1 2 /* 3 * Copyright 2012 Google Inc. 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 #include "SkWriteBuffer.h" 10 #include "SkBitmap.h" 11 #include "SkData.h" 12 #include "SkPixelRef.h" 13 #include "SkPtrRecorder.h" 14 #include "SkStream.h" 15 #include "SkTypeface.h" 16 17 SkWriteBuffer::SkWriteBuffer(uint32_t flags) 18 : fFlags(flags) 19 , fFactorySet(NULL) 20 , fNamedFactorySet(NULL) 21 , fBitmapHeap(NULL) 22 , fTFSet(NULL) 23 , fBitmapEncoder(NULL) { 24 } 25 26 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags) 27 : fFlags(flags) 28 , fFactorySet(NULL) 29 , fNamedFactorySet(NULL) 30 , fWriter(storage, storageSize) 31 , fBitmapHeap(NULL) 32 , fTFSet(NULL) 33 , fBitmapEncoder(NULL) { 34 } 35 36 SkWriteBuffer::~SkWriteBuffer() { 37 SkSafeUnref(fFactorySet); 38 SkSafeUnref(fNamedFactorySet); 39 SkSafeUnref(fBitmapHeap); 40 SkSafeUnref(fTFSet); 41 } 42 43 void SkWriteBuffer::writeByteArray(const void* data, size_t size) { 44 fWriter.write32(SkToU32(size)); 45 fWriter.writePad(data, size); 46 } 47 48 void SkWriteBuffer::writeBool(bool value) { 49 fWriter.writeBool(value); 50 } 51 52 void SkWriteBuffer::writeFixed(SkFixed value) { 53 fWriter.write32(value); 54 } 55 56 void SkWriteBuffer::writeScalar(SkScalar value) { 57 fWriter.writeScalar(value); 58 } 59 60 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { 61 fWriter.write32(count); 62 fWriter.write(value, count * sizeof(SkScalar)); 63 } 64 65 void SkWriteBuffer::writeInt(int32_t value) { 66 fWriter.write32(value); 67 } 68 69 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { 70 fWriter.write32(count); 71 fWriter.write(value, count * sizeof(int32_t)); 72 } 73 74 void SkWriteBuffer::writeUInt(uint32_t value) { 75 fWriter.write32(value); 76 } 77 78 void SkWriteBuffer::write32(int32_t value) { 79 fWriter.write32(value); 80 } 81 82 void SkWriteBuffer::writeString(const char* value) { 83 fWriter.writeString(value); 84 } 85 86 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength, 87 SkPaint::TextEncoding encoding) { 88 fWriter.writeInt(encoding); 89 fWriter.writeInt(SkToU32(byteLength)); 90 fWriter.write(value, byteLength); 91 } 92 93 94 void SkWriteBuffer::writeColor(const SkColor& color) { 95 fWriter.write32(color); 96 } 97 98 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { 99 fWriter.write32(count); 100 fWriter.write(color, count * sizeof(SkColor)); 101 } 102 103 void SkWriteBuffer::writePoint(const SkPoint& point) { 104 fWriter.writeScalar(point.fX); 105 fWriter.writeScalar(point.fY); 106 } 107 108 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { 109 fWriter.write32(count); 110 fWriter.write(point, count * sizeof(SkPoint)); 111 } 112 113 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) { 114 fWriter.writeMatrix(matrix); 115 } 116 117 void SkWriteBuffer::writeIRect(const SkIRect& rect) { 118 fWriter.write(&rect, sizeof(SkIRect)); 119 } 120 121 void SkWriteBuffer::writeRect(const SkRect& rect) { 122 fWriter.writeRect(rect); 123 } 124 125 void SkWriteBuffer::writeRegion(const SkRegion& region) { 126 fWriter.writeRegion(region); 127 } 128 129 void SkWriteBuffer::writePath(const SkPath& path) { 130 fWriter.writePath(path); 131 } 132 133 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) { 134 fWriter.write32(SkToU32(length)); 135 size_t bytesWritten = fWriter.readFromStream(stream, length); 136 if (bytesWritten < length) { 137 fWriter.reservePad(length - bytesWritten); 138 } 139 return bytesWritten; 140 } 141 142 bool SkWriteBuffer::writeToStream(SkWStream* stream) { 143 return fWriter.writeToStream(stream); 144 } 145 146 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data, 147 const SkIPoint& origin) { 148 buffer->writeUInt(SkToU32(data->size())); 149 buffer->getWriter32()->writePad(data->data(), data->size()); 150 buffer->write32(origin.fX); 151 buffer->write32(origin.fY); 152 } 153 154 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) { 155 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the 156 // right size. 157 this->writeInt(bitmap.width()); 158 this->writeInt(bitmap.height()); 159 160 // Record information about the bitmap in one of three ways, in order of priority: 161 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the 162 // bitmap entirely or serialize it later as desired. A boolean value of true will be written 163 // to the stream to signify that a heap was used. 164 // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the 165 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write 166 // the size of the encoded data. A non-zero size signifies that encoded data was written. 167 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was 168 // not used, write a zero to signify that the data was not encoded. 169 bool useBitmapHeap = fBitmapHeap != NULL; 170 // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an 171 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way. 172 this->writeBool(useBitmapHeap); 173 if (useBitmapHeap) { 174 SkASSERT(NULL == fBitmapEncoder); 175 int32_t slot = fBitmapHeap->insert(bitmap); 176 fWriter.write32(slot); 177 // crbug.com/155875 178 // The generation ID is not required information. We write it to prevent collisions 179 // in SkFlatDictionary. It is possible to get a collision when a previously 180 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary 181 // and the instance currently being written is re-using the same slot from the 182 // bitmap heap. 183 fWriter.write32(bitmap.getGenerationID()); 184 return; 185 } 186 187 // see if the pixelref already has an encoded version 188 if (bitmap.pixelRef()) { 189 SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData()); 190 if (data.get() != NULL) { 191 write_encoded_bitmap(this, data, bitmap.pixelRefOrigin()); 192 return; 193 } 194 } 195 196 // see if the caller wants to manually encode 197 if (fBitmapEncoder != NULL) { 198 SkASSERT(NULL == fBitmapHeap); 199 size_t offset = 0; // this parameter is deprecated/ignored 200 // if we have to "encode" the bitmap, then we assume there is no 201 // offset to share, since we are effectively creating a new pixelref 202 SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap)); 203 if (data.get() != NULL) { 204 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); 205 return; 206 } 207 } 208 209 this->writeUInt(0); // signal raw pixels 210 SkBitmap::WriteRawPixels(this, bitmap); 211 } 212 213 void SkWriteBuffer::writeTypeface(SkTypeface* obj) { 214 if (NULL == obj || NULL == fTFSet) { 215 fWriter.write32(0); 216 } else { 217 fWriter.write32(fTFSet->add(obj)); 218 } 219 } 220 221 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { 222 SkRefCnt_SafeAssign(fFactorySet, rec); 223 if (fNamedFactorySet != NULL) { 224 fNamedFactorySet->unref(); 225 fNamedFactorySet = NULL; 226 } 227 return rec; 228 } 229 230 SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) { 231 SkRefCnt_SafeAssign(fNamedFactorySet, rec); 232 if (fFactorySet != NULL) { 233 fFactorySet->unref(); 234 fFactorySet = NULL; 235 } 236 return rec; 237 } 238 239 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { 240 SkRefCnt_SafeAssign(fTFSet, rec); 241 return rec; 242 } 243 244 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { 245 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); 246 if (bitmapHeap != NULL) { 247 SkASSERT(NULL == fBitmapEncoder); 248 fBitmapEncoder = NULL; 249 } 250 } 251 252 void SkWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) { 253 fBitmapEncoder = bitmapEncoder; 254 if (bitmapEncoder != NULL) { 255 SkASSERT(NULL == fBitmapHeap); 256 SkSafeUnref(fBitmapHeap); 257 fBitmapHeap = NULL; 258 } 259 } 260 261 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { 262 /* 263 * If we have a factoryset, then the first 32bits tell us... 264 * 0: failure to write the flattenable 265 * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet 266 * If we don't have a factoryset, then the first "ptr" is either the 267 * factory, or null for failure. 268 * 269 * The distinction is important, since 0-index is 32bits (always), but a 270 * 0-functionptr might be 32 or 64 bits. 271 */ 272 if (NULL == flattenable) { 273 if (this->isValidating()) { 274 this->writeString(""); 275 } else if (fFactorySet != NULL || fNamedFactorySet != NULL) { 276 this->write32(0); 277 } else { 278 this->writeFunctionPtr(NULL); 279 } 280 return; 281 } 282 283 SkFlattenable::Factory factory = flattenable->getFactory(); 284 SkASSERT(factory != NULL); 285 286 /* 287 * We can write 1 of 3 versions of the flattenable: 288 * 1. function-ptr : this is the fastest for the reader, but assumes that 289 * the writer and reader are in the same process. 290 * 2. index into fFactorySet : This is assumes the writer will later 291 * resolve the function-ptrs into strings for its reader. SkPicture 292 * does exactly this, by writing a table of names (matching the indices) 293 * up front in its serialized form. 294 * 3. index into fNamedFactorySet. fNamedFactorySet will also store the 295 * name. SkGPipe uses this technique so it can write the name to its 296 * stream before writing the flattenable. 297 */ 298 if (this->isValidating()) { 299 this->writeString(flattenable->getTypeName()); 300 } else if (fFactorySet) { 301 this->write32(fFactorySet->add(factory)); 302 } else if (fNamedFactorySet) { 303 int32_t index = fNamedFactorySet->find(factory); 304 this->write32(index); 305 if (0 == index) { 306 return; 307 } 308 } else { 309 this->writeFunctionPtr((void*)factory); 310 } 311 312 // make room for the size of the flattened object 313 (void)fWriter.reserve(sizeof(uint32_t)); 314 // record the current size, so we can subtract after the object writes. 315 size_t offset = fWriter.bytesWritten(); 316 // now flatten the object 317 flattenable->flatten(*this); 318 size_t objSize = fWriter.bytesWritten() - offset; 319 // record the obj's size 320 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); 321 } 322