Home | History | Annotate | Download | only in lib
      1 // test-properties.h
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //      http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 //
     15 //
     16 // \file
     17 // Functions to manipulate and test property bits
     18 
     19 #ifndef FST_LIB_TEST_PROPERTIES_H__
     20 #define FST_LIB_TEST_PROPERTIES_H__
     21 
     22 #include <unordered_set>
     23 
     24 #include "fst/lib/connect.h"
     25 #include "fst/lib/dfs-visit.h"
     26 #include "fst/lib/mutable-fst.h"
     27 
     28 DECLARE_bool(fst_verify_properties);
     29 
     30 namespace fst {
     31 
     32 // For a binary property, the bit is always returned set.
     33 // For a trinary (i.e. two-bit) property, both bits are
     34 // returned set iff either corresponding input bit is set.
     35 inline uint64 KnownProperties(uint64 props) {
     36   return kBinaryProperties | (props & kTrinaryProperties) |
     37     (props & kPosTrinaryProperties) << 1 |
     38     (props & kNegTrinaryProperties) >> 1;
     39 }
     40 
     41 // Tests compatibility between two sets of properties
     42 inline bool CompatProperties(uint64 props1, uint64 props2) {
     43   uint64 known_props1 = KnownProperties(props1);
     44   uint64 known_props2 = KnownProperties(props2);
     45   uint64 known_props = known_props1 & known_props2;
     46   uint64 incompat_props = (props1 & known_props) ^ (props2 & known_props);
     47   if (incompat_props) {
     48     uint64 prop = 1;
     49     for (int i = 0; i < 64; ++i, prop <<= 1)
     50       if (prop & incompat_props)
     51         LOG(ERROR) << "CompatProperties: mismatch: " << PropertyNames[i]
     52                    << ": props1 = " << (props1 & prop ? "true" : "false")
     53                    << ", props2 = " << (props2 & prop ? "true" : "false");
     54     return false;
     55   } else {
     56     return true;
     57   }
     58 }
     59 
     60 // Computes FST property values defined in properties.h.  The value of
     61 // each property indicated in the mask will be determined and returned
     62 // (these will never be unknown here). In the course of determining
     63 // the properties specifically requested in the mask, certain other
     64 // properties may be determined (those with little additional expense)
     65 // and their values will be returned as well. The complete set of
     66 // known properties (whether true or false) determined by this
     67 // operation will be assigned to the the value pointed to by KNOWN.
     68 // If 'use_stored' is true, pre-computed FST properties may be used
     69 // when possible. This routine is seldom called directly; instead it
     70 // is used to implement fst.Properties(mask, true).
     71 template<class Arc>
     72 uint64 ComputeProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known,
     73                          bool use_stored) {
     74   typedef typename Arc::Label Label;
     75   typedef typename Arc::Weight Weight;
     76   typedef typename Arc::StateId StateId;
     77 
     78   uint64 fst_props = fst.Properties(kFstProperties, false);  // Fst-stored
     79 
     80   // Check stored FST properties first if allowed.
     81   if (use_stored) {
     82     uint64 known_props = KnownProperties(fst_props);
     83     // If FST contains required info, return it.
     84     if ((known_props & mask) == mask) {
     85       *known = known_props;
     86       return fst_props;
     87     }
     88   }
     89 
     90   // Compute (trinary) properties explicitly.
     91 
     92   // Initialize with binary properties (already known).
     93   uint64 comp_props = fst_props & kBinaryProperties;
     94 
     95   // Compute these trinary properties with a DFS. We compute only those
     96   // that need a DFS here, since we otherwise would like to avoid a DFS
     97   // since its stack could grow large.
     98   uint64 dfs_props = kCyclic | kAcyclic | kInitialCyclic | kInitialAcyclic |
     99                      kAccessible | kNotAccessible |
    100                      kCoAccessible | kNotCoAccessible;
    101   if (mask & dfs_props) {
    102     SccVisitor<Arc> scc_visitor(&comp_props);
    103     DfsVisit(fst, &scc_visitor);
    104   }
    105 
    106   // Compute any remaining trinary properties via a state and arcs iterations
    107   if (mask & ~(kBinaryProperties | dfs_props)) {
    108     comp_props |= kAcceptor | kNoEpsilons | kNoIEpsilons | kNoOEpsilons |
    109         kILabelSorted | kOLabelSorted | kUnweighted | kTopSorted | kString;
    110     if (mask & (kIDeterministic | kNonIDeterministic))
    111       comp_props |= kIDeterministic;
    112     if (mask & (kODeterministic | kNonODeterministic))
    113       comp_props |= kODeterministic;
    114 
    115     std::unordered_set<Label> *ilabels = 0;
    116     std::unordered_set<Label> *olabels = 0;
    117 
    118     StateId nfinal = 0;
    119     for (StateIterator< Fst<Arc> > siter(fst);
    120          !siter.Done();
    121          siter.Next()) {
    122       StateId s = siter.Value();
    123 
    124       Arc prev_arc(kNoLabel, kNoLabel, Weight::One(), 0);
    125       // Create these only if we need to
    126       if (mask & (kIDeterministic | kNonIDeterministic))
    127         ilabels = new std::unordered_set<Label>;
    128       if (mask & (kODeterministic | kNonODeterministic))
    129         olabels = new std::unordered_set<Label>;
    130 
    131       for (ArcIterator< Fst<Arc> > aiter(fst, s);
    132            !aiter.Done();
    133            aiter.Next()) {
    134         const Arc &arc =aiter.Value();
    135 
    136         if (ilabels && ilabels->find(arc.ilabel) != ilabels->end()) {
    137           comp_props |= kNonIDeterministic;
    138           comp_props &= ~kIDeterministic;
    139         }
    140         if (olabels && olabels->find(arc.olabel) != olabels->end()) {
    141           comp_props |= kNonODeterministic;
    142           comp_props &= ~kODeterministic;
    143         }
    144         if (arc.ilabel != arc.olabel) {
    145           comp_props |= kNotAcceptor;
    146           comp_props &= ~kAcceptor;
    147         }
    148         if (arc.ilabel == 0 && arc.olabel == 0) {
    149           comp_props |= kEpsilons;
    150           comp_props &= ~kNoEpsilons;
    151         }
    152         if (arc.ilabel == 0) {
    153           comp_props |= kIEpsilons;
    154           comp_props &= ~kNoIEpsilons;
    155         }
    156         if (arc.olabel == 0) {
    157           comp_props |= kOEpsilons;
    158           comp_props &= ~kNoOEpsilons;
    159         }
    160         if (prev_arc.ilabel != kNoLabel && arc.ilabel < prev_arc.ilabel) {
    161           comp_props |= kNotILabelSorted;
    162           comp_props &= ~kILabelSorted;
    163         }
    164         if (prev_arc.olabel != kNoLabel && arc.olabel < prev_arc.olabel) {
    165           comp_props |= kNotOLabelSorted;
    166           comp_props &= ~kOLabelSorted;
    167         }
    168         if (arc.weight != Weight::One() && arc.weight != Weight::Zero()) {
    169           comp_props |= kWeighted;
    170           comp_props &= ~kUnweighted;
    171         }
    172         if (arc.nextstate <= s) {
    173           comp_props |= kNotTopSorted;
    174           comp_props &= ~kTopSorted;
    175         }
    176         if (arc.nextstate != s + 1) {
    177           comp_props |= kNotString;
    178           comp_props &= ~kString;
    179         }
    180         prev_arc = arc;
    181         if (ilabels)
    182           ilabels->insert(arc.ilabel);
    183         if (olabels)
    184           olabels->insert(arc.olabel);
    185       }
    186 
    187       if (nfinal > 0) {             // final state not last
    188         comp_props |= kNotString;
    189         comp_props &= ~kString;
    190       }
    191 
    192       Weight final = fst.Final(s);
    193 
    194       if (final != Weight::Zero()) {  // final state
    195         if (final != Weight::One()) {
    196           comp_props |= kWeighted;
    197           comp_props &= ~kUnweighted;
    198         }
    199         ++nfinal;
    200       } else {                        // non-final state
    201         if (fst.NumArcs(s) != 1) {
    202           comp_props |= kNotString;
    203           comp_props &= ~kString;
    204         }
    205       }
    206 
    207       delete ilabels;
    208       delete olabels;
    209     }
    210 
    211     if (fst.Start() != kNoStateId && fst.Start() != 0) {
    212       comp_props |= kNotString;
    213       comp_props &= ~kString;
    214     }
    215   }
    216 
    217   *known = KnownProperties(comp_props);
    218   return comp_props;
    219 }
    220 
    221 // This is a wrapper around ComputeProperties that will cause a fatal
    222 // error if the stored properties and the computed properties are
    223 // incompatible when 'FLAGS_fst_verify_properties' is true.  This
    224 // routine is seldom called directly; instead it is used to implement
    225 // fst.Properties(mask, true).
    226 template<class Arc>
    227 uint64 TestProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known) {
    228   if (FLAGS_fst_verify_properties) {
    229     uint64 stored_props = fst.Properties(kFstProperties, false);
    230     uint64 computed_props = ComputeProperties(fst, mask, known, false);
    231     if (!CompatProperties(stored_props, computed_props))
    232       LOG(FATAL) << "TestProperties: stored Fst properties incorrect"
    233                  << " (stored: props1, computed: props2)";
    234     return computed_props;
    235   } else {
    236     return ComputeProperties(fst, mask, known, true);
    237   }
    238 }
    239 
    240 }  // namespace fst
    241 
    242 #endif  // FST_LIB_TEST_PROPERTIES_H__
    243