Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrPathUtils.h"
      9 
     10 #include "GrTypes.h"
     11 #include "SkGeometry.h"
     12 
     13 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
     14                                           const SkMatrix& viewM,
     15                                           const SkRect& pathBounds) {
     16     // In order to tesselate the path we get a bound on how much the matrix can
     17     // scale when mapping to screen coordinates.
     18     SkScalar stretch = viewM.getMaxScale();
     19     SkScalar srcTol = devTol;
     20 
     21     if (stretch < 0) {
     22         // take worst case mapRadius amoung four corners.
     23         // (less than perfect)
     24         for (int i = 0; i < 4; ++i) {
     25             SkMatrix mat;
     26             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     27                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     28             mat.postConcat(viewM);
     29             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     30         }
     31     }
     32     srcTol = SkScalarDiv(srcTol, stretch);
     33     return srcTol;
     34 }
     35 
     36 static const int MAX_POINTS_PER_CURVE = 1 << 10;
     37 static const SkScalar gMinCurveTol = 0.0001f;
     38 
     39 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[],
     40                                           SkScalar tol) {
     41     if (tol < gMinCurveTol) {
     42         tol = gMinCurveTol;
     43     }
     44     SkASSERT(tol > 0);
     45 
     46     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
     47     if (d <= tol) {
     48         return 1;
     49     } else {
     50         // Each time we subdivide, d should be cut in 4. So we need to
     51         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     52         // points.
     53         // 2^(log4(x)) = sqrt(x);
     54         int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
     55         int pow2 = GrNextPow2(temp);
     56         // Because of NaNs & INFs we can wind up with a degenerate temp
     57         // such that pow2 comes out negative. Also, our point generator
     58         // will always output at least one pt.
     59         if (pow2 < 1) {
     60             pow2 = 1;
     61         }
     62         return SkTMin(pow2, MAX_POINTS_PER_CURVE);
     63     }
     64 }
     65 
     66 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
     67                                               const SkPoint& p1,
     68                                               const SkPoint& p2,
     69                                               SkScalar tolSqd,
     70                                               SkPoint** points,
     71                                               uint32_t pointsLeft) {
     72     if (pointsLeft < 2 ||
     73         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
     74         (*points)[0] = p2;
     75         *points += 1;
     76         return 1;
     77     }
     78 
     79     SkPoint q[] = {
     80         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     81         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     82     };
     83     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
     84 
     85     pointsLeft >>= 1;
     86     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     87     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     88     return a + b;
     89 }
     90 
     91 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
     92                                            SkScalar tol) {
     93     if (tol < gMinCurveTol) {
     94         tol = gMinCurveTol;
     95     }
     96     SkASSERT(tol > 0);
     97 
     98     SkScalar d = SkTMax(
     99         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
    100         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    101     d = SkScalarSqrt(d);
    102     if (d <= tol) {
    103         return 1;
    104     } else {
    105         int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
    106         int pow2 = GrNextPow2(temp);
    107         // Because of NaNs & INFs we can wind up with a degenerate temp
    108         // such that pow2 comes out negative. Also, our point generator
    109         // will always output at least one pt.
    110         if (pow2 < 1) {
    111             pow2 = 1;
    112         }
    113         return SkTMin(pow2, MAX_POINTS_PER_CURVE);
    114     }
    115 }
    116 
    117 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
    118                                           const SkPoint& p1,
    119                                           const SkPoint& p2,
    120                                           const SkPoint& p3,
    121                                           SkScalar tolSqd,
    122                                           SkPoint** points,
    123                                           uint32_t pointsLeft) {
    124     if (pointsLeft < 2 ||
    125         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
    126          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
    127             (*points)[0] = p3;
    128             *points += 1;
    129             return 1;
    130         }
    131     SkPoint q[] = {
    132         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    133         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    134         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    135     };
    136     SkPoint r[] = {
    137         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    138         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    139     };
    140     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    141     pointsLeft >>= 1;
    142     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    143     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    144     return a + b;
    145 }
    146 
    147 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
    148                                      SkScalar tol) {
    149     if (tol < gMinCurveTol) {
    150         tol = gMinCurveTol;
    151     }
    152     SkASSERT(tol > 0);
    153 
    154     int pointCount = 0;
    155     *subpaths = 1;
    156 
    157     bool first = true;
    158 
    159     SkPath::Iter iter(path, false);
    160     SkPath::Verb verb;
    161 
    162     SkPoint pts[4];
    163     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
    164 
    165         switch (verb) {
    166             case SkPath::kLine_Verb:
    167                 pointCount += 1;
    168                 break;
    169             case SkPath::kQuad_Verb:
    170                 pointCount += quadraticPointCount(pts, tol);
    171                 break;
    172             case SkPath::kCubic_Verb:
    173                 pointCount += cubicPointCount(pts, tol);
    174                 break;
    175             case SkPath::kMove_Verb:
    176                 pointCount += 1;
    177                 if (!first) {
    178                     ++(*subpaths);
    179                 }
    180                 break;
    181             default:
    182                 break;
    183         }
    184         first = false;
    185     }
    186     return pointCount;
    187 }
    188 
    189 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
    190     SkMatrix m;
    191     // We want M such that M * xy_pt = uv_pt
    192     // We know M * control_pts = [0  1/2 1]
    193     //                           [0  0   1]
    194     //                           [1  1   1]
    195     // And control_pts = [x0 x1 x2]
    196     //                   [y0 y1 y2]
    197     //                   [1  1  1 ]
    198     // We invert the control pt matrix and post concat to both sides to get M.
    199     // Using the known form of the control point matrix and the result, we can
    200     // optimize and improve precision.
    201 
    202     double x0 = qPts[0].fX;
    203     double y0 = qPts[0].fY;
    204     double x1 = qPts[1].fX;
    205     double y1 = qPts[1].fY;
    206     double x2 = qPts[2].fX;
    207     double y2 = qPts[2].fY;
    208     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
    209 
    210     if (!sk_float_isfinite(det)
    211         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
    212         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    213         // farthest apart to compute a line (unless it is really a pt).
    214         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
    215         int maxEdge = 0;
    216         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
    217         if (d > maxD) {
    218             maxD = d;
    219             maxEdge = 1;
    220         }
    221         d = qPts[2].distanceToSqd(qPts[0]);
    222         if (d > maxD) {
    223             maxD = d;
    224             maxEdge = 2;
    225         }
    226         // We could have a tolerance here, not sure if it would improve anything
    227         if (maxD > 0) {
    228             // Set the matrix to give (u = 0, v = distance_to_line)
    229             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    230             // when looking from the point 0 down the line we want positive
    231             // distances to be to the left. This matches the non-degenerate
    232             // case.
    233             lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
    234             lineVec.dot(qPts[0]);
    235             // first row
    236             fM[0] = 0;
    237             fM[1] = 0;
    238             fM[2] = 0;
    239             // second row
    240             fM[3] = lineVec.fX;
    241             fM[4] = lineVec.fY;
    242             fM[5] = -lineVec.dot(qPts[maxEdge]);
    243         } else {
    244             // It's a point. It should cover zero area. Just set the matrix such
    245             // that (u, v) will always be far away from the quad.
    246             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
    247             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
    248         }
    249     } else {
    250         double scale = 1.0/det;
    251 
    252         // compute adjugate matrix
    253         double a0, a1, a2, a3, a4, a5, a6, a7, a8;
    254         a0 = y1-y2;
    255         a1 = x2-x1;
    256         a2 = x1*y2-x2*y1;
    257 
    258         a3 = y2-y0;
    259         a4 = x0-x2;
    260         a5 = x2*y0-x0*y2;
    261 
    262         a6 = y0-y1;
    263         a7 = x1-x0;
    264         a8 = x0*y1-x1*y0;
    265 
    266         // this performs the uv_pts*adjugate(control_pts) multiply,
    267         // then does the scale by 1/det afterwards to improve precision
    268         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
    269         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
    270         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
    271 
    272         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
    273         m[SkMatrix::kMScaleY] = (float)(a7*scale);
    274         m[SkMatrix::kMTransY] = (float)(a8*scale);
    275 
    276         m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
    277         m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
    278         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
    279 
    280         // The matrix should not have perspective.
    281         SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
    282         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
    283         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
    284 
    285         // It may not be normalized to have 1.0 in the bottom right
    286         float m33 = m.get(SkMatrix::kMPersp2);
    287         if (1.f != m33) {
    288             m33 = 1.f / m33;
    289             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
    290             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
    291             fM[2] = m33 * m.get(SkMatrix::kMTransX);
    292             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
    293             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
    294             fM[5] = m33 * m.get(SkMatrix::kMTransY);
    295         } else {
    296             fM[0] = m.get(SkMatrix::kMScaleX);
    297             fM[1] = m.get(SkMatrix::kMSkewX);
    298             fM[2] = m.get(SkMatrix::kMTransX);
    299             fM[3] = m.get(SkMatrix::kMSkewY);
    300             fM[4] = m.get(SkMatrix::kMScaleY);
    301             fM[5] = m.get(SkMatrix::kMTransY);
    302         }
    303     }
    304 }
    305 
    306 ////////////////////////////////////////////////////////////////////////////////
    307 
    308 // k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
    309 // l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
    310 // m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
    311 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
    312     const SkScalar w2 = 2.f * weight;
    313     klm[0] = p[2].fY - p[0].fY;
    314     klm[1] = p[0].fX - p[2].fX;
    315     klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
    316 
    317     klm[3] = w2 * (p[1].fY - p[0].fY);
    318     klm[4] = w2 * (p[0].fX - p[1].fX);
    319     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
    320 
    321     klm[6] = w2 * (p[2].fY - p[1].fY);
    322     klm[7] = w2 * (p[1].fX - p[2].fX);
    323     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
    324 
    325     // scale the max absolute value of coeffs to 10
    326     SkScalar scale = 0.f;
    327     for (int i = 0; i < 9; ++i) {
    328        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
    329     }
    330     SkASSERT(scale > 0.f);
    331     scale = 10.f / scale;
    332     for (int i = 0; i < 9; ++i) {
    333         klm[i] *= scale;
    334     }
    335 }
    336 
    337 ////////////////////////////////////////////////////////////////////////////////
    338 
    339 namespace {
    340 
    341 // a is the first control point of the cubic.
    342 // ab is the vector from a to the second control point.
    343 // dc is the vector from the fourth to the third control point.
    344 // d is the fourth control point.
    345 // p is the candidate quadratic control point.
    346 // this assumes that the cubic doesn't inflect and is simple
    347 bool is_point_within_cubic_tangents(const SkPoint& a,
    348                                     const SkVector& ab,
    349                                     const SkVector& dc,
    350                                     const SkPoint& d,
    351                                     SkPath::Direction dir,
    352                                     const SkPoint p) {
    353     SkVector ap = p - a;
    354     SkScalar apXab = ap.cross(ab);
    355     if (SkPath::kCW_Direction == dir) {
    356         if (apXab > 0) {
    357             return false;
    358         }
    359     } else {
    360         SkASSERT(SkPath::kCCW_Direction == dir);
    361         if (apXab < 0) {
    362             return false;
    363         }
    364     }
    365 
    366     SkVector dp = p - d;
    367     SkScalar dpXdc = dp.cross(dc);
    368     if (SkPath::kCW_Direction == dir) {
    369         if (dpXdc < 0) {
    370             return false;
    371         }
    372     } else {
    373         SkASSERT(SkPath::kCCW_Direction == dir);
    374         if (dpXdc > 0) {
    375             return false;
    376         }
    377     }
    378     return true;
    379 }
    380 
    381 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    382                                        SkScalar toleranceSqd,
    383                                        bool constrainWithinTangents,
    384                                        SkPath::Direction dir,
    385                                        SkTArray<SkPoint, true>* quads,
    386                                        int sublevel = 0) {
    387 
    388     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    389     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
    390 
    391     SkVector ab = p[1] - p[0];
    392     SkVector dc = p[2] - p[3];
    393 
    394     if (ab.isZero()) {
    395         if (dc.isZero()) {
    396             SkPoint* degQuad = quads->push_back_n(3);
    397             degQuad[0] = p[0];
    398             degQuad[1] = p[0];
    399             degQuad[2] = p[3];
    400             return;
    401         }
    402         ab = p[2] - p[0];
    403     }
    404     if (dc.isZero()) {
    405         dc = p[1] - p[3];
    406     }
    407 
    408     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
    409     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
    410     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
    411     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
    412     // control points are very close to the baseline vector. If so then we just pick quadratic
    413     // points on the control polygon.
    414 
    415     if (constrainWithinTangents) {
    416         SkVector da = p[0] - p[3];
    417         bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
    418                        ab.lengthSqd() < SK_ScalarNearlyZero;
    419         if (!doQuads) {
    420             SkScalar invDALengthSqd = da.lengthSqd();
    421             if (invDALengthSqd > SK_ScalarNearlyZero) {
    422                 invDALengthSqd = SkScalarInvert(invDALengthSqd);
    423                 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
    424                 // same goes for point c using vector cd.
    425                 SkScalar detABSqd = ab.cross(da);
    426                 detABSqd = SkScalarSquare(detABSqd);
    427                 SkScalar detDCSqd = dc.cross(da);
    428                 detDCSqd = SkScalarSquare(detDCSqd);
    429                 if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
    430                     SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
    431                     doQuads = true;
    432                 }
    433             }
    434         }
    435         if (doQuads) {
    436             SkPoint b = p[0] + ab;
    437             SkPoint c = p[3] + dc;
    438             SkPoint mid = b + c;
    439             mid.scale(SK_ScalarHalf);
    440             // Insert two quadratics to cover the case when ab points away from d and/or dc
    441             // points away from a.
    442             if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
    443                 SkPoint* qpts = quads->push_back_n(6);
    444                 qpts[0] = p[0];
    445                 qpts[1] = b;
    446                 qpts[2] = mid;
    447                 qpts[3] = mid;
    448                 qpts[4] = c;
    449                 qpts[5] = p[3];
    450             } else {
    451                 SkPoint* qpts = quads->push_back_n(3);
    452                 qpts[0] = p[0];
    453                 qpts[1] = mid;
    454                 qpts[2] = p[3];
    455             }
    456             return;
    457         }
    458     }
    459 
    460     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    461     static const int kMaxSubdivs = 10;
    462 
    463     ab.scale(kLengthScale);
    464     dc.scale(kLengthScale);
    465 
    466     // e0 and e1 are extrapolations along vectors ab and dc.
    467     SkVector c0 = p[0];
    468     c0 += ab;
    469     SkVector c1 = p[3];
    470     c1 += dc;
    471 
    472     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
    473     if (dSqd < toleranceSqd) {
    474         SkPoint cAvg = c0;
    475         cAvg += c1;
    476         cAvg.scale(SK_ScalarHalf);
    477 
    478         bool subdivide = false;
    479 
    480         if (constrainWithinTangents &&
    481             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
    482             // choose a new cAvg that is the intersection of the two tangent lines.
    483             ab.setOrthog(ab);
    484             SkScalar z0 = -ab.dot(p[0]);
    485             dc.setOrthog(dc);
    486             SkScalar z1 = -dc.dot(p[3]);
    487             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
    488             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
    489             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
    490             z = SkScalarInvert(z);
    491             cAvg.fX *= z;
    492             cAvg.fY *= z;
    493             if (sublevel <= kMaxSubdivs) {
    494                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
    495                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
    496                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
    497                 // the distances and tolerance can't be negative.
    498                 // (d0 + d1)^2 > toleranceSqd
    499                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
    500                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
    501                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
    502             }
    503         }
    504         if (!subdivide) {
    505             SkPoint* pts = quads->push_back_n(3);
    506             pts[0] = p[0];
    507             pts[1] = cAvg;
    508             pts[2] = p[3];
    509             return;
    510         }
    511     }
    512     SkPoint choppedPts[7];
    513     SkChopCubicAtHalf(p, choppedPts);
    514     convert_noninflect_cubic_to_quads(choppedPts + 0,
    515                                       toleranceSqd,
    516                                       constrainWithinTangents,
    517                                       dir,
    518                                       quads,
    519                                       sublevel + 1);
    520     convert_noninflect_cubic_to_quads(choppedPts + 3,
    521                                       toleranceSqd,
    522                                       constrainWithinTangents,
    523                                       dir,
    524                                       quads,
    525                                       sublevel + 1);
    526 }
    527 }
    528 
    529 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
    530                                       SkScalar tolScale,
    531                                       bool constrainWithinTangents,
    532                                       SkPath::Direction dir,
    533                                       SkTArray<SkPoint, true>* quads) {
    534     SkPoint chopped[10];
    535     int count = SkChopCubicAtInflections(p, chopped);
    536 
    537     // base tolerance is 1 pixel.
    538     static const SkScalar kTolerance = SK_Scalar1;
    539     const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
    540 
    541     for (int i = 0; i < count; ++i) {
    542         SkPoint* cubic = chopped + 3*i;
    543         convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
    544     }
    545 
    546 }
    547 
    548 ////////////////////////////////////////////////////////////////////////////////
    549 
    550 enum CubicType {
    551     kSerpentine_CubicType,
    552     kCusp_CubicType,
    553     kLoop_CubicType,
    554     kQuadratic_CubicType,
    555     kLine_CubicType,
    556     kPoint_CubicType
    557 };
    558 
    559 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
    560 // Classification:
    561 // discr(I) > 0        Serpentine
    562 // discr(I) = 0        Cusp
    563 // discr(I) < 0        Loop
    564 // d0 = d1 = 0         Quadratic
    565 // d0 = d1 = d2 = 0    Line
    566 // p0 = p1 = p2 = p3   Point
    567 static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
    568     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
    569         return kPoint_CubicType;
    570     }
    571     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
    572     if (discr > SK_ScalarNearlyZero) {
    573         return kSerpentine_CubicType;
    574     } else if (discr < -SK_ScalarNearlyZero) {
    575         return kLoop_CubicType;
    576     } else {
    577         if (0.f == d[0] && 0.f == d[1]) {
    578             return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
    579         } else {
    580             return kCusp_CubicType;
    581         }
    582     }
    583 }
    584 
    585 // Assumes the third component of points is 1.
    586 // Calcs p0 . (p1 x p2)
    587 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    588     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
    589     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
    590     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
    591     return (xComp + yComp + wComp);
    592 }
    593 
    594 // Solves linear system to extract klm
    595 // P.K = k (similarly for l, m)
    596 // Where P is matrix of control points
    597 // K is coefficients for the line K
    598 // k is vector of values of K evaluated at the control points
    599 // Solving for K, thus K = P^(-1) . k
    600 static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
    601                            const SkScalar controlL[4], const SkScalar controlM[4],
    602                            SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
    603     SkMatrix matrix;
    604     matrix.setAll(p[0].fX, p[0].fY, 1.f,
    605                   p[1].fX, p[1].fY, 1.f,
    606                   p[2].fX, p[2].fY, 1.f);
    607     SkMatrix inverse;
    608     if (matrix.invert(&inverse)) {
    609        inverse.mapHomogeneousPoints(k, controlK, 1);
    610        inverse.mapHomogeneousPoints(l, controlL, 1);
    611        inverse.mapHomogeneousPoints(m, controlM, 1);
    612     }
    613 
    614 }
    615 
    616 static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    617     SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
    618     SkScalar ls = 3.f * d[1] - tempSqrt;
    619     SkScalar lt = 6.f * d[0];
    620     SkScalar ms = 3.f * d[1] + tempSqrt;
    621     SkScalar mt = 6.f * d[0];
    622 
    623     k[0] = ls * ms;
    624     k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
    625     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
    626     k[3] = (lt - ls) * (mt - ms);
    627 
    628     l[0] = ls * ls * ls;
    629     const SkScalar lt_ls = lt - ls;
    630     l[1] = ls * ls * lt_ls * -1.f;
    631     l[2] = lt_ls * lt_ls * ls;
    632     l[3] = -1.f * lt_ls * lt_ls * lt_ls;
    633 
    634     m[0] = ms * ms * ms;
    635     const SkScalar mt_ms = mt - ms;
    636     m[1] = ms * ms * mt_ms * -1.f;
    637     m[2] = mt_ms * mt_ms * ms;
    638     m[3] = -1.f * mt_ms * mt_ms * mt_ms;
    639 
    640     // If d0 < 0 we need to flip the orientation of our curve
    641     // This is done by negating the k and l values
    642     // We want negative distance values to be on the inside
    643     if ( d[0] > 0) {
    644         for (int i = 0; i < 4; ++i) {
    645             k[i] = -k[i];
    646             l[i] = -l[i];
    647         }
    648     }
    649 }
    650 
    651 static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    652     SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
    653     SkScalar ls = d[1] - tempSqrt;
    654     SkScalar lt = 2.f * d[0];
    655     SkScalar ms = d[1] + tempSqrt;
    656     SkScalar mt = 2.f * d[0];
    657 
    658     k[0] = ls * ms;
    659     k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
    660     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
    661     k[3] = (lt - ls) * (mt - ms);
    662 
    663     l[0] = ls * ls * ms;
    664     l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
    665     l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
    666     l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
    667 
    668     m[0] = ls * ms * ms;
    669     m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
    670     m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
    671     m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
    672 
    673 
    674     // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
    675     // we need to flip the orientation of our curve.
    676     // This is done by negating the k and l values
    677     if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
    678         for (int i = 0; i < 4; ++i) {
    679             k[i] = -k[i];
    680             l[i] = -l[i];
    681         }
    682     }
    683 }
    684 
    685 static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    686     const SkScalar ls = d[2];
    687     const SkScalar lt = 3.f * d[1];
    688 
    689     k[0] = ls;
    690     k[1] = ls - lt / 3.f;
    691     k[2] = ls - 2.f * lt / 3.f;
    692     k[3] = ls - lt;
    693 
    694     l[0] = ls * ls * ls;
    695     const SkScalar ls_lt = ls - lt;
    696     l[1] = ls * ls * ls_lt;
    697     l[2] = ls_lt * ls_lt * ls;
    698     l[3] = ls_lt * ls_lt * ls_lt;
    699 
    700     m[0] = 1.f;
    701     m[1] = 1.f;
    702     m[2] = 1.f;
    703     m[3] = 1.f;
    704 }
    705 
    706 // For the case when a cubic is actually a quadratic
    707 // M =
    708 // 0     0     0
    709 // 1/3   0     1/3
    710 // 2/3   1/3   2/3
    711 // 1     1     1
    712 static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    713     k[0] = 0.f;
    714     k[1] = 1.f/3.f;
    715     k[2] = 2.f/3.f;
    716     k[3] = 1.f;
    717 
    718     l[0] = 0.f;
    719     l[1] = 0.f;
    720     l[2] = 1.f/3.f;
    721     l[3] = 1.f;
    722 
    723     m[0] = 0.f;
    724     m[1] = 1.f/3.f;
    725     m[2] = 2.f/3.f;
    726     m[3] = 1.f;
    727 
    728     // If d2 < 0 we need to flip the orientation of our curve
    729     // This is done by negating the k and l values
    730     if ( d[2] > 0) {
    731         for (int i = 0; i < 4; ++i) {
    732             k[i] = -k[i];
    733             l[i] = -l[i];
    734         }
    735     }
    736 }
    737 
    738 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
    739 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
    740 // d0 = a1 - 2*a2+3*a3
    741 // d1 = -a2 + 3*a3
    742 // d2 = 3*a3
    743 // a1 = p0 . (p3 x p2)
    744 // a2 = p1 . (p0 x p3)
    745 // a3 = p2 . (p1 x p0)
    746 // Places the values of d1, d2, d3 in array d passed in
    747 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
    748     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
    749     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
    750     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
    751 
    752     // need to scale a's or values in later calculations will grow to high
    753     SkScalar max = SkScalarAbs(a1);
    754     max = SkMaxScalar(max, SkScalarAbs(a2));
    755     max = SkMaxScalar(max, SkScalarAbs(a3));
    756     max = 1.f/max;
    757     a1 = a1 * max;
    758     a2 = a2 * max;
    759     a3 = a3 * max;
    760 
    761     d[2] = 3.f * a3;
    762     d[1] = d[2] - a2;
    763     d[0] = d[1] - a2 + a1;
    764 }
    765 
    766 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
    767                                              SkScalar klm_rev[3]) {
    768     // Variable to store the two parametric values at the loop double point
    769     SkScalar smallS = 0.f;
    770     SkScalar largeS = 0.f;
    771 
    772     SkScalar d[3];
    773     calc_cubic_inflection_func(src, d);
    774 
    775     CubicType cType = classify_cubic(src, d);
    776 
    777     int chop_count = 0;
    778     if (kLoop_CubicType == cType) {
    779         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
    780         SkScalar ls = d[1] - tempSqrt;
    781         SkScalar lt = 2.f * d[0];
    782         SkScalar ms = d[1] + tempSqrt;
    783         SkScalar mt = 2.f * d[0];
    784         ls = ls / lt;
    785         ms = ms / mt;
    786         // need to have t values sorted since this is what is expected by SkChopCubicAt
    787         if (ls <= ms) {
    788             smallS = ls;
    789             largeS = ms;
    790         } else {
    791             smallS = ms;
    792             largeS = ls;
    793         }
    794 
    795         SkScalar chop_ts[2];
    796         if (smallS > 0.f && smallS < 1.f) {
    797             chop_ts[chop_count++] = smallS;
    798         }
    799         if (largeS > 0.f && largeS < 1.f) {
    800             chop_ts[chop_count++] = largeS;
    801         }
    802         if(dst) {
    803             SkChopCubicAt(src, dst, chop_ts, chop_count);
    804         }
    805     } else {
    806         if (dst) {
    807             memcpy(dst, src, sizeof(SkPoint) * 4);
    808         }
    809     }
    810 
    811     if (klm && klm_rev) {
    812         // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
    813         // flipped. This will always be the section that is the "loop"
    814         if (2 == chop_count) {
    815             klm_rev[0] = 1.f;
    816             klm_rev[1] = -1.f;
    817             klm_rev[2] = 1.f;
    818         } else if (1 == chop_count) {
    819             if (smallS < 0.f) {
    820                 klm_rev[0] = -1.f;
    821                 klm_rev[1] = 1.f;
    822             } else {
    823                 klm_rev[0] = 1.f;
    824                 klm_rev[1] = -1.f;
    825             }
    826         } else {
    827             if (smallS < 0.f && largeS > 1.f) {
    828                 klm_rev[0] = -1.f;
    829             } else {
    830                 klm_rev[0] = 1.f;
    831             }
    832         }
    833         SkScalar controlK[4];
    834         SkScalar controlL[4];
    835         SkScalar controlM[4];
    836 
    837         if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
    838             set_serp_klm(d, controlK, controlL, controlM);
    839         } else if (kLoop_CubicType == cType) {
    840             set_loop_klm(d, controlK, controlL, controlM);
    841         } else if (kCusp_CubicType == cType) {
    842             SkASSERT(0.f == d[0]);
    843             set_cusp_klm(d, controlK, controlL, controlM);
    844         } else if (kQuadratic_CubicType == cType) {
    845             set_quadratic_klm(d, controlK, controlL, controlM);
    846         }
    847 
    848         calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
    849     }
    850     return chop_count + 1;
    851 }
    852 
    853 void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
    854     SkScalar d[3];
    855     calc_cubic_inflection_func(p, d);
    856 
    857     CubicType cType = classify_cubic(p, d);
    858 
    859     SkScalar controlK[4];
    860     SkScalar controlL[4];
    861     SkScalar controlM[4];
    862 
    863     if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
    864         set_serp_klm(d, controlK, controlL, controlM);
    865     } else if (kLoop_CubicType == cType) {
    866         set_loop_klm(d, controlK, controlL, controlM);
    867     } else if (kCusp_CubicType == cType) {
    868         SkASSERT(0.f == d[0]);
    869         set_cusp_klm(d, controlK, controlL, controlM);
    870     } else if (kQuadratic_CubicType == cType) {
    871         set_quadratic_klm(d, controlK, controlL, controlM);
    872     }
    873 
    874     calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
    875 }
    876