1 /*- 2 * Copyright 2009 Colin Percival 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * This file was originally written by Colin Percival as part of the Tarsnap 27 * online backup system. 28 */ 29 #include "scrypt_platform.h" 30 31 #include <sys/types.h> 32 #include <sys/mman.h> 33 34 #include <emmintrin.h> 35 #include <errno.h> 36 #include <stdint.h> 37 #include <stdlib.h> 38 #include <string.h> 39 40 #ifdef USE_OPENSSL_PBKDF2 41 #include <openssl/evp.h> 42 #else 43 #include "sha256.h" 44 #endif 45 #include "sysendian.h" 46 47 #include "crypto_scrypt.h" 48 49 static void blkcpy(void *, void *, size_t); 50 static void blkxor(void *, void *, size_t); 51 static void salsa20_8(__m128i *); 52 static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t); 53 static uint64_t integerify(void *, size_t); 54 static void smix(uint8_t *, size_t, uint64_t, void *, void *); 55 56 static void 57 blkcpy(void * dest, void * src, size_t len) 58 { 59 __m128i * D = dest; 60 __m128i * S = src; 61 size_t L = len / 16; 62 size_t i; 63 64 for (i = 0; i < L; i++) 65 D[i] = S[i]; 66 } 67 68 static void 69 blkxor(void * dest, void * src, size_t len) 70 { 71 __m128i * D = dest; 72 __m128i * S = src; 73 size_t L = len / 16; 74 size_t i; 75 76 for (i = 0; i < L; i++) 77 D[i] = _mm_xor_si128(D[i], S[i]); 78 } 79 80 /** 81 * salsa20_8(B): 82 * Apply the salsa20/8 core to the provided block. 83 */ 84 static void 85 salsa20_8(__m128i B[4]) 86 { 87 __m128i X0, X1, X2, X3; 88 __m128i T; 89 size_t i; 90 91 X0 = B[0]; 92 X1 = B[1]; 93 X2 = B[2]; 94 X3 = B[3]; 95 96 for (i = 0; i < 8; i += 2) { 97 /* Operate on "columns". */ 98 T = _mm_add_epi32(X0, X3); 99 X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7)); 100 X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25)); 101 T = _mm_add_epi32(X1, X0); 102 X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); 103 X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); 104 T = _mm_add_epi32(X2, X1); 105 X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13)); 106 X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19)); 107 T = _mm_add_epi32(X3, X2); 108 X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); 109 X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); 110 111 /* Rearrange data. */ 112 X1 = _mm_shuffle_epi32(X1, 0x93); 113 X2 = _mm_shuffle_epi32(X2, 0x4E); 114 X3 = _mm_shuffle_epi32(X3, 0x39); 115 116 /* Operate on "rows". */ 117 T = _mm_add_epi32(X0, X1); 118 X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7)); 119 X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25)); 120 T = _mm_add_epi32(X3, X0); 121 X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); 122 X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); 123 T = _mm_add_epi32(X2, X3); 124 X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13)); 125 X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19)); 126 T = _mm_add_epi32(X1, X2); 127 X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); 128 X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); 129 130 /* Rearrange data. */ 131 X1 = _mm_shuffle_epi32(X1, 0x39); 132 X2 = _mm_shuffle_epi32(X2, 0x4E); 133 X3 = _mm_shuffle_epi32(X3, 0x93); 134 } 135 136 B[0] = _mm_add_epi32(B[0], X0); 137 B[1] = _mm_add_epi32(B[1], X1); 138 B[2] = _mm_add_epi32(B[2], X2); 139 B[3] = _mm_add_epi32(B[3], X3); 140 } 141 142 /** 143 * blockmix_salsa8(Bin, Bout, X, r): 144 * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r 145 * bytes in length; the output Bout must also be the same size. The 146 * temporary space X must be 64 bytes. 147 */ 148 static void 149 blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r) 150 { 151 size_t i; 152 153 /* 1: X <-- B_{2r - 1} */ 154 blkcpy(X, &Bin[8 * r - 4], 64); 155 156 /* 2: for i = 0 to 2r - 1 do */ 157 for (i = 0; i < r; i++) { 158 /* 3: X <-- H(X \xor B_i) */ 159 blkxor(X, &Bin[i * 8], 64); 160 salsa20_8(X); 161 162 /* 4: Y_i <-- X */ 163 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ 164 blkcpy(&Bout[i * 4], X, 64); 165 166 /* 3: X <-- H(X \xor B_i) */ 167 blkxor(X, &Bin[i * 8 + 4], 64); 168 salsa20_8(X); 169 170 /* 4: Y_i <-- X */ 171 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ 172 blkcpy(&Bout[(r + i) * 4], X, 64); 173 } 174 } 175 176 /** 177 * integerify(B, r): 178 * Return the result of parsing B_{2r-1} as a little-endian integer. 179 */ 180 static uint64_t 181 integerify(void * B, size_t r) 182 { 183 uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); 184 185 return (((uint64_t)(X[13]) << 32) + X[0]); 186 } 187 188 /** 189 * smix(B, r, N, V, XY): 190 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; 191 * the temporary storage V must be 128rN bytes in length; the temporary 192 * storage XY must be 256r + 64 bytes in length. The value N must be a 193 * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a 194 * multiple of 64 bytes. 195 */ 196 static void 197 smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) 198 { 199 __m128i * X = XY; 200 __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r); 201 __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r); 202 uint32_t * X32 = (void *)X; 203 uint64_t i, j; 204 size_t k; 205 206 /* 1: X <-- B */ 207 for (k = 0; k < 2 * r; k++) { 208 for (i = 0; i < 16; i++) { 209 X32[k * 16 + i] = 210 le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); 211 } 212 } 213 214 /* 2: for i = 0 to N - 1 do */ 215 for (i = 0; i < N; i += 2) { 216 /* 3: V_i <-- X */ 217 blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); 218 219 /* 4: X <-- H(X) */ 220 blockmix_salsa8(X, Y, Z, r); 221 222 /* 3: V_i <-- X */ 223 blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), 224 Y, 128 * r); 225 226 /* 4: X <-- H(X) */ 227 blockmix_salsa8(Y, X, Z, r); 228 } 229 230 /* 6: for i = 0 to N - 1 do */ 231 for (i = 0; i < N; i += 2) { 232 /* 7: j <-- Integerify(X) mod N */ 233 j = integerify(X, r) & (N - 1); 234 235 /* 8: X <-- H(X \xor V_j) */ 236 blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); 237 blockmix_salsa8(X, Y, Z, r); 238 239 /* 7: j <-- Integerify(X) mod N */ 240 j = integerify(Y, r) & (N - 1); 241 242 /* 8: X <-- H(X \xor V_j) */ 243 blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); 244 blockmix_salsa8(Y, X, Z, r); 245 } 246 247 /* 10: B' <-- X */ 248 for (k = 0; k < 2 * r; k++) { 249 for (i = 0; i < 16; i++) { 250 le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], 251 X32[k * 16 + i]); 252 } 253 } 254 } 255 256 /** 257 * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): 258 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, 259 * p, buflen) and write the result into buf. The parameters r, p, and buflen 260 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N 261 * must be a power of 2 greater than 1. 262 * 263 * Return 0 on success; or -1 on error. 264 */ 265 int 266 crypto_scrypt(const uint8_t * passwd, size_t passwdlen, 267 const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, 268 uint8_t * buf, size_t buflen) 269 { 270 void * B0, * V0, * XY0; 271 uint8_t * B; 272 uint32_t * V; 273 uint32_t * XY; 274 uint32_t i; 275 276 /* Sanity-check parameters. */ 277 #if SIZE_MAX > UINT32_MAX 278 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { 279 errno = EFBIG; 280 goto err0; 281 } 282 #endif 283 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { 284 errno = EFBIG; 285 goto err0; 286 } 287 if (((N & (N - 1)) != 0) || (N == 0)) { 288 errno = EINVAL; 289 goto err0; 290 } 291 if ((r > SIZE_MAX / 128 / p) || 292 #if SIZE_MAX / 256 <= UINT32_MAX 293 (r > (SIZE_MAX - 64) / 256) || 294 #endif 295 (N > SIZE_MAX / 128 / r)) { 296 errno = ENOMEM; 297 goto err0; 298 } 299 300 /* Allocate memory. */ 301 #ifdef HAVE_POSIX_MEMALIGN 302 if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) 303 goto err0; 304 B = (uint8_t *)(B0); 305 if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) 306 goto err1; 307 XY = (uint32_t *)(XY0); 308 #ifndef MAP_ANON 309 if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) 310 goto err2; 311 V = (uint32_t *)(V0); 312 #endif 313 #else 314 if ((B0 = malloc(128 * r * p + 63)) == NULL) 315 goto err0; 316 B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); 317 if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) 318 goto err1; 319 XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); 320 #ifndef MAP_ANON 321 if ((V0 = malloc(128 * r * N + 63)) == NULL) 322 goto err2; 323 V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); 324 #endif 325 #endif 326 #ifdef MAP_ANON 327 if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, 328 #ifdef MAP_NOCORE 329 MAP_ANON | MAP_PRIVATE | MAP_NOCORE, 330 #else 331 MAP_ANON | MAP_PRIVATE, 332 #endif 333 -1, 0)) == MAP_FAILED) 334 goto err2; 335 V = (uint32_t *)(V0); 336 #endif 337 338 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ 339 #ifdef USE_OPENSSL_PBKDF2 340 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B); 341 #else 342 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); 343 #endif 344 345 /* 2: for i = 0 to p - 1 do */ 346 for (i = 0; i < p; i++) { 347 /* 3: B_i <-- MF(B_i, N) */ 348 smix(&B[i * 128 * r], r, N, V, XY); 349 } 350 351 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ 352 #ifdef USE_OPENSSL_PBKDF2 353 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf); 354 #else 355 PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); 356 #endif 357 358 /* Free memory. */ 359 #ifdef MAP_ANON 360 if (munmap(V0, 128 * r * N)) 361 goto err2; 362 #else 363 free(V0); 364 #endif 365 free(XY0); 366 free(B0); 367 368 /* Success! */ 369 return (0); 370 371 err2: 372 free(XY0); 373 err1: 374 free(B0); 375 err0: 376 /* Failure! */ 377 return (-1); 378 } 379