Home | History | Annotate | Download | only in pathops
      1 // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
      2 /*
      3  *  Roots3And4.c
      4  *
      5  *  Utility functions to find cubic and quartic roots,
      6  *  coefficients are passed like this:
      7  *
      8  *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
      9  *
     10  *  The functions return the number of non-complex roots and
     11  *  put the values into the s array.
     12  *
     13  *  Author:         Jochen Schwarze (schwarze (at) isa.de)
     14  *
     15  *  Jan 26, 1990    Version for Graphics Gems
     16  *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic
     17  *                  (reported by Mark Podlipec),
     18  *                  Old-style function definitions,
     19  *                  IsZero() as a macro
     20  *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in
     21  *                  <math.h>, though the functions exist in the library.
     22  *                  If large coefficients are used, EQN_EPS should be
     23  *                  reduced considerably (e.g. to 1E-30), results will be
     24  *                  correct but multiple roots might be reported more
     25  *                  than once.
     26  */
     27 
     28 #include "SkPathOpsCubic.h"
     29 #include "SkPathOpsQuad.h"
     30 #include "SkQuarticRoot.h"
     31 
     32 int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
     33         const double t0, const bool oneHint, double roots[4]) {
     34 #ifdef SK_DEBUG
     35     // create a string mathematica understands
     36     // GDB set print repe 15 # if repeated digits is a bother
     37     //     set print elements 400 # if line doesn't fit
     38     char str[1024];
     39     sk_bzero(str, sizeof(str));
     40     SK_SNPRINTF(str, sizeof(str),
     41             "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
     42             t4, t3, t2, t1, t0);
     43     SkPathOpsDebug::MathematicaIze(str, sizeof(str));
     44 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
     45     SkDebugf("%s\n", str);
     46 #endif
     47 #endif
     48     if (approximately_zero_when_compared_to(t4, t0)  // 0 is one root
     49             && approximately_zero_when_compared_to(t4, t1)
     50             && approximately_zero_when_compared_to(t4, t2)) {
     51         if (approximately_zero_when_compared_to(t3, t0)
     52             && approximately_zero_when_compared_to(t3, t1)
     53             && approximately_zero_when_compared_to(t3, t2)) {
     54             return SkDQuad::RootsReal(t2, t1, t0, roots);
     55         }
     56         if (approximately_zero_when_compared_to(t4, t3)) {
     57             return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
     58         }
     59     }
     60     if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))  // 0 is one root
     61       //      && approximately_zero_when_compared_to(t0, t2)
     62             && approximately_zero_when_compared_to(t0, t3)
     63             && approximately_zero_when_compared_to(t0, t4)) {
     64         int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
     65         for (int i = 0; i < num; ++i) {
     66             if (approximately_zero(roots[i])) {
     67                 return num;
     68             }
     69         }
     70         roots[num++] = 0;
     71         return num;
     72     }
     73     if (oneHint) {
     74         SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0) ||
     75                 approximately_zero_when_compared_to(t4 + t3 + t2 + t1 + t0,  // 1 is one root
     76                 SkTMax(fabs(t4), SkTMax(fabs(t3), SkTMax(fabs(t2), SkTMax(fabs(t1), fabs(t0)))))));
     77         // note that -C == A + B + D + E
     78         int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
     79         for (int i = 0; i < num; ++i) {
     80             if (approximately_equal(roots[i], 1)) {
     81                 return num;
     82             }
     83         }
     84         roots[num++] = 1;
     85         return num;
     86     }
     87     return -1;
     88 }
     89 
     90 int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
     91         const double D, const double E, double s[4]) {
     92     double  u, v;
     93     /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
     94     const double invA = 1 / A;
     95     const double a = B * invA;
     96     const double b = C * invA;
     97     const double c = D * invA;
     98     const double d = E * invA;
     99     /*  substitute x = y - a/4 to eliminate cubic term:
    100     x^4 + px^2 + qx + r = 0 */
    101     const double a2 = a * a;
    102     const double p = -3 * a2 / 8 + b;
    103     const double q = a2 * a / 8 - a * b / 2 + c;
    104     const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
    105     int num;
    106     double largest = SkTMax(fabs(p), fabs(q));
    107     if (approximately_zero_when_compared_to(r, largest)) {
    108     /* no absolute term: y(y^3 + py + q) = 0 */
    109         num = SkDCubic::RootsReal(1, 0, p, q, s);
    110         s[num++] = 0;
    111     } else {
    112         /* solve the resolvent cubic ... */
    113         double cubicRoots[3];
    114         int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
    115         int index;
    116         /* ... and take one real solution ... */
    117         double z;
    118         num = 0;
    119         int num2 = 0;
    120         for (index = firstCubicRoot; index < roots; ++index) {
    121             z = cubicRoots[index];
    122             /* ... to build two quadric equations */
    123             u = z * z - r;
    124             v = 2 * z - p;
    125             if (approximately_zero_squared(u)) {
    126                 u = 0;
    127             } else if (u > 0) {
    128                 u = sqrt(u);
    129             } else {
    130                 continue;
    131             }
    132             if (approximately_zero_squared(v)) {
    133                 v = 0;
    134             } else if (v > 0) {
    135                 v = sqrt(v);
    136             } else {
    137                 continue;
    138             }
    139             num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s);
    140             num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num);
    141             if (!((num | num2) & 1)) {
    142                 break;  // prefer solutions without single quad roots
    143             }
    144         }
    145         num += num2;
    146         if (!num) {
    147             return 0;  // no valid cubic root
    148         }
    149     }
    150     /* resubstitute */
    151     const double sub = a / 4;
    152     for (int i = 0; i < num; ++i) {
    153         s[i] -= sub;
    154     }
    155     // eliminate duplicates
    156     for (int i = 0; i < num - 1; ++i) {
    157         for (int j = i + 1; j < num; ) {
    158             if (AlmostDequalUlps(s[i], s[j])) {
    159                 if (j < --num) {
    160                     s[j] = s[num];
    161                 }
    162             } else {
    163                 ++j;
    164             }
    165         }
    166     }
    167     return num;
    168 }
    169