Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkTextureCompressor.h"
      9 
     10 #include "SkBitmap.h"
     11 #include "SkData.h"
     12 #include "SkEndian.h"
     13 
     14 ////////////////////////////////////////////////////////////////////////////////
     15 //
     16 // Utility Functions
     17 //
     18 ////////////////////////////////////////////////////////////////////////////////
     19 
     20 // Absolute difference between two values. More correct than SkTAbs(a - b)
     21 // because it works on unsigned values.
     22 template <typename T> inline T abs_diff(const T &a, const T &b) {
     23     return (a > b) ? (a - b) : (b - a);
     24 }
     25 
     26 ////////////////////////////////////////////////////////////////////////////////
     27 //
     28 // LATC compressor
     29 //
     30 ////////////////////////////////////////////////////////////////////////////////
     31 
     32 // LATC compressed texels down into square 4x4 blocks
     33 static const int kPaletteSize = 8;
     34 static const int kLATCBlockSize = 4;
     35 static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
     36 
     37 // Generates an LATC palette. LATC constructs
     38 // a palette of eight colors from LUM0 and LUM1 using the algorithm:
     39 //
     40 // LUM0,              if lum0 > lum1 and code(x,y) == 0
     41 // LUM1,              if lum0 > lum1 and code(x,y) == 1
     42 // (6*LUM0+  LUM1)/7, if lum0 > lum1 and code(x,y) == 2
     43 // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3
     44 // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4
     45 // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5
     46 // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6
     47 // (  LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7
     48 //
     49 // LUM0,              if lum0 <= lum1 and code(x,y) == 0
     50 // LUM1,              if lum0 <= lum1 and code(x,y) == 1
     51 // (4*LUM0+  LUM1)/5, if lum0 <= lum1 and code(x,y) == 2
     52 // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3
     53 // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4
     54 // (  LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
     55 // 0,                 if lum0 <= lum1 and code(x,y) == 6
     56 // 255,               if lum0 <= lum1 and code(x,y) == 7
     57 
     58 static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
     59     palette[0] = lum0;
     60     palette[1] = lum1;
     61     if (lum0 > lum1) {
     62         for (int i = 1; i < 7; i++) {
     63             palette[i+1] = ((7-i)*lum0 + i*lum1) / 7;
     64         }
     65     } else {
     66         for (int i = 1; i < 5; i++) {
     67             palette[i+1] = ((5-i)*lum0 + i*lum1) / 5;
     68         }
     69         palette[6] = 0;
     70         palette[7] = 255;
     71     }
     72 }
     73 
     74 static bool is_extremal(uint8_t pixel) {
     75     return 0 == pixel || 255 == pixel;
     76 }
     77 
     78 // Compress a block by using the bounding box of the pixels. It is assumed that
     79 // there are no extremal pixels in this block otherwise we would have used
     80 // compressBlockBBIgnoreExtremal.
     81 static uint64_t compress_block_bb(const uint8_t pixels[]) {
     82     uint8_t minVal = 255;
     83     uint8_t maxVal = 0;
     84     for (int i = 0; i < kPixelsPerBlock; ++i) {
     85         minVal = SkTMin(pixels[i], minVal);
     86         maxVal = SkTMax(pixels[i], maxVal);
     87     }
     88 
     89     SkASSERT(!is_extremal(minVal));
     90     SkASSERT(!is_extremal(maxVal));
     91 
     92     uint8_t palette[kPaletteSize];
     93     generate_palette(palette, maxVal, minVal);
     94 
     95     uint64_t indices = 0;
     96     for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
     97 
     98         // Find the best palette index
     99         uint8_t bestError = abs_diff(pixels[i], palette[0]);
    100         uint8_t idx = 0;
    101         for (int j = 1; j < kPaletteSize; ++j) {
    102             uint8_t error = abs_diff(pixels[i], palette[j]);
    103             if (error < bestError) {
    104                 bestError = error;
    105                 idx = j;
    106             }
    107         }
    108 
    109         indices <<= 3;
    110         indices |= idx;
    111     }
    112 
    113     return
    114         SkEndian_SwapLE64(
    115             static_cast<uint64_t>(maxVal) |
    116             (static_cast<uint64_t>(minVal) << 8) |
    117             (indices << 16));
    118 }
    119 
    120 // Compress a block by using the bounding box of the pixels without taking into
    121 // account the extremal values. The generated palette will contain extremal values
    122 // and fewer points along the line segment to interpolate.
    123 static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
    124     uint8_t minVal = 255;
    125     uint8_t maxVal = 0;
    126     for (int i = 0; i < kPixelsPerBlock; ++i) {
    127         if (is_extremal(pixels[i])) {
    128             continue;
    129         }
    130 
    131         minVal = SkTMin(pixels[i], minVal);
    132         maxVal = SkTMax(pixels[i], maxVal);
    133     }
    134 
    135     SkASSERT(!is_extremal(minVal));
    136     SkASSERT(!is_extremal(maxVal));
    137 
    138     uint8_t palette[kPaletteSize];
    139     generate_palette(palette, minVal, maxVal);
    140 
    141     uint64_t indices = 0;
    142     for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
    143 
    144         // Find the best palette index
    145         uint8_t idx = 0;
    146         if (is_extremal(pixels[i])) {
    147             if (0xFF == pixels[i]) {
    148                 idx = 7;
    149             } else if (0 == pixels[i]) {
    150                 idx = 6;
    151             } else {
    152                 SkFAIL("Pixel is extremal but not really?!");
    153             }
    154         } else {
    155             uint8_t bestError = abs_diff(pixels[i], palette[0]);
    156             for (int j = 1; j < kPaletteSize - 2; ++j) {
    157                 uint8_t error = abs_diff(pixels[i], palette[j]);
    158                 if (error < bestError) {
    159                     bestError = error;
    160                     idx = j;
    161                 }
    162             }
    163         }
    164 
    165         indices <<= 3;
    166         indices |= idx;
    167     }
    168 
    169     return
    170         SkEndian_SwapLE64(
    171             static_cast<uint64_t>(minVal) |
    172             (static_cast<uint64_t>(maxVal) << 8) |
    173             (indices << 16));
    174 }
    175 
    176 
    177 // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two
    178 // values LUM0 and LUM1, and an index into the generated palette. Details of how
    179 // the palette is generated can be found in the comments of generatePalette above.
    180 //
    181 // We choose which palette type to use based on whether or not 'pixels' contains
    182 // any extremal values (0 or 255). If there are extremal values, then we use the
    183 // palette that has the extremal values built in. Otherwise, we use the full bounding
    184 // box.
    185 
    186 static uint64_t compress_block(const uint8_t pixels[]) {
    187     // Collect unique pixels
    188     int nUniquePixels = 0;
    189     uint8_t uniquePixels[kPixelsPerBlock];
    190     for (int i = 0; i < kPixelsPerBlock; ++i) {
    191         bool foundPixel = false;
    192         for (int j = 0; j < nUniquePixels; ++j) {
    193             foundPixel = foundPixel || uniquePixels[j] == pixels[i];
    194         }
    195 
    196         if (!foundPixel) {
    197             uniquePixels[nUniquePixels] = pixels[i];
    198             ++nUniquePixels;
    199         }
    200     }
    201 
    202     // If there's only one unique pixel, then our compression is easy.
    203     if (1 == nUniquePixels) {
    204         return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8));
    205 
    206     // Similarly, if there are only two unique pixels, then our compression is
    207     // easy again: place the pixels in the block header, and assign the indices
    208     // with one or zero depending on which pixel they belong to.
    209     } else if (2 == nUniquePixels) {
    210         uint64_t outBlock = 0;
    211         for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
    212             int idx = 0;
    213             if (pixels[i] == uniquePixels[1]) {
    214                 idx = 1;
    215             }
    216 
    217             outBlock <<= 3;
    218             outBlock |= idx;
    219         }
    220         outBlock <<= 16;
    221         outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8));
    222         return SkEndian_SwapLE64(outBlock);
    223     }
    224 
    225     // Count non-maximal pixel values
    226     int nonExtremalPixels = 0;
    227     for (int i = 0; i < nUniquePixels; ++i) {
    228         if (!is_extremal(uniquePixels[i])) {
    229             ++nonExtremalPixels;
    230         }
    231     }
    232 
    233     // If all the pixels are nonmaximal then compute the palette using
    234     // the bounding box of all the pixels.
    235     if (nonExtremalPixels == nUniquePixels) {
    236         // This is really just for correctness, in all of my tests we
    237         // never take this step. We don't lose too much perf here because
    238         // most of the processing in this function is worth it for the
    239         // 1 == nUniquePixels optimization.
    240         return compress_block_bb(pixels);
    241     } else {
    242         return compress_block_bb_ignore_extremal(pixels);
    243     }
    244 }
    245 
    246 static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
    247                                 int width, int height, int rowBytes) {
    248     // Make sure that our data is well-formed enough to be
    249     // considered for LATC compression
    250     if (0 == width || 0 == height ||
    251         (width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) {
    252         return false;
    253     }
    254 
    255     int blocksX = width / kLATCBlockSize;
    256     int blocksY = height / kLATCBlockSize;
    257 
    258     uint8_t block[16];
    259     uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
    260     for (int y = 0; y < blocksY; ++y) {
    261         for (int x = 0; x < blocksX; ++x) {
    262             // Load block
    263             static const int kBS = kLATCBlockSize;
    264             for (int k = 0; k < kBS; ++k) {
    265                 memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS);
    266             }
    267 
    268             // Compress it
    269             *encPtr = compress_block(block);
    270             ++encPtr;
    271         }
    272         src += kLATCBlockSize * rowBytes;
    273     }
    274 
    275     return true;
    276 }
    277 
    278 ////////////////////////////////////////////////////////////////////////////////
    279 
    280 namespace SkTextureCompressor {
    281 
    282 static size_t get_compressed_data_size(Format fmt, int width, int height) {
    283     switch (fmt) {
    284         case kLATC_Format:
    285         {
    286             // The LATC format is 64 bits per 4x4 block.
    287             static const int kLATCEncodedBlockSize = 8;
    288 
    289             int blocksX = width / kLATCBlockSize;
    290             int blocksY = height / kLATCBlockSize;
    291 
    292             return blocksX * blocksY * kLATCEncodedBlockSize;
    293         }
    294 
    295         default:
    296             SkFAIL("Unknown compressed format!");
    297             return 0;
    298     }
    299 }
    300 
    301 typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src,
    302                                    int width, int height, int rowBytes);
    303 
    304 bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcColorType,
    305                             int width, int height, int rowBytes, Format format) {
    306 
    307     CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1];
    308     memset(kProcMap, 0, sizeof(kProcMap));
    309 
    310     kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc;
    311 
    312     CompressBitmapProc proc = kProcMap[format][srcColorType];
    313     if (NULL != proc) {
    314         return proc(dst, src, width, height, rowBytes);
    315     }
    316 
    317     return false;
    318 }
    319 
    320 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) {
    321     SkAutoLockPixels alp(bitmap);
    322 
    323     int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height());
    324     const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels());
    325     uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize));
    326     if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(),
    327                                bitmap.rowBytes(), format)) {
    328         return SkData::NewFromMalloc(dst, compressedDataSize);
    329     }
    330 
    331     sk_free(dst);
    332     return NULL;
    333 }
    334 
    335 }  // namespace SkTextureCompressor
    336