1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 #include "DataTypes.h" 8 #include "Extrema.h" 9 10 static int validUnitDivide(double numer, double denom, double* ratio) 11 { 12 if (numer < 0) { 13 numer = -numer; 14 denom = -denom; 15 } 16 if (denom == 0 || numer == 0 || numer >= denom) 17 return 0; 18 double r = numer / denom; 19 if (r == 0) { // catch underflow if numer <<<< denom 20 return 0; 21 } 22 *ratio = r; 23 return 1; 24 } 25 26 /** From Numerical Recipes in C. 27 28 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) 29 x1 = Q / A 30 x2 = C / Q 31 */ 32 static int findUnitQuadRoots(double A, double B, double C, double roots[2]) 33 { 34 if (A == 0) 35 return validUnitDivide(-C, B, roots); 36 37 double* r = roots; 38 39 double R = B*B - 4*A*C; 40 if (R < 0) { // complex roots 41 return 0; 42 } 43 R = sqrt(R); 44 45 double Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; 46 r += validUnitDivide(Q, A, r); 47 r += validUnitDivide(C, Q, r); 48 if (r - roots == 2 && AlmostEqualUlps(roots[0], roots[1])) { // nearly-equal? 49 r -= 1; // skip the double root 50 } 51 return (int)(r - roots); 52 } 53 54 /** Cubic'(t) = At^2 + Bt + C, where 55 A = 3(-a + 3(b - c) + d) 56 B = 6(a - 2b + c) 57 C = 3(b - a) 58 Solve for t, keeping only those that fit between 0 < t < 1 59 */ 60 int findExtrema(double a, double b, double c, double d, double tValues[2]) 61 { 62 // we divide A,B,C by 3 to simplify 63 double A = d - a + 3*(b - c); 64 double B = 2*(a - b - b + c); 65 double C = b - a; 66 67 return findUnitQuadRoots(A, B, C, tValues); 68 } 69 70 /** Quad'(t) = At + B, where 71 A = 2(a - 2b + c) 72 B = 2(b - a) 73 Solve for t, only if it fits between 0 < t < 1 74 */ 75 int findExtrema(double a, double b, double c, double tValue[1]) 76 { 77 /* At + B == 0 78 t = -B / A 79 */ 80 return validUnitDivide(a - b, a - b - b + c, tValue); 81 } 82