sqrt(N).
     55  *
     56  * We have to do addition and subtraction of the integer inputs, which
     57  * is no problem, and multiplication by fractional constants, which is
     58  * a problem to do in integer arithmetic.  We multiply all the constants
     59  * by CONST_SCALE and convert them to integer constants (thus retaining
     60  * CONST_BITS bits of precision in the constants).  After doing a
     61  * multiplication we have to divide the product by CONST_SCALE, with proper
     62  * rounding, to produce the correct output.  This division can be done
     63  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
     64  * as long as possible so that partial sums can be added together with
     65  * full fractional precision.
     66  *
     67  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
     68  * they are represented to better-than-integral precision.  These outputs
     69  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
     70  * with the recommended scaling.  (To scale up 12-bit sample data further, an
     71  * intermediate INT32 array would be needed.)
     72  *
     73  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
     74  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
     75  * shows that the values given below are the most effective.
     76  */
     77 
     78 #if BITS_IN_JSAMPLE == 8
     79 #define CONST_BITS  13
     80 #define PASS1_BITS  2
     81 #else
     82 #define CONST_BITS  13
     83 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
     84 #endif
     85 
     86 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     87  * causing a lot of useless floating-point operations at run time.
     88  * To get around this we use the following pre-calculated constants.
     89  * If you change CONST_BITS you may want to add appropriate values.
     90  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     91  */
     92 
     93 #if CONST_BITS == 13
     94 #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
     95 #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
     96 #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
     97 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
     98 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
     99 #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
    100 #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
    101 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
    102 #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
    103 #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
    104 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
    105 #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
    106 #else
    107 #define FIX_0_298631336  FIX(0.298631336)
    108 #define FIX_0_390180644  FIX(0.390180644)
    109 #define FIX_0_541196100  FIX(0.541196100)
    110 #define FIX_0_765366865  FIX(0.765366865)
    111 #define FIX_0_899976223  FIX(0.899976223)
    112 #define FIX_1_175875602  FIX(1.175875602)
    113 #define FIX_1_501321110  FIX(1.501321110)
    114 #define FIX_1_847759065  FIX(1.847759065)
    115 #define FIX_1_961570560  FIX(1.961570560)
    116 #define FIX_2_053119869  FIX(2.053119869)
    117 #define FIX_2_562915447  FIX(2.562915447)
    118 #define FIX_3_072711026  FIX(3.072711026)
    119 #endif
    120 
    121 
    122 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
    123  * For 8-bit samples with the recommended scaling, all the variable
    124  * and constant values involved are no more than 16 bits wide, so a
    125  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
    126  * For 12-bit samples, a full 32-bit multiplication will be needed.
    127  */
    128 
    129 #if BITS_IN_JSAMPLE == 8
    130 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    131 #else
    132 #define MULTIPLY(var,const)  ((var) * (const))
    133 #endif
    134 
    135 
    136 /* Dequantize a coefficient by multiplying it by the multiplier-table
    137  * entry; produce an int result.  In this module, both inputs and result
    138  * are 16 bits or less, so either int or short multiply will work.
    139  */
    140 
    141 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
    142 
    143 
    144 /*
    145  * Perform dequantization and inverse DCT on one block of coefficients.
    146  */
    147 
    148 GLOBAL(void)
    149 jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    150 		 JCOEFPTR coef_block,
    151 		 JSAMPARRAY output_buf, JDIMENSION output_col)
    152 {
    153   INT32 tmp0, tmp1, tmp2, tmp3;
    154   INT32 tmp10, tmp11, tmp12, tmp13;
    155   INT32 z1, z2, z3, z4, z5;
    156   JCOEFPTR inptr;
    157   ISLOW_MULT_TYPE * quantptr;
    158   int * wsptr;
    159   JSAMPROW outptr;
    160   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    161   int ctr;
    162   int workspace[DCTSIZE2];	/* buffers data between passes */
    163   SHIFT_TEMPS
    164 
    165   /* Pass 1: process columns from input, store into work array. */
    166   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
    167   /* furthermore, we scale the results by 2**PASS1_BITS. */
    168 
    169   inptr = coef_block;
    170   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    171   wsptr = workspace;
    172   for (ctr = DCTSIZE; ctr > 0; ctr--) {
    173     /* Due to quantization, we will usually find that many of the input
    174      * coefficients are zero, especially the AC terms.  We can exploit this
    175      * by short-circuiting the IDCT calculation for any column in which all
    176      * the AC terms are zero.  In that case each output is equal to the
    177      * DC coefficient (with scale factor as needed).
    178      * With typical images and quantization tables, half or more of the
    179      * column DCT calculations can be simplified this way.
    180      */
    181 
    182     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    183 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
    184 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
    185 	inptr[DCTSIZE*7] == 0) {
    186       /* AC terms all zero */
    187       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
    188 
    189       wsptr[DCTSIZE*0] = dcval;
    190       wsptr[DCTSIZE*1] = dcval;
    191       wsptr[DCTSIZE*2] = dcval;
    192       wsptr[DCTSIZE*3] = dcval;
    193       wsptr[DCTSIZE*4] = dcval;
    194       wsptr[DCTSIZE*5] = dcval;
    195       wsptr[DCTSIZE*6] = dcval;
    196       wsptr[DCTSIZE*7] = dcval;
    197 
    198       inptr++;			/* advance pointers to next column */
    199       quantptr++;
    200       wsptr++;
    201       continue;
    202     }
    203 
    204     /* Even part: reverse the even part of the forward DCT. */
    205     /* The rotator is sqrt(2)*c(-6). */
    206 
    207     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    208     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    209 
    210     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    211     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    212     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    213 
    214     z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    215     z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    216 
    217     tmp0 = (z2 + z3) << CONST_BITS;
    218     tmp1 = (z2 - z3) << CONST_BITS;
    219 
    220     tmp10 = tmp0 + tmp3;
    221     tmp13 = tmp0 - tmp3;
    222     tmp11 = tmp1 + tmp2;
    223     tmp12 = tmp1 - tmp2;
    224 
    225     /* Odd part per figure 8; the matrix is unitary and hence its
    226      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
    227      */
    228 
    229     tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    230     tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    231     tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    232     tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    233 
    234     z1 = tmp0 + tmp3;
    235     z2 = tmp1 + tmp2;
    236     z3 = tmp0 + tmp2;
    237     z4 = tmp1 + tmp3;
    238     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    239 
    240     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    241     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    242     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    243     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    244     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    245     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    246     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    247     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    248 
    249     z3 += z5;
    250     z4 += z5;
    251 
    252     tmp0 += z1 + z3;
    253     tmp1 += z2 + z4;
    254     tmp2 += z2 + z3;
    255     tmp3 += z1 + z4;
    256 
    257     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    258 
    259     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
    260     wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
    261     wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
    262     wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
    263     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
    264     wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
    265     wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
    266     wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
    267 
    268     inptr++;			/* advance pointers to next column */
    269     quantptr++;
    270     wsptr++;
    271   }
    272 
    273   /* Pass 2: process rows from work array, store into output array. */
    274   /* Note that we must descale the results by a factor of 8 == 2**3, */
    275   /* and also undo the PASS1_BITS scaling. */
    276 
    277   wsptr = workspace;
    278   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    279     outptr = output_buf[ctr] + output_col;
    280     /* Rows of zeroes can be exploited in the same way as we did with columns.
    281      * However, the column calculation has created many nonzero AC terms, so
    282      * the simplification applies less often (typically 5% to 10% of the time).
    283      * On machines with very fast multiplication, it's possible that the
    284      * test takes more time than it's worth.  In that case this section
    285      * may be commented out.
    286      */
    287 
    288 #ifndef NO_ZERO_ROW_TEST
    289     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
    290 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    291       /* AC terms all zero */
    292       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
    293 				  & RANGE_MASK];
    294 
    295       outptr[0] = dcval;
    296       outptr[1] = dcval;
    297       outptr[2] = dcval;
    298       outptr[3] = dcval;
    299       outptr[4] = dcval;
    300       outptr[5] = dcval;
    301       outptr[6] = dcval;
    302       outptr[7] = dcval;
    303 
    304       wsptr += DCTSIZE;		/* advance pointer to next row */
    305       continue;
    306     }
    307 #endif
    308 
    309     /* Even part: reverse the even part of the forward DCT. */
    310     /* The rotator is sqrt(2)*c(-6). */
    311 
    312     z2 = (INT32) wsptr[2];
    313     z3 = (INT32) wsptr[6];
    314 
    315     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    316     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    317     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    318 
    319     tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
    320     tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
    321 
    322     tmp10 = tmp0 + tmp3;
    323     tmp13 = tmp0 - tmp3;
    324     tmp11 = tmp1 + tmp2;
    325     tmp12 = tmp1 - tmp2;
    326 
    327     /* Odd part per figure 8; the matrix is unitary and hence its
    328      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
    329      */
    330 
    331     tmp0 = (INT32) wsptr[7];
    332     tmp1 = (INT32) wsptr[5];
    333     tmp2 = (INT32) wsptr[3];
    334     tmp3 = (INT32) wsptr[1];
    335 
    336     z1 = tmp0 + tmp3;
    337     z2 = tmp1 + tmp2;
    338     z3 = tmp0 + tmp2;
    339     z4 = tmp1 + tmp3;
    340     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    341 
    342     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    343     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    344     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    345     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    346     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    347     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    348     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    349     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    350 
    351     z3 += z5;
    352     z4 += z5;
    353 
    354     tmp0 += z1 + z3;
    355     tmp1 += z2 + z4;
    356     tmp2 += z2 + z3;
    357     tmp3 += z1 + z4;
    358 
    359     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    360 
    361     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
    362 					  CONST_BITS+PASS1_BITS+3)
    363 			    & RANGE_MASK];
    364     outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
    365 					  CONST_BITS+PASS1_BITS+3)
    366 			    & RANGE_MASK];
    367     outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
    368 					  CONST_BITS+PASS1_BITS+3)
    369 			    & RANGE_MASK];
    370     outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
    371 					  CONST_BITS+PASS1_BITS+3)
    372 			    & RANGE_MASK];
    373     outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
    374 					  CONST_BITS+PASS1_BITS+3)
    375 			    & RANGE_MASK];
    376     outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
    377 					  CONST_BITS+PASS1_BITS+3)
    378 			    & RANGE_MASK];
    379     outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
    380 					  CONST_BITS+PASS1_BITS+3)
    381 			    & RANGE_MASK];
    382     outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
    383 					  CONST_BITS+PASS1_BITS+3)
    384 			    & RANGE_MASK];
    385 
    386     wsptr += DCTSIZE;		/* advance pointer to next row */
    387   }
    388 }
    389 
    390 #endif /* DCT_ISLOW_SUPPORTED */
    391 
    392 #endif //_FX_JPEG_TURBO_
    393