Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jidctred.c
      4  *
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains inverse-DCT routines that produce reduced-size output:
     10  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
     11  *
     12  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
     13  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
     14  * with an 8-to-4 step that produces the four averages of two adjacent outputs
     15  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
     16  * These steps were derived by computing the corresponding values at the end
     17  * of the normal LL&M code, then simplifying as much as possible.
     18  *
     19  * 1x1 is trivial: just take the DC coefficient divided by 8.
     20  *
     21  * See jidctint.c for additional comments.
     22  */
     23 
     24 #define JPEG_INTERNALS
     25 #include "jinclude.h"
     26 #include "jpeglib.h"
     27 #include "jdct.h"		/* Private declarations for DCT subsystem */
     28 
     29 #ifdef IDCT_SCALING_SUPPORTED
     30 
     31 
     32 /*
     33  * This module is specialized to the case DCTSIZE = 8.
     34  */
     35 
     36 #if DCTSIZE != 8
     37   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     38 #endif
     39 
     40 
     41 /* Scaling is the same as in jidctint.c. */
     42 
     43 #if BITS_IN_JSAMPLE == 8
     44 #define CONST_BITS  13
     45 #define PASS1_BITS  2
     46 #else
     47 #define CONST_BITS  13
     48 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
     49 #endif
     50 
     51 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     52  * causing a lot of useless floating-point operations at run time.
     53  * To get around this we use the following pre-calculated constants.
     54  * If you change CONST_BITS you may want to add appropriate values.
     55  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     56  */
     57 
     58 #if CONST_BITS == 13
     59 #define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */
     60 #define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */
     61 #define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */
     62 #define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */
     63 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
     64 #define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */
     65 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
     66 #define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */
     67 #define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */
     68 #define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */
     69 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
     70 #define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */
     71 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
     72 #define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */
     73 #else
     74 #define FIX_0_211164243  FIX(0.211164243)
     75 #define FIX_0_509795579  FIX(0.509795579)
     76 #define FIX_0_601344887  FIX(0.601344887)
     77 #define FIX_0_720959822  FIX(0.720959822)
     78 #define FIX_0_765366865  FIX(0.765366865)
     79 #define FIX_0_850430095  FIX(0.850430095)
     80 #define FIX_0_899976223  FIX(0.899976223)
     81 #define FIX_1_061594337  FIX(1.061594337)
     82 #define FIX_1_272758580  FIX(1.272758580)
     83 #define FIX_1_451774981  FIX(1.451774981)
     84 #define FIX_1_847759065  FIX(1.847759065)
     85 #define FIX_2_172734803  FIX(2.172734803)
     86 #define FIX_2_562915447  FIX(2.562915447)
     87 #define FIX_3_624509785  FIX(3.624509785)
     88 #endif
     89 
     90 
     91 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
     92  * For 8-bit samples with the recommended scaling, all the variable
     93  * and constant values involved are no more than 16 bits wide, so a
     94  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
     95  * For 12-bit samples, a full 32-bit multiplication will be needed.
     96  */
     97 
     98 #if BITS_IN_JSAMPLE == 8
     99 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    100 #else
    101 #define MULTIPLY(var,const)  ((var) * (const))
    102 #endif
    103 
    104 
    105 /* Dequantize a coefficient by multiplying it by the multiplier-table
    106  * entry; produce an int result.  In this module, both inputs and result
    107  * are 16 bits or less, so either int or short multiply will work.
    108  */
    109 
    110 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
    111 
    112 
    113 /*
    114  * Perform dequantization and inverse DCT on one block of coefficients,
    115  * producing a reduced-size 4x4 output block.
    116  */
    117 
    118 GLOBAL(void)
    119 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    120 	       JCOEFPTR coef_block,
    121 	       JSAMPARRAY output_buf, JDIMENSION output_col)
    122 {
    123   INT32 tmp0, tmp2, tmp10, tmp12;
    124   INT32 z1, z2, z3, z4;
    125   JCOEFPTR inptr;
    126   ISLOW_MULT_TYPE * quantptr;
    127   int * wsptr;
    128   JSAMPROW outptr;
    129   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    130   int ctr;
    131   int workspace[DCTSIZE*4];	/* buffers data between passes */
    132   SHIFT_TEMPS
    133 
    134   /* Pass 1: process columns from input, store into work array. */
    135 
    136   inptr = coef_block;
    137   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    138   wsptr = workspace;
    139   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    140     /* Don't bother to process column 4, because second pass won't use it */
    141     if (ctr == DCTSIZE-4)
    142       continue;
    143     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    144 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
    145 	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
    146       /* AC terms all zero; we need not examine term 4 for 4x4 output */
    147       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
    148 
    149       wsptr[DCTSIZE*0] = dcval;
    150       wsptr[DCTSIZE*1] = dcval;
    151       wsptr[DCTSIZE*2] = dcval;
    152       wsptr[DCTSIZE*3] = dcval;
    153 
    154       continue;
    155     }
    156 
    157     /* Even part */
    158 
    159     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    160     tmp0 <<= (CONST_BITS+1);
    161 
    162     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    163     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    164 
    165     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
    166 
    167     tmp10 = tmp0 + tmp2;
    168     tmp12 = tmp0 - tmp2;
    169 
    170     /* Odd part */
    171 
    172     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    173     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    174     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    175     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    176 
    177     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
    178 	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
    179 	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
    180 	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    181 
    182     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
    183 	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
    184 	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
    185 	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
    186 
    187     /* Final output stage */
    188 
    189     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
    190     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
    191     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
    192     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
    193   }
    194 
    195   /* Pass 2: process 4 rows from work array, store into output array. */
    196 
    197   wsptr = workspace;
    198   for (ctr = 0; ctr < 4; ctr++) {
    199     outptr = output_buf[ctr] + output_col;
    200     /* It's not clear whether a zero row test is worthwhile here ... */
    201 
    202 #ifndef NO_ZERO_ROW_TEST
    203     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
    204 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    205       /* AC terms all zero */
    206       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
    207 				  & RANGE_MASK];
    208 
    209       outptr[0] = dcval;
    210       outptr[1] = dcval;
    211       outptr[2] = dcval;
    212       outptr[3] = dcval;
    213 
    214       wsptr += DCTSIZE;		/* advance pointer to next row */
    215       continue;
    216     }
    217 #endif
    218 
    219     /* Even part */
    220 
    221     tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
    222 
    223     tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
    224 	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
    225 
    226     tmp10 = tmp0 + tmp2;
    227     tmp12 = tmp0 - tmp2;
    228 
    229     /* Odd part */
    230 
    231     z1 = (INT32) wsptr[7];
    232     z2 = (INT32) wsptr[5];
    233     z3 = (INT32) wsptr[3];
    234     z4 = (INT32) wsptr[1];
    235 
    236     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
    237 	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
    238 	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
    239 	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    240 
    241     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
    242 	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
    243 	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
    244 	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
    245 
    246     /* Final output stage */
    247 
    248     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
    249 					  CONST_BITS+PASS1_BITS+3+1)
    250 			    & RANGE_MASK];
    251     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
    252 					  CONST_BITS+PASS1_BITS+3+1)
    253 			    & RANGE_MASK];
    254     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
    255 					  CONST_BITS+PASS1_BITS+3+1)
    256 			    & RANGE_MASK];
    257     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
    258 					  CONST_BITS+PASS1_BITS+3+1)
    259 			    & RANGE_MASK];
    260 
    261     wsptr += DCTSIZE;		/* advance pointer to next row */
    262   }
    263 }
    264 
    265 
    266 /*
    267  * Perform dequantization and inverse DCT on one block of coefficients,
    268  * producing a reduced-size 2x2 output block.
    269  */
    270 
    271 GLOBAL(void)
    272 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    273 	       JCOEFPTR coef_block,
    274 	       JSAMPARRAY output_buf, JDIMENSION output_col)
    275 {
    276   INT32 tmp0, tmp10, z1;
    277   JCOEFPTR inptr;
    278   ISLOW_MULT_TYPE * quantptr;
    279   int * wsptr;
    280   JSAMPROW outptr;
    281   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    282   int ctr;
    283   int workspace[DCTSIZE*2];	/* buffers data between passes */
    284   SHIFT_TEMPS
    285 
    286   /* Pass 1: process columns from input, store into work array. */
    287 
    288   inptr = coef_block;
    289   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    290   wsptr = workspace;
    291   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    292     /* Don't bother to process columns 2,4,6 */
    293     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
    294       continue;
    295     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
    296 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
    297       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
    298       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
    299 
    300       wsptr[DCTSIZE*0] = dcval;
    301       wsptr[DCTSIZE*1] = dcval;
    302 
    303       continue;
    304     }
    305 
    306     /* Even part */
    307 
    308     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    309     tmp10 = z1 << (CONST_BITS+2);
    310 
    311     /* Odd part */
    312 
    313     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    314     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
    315     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    316     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
    317     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    318     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
    319     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    320     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
    321 
    322     /* Final output stage */
    323 
    324     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
    325     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
    326   }
    327 
    328   /* Pass 2: process 2 rows from work array, store into output array. */
    329 
    330   wsptr = workspace;
    331   for (ctr = 0; ctr < 2; ctr++) {
    332     outptr = output_buf[ctr] + output_col;
    333     /* It's not clear whether a zero row test is worthwhile here ... */
    334 
    335 #ifndef NO_ZERO_ROW_TEST
    336     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
    337       /* AC terms all zero */
    338       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
    339 				  & RANGE_MASK];
    340 
    341       outptr[0] = dcval;
    342       outptr[1] = dcval;
    343 
    344       wsptr += DCTSIZE;		/* advance pointer to next row */
    345       continue;
    346     }
    347 #endif
    348 
    349     /* Even part */
    350 
    351     tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
    352 
    353     /* Odd part */
    354 
    355     tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
    356 	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
    357 	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
    358 	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
    359 
    360     /* Final output stage */
    361 
    362     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
    363 					  CONST_BITS+PASS1_BITS+3+2)
    364 			    & RANGE_MASK];
    365     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
    366 					  CONST_BITS+PASS1_BITS+3+2)
    367 			    & RANGE_MASK];
    368 
    369     wsptr += DCTSIZE;		/* advance pointer to next row */
    370   }
    371 }
    372 
    373 
    374 /*
    375  * Perform dequantization and inverse DCT on one block of coefficients,
    376  * producing a reduced-size 1x1 output block.
    377  */
    378 
    379 GLOBAL(void)
    380 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    381 	       JCOEFPTR coef_block,
    382 	       JSAMPARRAY output_buf, JDIMENSION output_col)
    383 {
    384   int dcval;
    385   ISLOW_MULT_TYPE * quantptr;
    386   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    387   SHIFT_TEMPS
    388 
    389   /* We hardly need an inverse DCT routine for this: just take the
    390    * average pixel value, which is one-eighth of the DC coefficient.
    391    */
    392   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    393   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
    394   dcval = (int) DESCALE((INT32) dcval, 3);
    395 
    396   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
    397 }
    398 
    399 #endif /* IDCT_SCALING_SUPPORTED */
    400 
    401 #endif //_FX_JPEG_TURBO_
    402