1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 * 16 */ 17 18 /* 19 * Hardware Composer stress test 20 * 21 * Performs a pseudo-random (prandom) sequence of operations to the 22 * Hardware Composer (HWC), for a specified number of passes or for 23 * a specified period of time. By default the period of time is FLT_MAX, 24 * so that the number of passes will take precedence. 25 * 26 * The passes are grouped together, where (pass / passesPerGroup) specifies 27 * which group a particular pass is in. This causes every passesPerGroup 28 * worth of sequential passes to be within the same group. Computationally 29 * intensive operations are performed just once at the beginning of a group 30 * of passes and then used by all the passes in that group. This is done 31 * so as to increase both the average and peak rate of graphic operations, 32 * by moving computationally intensive operations to the beginning of a group. 33 * In particular, at the start of each group of passes a set of 34 * graphic buffers are created, then used by the first and remaining 35 * passes of that group of passes. 36 * 37 * The per-group initialization of the graphic buffers is performed 38 * by a function called initFrames. This function creates an array 39 * of smart pointers to the graphic buffers, in the form of a vector 40 * of vectors. The array is accessed in row major order, so each 41 * row is a vector of smart pointers. All the pointers of a single 42 * row point to graphic buffers which use the same pixel format and 43 * have the same dimension, although it is likely that each one is 44 * filled with a different color. This is done so that after doing 45 * the first HWC prepare then set call, subsequent set calls can 46 * be made with each of the layer handles changed to a different 47 * graphic buffer within the same row. Since the graphic buffers 48 * in a particular row have the same pixel format and dimension, 49 * additional HWC set calls can be made, without having to perform 50 * an HWC prepare call. 51 * 52 * This test supports the following command-line options: 53 * 54 * -v Verbose 55 * -s num Starting pass 56 * -e num Ending pass 57 * -p num Execute the single pass specified by num 58 * -n num Number of set operations to perform after each prepare operation 59 * -t float Maximum time in seconds to execute the test 60 * -d float Delay in seconds performed after each set operation 61 * -D float Delay in seconds performed after the last pass is executed 62 * 63 * Typically the test is executed for a large range of passes. By default 64 * passes 0 through 99999 (100,000 passes) are executed. Although this test 65 * does not validate the generated image, at times it is useful to reexecute 66 * a particular pass and leave the displayed image on the screen for an 67 * extended period of time. This can be done either by setting the -s 68 * and -e options to the desired pass, along with a large value for -D. 69 * This can also be done via the -p option, again with a large value for 70 * the -D options. 71 * 72 * So far this test only contains code to create graphic buffers with 73 * a continuous solid color. Although this test is unable to validate the 74 * image produced, any image that contains other than rectangles of a solid 75 * color are incorrect. Note that the rectangles may use a transparent 76 * color and have a blending operation that causes the color in overlapping 77 * rectangles to be mixed. In such cases the overlapping portions may have 78 * a different color from the rest of the rectangle. 79 */ 80 81 #include <algorithm> 82 #include <assert.h> 83 #include <cerrno> 84 #include <cmath> 85 #include <cstdlib> 86 #include <ctime> 87 #include <libgen.h> 88 #include <sched.h> 89 #include <sstream> 90 #include <stdint.h> 91 #include <string.h> 92 #include <unistd.h> 93 #include <vector> 94 95 #include <sys/syscall.h> 96 #include <sys/types.h> 97 #include <sys/wait.h> 98 99 #include <EGL/egl.h> 100 #include <EGL/eglext.h> 101 #include <GLES2/gl2.h> 102 #include <GLES2/gl2ext.h> 103 104 #include <ui/GraphicBuffer.h> 105 106 #define LOG_TAG "hwcStressTest" 107 #include <utils/Log.h> 108 #include <testUtil.h> 109 110 #include <hardware/hwcomposer.h> 111 112 #include <glTestLib.h> 113 #include "hwcTestLib.h" 114 115 using namespace std; 116 using namespace android; 117 118 const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch 119 // larger than the default screen size 120 const unsigned int passesPerGroup = 10; // A group of passes all use the same 121 // graphic buffers 122 123 // Ratios at which rare and frequent conditions should be produced 124 const float rareRatio = 0.1; 125 const float freqRatio = 0.9; 126 127 // Defaults for command-line options 128 const bool defaultVerbose = false; 129 const unsigned int defaultStartPass = 0; 130 const unsigned int defaultEndPass = 99999; 131 const unsigned int defaultPerPassNumSet = 10; 132 const float defaultPerSetDelay = 0.0; // Default delay after each set 133 // operation. Default delay of 134 // zero used so as to perform the 135 // the set operations as quickly 136 // as possible. 137 const float defaultEndDelay = 2.0; // Default delay between completion of 138 // final pass and restart of framework 139 const float defaultDuration = FLT_MAX; // A fairly long time, so that 140 // range of passes will have 141 // precedence 142 143 // Command-line option settings 144 static bool verbose = defaultVerbose; 145 static unsigned int startPass = defaultStartPass; 146 static unsigned int endPass = defaultEndPass; 147 static unsigned int numSet = defaultPerPassNumSet; 148 static float perSetDelay = defaultPerSetDelay; 149 static float endDelay = defaultEndDelay; 150 static float duration = defaultDuration; 151 152 // Command-line mutual exclusion detection flags. 153 // Corresponding flag set true once an option is used. 154 bool eFlag, sFlag, pFlag; 155 156 #define MAXSTR 100 157 #define MAXCMD 200 158 #define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once 159 // it has been added 160 161 #define CMD_STOP_FRAMEWORK "stop 2>&1" 162 #define CMD_START_FRAMEWORK "start 2>&1" 163 164 #define NUMA(a) (sizeof(a) / sizeof(a [0])) 165 #define MEMCLR(addr, size) do { \ 166 memset((addr), 0, (size)); \ 167 } while (0) 168 169 // File scope constants 170 const unsigned int blendingOps[] = { 171 HWC_BLENDING_NONE, 172 HWC_BLENDING_PREMULT, 173 HWC_BLENDING_COVERAGE, 174 }; 175 const unsigned int layerFlags[] = { 176 HWC_SKIP_LAYER, 177 }; 178 const vector<unsigned int> vecLayerFlags(layerFlags, 179 layerFlags + NUMA(layerFlags)); 180 181 const unsigned int transformFlags[] = { 182 HWC_TRANSFORM_FLIP_H, 183 HWC_TRANSFORM_FLIP_V, 184 HWC_TRANSFORM_ROT_90, 185 // ROT_180 & ROT_270 intentionally not listed, because they 186 // they are formed from combinations of the flags already listed. 187 }; 188 const vector<unsigned int> vecTransformFlags(transformFlags, 189 transformFlags + NUMA(transformFlags)); 190 191 // File scope globals 192 static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE | 193 GraphicBuffer::USAGE_SW_WRITE_RARELY; 194 static hwc_composer_device_1_t *hwcDevice; 195 static EGLDisplay dpy; 196 static EGLSurface surface; 197 static EGLint width, height; 198 static vector <vector <sp<GraphicBuffer> > > frames; 199 200 // File scope prototypes 201 void init(void); 202 void initFrames(unsigned int seed); 203 template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num); 204 template <class T> T vectorOr(const vector<T>& vec); 205 206 /* 207 * Main 208 * 209 * Performs the following high-level sequence of operations: 210 * 211 * 1. Command-line parsing 212 * 213 * 2. Initialization 214 * 215 * 3. For each pass: 216 * 217 * a. If pass is first pass or in a different group from the 218 * previous pass, initialize the array of graphic buffers. 219 * 220 * b. Create a HWC list with room to specify a prandomly 221 * selected number of layers. 222 * 223 * c. Select a subset of the rows from the graphic buffer array, 224 * such that there is a unique row to be used for each 225 * of the layers in the HWC list. 226 * 227 * d. Prandomly fill in the HWC list with handles 228 * selected from any of the columns of the selected row. 229 * 230 * e. Pass the populated list to the HWC prepare call. 231 * 232 * f. Pass the populated list to the HWC set call. 233 * 234 * g. If additional set calls are to be made, then for each 235 * additional set call, select a new set of handles and 236 * perform the set call. 237 */ 238 int 239 main(int argc, char *argv[]) 240 { 241 int rv, opt; 242 char *chptr; 243 unsigned int pass; 244 char cmd[MAXCMD]; 245 struct timeval startTime, currentTime, delta; 246 247 testSetLogCatTag(LOG_TAG); 248 249 // Parse command line arguments 250 while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) { 251 switch (opt) { 252 case 'd': // Delay after each set operation 253 perSetDelay = strtod(optarg, &chptr); 254 if ((*chptr != '\0') || (perSetDelay < 0.0)) { 255 testPrintE("Invalid command-line specified per pass delay of: " 256 "%s", optarg); 257 exit(1); 258 } 259 break; 260 261 case 'D': // End of test delay 262 // Delay between completion of final pass and restart 263 // of framework 264 endDelay = strtod(optarg, &chptr); 265 if ((*chptr != '\0') || (endDelay < 0.0)) { 266 testPrintE("Invalid command-line specified end of test delay " 267 "of: %s", optarg); 268 exit(2); 269 } 270 break; 271 272 case 't': // Duration 273 duration = strtod(optarg, &chptr); 274 if ((*chptr != '\0') || (duration < 0.0)) { 275 testPrintE("Invalid command-line specified duration of: %s", 276 optarg); 277 exit(3); 278 } 279 break; 280 281 case 'n': // Num set operations per pass 282 numSet = strtoul(optarg, &chptr, 10); 283 if (*chptr != '\0') { 284 testPrintE("Invalid command-line specified num set per pass " 285 "of: %s", optarg); 286 exit(4); 287 } 288 break; 289 290 case 's': // Starting Pass 291 sFlag = true; 292 if (pFlag) { 293 testPrintE("Invalid combination of command-line options."); 294 testPrintE(" The -p option is mutually exclusive from the"); 295 testPrintE(" -s and -e options."); 296 exit(5); 297 } 298 startPass = strtoul(optarg, &chptr, 10); 299 if (*chptr != '\0') { 300 testPrintE("Invalid command-line specified starting pass " 301 "of: %s", optarg); 302 exit(6); 303 } 304 break; 305 306 case 'e': // Ending Pass 307 eFlag = true; 308 if (pFlag) { 309 testPrintE("Invalid combination of command-line options."); 310 testPrintE(" The -p option is mutually exclusive from the"); 311 testPrintE(" -s and -e options."); 312 exit(7); 313 } 314 endPass = strtoul(optarg, &chptr, 10); 315 if (*chptr != '\0') { 316 testPrintE("Invalid command-line specified ending pass " 317 "of: %s", optarg); 318 exit(8); 319 } 320 break; 321 322 case 'p': // Run a single specified pass 323 pFlag = true; 324 if (sFlag || eFlag) { 325 testPrintE("Invalid combination of command-line options."); 326 testPrintE(" The -p option is mutually exclusive from the"); 327 testPrintE(" -s and -e options."); 328 exit(9); 329 } 330 startPass = endPass = strtoul(optarg, &chptr, 10); 331 if (*chptr != '\0') { 332 testPrintE("Invalid command-line specified pass of: %s", 333 optarg); 334 exit(10); 335 } 336 break; 337 338 case 'v': // Verbose 339 verbose = true; 340 break; 341 342 case 'h': // Help 343 case '?': 344 default: 345 testPrintE(" %s [options]", basename(argv[0])); 346 testPrintE(" options:"); 347 testPrintE(" -p Execute specified pass"); 348 testPrintE(" -s Starting pass"); 349 testPrintE(" -e Ending pass"); 350 testPrintE(" -t Duration"); 351 testPrintE(" -d Delay after each set operation"); 352 testPrintE(" -D End of test delay"); 353 testPrintE(" -n Num set operations per pass"); 354 testPrintE(" -v Verbose"); 355 exit(((optopt == 0) || (optopt == '?')) ? 0 : 11); 356 } 357 } 358 if (endPass < startPass) { 359 testPrintE("Unexpected ending pass before starting pass"); 360 testPrintE(" startPass: %u endPass: %u", startPass, endPass); 361 exit(12); 362 } 363 if (argc != optind) { 364 testPrintE("Unexpected command-line postional argument"); 365 testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]", 366 basename(argv[0])); 367 exit(13); 368 } 369 testPrintI("duration: %g", duration); 370 testPrintI("startPass: %u", startPass); 371 testPrintI("endPass: %u", endPass); 372 testPrintI("numSet: %u", numSet); 373 374 // Stop framework 375 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK); 376 if (rv >= (signed) sizeof(cmd) - 1) { 377 testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK); 378 exit(14); 379 } 380 testExecCmd(cmd); 381 testDelay(1.0); // TODO - need means to query whether asyncronous stop 382 // framework operation has completed. For now, just wait 383 // a long time. 384 385 init(); 386 387 // For each pass 388 gettimeofday(&startTime, NULL); 389 for (pass = startPass; pass <= endPass; pass++) { 390 // Stop if duration of work has already been performed 391 gettimeofday(¤tTime, NULL); 392 delta = tvDelta(&startTime, ¤tTime); 393 if (tv2double(&delta) > duration) { break; } 394 395 // Regenerate a new set of test frames when this pass is 396 // either the first pass or is in a different group then 397 // the previous pass. A group of passes are passes that 398 // all have the same quotient when their pass number is 399 // divided by passesPerGroup. 400 if ((pass == startPass) 401 || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) { 402 initFrames(pass / passesPerGroup); 403 } 404 405 testPrintI("==== Starting pass: %u", pass); 406 407 // Cause deterministic sequence of prandom numbers to be 408 // generated for this pass. 409 srand48(pass); 410 411 hwc_display_contents_1_t *list; 412 list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1); 413 if (list == NULL) { 414 testPrintE("hwcTestCreateLayerList failed"); 415 exit(20); 416 } 417 418 // Prandomly select a subset of frames to be used by this pass. 419 vector <vector <sp<GraphicBuffer> > > selectedFrames; 420 selectedFrames = vectorRandSelect(frames, list->numHwLayers); 421 422 // Any transform tends to create a layer that the hardware 423 // composer is unable to support and thus has to leave for 424 // SurfaceFlinger. Place heavy bias on specifying no transforms. 425 bool noTransform = testRandFract() > rareRatio; 426 427 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) { 428 unsigned int idx = testRandMod(selectedFrames[n1].size()); 429 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx]; 430 hwc_layer_1_t *layer = &list->hwLayers[n1]; 431 layer->handle = gBuf->handle; 432 433 layer->blending = blendingOps[testRandMod(NUMA(blendingOps))]; 434 layer->flags = (testRandFract() > rareRatio) ? 0 435 : vectorOr(vectorRandSelect(vecLayerFlags, 436 testRandMod(vecLayerFlags.size() + 1))); 437 layer->transform = (noTransform || testRandFract() > rareRatio) ? 0 438 : vectorOr(vectorRandSelect(vecTransformFlags, 439 testRandMod(vecTransformFlags.size() + 1))); 440 layer->sourceCrop.left = testRandMod(gBuf->getWidth()); 441 layer->sourceCrop.top = testRandMod(gBuf->getHeight()); 442 layer->sourceCrop.right = layer->sourceCrop.left 443 + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1; 444 layer->sourceCrop.bottom = layer->sourceCrop.top 445 + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1; 446 layer->displayFrame.left = testRandMod(width); 447 layer->displayFrame.top = testRandMod(height); 448 layer->displayFrame.right = layer->displayFrame.left 449 + testRandMod(width - layer->displayFrame.left) + 1; 450 layer->displayFrame.bottom = layer->displayFrame.top 451 + testRandMod(height - layer->displayFrame.top) + 1; 452 453 // Increase the frequency that a scale factor of 1.0 from 454 // the sourceCrop to displayFrame occurs. This is the 455 // most common scale factor used by applications and would 456 // be rarely produced by this stress test without this 457 // logic. 458 if (testRandFract() <= freqRatio) { 459 // Only change to scale factor to 1.0 if both the 460 // width and height will fit. 461 int sourceWidth = layer->sourceCrop.right 462 - layer->sourceCrop.left; 463 int sourceHeight = layer->sourceCrop.bottom 464 - layer->sourceCrop.top; 465 if (((layer->displayFrame.left + sourceWidth) <= width) 466 && ((layer->displayFrame.top + sourceHeight) <= height)) { 467 layer->displayFrame.right = layer->displayFrame.left 468 + sourceWidth; 469 layer->displayFrame.bottom = layer->displayFrame.top 470 + sourceHeight; 471 } 472 } 473 474 layer->visibleRegionScreen.numRects = 1; 475 layer->visibleRegionScreen.rects = &layer->displayFrame; 476 } 477 478 // Perform prepare operation 479 if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); } 480 hwcDevice->prepare(hwcDevice, 1, &list); 481 if (verbose) { 482 testPrintI("Post Prepare:"); 483 hwcTestDisplayListPrepareModifiable(list); 484 } 485 486 // Turn off the geometry changed flag 487 list->flags &= ~HWC_GEOMETRY_CHANGED; 488 489 // Perform the set operation(s) 490 if (verbose) {testPrintI("Set:"); } 491 for (unsigned int n1 = 0; n1 < numSet; n1++) { 492 if (verbose) { hwcTestDisplayListHandles(list); } 493 list->dpy = dpy; 494 list->sur = surface; 495 hwcDevice->set(hwcDevice, 1, &list); 496 497 // Prandomly select a new set of handles 498 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) { 499 unsigned int idx = testRandMod(selectedFrames[n1].size()); 500 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx]; 501 hwc_layer_1_t *layer = &list->hwLayers[n1]; 502 layer->handle = (native_handle_t *) gBuf->handle; 503 } 504 505 testDelay(perSetDelay); 506 } 507 508 hwcTestFreeLayerList(list); 509 testPrintI("==== Completed pass: %u", pass); 510 } 511 512 testDelay(endDelay); 513 514 // Start framework 515 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK); 516 if (rv >= (signed) sizeof(cmd) - 1) { 517 testPrintE("Command too long for: %s", CMD_START_FRAMEWORK); 518 exit(21); 519 } 520 testExecCmd(cmd); 521 522 testPrintI("Successfully completed %u passes", pass - startPass); 523 524 return 0; 525 } 526 527 void init(void) 528 { 529 srand48(0); // Defensively set pseudo random number generator. 530 // Should not need to set this, because a stress test 531 // sets the seed on each pass. Defensively set it here 532 // so that future code that uses pseudo random numbers 533 // before the first pass will be deterministic. 534 535 hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height); 536 537 hwcTestOpenHwc(&hwcDevice); 538 } 539 540 /* 541 * Initialize Frames 542 * 543 * Creates an array of graphic buffers, within the global variable 544 * named frames. The graphic buffers are contained within a vector of 545 * vectors. All the graphic buffers in a particular row are of the same 546 * format and dimension. Each graphic buffer is uniformly filled with a 547 * prandomly selected color. It is likely that each buffer, even 548 * in the same row, will be filled with a unique color. 549 */ 550 void initFrames(unsigned int seed) 551 { 552 int rv; 553 const size_t maxRows = 5; 554 const size_t minCols = 2; // Need at least double buffering 555 const size_t maxCols = 4; // One more than triple buffering 556 557 if (verbose) { testPrintI("initFrames seed: %u", seed); } 558 srand48(seed); 559 size_t rows = testRandMod(maxRows) + 1; 560 561 frames.clear(); 562 frames.resize(rows); 563 564 for (unsigned int row = 0; row < rows; row++) { 565 // All frames within a row have to have the same format and 566 // dimensions. Width and height need to be >= 1. 567 unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat)); 568 const struct hwcTestGraphicFormat *formatPtr 569 = &hwcTestGraphicFormat[formatIdx]; 570 int format = formatPtr->format; 571 572 // Pick width and height, which must be >= 1 and the size 573 // mod the wMod/hMod value must be equal to 0. 574 size_t w = (width * maxSizeRatio) * testRandFract(); 575 size_t h = (height * maxSizeRatio) * testRandFract(); 576 w = max(size_t(1u), w); 577 h = max(size_t(1u), h); 578 if ((w % formatPtr->wMod) != 0) { 579 w += formatPtr->wMod - (w % formatPtr->wMod); 580 } 581 if ((h % formatPtr->hMod) != 0) { 582 h += formatPtr->hMod - (h % formatPtr->hMod); 583 } 584 if (verbose) { 585 testPrintI(" frame %u width: %u height: %u format: %u %s", 586 row, w, h, format, hwcTestGraphicFormat2str(format)); 587 } 588 589 size_t cols = testRandMod((maxCols + 1) - minCols) + minCols; 590 frames[row].resize(cols); 591 for (unsigned int col = 0; col < cols; col++) { 592 ColorFract color(testRandFract(), testRandFract(), testRandFract()); 593 float alpha = testRandFract(); 594 595 frames[row][col] = new GraphicBuffer(w, h, format, texUsage); 596 if ((rv = frames[row][col]->initCheck()) != NO_ERROR) { 597 testPrintE("GraphicBuffer initCheck failed, rv: %i", rv); 598 testPrintE(" frame %u width: %u height: %u format: %u %s", 599 row, w, h, format, hwcTestGraphicFormat2str(format)); 600 exit(80); 601 } 602 603 hwcTestFillColor(frames[row][col].get(), color, alpha); 604 if (verbose) { 605 testPrintI(" buf: %p handle: %p color: %s alpha: %f", 606 frames[row][col].get(), frames[row][col]->handle, 607 string(color).c_str(), alpha); 608 } 609 } 610 } 611 } 612 613 /* 614 * Vector Random Select 615 * 616 * Prandomly selects and returns num elements from vec. 617 */ 618 template <class T> 619 vector<T> vectorRandSelect(const vector<T>& vec, size_t num) 620 { 621 vector<T> rv = vec; 622 623 while (rv.size() > num) { 624 rv.erase(rv.begin() + testRandMod(rv.size())); 625 } 626 627 return rv; 628 } 629 630 /* 631 * Vector Or 632 * 633 * Or's togethen the values of each element of vec and returns the result. 634 */ 635 template <class T> 636 T vectorOr(const vector<T>& vec) 637 { 638 T rv = 0; 639 640 for (size_t n1 = 0; n1 < vec.size(); n1++) { 641 rv |= vec[n1]; 642 } 643 644 return rv; 645 } 646