Home | History | Annotate | Download | only in include
      1 // ratio -*- C++ -*-
      2 
      3 // Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the 
      7 // terms of the GNU General Public License as published by the 
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /** @file include/ratio
     26  *  This is a Standard C++ Library header.
     27  */
     28 
     29 #ifndef _GLIBCXX_RATIO
     30 #define _GLIBCXX_RATIO 1
     31 
     32 #pragma GCC system_header
     33 
     34 #ifndef __GXX_EXPERIMENTAL_CXX0X__
     35 # include <bits/c++0x_warning.h>
     36 #else
     37 
     38 #include <type_traits>
     39 #include <cstdint>
     40 
     41 #ifdef _GLIBCXX_USE_C99_STDINT_TR1
     42 
     43 namespace std _GLIBCXX_VISIBILITY(default)
     44 {
     45 _GLIBCXX_BEGIN_NAMESPACE_VERSION
     46 
     47   /**
     48    * @defgroup ratio Rational Arithmetic
     49    * @ingroup utilities
     50    *
     51    * Compile time representation of finite rational numbers.
     52    * @{
     53    */
     54 
     55   template<intmax_t _Pn>
     56     struct __static_sign
     57     : integral_constant<intmax_t, (_Pn < 0) ? -1 : 1>
     58     { };
     59 
     60   template<intmax_t _Pn>
     61     struct __static_abs
     62     : integral_constant<intmax_t, _Pn * __static_sign<_Pn>::value>
     63     { };
     64 
     65   template<intmax_t _Pn, intmax_t _Qn>
     66     struct __static_gcd;
     67  
     68   template<intmax_t _Pn, intmax_t _Qn>
     69     struct __static_gcd
     70     : __static_gcd<_Qn, (_Pn % _Qn)>
     71     { };
     72 
     73   template<intmax_t _Pn>
     74     struct __static_gcd<_Pn, 0>
     75     : integral_constant<intmax_t, __static_abs<_Pn>::value>
     76     { };
     77 
     78   template<intmax_t _Qn>
     79     struct __static_gcd<0, _Qn>
     80     : integral_constant<intmax_t, __static_abs<_Qn>::value>
     81     { };
     82 
     83   // Let c = 2^(half # of bits in an intmax_t)
     84   // then we find a1, a0, b1, b0 s.t. N = a1*c + a0, M = b1*c + b0
     85   // The multiplication of N and M becomes,
     86   // N * M = (a1 * b1)c^2 + (a0 * b1 + b0 * a1)c + a0 * b0
     87   // Multiplication is safe if each term and the sum of the terms
     88   // is representable by intmax_t.
     89   template<intmax_t _Pn, intmax_t _Qn>
     90     struct __safe_multiply
     91     {
     92     private:
     93       static const uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);
     94 
     95       static const uintmax_t __a0 = __static_abs<_Pn>::value % __c;
     96       static const uintmax_t __a1 = __static_abs<_Pn>::value / __c;
     97       static const uintmax_t __b0 = __static_abs<_Qn>::value % __c;
     98       static const uintmax_t __b1 = __static_abs<_Qn>::value / __c;
     99 
    100       static_assert(__a1 == 0 || __b1 == 0, 
    101         "overflow in multiplication");
    102       static_assert(__a0 * __b1 + __b0 * __a1 < (__c >> 1), 
    103         "overflow in multiplication");
    104       static_assert(__b0 * __a0 <= __INTMAX_MAX__, 
    105         "overflow in multiplication");
    106       static_assert((__a0 * __b1 + __b0 * __a1) * __c <= 
    107         __INTMAX_MAX__ -  __b0 * __a0, "overflow in multiplication");
    108 
    109     public:
    110       static const intmax_t value = _Pn * _Qn;
    111     };
    112 
    113   // Helpers for __safe_add
    114   template<intmax_t _Pn, intmax_t _Qn, bool>
    115     struct __add_overflow_check_impl
    116     : integral_constant<bool, (_Pn <= __INTMAX_MAX__ - _Qn)>
    117     { };
    118 
    119   template<intmax_t _Pn, intmax_t _Qn>
    120     struct __add_overflow_check_impl<_Pn, _Qn, false>
    121     : integral_constant<bool, (_Pn >= -__INTMAX_MAX__ - _Qn)>
    122     { };
    123 
    124   template<intmax_t _Pn, intmax_t _Qn>
    125     struct __add_overflow_check
    126     : __add_overflow_check_impl<_Pn, _Qn, (_Qn >= 0)>
    127     { };
    128 
    129   template<intmax_t _Pn, intmax_t _Qn>
    130     struct __safe_add
    131     {
    132       static_assert(__add_overflow_check<_Pn, _Qn>::value != 0, 
    133         "overflow in addition");
    134 
    135       static const intmax_t value = _Pn + _Qn;
    136     };
    137 
    138   /**
    139    *  @brief Provides compile-time rational arithmetic.
    140    *
    141    *  This class template represents any finite rational number with a
    142    *  numerator and denominator representable by compile-time constants of
    143    *  type intmax_t. The ratio is simplified when instantiated.
    144    *
    145    *  For example:
    146    *  @code
    147    *    std::ratio<7,-21>::num == -1;
    148    *    std::ratio<7,-21>::den == 3;
    149    *  @endcode
    150    *  
    151   */
    152   template<intmax_t _Num, intmax_t _Den = 1>
    153     struct ratio
    154     {
    155       static_assert(_Den != 0, "denominator cannot be zero");
    156       static_assert(_Num >= -__INTMAX_MAX__ && _Den >= -__INTMAX_MAX__,
    157 		    "out of range");
    158 
    159       // Note: sign(N) * abs(N) == N
    160       static constexpr intmax_t num =
    161         _Num * __static_sign<_Den>::value / __static_gcd<_Num, _Den>::value;
    162 
    163       static constexpr intmax_t den =
    164         __static_abs<_Den>::value / __static_gcd<_Num, _Den>::value;
    165 
    166       typedef ratio<num, den> type;
    167     };
    168 
    169   template<intmax_t _Num, intmax_t _Den>
    170     constexpr intmax_t ratio<_Num, _Den>::num;
    171 
    172   template<intmax_t _Num, intmax_t _Den>
    173     constexpr intmax_t ratio<_Num, _Den>::den;
    174 
    175   /// ratio_add
    176   template<typename _R1, typename _R2>
    177     struct ratio_add
    178     {
    179     private:
    180       static constexpr intmax_t __gcd =
    181         __static_gcd<_R1::den, _R2::den>::value;
    182       static constexpr intmax_t __n = __safe_add<
    183         __safe_multiply<_R1::num, (_R2::den / __gcd)>::value,
    184         __safe_multiply<_R2::num, (_R1::den / __gcd)>::value>::value;
    185 
    186       // The new numerator may have common factors with the denominator,
    187       // but they have to also be factors of __gcd.
    188       static constexpr intmax_t __gcd2 = __static_gcd<__n, __gcd>::value;
    189       
    190     public:
    191       typedef ratio<__n / __gcd2,
    192         __safe_multiply<_R1::den / __gcd2, _R2::den / __gcd>::value> type;
    193 
    194       static constexpr intmax_t num = type::num;
    195       static constexpr intmax_t den = type::den;
    196     };
    197 
    198   template<typename _R1, typename _R2>
    199     constexpr intmax_t ratio_add<_R1, _R2>::num;
    200 
    201   template<typename _R1, typename _R2>
    202     constexpr intmax_t ratio_add<_R1, _R2>::den;
    203 
    204   /// ratio_subtract
    205   template<typename _R1, typename _R2>
    206     struct ratio_subtract
    207     {
    208       typedef typename ratio_add<
    209         _R1,
    210         ratio<-_R2::num, _R2::den>>::type type;
    211 
    212       static constexpr intmax_t num = type::num;
    213       static constexpr intmax_t den = type::den;
    214     };
    215 
    216   template<typename _R1, typename _R2>
    217     constexpr intmax_t ratio_subtract<_R1, _R2>::num;
    218 
    219   template<typename _R1, typename _R2>
    220     constexpr intmax_t ratio_subtract<_R1, _R2>::den;
    221 
    222   /// ratio_multiply
    223   template<typename _R1, typename _R2>
    224     struct ratio_multiply
    225     {
    226     private:
    227       static const intmax_t __gcd1 =
    228         __static_gcd<_R1::num, _R2::den>::value;
    229       static const intmax_t __gcd2 =
    230         __static_gcd<_R2::num, _R1::den>::value;
    231 
    232     public:
    233       typedef ratio<
    234         __safe_multiply<(_R1::num / __gcd1),
    235                         (_R2::num / __gcd2)>::value,
    236         __safe_multiply<(_R1::den / __gcd2),
    237                         (_R2::den / __gcd1)>::value> type;
    238 
    239       static constexpr intmax_t num = type::num;
    240       static constexpr intmax_t den = type::den;
    241     };
    242 
    243   template<typename _R1, typename _R2>
    244     constexpr intmax_t ratio_multiply<_R1, _R2>::num;
    245 
    246   template<typename _R1, typename _R2>
    247     constexpr intmax_t ratio_multiply<_R1, _R2>::den;
    248 
    249   /// ratio_divide
    250   template<typename _R1, typename _R2>
    251     struct ratio_divide
    252     {
    253       static_assert(_R2::num != 0, "division by 0");
    254 
    255       typedef typename ratio_multiply<
    256         _R1,
    257         ratio<_R2::den, _R2::num>>::type type;
    258 
    259       static constexpr intmax_t num = type::num;
    260       static constexpr intmax_t den = type::den;
    261     };
    262 
    263   template<typename _R1, typename _R2>
    264     constexpr intmax_t ratio_divide<_R1, _R2>::num;
    265 
    266   template<typename _R1, typename _R2>
    267     constexpr intmax_t ratio_divide<_R1, _R2>::den;
    268 
    269   /// ratio_equal
    270   template<typename _R1, typename _R2>
    271     struct ratio_equal
    272     : integral_constant<bool, _R1::num == _R2::num && _R1::den == _R2::den>
    273     { };
    274   
    275   /// ratio_not_equal
    276   template<typename _R1, typename _R2>
    277     struct ratio_not_equal
    278     : integral_constant<bool, !ratio_equal<_R1, _R2>::value>
    279     { };
    280 
    281   // 0 <= _Ri < 1
    282   // If one is 0, conclude
    283   // Otherwise, x < y iff 1/y < 1/x
    284   template<typename _R1, typename _R2>
    285     struct __ratio_less_impl_2;
    286 
    287   // _Ri > 0
    288   // Compare the integral parts, and remove them if they are equal
    289   template<typename _R1, typename _R2, intmax_t __q1 = _R1::num / _R1::den,
    290            intmax_t __q2 = _R2::num / _R2::den, bool __eq = (__q1 == __q2)>
    291     struct __ratio_less_impl_1
    292     : __ratio_less_impl_2<ratio<_R1::num % _R1::den, _R1::den>,
    293            ratio<_R2::num % _R2::den, _R2::den> >::type
    294     { }; 
    295 
    296   template<typename _R1, typename _R2, intmax_t __q1, intmax_t __q2>
    297     struct __ratio_less_impl_1<_R1, _R2, __q1, __q2, false>
    298     : integral_constant<bool, (__q1 < __q2) >
    299     { };
    300 
    301   template<typename _R1, typename _R2>
    302     struct __ratio_less_impl_2
    303     : __ratio_less_impl_1<ratio<_R2::den, _R2::num>,
    304            ratio<_R1::den, _R1::num> >::type
    305     { }; 
    306 
    307   template<intmax_t __d1, typename _R2>
    308     struct __ratio_less_impl_2<ratio<0, __d1>, _R2>
    309     : integral_constant<bool, true>
    310     { }; 
    311 
    312   template<typename _R1, intmax_t __d2>
    313     struct __ratio_less_impl_2<_R1, ratio<0, __d2> >
    314     : integral_constant<bool, false>
    315     { }; 
    316 
    317   template<intmax_t __d1, intmax_t __d2>
    318     struct __ratio_less_impl_2<ratio<0, __d1>, ratio<0, __d2> >
    319     : integral_constant<bool, false>
    320     { }; 
    321 
    322   template<typename _R1, typename _R2,
    323 	   bool = (_R1::num == 0 || _R2::num == 0
    324 		   || (__static_sign<_R1::num>::value
    325 		       != __static_sign<_R2::num>::value)),
    326 	   bool = (__static_sign<_R1::num>::value == -1
    327 		   && __static_sign<_R2::num>::value == -1)>
    328     struct __ratio_less_impl
    329     : __ratio_less_impl_1<_R1, _R2>::type
    330     { };
    331 
    332   template<typename _R1, typename _R2>
    333     struct __ratio_less_impl<_R1, _R2, true, false>
    334     : integral_constant<bool, _R1::num < _R2::num>
    335     { };
    336 
    337   template<typename _R1, typename _R2>
    338     struct __ratio_less_impl<_R1, _R2, false, true>
    339     : __ratio_less_impl_1<ratio<-_R2::num, _R2::den>,
    340            ratio<-_R1::num, _R1::den> >::type
    341     { };
    342 
    343   /// ratio_less
    344   // using a continued fraction expansion
    345   template<typename _R1, typename _R2>
    346     struct ratio_less
    347     : __ratio_less_impl<_R1, _R2>::type
    348     { };
    349     
    350   /// ratio_less_equal
    351   template<typename _R1, typename _R2>
    352     struct ratio_less_equal
    353     : integral_constant<bool, !ratio_less<_R2, _R1>::value>
    354     { };
    355   
    356   /// ratio_greater
    357   template<typename _R1, typename _R2>
    358     struct ratio_greater
    359     : integral_constant<bool, ratio_less<_R2, _R1>::value>
    360     { };
    361 
    362   /// ratio_greater_equal
    363   template<typename _R1, typename _R2>
    364     struct ratio_greater_equal
    365     : integral_constant<bool, !ratio_less<_R1, _R2>::value>
    366     { };
    367 
    368   typedef ratio<1,       1000000000000000000> atto;
    369   typedef ratio<1,          1000000000000000> femto;
    370   typedef ratio<1,             1000000000000> pico;
    371   typedef ratio<1,                1000000000> nano;
    372   typedef ratio<1,                   1000000> micro;
    373   typedef ratio<1,                      1000> milli;
    374   typedef ratio<1,                       100> centi;
    375   typedef ratio<1,                        10> deci;
    376   typedef ratio<                       10, 1> deca;
    377   typedef ratio<                      100, 1> hecto;
    378   typedef ratio<                     1000, 1> kilo;
    379   typedef ratio<                  1000000, 1> mega;
    380   typedef ratio<               1000000000, 1> giga;
    381   typedef ratio<            1000000000000, 1> tera;
    382   typedef ratio<         1000000000000000, 1> peta;
    383   typedef ratio<      1000000000000000000, 1> exa;
    384 
    385   // @} group ratio
    386 _GLIBCXX_END_NAMESPACE_VERSION
    387 } // namespace
    388 
    389 #endif //_GLIBCXX_USE_C99_STDINT_TR1
    390 
    391 #endif //__GXX_EXPERIMENTAL_CXX0X__
    392 
    393 #endif //_GLIBCXX_RATIO
    394