Home | History | Annotate | Download | only in hwc
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  *
     16  */
     17 
     18 /*
     19  * Hardware Composer stress test
     20  *
     21  * Performs a pseudo-random (prandom) sequence of operations to the
     22  * Hardware Composer (HWC), for a specified number of passes or for
     23  * a specified period of time.  By default the period of time is FLT_MAX,
     24  * so that the number of passes will take precedence.
     25  *
     26  * The passes are grouped together, where (pass / passesPerGroup) specifies
     27  * which group a particular pass is in.  This causes every passesPerGroup
     28  * worth of sequential passes to be within the same group.  Computationally
     29  * intensive operations are performed just once at the beginning of a group
     30  * of passes and then used by all the passes in that group.  This is done
     31  * so as to increase both the average and peak rate of graphic operations,
     32  * by moving computationally intensive operations to the beginning of a group.
     33  * In particular, at the start of each group of passes a set of
     34  * graphic buffers are created, then used by the first and remaining
     35  * passes of that group of passes.
     36  *
     37  * The per-group initialization of the graphic buffers is performed
     38  * by a function called initFrames.  This function creates an array
     39  * of smart pointers to the graphic buffers, in the form of a vector
     40  * of vectors.  The array is accessed in row major order, so each
     41  * row is a vector of smart pointers.  All the pointers of a single
     42  * row point to graphic buffers which use the same pixel format and
     43  * have the same dimension, although it is likely that each one is
     44  * filled with a different color.  This is done so that after doing
     45  * the first HWC prepare then set call, subsequent set calls can
     46  * be made with each of the layer handles changed to a different
     47  * graphic buffer within the same row.  Since the graphic buffers
     48  * in a particular row have the same pixel format and dimension,
     49  * additional HWC set calls can be made, without having to perform
     50  * an HWC prepare call.
     51  *
     52  * This test supports the following command-line options:
     53  *
     54  *   -v        Verbose
     55  *   -s num    Starting pass
     56  *   -e num    Ending pass
     57  *   -p num    Execute the single pass specified by num
     58  *   -n num    Number of set operations to perform after each prepare operation
     59  *   -t float  Maximum time in seconds to execute the test
     60  *   -d float  Delay in seconds performed after each set operation
     61  *   -D float  Delay in seconds performed after the last pass is executed
     62  *
     63  * Typically the test is executed for a large range of passes.  By default
     64  * passes 0 through 99999 (100,000 passes) are executed.  Although this test
     65  * does not validate the generated image, at times it is useful to reexecute
     66  * a particular pass and leave the displayed image on the screen for an
     67  * extended period of time.  This can be done either by setting the -s
     68  * and -e options to the desired pass, along with a large value for -D.
     69  * This can also be done via the -p option, again with a large value for
     70  * the -D options.
     71  *
     72  * So far this test only contains code to create graphic buffers with
     73  * a continuous solid color.  Although this test is unable to validate the
     74  * image produced, any image that contains other than rectangles of a solid
     75  * color are incorrect.  Note that the rectangles may use a transparent
     76  * color and have a blending operation that causes the color in overlapping
     77  * rectangles to be mixed.  In such cases the overlapping portions may have
     78  * a different color from the rest of the rectangle.
     79  */
     80 
     81 #include <algorithm>
     82 #include <assert.h>
     83 #include <cerrno>
     84 #include <cmath>
     85 #include <cstdlib>
     86 #include <ctime>
     87 #include <libgen.h>
     88 #include <sched.h>
     89 #include <sstream>
     90 #include <stdint.h>
     91 #include <string.h>
     92 #include <unistd.h>
     93 #include <vector>
     94 
     95 #include <sys/syscall.h>
     96 #include <sys/types.h>
     97 #include <sys/wait.h>
     98 
     99 #include <EGL/egl.h>
    100 #include <EGL/eglext.h>
    101 #include <GLES2/gl2.h>
    102 #include <GLES2/gl2ext.h>
    103 
    104 #include <ui/GraphicBuffer.h>
    105 
    106 #define LOG_TAG "hwcStressTest"
    107 #include <utils/Log.h>
    108 #include <testUtil.h>
    109 
    110 #include <hardware/hwcomposer.h>
    111 
    112 #include <glTestLib.h>
    113 #include "hwcTestLib.h"
    114 
    115 using namespace std;
    116 using namespace android;
    117 
    118 const float maxSizeRatio = 1.3;  // Graphic buffers can be upto this munch
    119                                  // larger than the default screen size
    120 const unsigned int passesPerGroup = 10; // A group of passes all use the same
    121                                         // graphic buffers
    122 
    123 // Ratios at which rare and frequent conditions should be produced
    124 const float rareRatio = 0.1;
    125 const float freqRatio = 0.9;
    126 
    127 // Defaults for command-line options
    128 const bool defaultVerbose = false;
    129 const unsigned int defaultStartPass = 0;
    130 const unsigned int defaultEndPass = 99999;
    131 const unsigned int defaultPerPassNumSet = 10;
    132 const float defaultPerSetDelay = 0.0; // Default delay after each set
    133                                       // operation.  Default delay of
    134                                       // zero used so as to perform the
    135                                       // the set operations as quickly
    136                                       // as possible.
    137 const float defaultEndDelay = 2.0; // Default delay between completion of
    138                                    // final pass and restart of framework
    139 const float defaultDuration = FLT_MAX; // A fairly long time, so that
    140                                        // range of passes will have
    141                                        // precedence
    142 
    143 // Command-line option settings
    144 static bool verbose = defaultVerbose;
    145 static unsigned int startPass = defaultStartPass;
    146 static unsigned int endPass = defaultEndPass;
    147 static unsigned int numSet = defaultPerPassNumSet;
    148 static float perSetDelay = defaultPerSetDelay;
    149 static float endDelay = defaultEndDelay;
    150 static float duration = defaultDuration;
    151 
    152 // Command-line mutual exclusion detection flags.
    153 // Corresponding flag set true once an option is used.
    154 bool eFlag, sFlag, pFlag;
    155 
    156 #define MAXSTR               100
    157 #define MAXCMD               200
    158 #define BITSPERBYTE            8 // TODO: Obtain from <values.h>, once
    159                                  // it has been added
    160 
    161 #define CMD_STOP_FRAMEWORK   "stop 2>&1"
    162 #define CMD_START_FRAMEWORK  "start 2>&1"
    163 
    164 #define NUMA(a) (sizeof(a) / sizeof(a [0]))
    165 #define MEMCLR(addr, size) do { \
    166         memset((addr), 0, (size)); \
    167     } while (0)
    168 
    169 // File scope constants
    170 const unsigned int blendingOps[] = {
    171     HWC_BLENDING_NONE,
    172     HWC_BLENDING_PREMULT,
    173     HWC_BLENDING_COVERAGE,
    174 };
    175 const unsigned int layerFlags[] = {
    176     HWC_SKIP_LAYER,
    177 };
    178 const vector<unsigned int> vecLayerFlags(layerFlags,
    179     layerFlags + NUMA(layerFlags));
    180 
    181 const unsigned int transformFlags[] = {
    182     HWC_TRANSFORM_FLIP_H,
    183     HWC_TRANSFORM_FLIP_V,
    184     HWC_TRANSFORM_ROT_90,
    185     // ROT_180 & ROT_270 intentionally not listed, because they
    186     // they are formed from combinations of the flags already listed.
    187 };
    188 const vector<unsigned int> vecTransformFlags(transformFlags,
    189     transformFlags + NUMA(transformFlags));
    190 
    191 // File scope globals
    192 static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
    193         GraphicBuffer::USAGE_SW_WRITE_RARELY;
    194 static hwc_composer_device_1_t *hwcDevice;
    195 static EGLDisplay dpy;
    196 static EGLSurface surface;
    197 static EGLint width, height;
    198 static vector <vector <sp<GraphicBuffer> > > frames;
    199 
    200 // File scope prototypes
    201 void init(void);
    202 void initFrames(unsigned int seed);
    203 template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
    204 template <class T> T vectorOr(const vector<T>& vec);
    205 
    206 /*
    207  * Main
    208  *
    209  * Performs the following high-level sequence of operations:
    210  *
    211  *   1. Command-line parsing
    212  *
    213  *   2. Initialization
    214  *
    215  *   3. For each pass:
    216  *
    217  *        a. If pass is first pass or in a different group from the
    218  *           previous pass, initialize the array of graphic buffers.
    219  *
    220  *        b. Create a HWC list with room to specify a prandomly
    221  *           selected number of layers.
    222  *
    223  *        c. Select a subset of the rows from the graphic buffer array,
    224  *           such that there is a unique row to be used for each
    225  *           of the layers in the HWC list.
    226  *
    227  *        d. Prandomly fill in the HWC list with handles
    228  *           selected from any of the columns of the selected row.
    229  *
    230  *        e. Pass the populated list to the HWC prepare call.
    231  *
    232  *        f. Pass the populated list to the HWC set call.
    233  *
    234  *        g. If additional set calls are to be made, then for each
    235  *           additional set call, select a new set of handles and
    236  *           perform the set call.
    237  */
    238 int
    239 main(int argc, char *argv[])
    240 {
    241     int rv, opt;
    242     char *chptr;
    243     unsigned int pass;
    244     char cmd[MAXCMD];
    245     struct timeval startTime, currentTime, delta;
    246 
    247     testSetLogCatTag(LOG_TAG);
    248 
    249     // Parse command line arguments
    250     while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
    251         switch (opt) {
    252           case 'd': // Delay after each set operation
    253             perSetDelay = strtod(optarg, &chptr);
    254             if ((*chptr != '\0') || (perSetDelay < 0.0)) {
    255                 testPrintE("Invalid command-line specified per pass delay of: "
    256                            "%s", optarg);
    257                 exit(1);
    258             }
    259             break;
    260 
    261           case 'D': // End of test delay
    262                     // Delay between completion of final pass and restart
    263                     // of framework
    264             endDelay = strtod(optarg, &chptr);
    265             if ((*chptr != '\0') || (endDelay < 0.0)) {
    266                 testPrintE("Invalid command-line specified end of test delay "
    267                            "of: %s", optarg);
    268                 exit(2);
    269             }
    270             break;
    271 
    272           case 't': // Duration
    273             duration = strtod(optarg, &chptr);
    274             if ((*chptr != '\0') || (duration < 0.0)) {
    275                 testPrintE("Invalid command-line specified duration of: %s",
    276                            optarg);
    277                 exit(3);
    278             }
    279             break;
    280 
    281           case 'n': // Num set operations per pass
    282             numSet = strtoul(optarg, &chptr, 10);
    283             if (*chptr != '\0') {
    284                 testPrintE("Invalid command-line specified num set per pass "
    285                            "of: %s", optarg);
    286                 exit(4);
    287             }
    288             break;
    289 
    290           case 's': // Starting Pass
    291             sFlag = true;
    292             if (pFlag) {
    293                 testPrintE("Invalid combination of command-line options.");
    294                 testPrintE("  The -p option is mutually exclusive from the");
    295                 testPrintE("  -s and -e options.");
    296                 exit(5);
    297             }
    298             startPass = strtoul(optarg, &chptr, 10);
    299             if (*chptr != '\0') {
    300                 testPrintE("Invalid command-line specified starting pass "
    301                            "of: %s", optarg);
    302                 exit(6);
    303             }
    304             break;
    305 
    306           case 'e': // Ending Pass
    307             eFlag = true;
    308             if (pFlag) {
    309                 testPrintE("Invalid combination of command-line options.");
    310                 testPrintE("  The -p option is mutually exclusive from the");
    311                 testPrintE("  -s and -e options.");
    312                 exit(7);
    313             }
    314             endPass = strtoul(optarg, &chptr, 10);
    315             if (*chptr != '\0') {
    316                 testPrintE("Invalid command-line specified ending pass "
    317                            "of: %s", optarg);
    318                 exit(8);
    319             }
    320             break;
    321 
    322           case 'p': // Run a single specified pass
    323             pFlag = true;
    324             if (sFlag || eFlag) {
    325                 testPrintE("Invalid combination of command-line options.");
    326                 testPrintE("  The -p option is mutually exclusive from the");
    327                 testPrintE("  -s and -e options.");
    328                 exit(9);
    329             }
    330             startPass = endPass = strtoul(optarg, &chptr, 10);
    331             if (*chptr != '\0') {
    332                 testPrintE("Invalid command-line specified pass of: %s",
    333                            optarg);
    334                 exit(10);
    335             }
    336             break;
    337 
    338           case 'v': // Verbose
    339             verbose = true;
    340             break;
    341 
    342           case 'h': // Help
    343           case '?':
    344           default:
    345             testPrintE("  %s [options]", basename(argv[0]));
    346             testPrintE("    options:");
    347             testPrintE("      -p Execute specified pass");
    348             testPrintE("      -s Starting pass");
    349             testPrintE("      -e Ending pass");
    350             testPrintE("      -t Duration");
    351             testPrintE("      -d Delay after each set operation");
    352             testPrintE("      -D End of test delay");
    353             testPrintE("      -n Num set operations per pass");
    354             testPrintE("      -v Verbose");
    355             exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
    356         }
    357     }
    358     if (endPass < startPass) {
    359         testPrintE("Unexpected ending pass before starting pass");
    360         testPrintE("  startPass: %u endPass: %u", startPass, endPass);
    361         exit(12);
    362     }
    363     if (argc != optind) {
    364         testPrintE("Unexpected command-line postional argument");
    365         testPrintE("  %s [-s start_pass] [-e end_pass] [-t duration]",
    366             basename(argv[0]));
    367         exit(13);
    368     }
    369     testPrintI("duration: %g", duration);
    370     testPrintI("startPass: %u", startPass);
    371     testPrintI("endPass: %u", endPass);
    372     testPrintI("numSet: %u", numSet);
    373 
    374     // Stop framework
    375     rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
    376     if (rv >= (signed) sizeof(cmd) - 1) {
    377         testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
    378         exit(14);
    379     }
    380     testExecCmd(cmd);
    381     testDelay(1.0); // TODO - need means to query whether asyncronous stop
    382                     // framework operation has completed.  For now, just wait
    383                     // a long time.
    384 
    385     init();
    386 
    387     // For each pass
    388     gettimeofday(&startTime, NULL);
    389     for (pass = startPass; pass <= endPass; pass++) {
    390         // Stop if duration of work has already been performed
    391         gettimeofday(&currentTime, NULL);
    392         delta = tvDelta(&startTime, &currentTime);
    393         if (tv2double(&delta) > duration) { break; }
    394 
    395         // Regenerate a new set of test frames when this pass is
    396         // either the first pass or is in a different group then
    397         // the previous pass.  A group of passes are passes that
    398         // all have the same quotient when their pass number is
    399         // divided by passesPerGroup.
    400         if ((pass == startPass)
    401             || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
    402             initFrames(pass / passesPerGroup);
    403         }
    404 
    405         testPrintI("==== Starting pass: %u", pass);
    406 
    407         // Cause deterministic sequence of prandom numbers to be
    408         // generated for this pass.
    409         srand48(pass);
    410 
    411         hwc_display_contents_1_t *list;
    412         list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
    413         if (list == NULL) {
    414             testPrintE("hwcTestCreateLayerList failed");
    415             exit(20);
    416         }
    417 
    418         // Prandomly select a subset of frames to be used by this pass.
    419         vector <vector <sp<GraphicBuffer> > > selectedFrames;
    420         selectedFrames = vectorRandSelect(frames, list->numHwLayers);
    421 
    422         // Any transform tends to create a layer that the hardware
    423         // composer is unable to support and thus has to leave for
    424         // SurfaceFlinger.  Place heavy bias on specifying no transforms.
    425         bool noTransform = testRandFract() > rareRatio;
    426 
    427         for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
    428             unsigned int idx = testRandMod(selectedFrames[n1].size());
    429             sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
    430             hwc_layer_1_t *layer = &list->hwLayers[n1];
    431             layer->handle = gBuf->handle;
    432 
    433             layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
    434             layer->flags = (testRandFract() > rareRatio) ? 0
    435                 : vectorOr(vectorRandSelect(vecLayerFlags,
    436                            testRandMod(vecLayerFlags.size() + 1)));
    437             layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
    438                 : vectorOr(vectorRandSelect(vecTransformFlags,
    439                            testRandMod(vecTransformFlags.size() + 1)));
    440             layer->sourceCrop.left = testRandMod(gBuf->getWidth());
    441             layer->sourceCrop.top = testRandMod(gBuf->getHeight());
    442             layer->sourceCrop.right = layer->sourceCrop.left
    443                 + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
    444             layer->sourceCrop.bottom = layer->sourceCrop.top
    445                 + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
    446             layer->displayFrame.left = testRandMod(width);
    447             layer->displayFrame.top = testRandMod(height);
    448             layer->displayFrame.right = layer->displayFrame.left
    449                 + testRandMod(width - layer->displayFrame.left) + 1;
    450             layer->displayFrame.bottom = layer->displayFrame.top
    451                 + testRandMod(height - layer->displayFrame.top) + 1;
    452 
    453             // Increase the frequency that a scale factor of 1.0 from
    454             // the sourceCrop to displayFrame occurs.  This is the
    455             // most common scale factor used by applications and would
    456             // be rarely produced by this stress test without this
    457             // logic.
    458             if (testRandFract() <= freqRatio) {
    459                 // Only change to scale factor to 1.0 if both the
    460                 // width and height will fit.
    461                 int sourceWidth = layer->sourceCrop.right
    462                                   - layer->sourceCrop.left;
    463                 int sourceHeight = layer->sourceCrop.bottom
    464                                    - layer->sourceCrop.top;
    465                 if (((layer->displayFrame.left + sourceWidth) <= width)
    466                     && ((layer->displayFrame.top + sourceHeight) <= height)) {
    467                     layer->displayFrame.right = layer->displayFrame.left
    468                                                 + sourceWidth;
    469                     layer->displayFrame.bottom = layer->displayFrame.top
    470                                                  + sourceHeight;
    471                 }
    472             }
    473 
    474             layer->visibleRegionScreen.numRects = 1;
    475             layer->visibleRegionScreen.rects = &layer->displayFrame;
    476         }
    477 
    478         // Perform prepare operation
    479         if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
    480         hwcDevice->prepare(hwcDevice, 1, &list);
    481         if (verbose) {
    482             testPrintI("Post Prepare:");
    483             hwcTestDisplayListPrepareModifiable(list);
    484         }
    485 
    486         // Turn off the geometry changed flag
    487         list->flags &= ~HWC_GEOMETRY_CHANGED;
    488 
    489         // Perform the set operation(s)
    490         if (verbose) {testPrintI("Set:"); }
    491         for (unsigned int n1 = 0; n1 < numSet; n1++) {
    492             if (verbose) { hwcTestDisplayListHandles(list); }
    493             list->dpy = dpy;
    494             list->sur = surface;
    495             hwcDevice->set(hwcDevice, 1, &list);
    496 
    497             // Prandomly select a new set of handles
    498             for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
    499                 unsigned int idx = testRandMod(selectedFrames[n1].size());
    500                 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
    501                 hwc_layer_1_t *layer = &list->hwLayers[n1];
    502                 layer->handle = (native_handle_t *) gBuf->handle;
    503             }
    504 
    505             testDelay(perSetDelay);
    506         }
    507 
    508         hwcTestFreeLayerList(list);
    509         testPrintI("==== Completed pass: %u", pass);
    510     }
    511 
    512     testDelay(endDelay);
    513 
    514     // Start framework
    515     rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
    516     if (rv >= (signed) sizeof(cmd) - 1) {
    517         testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
    518         exit(21);
    519     }
    520     testExecCmd(cmd);
    521 
    522     testPrintI("Successfully completed %u passes", pass - startPass);
    523 
    524     return 0;
    525 }
    526 
    527 void init(void)
    528 {
    529     srand48(0); // Defensively set pseudo random number generator.
    530                 // Should not need to set this, because a stress test
    531                 // sets the seed on each pass.  Defensively set it here
    532                 // so that future code that uses pseudo random numbers
    533                 // before the first pass will be deterministic.
    534 
    535     hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
    536 
    537     hwcTestOpenHwc(&hwcDevice);
    538 }
    539 
    540 /*
    541  * Initialize Frames
    542  *
    543  * Creates an array of graphic buffers, within the global variable
    544  * named frames.  The graphic buffers are contained within a vector of
    545  * vectors.  All the graphic buffers in a particular row are of the same
    546  * format and dimension.  Each graphic buffer is uniformly filled with a
    547  * prandomly selected color.  It is likely that each buffer, even
    548  * in the same row, will be filled with a unique color.
    549  */
    550 void initFrames(unsigned int seed)
    551 {
    552     int rv;
    553     const size_t maxRows = 5;
    554     const size_t minCols = 2;  // Need at least double buffering
    555     const size_t maxCols = 4;  // One more than triple buffering
    556 
    557     if (verbose) { testPrintI("initFrames seed: %u", seed); }
    558     srand48(seed);
    559     size_t rows = testRandMod(maxRows) + 1;
    560 
    561     frames.clear();
    562     frames.resize(rows);
    563 
    564     for (unsigned int row = 0; row < rows; row++) {
    565         // All frames within a row have to have the same format and
    566         // dimensions.  Width and height need to be >= 1.
    567         unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
    568         const struct hwcTestGraphicFormat *formatPtr
    569             = &hwcTestGraphicFormat[formatIdx];
    570         int format = formatPtr->format;
    571 
    572         // Pick width and height, which must be >= 1 and the size
    573         // mod the wMod/hMod value must be equal to 0.
    574         size_t w = (width * maxSizeRatio) * testRandFract();
    575         size_t h = (height * maxSizeRatio) * testRandFract();
    576         w = max(size_t(1u), w);
    577         h = max(size_t(1u), h);
    578         if ((w % formatPtr->wMod) != 0) {
    579             w += formatPtr->wMod - (w % formatPtr->wMod);
    580         }
    581         if ((h % formatPtr->hMod) != 0) {
    582             h += formatPtr->hMod - (h % formatPtr->hMod);
    583         }
    584         if (verbose) {
    585             testPrintI("  frame %u width: %u height: %u format: %u %s",
    586                        row, w, h, format, hwcTestGraphicFormat2str(format));
    587         }
    588 
    589         size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
    590         frames[row].resize(cols);
    591         for (unsigned int col = 0; col < cols; col++) {
    592             ColorFract color(testRandFract(), testRandFract(), testRandFract());
    593             float alpha = testRandFract();
    594 
    595             frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
    596             if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
    597                 testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
    598                 testPrintE("  frame %u width: %u height: %u format: %u %s",
    599                            row, w, h, format, hwcTestGraphicFormat2str(format));
    600                 exit(80);
    601             }
    602 
    603             hwcTestFillColor(frames[row][col].get(), color, alpha);
    604             if (verbose) {
    605                 testPrintI("    buf: %p handle: %p color: %s alpha: %f",
    606                            frames[row][col].get(), frames[row][col]->handle,
    607                            string(color).c_str(), alpha);
    608             }
    609         }
    610     }
    611 }
    612 
    613 /*
    614  * Vector Random Select
    615  *
    616  * Prandomly selects and returns num elements from vec.
    617  */
    618 template <class T>
    619 vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
    620 {
    621     vector<T> rv = vec;
    622 
    623     while (rv.size() > num) {
    624         rv.erase(rv.begin() + testRandMod(rv.size()));
    625     }
    626 
    627     return rv;
    628 }
    629 
    630 /*
    631  * Vector Or
    632  *
    633  * Or's togethen the values of each element of vec and returns the result.
    634  */
    635 template <class T>
    636 T vectorOr(const vector<T>& vec)
    637 {
    638     T rv = 0;
    639 
    640     for (size_t n1 = 0; n1 < vec.size(); n1++) {
    641         rv |= vec[n1];
    642     }
    643 
    644     return rv;
    645 }
    646