1 /*- 2 * Copyright 2009 Colin Percival 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * This file was originally written by Colin Percival as part of the Tarsnap 27 * online backup system. 28 */ 29 #include "scrypt_platform.h" 30 31 #include <machine/cpu-features.h> 32 #include <arm_neon.h> 33 34 #include <errno.h> 35 #include <stdint.h> 36 #include <limits.h> 37 #include <stdlib.h> 38 #include <string.h> 39 40 #ifdef USE_OPENSSL_PBKDF2 41 #include <openssl/evp.h> 42 #else 43 #include "sha256.h" 44 #endif 45 #include "sysendian.h" 46 47 #include "crypto_scrypt.h" 48 49 #include "crypto_scrypt-neon-salsa208.h" 50 51 static void blkcpy(void *, void *, size_t); 52 static void blkxor(void *, void *, size_t); 53 void crypto_core_salsa208_armneon2(void *); 54 static void blockmix_salsa8(uint8x16_t *, uint8x16_t *, uint8x16_t *, size_t); 55 static uint64_t integerify(void *, size_t); 56 static void smix(uint8_t *, size_t, uint64_t, void *, void *); 57 58 static void 59 blkcpy(void * dest, void * src, size_t len) 60 { 61 uint8x16_t * D = dest; 62 uint8x16_t * S = src; 63 size_t L = len / 16; 64 size_t i; 65 66 for (i = 0; i < L; i++) 67 D[i] = S[i]; 68 } 69 70 static void 71 blkxor(void * dest, void * src, size_t len) 72 { 73 uint8x16_t * D = dest; 74 uint8x16_t * S = src; 75 size_t L = len / 16; 76 size_t i; 77 78 for (i = 0; i < L; i++) 79 D[i] = veorq_u8(D[i], S[i]); 80 } 81 82 /** 83 * blockmix_salsa8(B, Y, r): 84 * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in 85 * length; the temporary space Y must also be the same size. 86 */ 87 static void 88 blockmix_salsa8(uint8x16_t * Bin, uint8x16_t * Bout, uint8x16_t * X, size_t r) 89 { 90 size_t i; 91 92 /* 1: X <-- B_{2r - 1} */ 93 blkcpy(X, &Bin[8 * r - 4], 64); 94 95 /* 2: for i = 0 to 2r - 1 do */ 96 for (i = 0; i < r; i++) { 97 /* 3: X <-- H(X \xor B_i) */ 98 blkxor(X, &Bin[i * 8], 64); 99 salsa20_8_intrinsic((void *) X); 100 101 /* 4: Y_i <-- X */ 102 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ 103 blkcpy(&Bout[i * 4], X, 64); 104 105 /* 3: X <-- H(X \xor B_i) */ 106 blkxor(X, &Bin[i * 8 + 4], 64); 107 salsa20_8_intrinsic((void *) X); 108 109 /* 4: Y_i <-- X */ 110 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ 111 blkcpy(&Bout[(r + i) * 4], X, 64); 112 } 113 } 114 115 /** 116 * integerify(B, r): 117 * Return the result of parsing B_{2r-1} as a little-endian integer. 118 */ 119 static uint64_t 120 integerify(void * B, size_t r) 121 { 122 uint8_t * X = (void*)((uintptr_t)(B) + (2 * r - 1) * 64); 123 124 return (le64dec(X)); 125 } 126 127 /** 128 * smix(B, r, N, V, XY): 129 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the 130 * temporary storage V must be 128rN bytes in length; the temporary storage 131 * XY must be 256r bytes in length. The value N must be a power of 2. 132 */ 133 static void 134 smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) 135 { 136 uint8x16_t * X = XY; 137 uint8x16_t * Y = (void *)((uintptr_t)(XY) + 128 * r); 138 uint8x16_t * Z = (void *)((uintptr_t)(XY) + 256 * r); 139 uint32_t * X32 = (void *)X; 140 uint64_t i, j; 141 size_t k; 142 143 /* 1: X <-- B */ 144 blkcpy(X, B, 128 * r); 145 146 /* 2: for i = 0 to N - 1 do */ 147 for (i = 0; i < N; i += 2) { 148 /* 3: V_i <-- X */ 149 blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); 150 151 /* 4: X <-- H(X) */ 152 blockmix_salsa8(X, Y, Z, r); 153 154 /* 3: V_i <-- X */ 155 blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), 156 Y, 128 * r); 157 158 /* 4: X <-- H(X) */ 159 blockmix_salsa8(Y, X, Z, r); 160 } 161 162 /* 6: for i = 0 to N - 1 do */ 163 for (i = 0; i < N; i += 2) { 164 /* 7: j <-- Integerify(X) mod N */ 165 j = integerify(X, r) & (N - 1); 166 167 /* 8: X <-- H(X \xor V_j) */ 168 blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); 169 blockmix_salsa8(X, Y, Z, r); 170 171 /* 7: j <-- Integerify(X) mod N */ 172 j = integerify(Y, r) & (N - 1); 173 174 /* 8: X <-- H(X \xor V_j) */ 175 blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); 176 blockmix_salsa8(Y, X, Z, r); 177 } 178 179 /* 10: B' <-- X */ 180 blkcpy(B, X, 128 * r); 181 } 182 183 /** 184 * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): 185 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, 186 * p, buflen) and write the result into buf. The parameters r, p, and buflen 187 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N 188 * must be a power of 2. 189 * 190 * Return 0 on success; or -1 on error. 191 */ 192 int 193 crypto_scrypt(const uint8_t * passwd, size_t passwdlen, 194 const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, 195 uint8_t * buf, size_t buflen) 196 { 197 void * B0, * V0, * XY0; 198 uint8_t * B; 199 uint32_t * V; 200 uint32_t * XY; 201 uint32_t i; 202 203 /* Sanity-check parameters. */ 204 #if SIZE_MAX > UINT32_MAX 205 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { 206 errno = EFBIG; 207 goto err0; 208 } 209 #endif 210 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { 211 errno = EFBIG; 212 goto err0; 213 } 214 if (((N & (N - 1)) != 0) || (N == 0)) { 215 errno = EINVAL; 216 goto err0; 217 } 218 if ((r > SIZE_MAX / 128 / p) || 219 #if SIZE_MAX / 256 <= UINT32_MAX 220 (r > SIZE_MAX / 256) || 221 #endif 222 (N > SIZE_MAX / 128 / r)) { 223 errno = ENOMEM; 224 goto err0; 225 } 226 227 /* Allocate memory. */ 228 #ifdef HAVE_POSIX_MEMALIGN 229 if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) 230 goto err0; 231 B = (uint8_t *)(B0); 232 if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) 233 goto err1; 234 XY = (uint32_t *)(XY0); 235 #ifndef MAP_ANON 236 if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) 237 goto err2; 238 V = (uint32_t *)(V0); 239 #endif 240 #else 241 if ((B0 = malloc(128 * r * p + 63)) == NULL) 242 goto err0; 243 B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); 244 if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) 245 goto err1; 246 XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); 247 #ifndef MAP_ANON 248 if ((V0 = malloc(128 * r * N + 63)) == NULL) 249 goto err2; 250 V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); 251 #endif 252 #endif 253 #ifdef MAP_ANON 254 if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, 255 #ifdef MAP_NOCORE 256 MAP_ANON | MAP_PRIVATE | MAP_NOCORE, 257 #else 258 MAP_ANON | MAP_PRIVATE, 259 #endif 260 -1, 0)) == MAP_FAILED) 261 goto err2; 262 V = (uint32_t *)(V0); 263 #endif 264 265 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ 266 #ifdef USE_OPENSSL_PBKDF2 267 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); 268 #else 269 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); 270 #endif 271 272 /* 2: for i = 0 to p - 1 do */ 273 for (i = 0; i < p; i++) { 274 /* 3: B_i <-- MF(B_i, N) */ 275 smix(&B[i * 128 * r], r, N, V, XY); 276 } 277 278 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ 279 #ifdef USE_OPENSSL_PBKDF2 280 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); 281 #else 282 PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); 283 #endif 284 285 /* Free memory. */ 286 #ifdef MAP_ANON 287 if (munmap(V0, 128 * r * N)) 288 goto err2; 289 #else 290 free(V0); 291 #endif 292 free(XY0); 293 free(B0); 294 295 /* Success! */ 296 return (0); 297 298 err2: 299 free(XY0); 300 err1: 301 free(B0); 302 err0: 303 /* Failure! */ 304 return (-1); 305 } 306