Home | History | Annotate | Download | only in crypto
      1 /*-
      2  * Copyright 2009 Colin Percival
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  * SUCH DAMAGE.
     25  *
     26  * This file was originally written by Colin Percival as part of the Tarsnap
     27  * online backup system.
     28  */
     29 #include "scrypt_platform.h"
     30 
     31 #include <machine/cpu-features.h>
     32 #include <arm_neon.h>
     33 
     34 #include <errno.h>
     35 #include <stdint.h>
     36 #include <limits.h>
     37 #include <stdlib.h>
     38 #include <string.h>
     39 
     40 #ifdef USE_OPENSSL_PBKDF2
     41 #include <openssl/evp.h>
     42 #else
     43 #include "sha256.h"
     44 #endif
     45 #include "sysendian.h"
     46 
     47 #include "crypto_scrypt.h"
     48 
     49 #include "crypto_scrypt-neon-salsa208.h"
     50 
     51 static void blkcpy(void *, void *, size_t);
     52 static void blkxor(void *, void *, size_t);
     53 void crypto_core_salsa208_armneon2(void *);
     54 static void blockmix_salsa8(uint8x16_t *, uint8x16_t *, uint8x16_t *, size_t);
     55 static uint64_t integerify(void *, size_t);
     56 static void smix(uint8_t *, size_t, uint64_t, void *, void *);
     57 
     58 static void
     59 blkcpy(void * dest, void * src, size_t len)
     60 {
     61 	uint8x16_t * D = dest;
     62 	uint8x16_t * S = src;
     63 	size_t L = len / 16;
     64 	size_t i;
     65 
     66 	for (i = 0; i < L; i++)
     67 		D[i] = S[i];
     68 }
     69 
     70 static void
     71 blkxor(void * dest, void * src, size_t len)
     72 {
     73 	uint8x16_t * D = dest;
     74 	uint8x16_t * S = src;
     75 	size_t L = len / 16;
     76 	size_t i;
     77 
     78 	for (i = 0; i < L; i++)
     79 		D[i] = veorq_u8(D[i], S[i]);
     80 }
     81 
     82 /**
     83  * blockmix_salsa8(B, Y, r):
     84  * Compute B = BlockMix_{salsa20/8, r}(B).  The input B must be 128r bytes in
     85  * length; the temporary space Y must also be the same size.
     86  */
     87 static void
     88 blockmix_salsa8(uint8x16_t * Bin, uint8x16_t * Bout, uint8x16_t * X, size_t r)
     89 {
     90 	size_t i;
     91 
     92 	/* 1: X <-- B_{2r - 1} */
     93 	blkcpy(X, &Bin[8 * r - 4], 64);
     94 
     95 	/* 2: for i = 0 to 2r - 1 do */
     96 	for (i = 0; i < r; i++) {
     97 		/* 3: X <-- H(X \xor B_i) */
     98 		blkxor(X, &Bin[i * 8], 64);
     99                 salsa20_8_intrinsic((void *) X);
    100 
    101 		/* 4: Y_i <-- X */
    102 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
    103 		blkcpy(&Bout[i * 4], X, 64);
    104 
    105 		/* 3: X <-- H(X \xor B_i) */
    106 		blkxor(X, &Bin[i * 8 + 4], 64);
    107                 salsa20_8_intrinsic((void *) X);
    108 
    109 		/* 4: Y_i <-- X */
    110 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
    111 		blkcpy(&Bout[(r + i) * 4], X, 64);
    112 	}
    113 }
    114 
    115 /**
    116  * integerify(B, r):
    117  * Return the result of parsing B_{2r-1} as a little-endian integer.
    118  */
    119 static uint64_t
    120 integerify(void * B, size_t r)
    121 {
    122 	uint8_t * X = (void*)((uintptr_t)(B) + (2 * r - 1) * 64);
    123 
    124 	return (le64dec(X));
    125 }
    126 
    127 /**
    128  * smix(B, r, N, V, XY):
    129  * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length; the
    130  * temporary storage V must be 128rN bytes in length; the temporary storage
    131  * XY must be 256r bytes in length.  The value N must be a power of 2.
    132  */
    133 static void
    134 smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
    135 {
    136 	uint8x16_t * X = XY;
    137 	uint8x16_t * Y = (void *)((uintptr_t)(XY) + 128 * r);
    138         uint8x16_t * Z = (void *)((uintptr_t)(XY) + 256 * r);
    139         uint32_t * X32 = (void *)X;
    140 	uint64_t i, j;
    141         size_t k;
    142 
    143 	/* 1: X <-- B */
    144 	blkcpy(X, B, 128 * r);
    145 
    146 	/* 2: for i = 0 to N - 1 do */
    147 	for (i = 0; i < N; i += 2) {
    148 		/* 3: V_i <-- X */
    149 		blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
    150 
    151 		/* 4: X <-- H(X) */
    152 		blockmix_salsa8(X, Y, Z, r);
    153 
    154 		/* 3: V_i <-- X */
    155 		blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
    156 		    Y, 128 * r);
    157 
    158 		/* 4: X <-- H(X) */
    159 		blockmix_salsa8(Y, X, Z, r);
    160 	}
    161 
    162 	/* 6: for i = 0 to N - 1 do */
    163 	for (i = 0; i < N; i += 2) {
    164 		/* 7: j <-- Integerify(X) mod N */
    165 		j = integerify(X, r) & (N - 1);
    166 
    167 		/* 8: X <-- H(X \xor V_j) */
    168 		blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
    169 		blockmix_salsa8(X, Y, Z, r);
    170 
    171 		/* 7: j <-- Integerify(X) mod N */
    172 		j = integerify(Y, r) & (N - 1);
    173 
    174 		/* 8: X <-- H(X \xor V_j) */
    175 		blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
    176 		blockmix_salsa8(Y, X, Z, r);
    177 	}
    178 
    179 	/* 10: B' <-- X */
    180 	blkcpy(B, X, 128 * r);
    181 }
    182 
    183 /**
    184  * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
    185  * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
    186  * p, buflen) and write the result into buf.  The parameters r, p, and buflen
    187  * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32.  The parameter N
    188  * must be a power of 2.
    189  *
    190  * Return 0 on success; or -1 on error.
    191  */
    192 int
    193 crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
    194     const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
    195     uint8_t * buf, size_t buflen)
    196 {
    197 	void * B0, * V0, * XY0;
    198 	uint8_t * B;
    199 	uint32_t * V;
    200 	uint32_t * XY;
    201 	uint32_t i;
    202 
    203 	/* Sanity-check parameters. */
    204 #if SIZE_MAX > UINT32_MAX
    205 	if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
    206 		errno = EFBIG;
    207 		goto err0;
    208 	}
    209 #endif
    210 	if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
    211 		errno = EFBIG;
    212 		goto err0;
    213 	}
    214 	if (((N & (N - 1)) != 0) || (N == 0)) {
    215 		errno = EINVAL;
    216 		goto err0;
    217 	}
    218 	if ((r > SIZE_MAX / 128 / p) ||
    219 #if SIZE_MAX / 256 <= UINT32_MAX
    220 	    (r > SIZE_MAX / 256) ||
    221 #endif
    222 	    (N > SIZE_MAX / 128 / r)) {
    223 		errno = ENOMEM;
    224 		goto err0;
    225 	}
    226 
    227 	/* Allocate memory. */
    228 #ifdef HAVE_POSIX_MEMALIGN
    229 	if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
    230 		goto err0;
    231 	B = (uint8_t *)(B0);
    232 	if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
    233 		goto err1;
    234 	XY = (uint32_t *)(XY0);
    235 #ifndef MAP_ANON
    236 	if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
    237 		goto err2;
    238 	V = (uint32_t *)(V0);
    239 #endif
    240 #else
    241 	if ((B0 = malloc(128 * r * p + 63)) == NULL)
    242 		goto err0;
    243 	B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
    244 	if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
    245 		goto err1;
    246 	XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
    247 #ifndef MAP_ANON
    248 	if ((V0 = malloc(128 * r * N + 63)) == NULL)
    249 		goto err2;
    250 	V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
    251 #endif
    252 #endif
    253 #ifdef MAP_ANON
    254 	if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
    255 #ifdef MAP_NOCORE
    256 	    MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
    257 #else
    258 	    MAP_ANON | MAP_PRIVATE,
    259 #endif
    260 	    -1, 0)) == MAP_FAILED)
    261 		goto err2;
    262 	V = (uint32_t *)(V0);
    263 #endif
    264 
    265 	/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
    266 #ifdef USE_OPENSSL_PBKDF2
    267 	PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B);
    268 #else
    269 	PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
    270 #endif
    271 
    272 	/* 2: for i = 0 to p - 1 do */
    273 	for (i = 0; i < p; i++) {
    274 		/* 3: B_i <-- MF(B_i, N) */
    275 		smix(&B[i * 128 * r], r, N, V, XY);
    276 	}
    277 
    278 	/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
    279 #ifdef USE_OPENSSL_PBKDF2
    280 	PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf);
    281 #else
    282 	PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
    283 #endif
    284 
    285 	/* Free memory. */
    286 #ifdef MAP_ANON
    287 	if (munmap(V0, 128 * r * N))
    288 		goto err2;
    289 #else
    290 	free(V0);
    291 #endif
    292 	free(XY0);
    293 	free(B0);
    294 
    295 	/* Success! */
    296 	return (0);
    297 
    298 err2:
    299 	free(XY0);
    300 err1:
    301 	free(B0);
    302 err0:
    303 	/* Failure! */
    304 	return (-1);
    305 }
    306