Home | History | Annotate | Download | only in enc
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Macroblock analysis
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include <stdlib.h>
     15 #include <string.h>
     16 #include <assert.h>
     17 
     18 #include "./vp8enci.h"
     19 #include "./cost.h"
     20 #include "../utils/utils.h"
     21 
     22 #define MAX_ITERS_K_MEANS  6
     23 
     24 //------------------------------------------------------------------------------
     25 // Smooth the segment map by replacing isolated block by the majority of its
     26 // neighbours.
     27 
     28 static void SmoothSegmentMap(VP8Encoder* const enc) {
     29   int n, x, y;
     30   const int w = enc->mb_w_;
     31   const int h = enc->mb_h_;
     32   const int majority_cnt_3_x_3_grid = 5;
     33   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
     34   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
     35 
     36   if (tmp == NULL) return;
     37   for (y = 1; y < h - 1; ++y) {
     38     for (x = 1; x < w - 1; ++x) {
     39       int cnt[NUM_MB_SEGMENTS] = { 0 };
     40       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
     41       int majority_seg = mb->segment_;
     42       // Check the 8 neighbouring segment values.
     43       cnt[mb[-w - 1].segment_]++;  // top-left
     44       cnt[mb[-w + 0].segment_]++;  // top
     45       cnt[mb[-w + 1].segment_]++;  // top-right
     46       cnt[mb[   - 1].segment_]++;  // left
     47       cnt[mb[   + 1].segment_]++;  // right
     48       cnt[mb[ w - 1].segment_]++;  // bottom-left
     49       cnt[mb[ w + 0].segment_]++;  // bottom
     50       cnt[mb[ w + 1].segment_]++;  // bottom-right
     51       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
     52         if (cnt[n] >= majority_cnt_3_x_3_grid) {
     53           majority_seg = n;
     54           break;
     55         }
     56       }
     57       tmp[x + y * w] = majority_seg;
     58     }
     59   }
     60   for (y = 1; y < h - 1; ++y) {
     61     for (x = 1; x < w - 1; ++x) {
     62       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
     63       mb->segment_ = tmp[x + y * w];
     64     }
     65   }
     66   WebPSafeFree(tmp);
     67 }
     68 
     69 //------------------------------------------------------------------------------
     70 // set segment susceptibility alpha_ / beta_
     71 
     72 static WEBP_INLINE int clip(int v, int m, int M) {
     73   return (v < m) ? m : (v > M) ? M : v;
     74 }
     75 
     76 static void SetSegmentAlphas(VP8Encoder* const enc,
     77                              const int centers[NUM_MB_SEGMENTS],
     78                              int mid) {
     79   const int nb = enc->segment_hdr_.num_segments_;
     80   int min = centers[0], max = centers[0];
     81   int n;
     82 
     83   if (nb > 1) {
     84     for (n = 0; n < nb; ++n) {
     85       if (min > centers[n]) min = centers[n];
     86       if (max < centers[n]) max = centers[n];
     87     }
     88   }
     89   if (max == min) max = min + 1;
     90   assert(mid <= max && mid >= min);
     91   for (n = 0; n < nb; ++n) {
     92     const int alpha = 255 * (centers[n] - mid) / (max - min);
     93     const int beta = 255 * (centers[n] - min) / (max - min);
     94     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
     95     enc->dqm_[n].beta_ = clip(beta, 0, 255);
     96   }
     97 }
     98 
     99 //------------------------------------------------------------------------------
    100 // Compute susceptibility based on DCT-coeff histograms:
    101 // the higher, the "easier" the macroblock is to compress.
    102 
    103 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
    104 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
    105 #define DEFAULT_ALPHA (-1)
    106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
    107 
    108 static int FinalAlphaValue(int alpha) {
    109   alpha = MAX_ALPHA - alpha;
    110   return clip(alpha, 0, MAX_ALPHA);
    111 }
    112 
    113 static int GetAlpha(const VP8Histogram* const histo) {
    114   int max_value = 0, last_non_zero = 1;
    115   int k;
    116   int alpha;
    117   for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
    118     const int value = histo->distribution[k];
    119     if (value > 0) {
    120       if (value > max_value) max_value = value;
    121       last_non_zero = k;
    122     }
    123   }
    124   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
    125   // values which happen to be mostly noise. This leaves the maximum precision
    126   // for handling the useful small values which contribute most.
    127   alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
    128   return alpha;
    129 }
    130 
    131 static void MergeHistograms(const VP8Histogram* const in,
    132                             VP8Histogram* const out) {
    133   int i;
    134   for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
    135     out->distribution[i] += in->distribution[i];
    136   }
    137 }
    138 
    139 //------------------------------------------------------------------------------
    140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
    141 
    142 static void AssignSegments(VP8Encoder* const enc,
    143                            const int alphas[MAX_ALPHA + 1]) {
    144   const int nb = enc->segment_hdr_.num_segments_;
    145   int centers[NUM_MB_SEGMENTS];
    146   int weighted_average = 0;
    147   int map[MAX_ALPHA + 1];
    148   int a, n, k;
    149   int min_a = 0, max_a = MAX_ALPHA, range_a;
    150   // 'int' type is ok for histo, and won't overflow
    151   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
    152 
    153   assert(nb >= 1);
    154   assert(nb <= NUM_MB_SEGMENTS);
    155 
    156   // bracket the input
    157   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
    158   min_a = n;
    159   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
    160   max_a = n;
    161   range_a = max_a - min_a;
    162 
    163   // Spread initial centers evenly
    164   for (k = 0, n = 1; k < nb; ++k, n += 2) {
    165     assert(n < 2 * nb);
    166     centers[k] = min_a + (n * range_a) / (2 * nb);
    167   }
    168 
    169   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
    170     int total_weight;
    171     int displaced;
    172     // Reset stats
    173     for (n = 0; n < nb; ++n) {
    174       accum[n] = 0;
    175       dist_accum[n] = 0;
    176     }
    177     // Assign nearest center for each 'a'
    178     n = 0;    // track the nearest center for current 'a'
    179     for (a = min_a; a <= max_a; ++a) {
    180       if (alphas[a]) {
    181         while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
    182           n++;
    183         }
    184         map[a] = n;
    185         // accumulate contribution into best centroid
    186         dist_accum[n] += a * alphas[a];
    187         accum[n] += alphas[a];
    188       }
    189     }
    190     // All point are classified. Move the centroids to the
    191     // center of their respective cloud.
    192     displaced = 0;
    193     weighted_average = 0;
    194     total_weight = 0;
    195     for (n = 0; n < nb; ++n) {
    196       if (accum[n]) {
    197         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
    198         displaced += abs(centers[n] - new_center);
    199         centers[n] = new_center;
    200         weighted_average += new_center * accum[n];
    201         total_weight += accum[n];
    202       }
    203     }
    204     weighted_average = (weighted_average + total_weight / 2) / total_weight;
    205     if (displaced < 5) break;   // no need to keep on looping...
    206   }
    207 
    208   // Map each original value to the closest centroid
    209   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    210     VP8MBInfo* const mb = &enc->mb_info_[n];
    211     const int alpha = mb->alpha_;
    212     mb->segment_ = map[alpha];
    213     mb->alpha_ = centers[map[alpha]];  // for the record.
    214   }
    215 
    216   if (nb > 1) {
    217     const int smooth = (enc->config_->preprocessing & 1);
    218     if (smooth) SmoothSegmentMap(enc);
    219   }
    220 
    221   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
    222 }
    223 
    224 //------------------------------------------------------------------------------
    225 // Macroblock analysis: collect histogram for each mode, deduce the maximal
    226 // susceptibility and set best modes for this macroblock.
    227 // Segment assignment is done later.
    228 
    229 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
    230 // the possible modes during the analysis phase: we risk falling into a local
    231 // optimum, or be subject to boundary effect
    232 #define MAX_INTRA16_MODE 2
    233 #define MAX_INTRA4_MODE  2
    234 #define MAX_UV_MODE      2
    235 
    236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
    237   const int max_mode = MAX_INTRA16_MODE;
    238   int mode;
    239   int best_alpha = DEFAULT_ALPHA;
    240   int best_mode = 0;
    241 
    242   VP8MakeLuma16Preds(it);
    243   for (mode = 0; mode < max_mode; ++mode) {
    244     VP8Histogram histo = { { 0 } };
    245     int alpha;
    246 
    247     VP8CollectHistogram(it->yuv_in_ + Y_OFF,
    248                         it->yuv_p_ + VP8I16ModeOffsets[mode],
    249                         0, 16, &histo);
    250     alpha = GetAlpha(&histo);
    251     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
    252       best_alpha = alpha;
    253       best_mode = mode;
    254     }
    255   }
    256   VP8SetIntra16Mode(it, best_mode);
    257   return best_alpha;
    258 }
    259 
    260 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
    261                                    int best_alpha) {
    262   uint8_t modes[16];
    263   const int max_mode = MAX_INTRA4_MODE;
    264   int i4_alpha;
    265   VP8Histogram total_histo = { { 0 } };
    266   int cur_histo = 0;
    267 
    268   VP8IteratorStartI4(it);
    269   do {
    270     int mode;
    271     int best_mode_alpha = DEFAULT_ALPHA;
    272     VP8Histogram histos[2];
    273     const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
    274 
    275     VP8MakeIntra4Preds(it);
    276     for (mode = 0; mode < max_mode; ++mode) {
    277       int alpha;
    278 
    279       memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
    280       VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
    281                           0, 1, &histos[cur_histo]);
    282       alpha = GetAlpha(&histos[cur_histo]);
    283       if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
    284         best_mode_alpha = alpha;
    285         modes[it->i4_] = mode;
    286         cur_histo ^= 1;   // keep track of best histo so far.
    287       }
    288     }
    289     // accumulate best histogram
    290     MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
    291     // Note: we reuse the original samples for predictors
    292   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
    293 
    294   i4_alpha = GetAlpha(&total_histo);
    295   if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
    296     VP8SetIntra4Mode(it, modes);
    297     best_alpha = i4_alpha;
    298   }
    299   return best_alpha;
    300 }
    301 
    302 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
    303   int best_alpha = DEFAULT_ALPHA;
    304   int best_mode = 0;
    305   const int max_mode = MAX_UV_MODE;
    306   int mode;
    307 
    308   VP8MakeChroma8Preds(it);
    309   for (mode = 0; mode < max_mode; ++mode) {
    310     VP8Histogram histo = { { 0 } };
    311     int alpha;
    312     VP8CollectHistogram(it->yuv_in_ + U_OFF,
    313                         it->yuv_p_ + VP8UVModeOffsets[mode],
    314                         16, 16 + 4 + 4, &histo);
    315     alpha = GetAlpha(&histo);
    316     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
    317       best_alpha = alpha;
    318       best_mode = mode;
    319     }
    320   }
    321   VP8SetIntraUVMode(it, best_mode);
    322   return best_alpha;
    323 }
    324 
    325 static void MBAnalyze(VP8EncIterator* const it,
    326                       int alphas[MAX_ALPHA + 1],
    327                       int* const alpha, int* const uv_alpha) {
    328   const VP8Encoder* const enc = it->enc_;
    329   int best_alpha, best_uv_alpha;
    330 
    331   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
    332   VP8SetSkip(it, 0);         // not skipped
    333   VP8SetSegment(it, 0);      // default segment, spec-wise.
    334 
    335   best_alpha = MBAnalyzeBestIntra16Mode(it);
    336   if (enc->method_ >= 5) {
    337     // We go and make a fast decision for intra4/intra16.
    338     // It's usually not a good and definitive pick, but helps seeding the stats
    339     // about level bit-cost.
    340     // TODO(skal): improve criterion.
    341     best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
    342   }
    343   best_uv_alpha = MBAnalyzeBestUVMode(it);
    344 
    345   // Final susceptibility mix
    346   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
    347   best_alpha = FinalAlphaValue(best_alpha);
    348   alphas[best_alpha]++;
    349   it->mb_->alpha_ = best_alpha;   // for later remapping.
    350 
    351   // Accumulate for later complexity analysis.
    352   *alpha += best_alpha;   // mixed susceptibility (not just luma)
    353   *uv_alpha += best_uv_alpha;
    354 }
    355 
    356 static void DefaultMBInfo(VP8MBInfo* const mb) {
    357   mb->type_ = 1;     // I16x16
    358   mb->uv_mode_ = 0;
    359   mb->skip_ = 0;     // not skipped
    360   mb->segment_ = 0;  // default segment
    361   mb->alpha_ = 0;
    362 }
    363 
    364 //------------------------------------------------------------------------------
    365 // Main analysis loop:
    366 // Collect all susceptibilities for each macroblock and record their
    367 // distribution in alphas[]. Segments is assigned a-posteriori, based on
    368 // this histogram.
    369 // We also pick an intra16 prediction mode, which shouldn't be considered
    370 // final except for fast-encode settings. We can also pick some intra4 modes
    371 // and decide intra4/intra16, but that's usually almost always a bad choice at
    372 // this stage.
    373 
    374 static void ResetAllMBInfo(VP8Encoder* const enc) {
    375   int n;
    376   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    377     DefaultMBInfo(&enc->mb_info_[n]);
    378   }
    379   // Default susceptibilities.
    380   enc->dqm_[0].alpha_ = 0;
    381   enc->dqm_[0].beta_ = 0;
    382   // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
    383   enc->alpha_ = 0;
    384   enc->uv_alpha_ = 0;
    385   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
    386 }
    387 
    388 // struct used to collect job result
    389 typedef struct {
    390   WebPWorker worker;
    391   int alphas[MAX_ALPHA + 1];
    392   int alpha, uv_alpha;
    393   VP8EncIterator it;
    394   int delta_progress;
    395 } SegmentJob;
    396 
    397 // main work call
    398 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
    399   int ok = 1;
    400   if (!VP8IteratorIsDone(it)) {
    401     uint8_t tmp[32 + ALIGN_CST];
    402     uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
    403     do {
    404       // Let's pretend we have perfect lossless reconstruction.
    405       VP8IteratorImport(it, scratch);
    406       MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
    407       ok = VP8IteratorProgress(it, job->delta_progress);
    408     } while (ok && VP8IteratorNext(it));
    409   }
    410   return ok;
    411 }
    412 
    413 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
    414   int i;
    415   for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
    416   dst->alpha += src->alpha;
    417   dst->uv_alpha += src->uv_alpha;
    418 }
    419 
    420 // initialize the job struct with some TODOs
    421 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
    422                            int start_row, int end_row) {
    423   WebPGetWorkerInterface()->Init(&job->worker);
    424   job->worker.data1 = job;
    425   job->worker.data2 = &job->it;
    426   job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
    427   VP8IteratorInit(enc, &job->it);
    428   VP8IteratorSetRow(&job->it, start_row);
    429   VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
    430   memset(job->alphas, 0, sizeof(job->alphas));
    431   job->alpha = 0;
    432   job->uv_alpha = 0;
    433   // only one of both jobs can record the progress, since we don't
    434   // expect the user's hook to be multi-thread safe
    435   job->delta_progress = (start_row == 0) ? 20 : 0;
    436 }
    437 
    438 // main entry point
    439 int VP8EncAnalyze(VP8Encoder* const enc) {
    440   int ok = 1;
    441   const int do_segments =
    442       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
    443       (enc->segment_hdr_.num_segments_ > 1) ||
    444       (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
    445   if (do_segments) {
    446     const int last_row = enc->mb_h_;
    447     // We give a little more than a half work to the main thread.
    448     const int split_row = (9 * last_row + 15) >> 4;
    449     const int total_mb = last_row * enc->mb_w_;
    450 #ifdef WEBP_USE_THREAD
    451     const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
    452     const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
    453 #else
    454     const int do_mt = 0;
    455 #endif
    456     const WebPWorkerInterface* const worker_interface =
    457         WebPGetWorkerInterface();
    458     SegmentJob main_job;
    459     if (do_mt) {
    460       SegmentJob side_job;
    461       // Note the use of '&' instead of '&&' because we must call the functions
    462       // no matter what.
    463       InitSegmentJob(enc, &main_job, 0, split_row);
    464       InitSegmentJob(enc, &side_job, split_row, last_row);
    465       // we don't need to call Reset() on main_job.worker, since we're calling
    466       // WebPWorkerExecute() on it
    467       ok &= worker_interface->Reset(&side_job.worker);
    468       // launch the two jobs in parallel
    469       if (ok) {
    470         worker_interface->Launch(&side_job.worker);
    471         worker_interface->Execute(&main_job.worker);
    472         ok &= worker_interface->Sync(&side_job.worker);
    473         ok &= worker_interface->Sync(&main_job.worker);
    474       }
    475       worker_interface->End(&side_job.worker);
    476       if (ok) MergeJobs(&side_job, &main_job);  // merge results together
    477     } else {
    478       // Even for single-thread case, we use the generic Worker tools.
    479       InitSegmentJob(enc, &main_job, 0, last_row);
    480       worker_interface->Execute(&main_job.worker);
    481       ok &= worker_interface->Sync(&main_job.worker);
    482     }
    483     worker_interface->End(&main_job.worker);
    484     if (ok) {
    485       enc->alpha_ = main_job.alpha / total_mb;
    486       enc->uv_alpha_ = main_job.uv_alpha / total_mb;
    487       AssignSegments(enc, main_job.alphas);
    488     }
    489   } else {   // Use only one default segment.
    490     ResetAllMBInfo(enc);
    491   }
    492   return ok;
    493 }
    494 
    495