Home | History | Annotate | Download | only in IR
      1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// @file
     11 /// This file contains the declarations for metadata subclasses.
     12 /// They represent the different flavors of metadata that live in LLVM.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_IR_METADATA_H
     17 #define LLVM_IR_METADATA_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/ilist_node.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/IR/Constant.h"
     24 #include "llvm/IR/MetadataTracking.h"
     25 #include "llvm/IR/Value.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include <type_traits>
     28 
     29 namespace llvm {
     30 class LLVMContext;
     31 class Module;
     32 template<typename ValueSubClass, typename ItemParentClass>
     33   class SymbolTableListTraits;
     34 
     35 enum LLVMConstants : uint32_t {
     36   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
     37 };
     38 
     39 /// \brief Root of the metadata hierarchy.
     40 ///
     41 /// This is a root class for typeless data in the IR.
     42 class Metadata {
     43   friend class ReplaceableMetadataImpl;
     44 
     45   /// \brief RTTI.
     46   const unsigned char SubclassID;
     47 
     48 protected:
     49   /// \brief Active type of storage.
     50   enum StorageType { Uniqued, Distinct, Temporary };
     51 
     52   /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
     53   unsigned Storage : 2;
     54   // TODO: expose remaining bits to subclasses.
     55 
     56   unsigned short SubclassData16;
     57   unsigned SubclassData32;
     58 
     59 public:
     60   enum MetadataKind {
     61     MDTupleKind,
     62     MDLocationKind,
     63     GenericDebugNodeKind,
     64     MDSubrangeKind,
     65     MDEnumeratorKind,
     66     MDBasicTypeKind,
     67     MDDerivedTypeKind,
     68     MDCompositeTypeKind,
     69     MDSubroutineTypeKind,
     70     MDFileKind,
     71     MDCompileUnitKind,
     72     MDSubprogramKind,
     73     MDLexicalBlockKind,
     74     MDLexicalBlockFileKind,
     75     MDNamespaceKind,
     76     MDTemplateTypeParameterKind,
     77     MDTemplateValueParameterKind,
     78     MDGlobalVariableKind,
     79     MDLocalVariableKind,
     80     MDExpressionKind,
     81     MDObjCPropertyKind,
     82     MDImportedEntityKind,
     83     ConstantAsMetadataKind,
     84     LocalAsMetadataKind,
     85     MDStringKind
     86   };
     87 
     88 protected:
     89   Metadata(unsigned ID, StorageType Storage)
     90       : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
     91   }
     92   ~Metadata() = default;
     93 
     94   /// \brief Default handling of a changed operand, which asserts.
     95   ///
     96   /// If subclasses pass themselves in as owners to a tracking node reference,
     97   /// they must provide an implementation of this method.
     98   void handleChangedOperand(void *, Metadata *) {
     99     llvm_unreachable("Unimplemented in Metadata subclass");
    100   }
    101 
    102 public:
    103   unsigned getMetadataID() const { return SubclassID; }
    104 
    105   /// \brief User-friendly dump.
    106   ///
    107   /// If \c M is provided, metadata nodes will be numbered canonically;
    108   /// otherwise, pointer addresses are substituted.
    109   ///
    110   /// Note: this uses an explicit overload instead of default arguments so that
    111   /// the nullptr version is easy to call from a debugger.
    112   ///
    113   /// @{
    114   void dump() const;
    115   void dump(const Module *M) const;
    116   /// @}
    117 
    118   /// \brief Print.
    119   ///
    120   /// Prints definition of \c this.
    121   ///
    122   /// If \c M is provided, metadata nodes will be numbered canonically;
    123   /// otherwise, pointer addresses are substituted.
    124   void print(raw_ostream &OS, const Module *M = nullptr) const;
    125 
    126   /// \brief Print as operand.
    127   ///
    128   /// Prints reference of \c this.
    129   ///
    130   /// If \c M is provided, metadata nodes will be numbered canonically;
    131   /// otherwise, pointer addresses are substituted.
    132   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
    133 };
    134 
    135 #define HANDLE_METADATA(CLASS) class CLASS;
    136 #include "llvm/IR/Metadata.def"
    137 
    138 // Provide specializations of isa so that we don't need definitions of
    139 // subclasses to see if the metadata is a subclass.
    140 #define HANDLE_METADATA_LEAF(CLASS)                                            \
    141   template <> struct isa_impl<CLASS, Metadata> {                               \
    142     static inline bool doit(const Metadata &MD) {                              \
    143       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
    144     }                                                                          \
    145   };
    146 #include "llvm/IR/Metadata.def"
    147 
    148 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
    149   MD.print(OS);
    150   return OS;
    151 }
    152 
    153 /// \brief Metadata wrapper in the Value hierarchy.
    154 ///
    155 /// A member of the \a Value hierarchy to represent a reference to metadata.
    156 /// This allows, e.g., instrinsics to have metadata as operands.
    157 ///
    158 /// Notably, this is the only thing in either hierarchy that is allowed to
    159 /// reference \a LocalAsMetadata.
    160 class MetadataAsValue : public Value {
    161   friend class ReplaceableMetadataImpl;
    162   friend class LLVMContextImpl;
    163 
    164   Metadata *MD;
    165 
    166   MetadataAsValue(Type *Ty, Metadata *MD);
    167   ~MetadataAsValue() override;
    168 
    169   /// \brief Drop use of metadata (during teardown).
    170   void dropUse() { MD = nullptr; }
    171 
    172 public:
    173   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
    174   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
    175   Metadata *getMetadata() const { return MD; }
    176 
    177   static bool classof(const Value *V) {
    178     return V->getValueID() == MetadataAsValueVal;
    179   }
    180 
    181 private:
    182   void handleChangedMetadata(Metadata *MD);
    183   void track();
    184   void untrack();
    185 };
    186 
    187 /// \brief Shared implementation of use-lists for replaceable metadata.
    188 ///
    189 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
    190 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
    191 /// and \a TempMDNode).
    192 class ReplaceableMetadataImpl {
    193   friend class MetadataTracking;
    194 
    195 public:
    196   typedef MetadataTracking::OwnerTy OwnerTy;
    197 
    198 private:
    199   LLVMContext &Context;
    200   uint64_t NextIndex;
    201   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
    202 
    203 public:
    204   ReplaceableMetadataImpl(LLVMContext &Context)
    205       : Context(Context), NextIndex(0) {}
    206   ~ReplaceableMetadataImpl() {
    207     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
    208   }
    209 
    210   LLVMContext &getContext() const { return Context; }
    211 
    212   /// \brief Replace all uses of this with MD.
    213   ///
    214   /// Replace all uses of this with \c MD, which is allowed to be null.
    215   void replaceAllUsesWith(Metadata *MD);
    216 
    217   /// \brief Resolve all uses of this.
    218   ///
    219   /// Resolve all uses of this, turning off RAUW permanently.  If \c
    220   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
    221   /// is resolved.
    222   void resolveAllUses(bool ResolveUsers = true);
    223 
    224 private:
    225   void addRef(void *Ref, OwnerTy Owner);
    226   void dropRef(void *Ref);
    227   void moveRef(void *Ref, void *New, const Metadata &MD);
    228 
    229   static ReplaceableMetadataImpl *get(Metadata &MD);
    230 };
    231 
    232 /// \brief Value wrapper in the Metadata hierarchy.
    233 ///
    234 /// This is a custom value handle that allows other metadata to refer to
    235 /// classes in the Value hierarchy.
    236 ///
    237 /// Because of full uniquing support, each value is only wrapped by a single \a
    238 /// ValueAsMetadata object, so the lookup maps are far more efficient than
    239 /// those using ValueHandleBase.
    240 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
    241   friend class ReplaceableMetadataImpl;
    242   friend class LLVMContextImpl;
    243 
    244   Value *V;
    245 
    246   /// \brief Drop users without RAUW (during teardown).
    247   void dropUsers() {
    248     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
    249   }
    250 
    251 protected:
    252   ValueAsMetadata(unsigned ID, Value *V)
    253       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
    254     assert(V && "Expected valid value");
    255   }
    256   ~ValueAsMetadata() = default;
    257 
    258 public:
    259   static ValueAsMetadata *get(Value *V);
    260   static ConstantAsMetadata *getConstant(Value *C) {
    261     return cast<ConstantAsMetadata>(get(C));
    262   }
    263   static LocalAsMetadata *getLocal(Value *Local) {
    264     return cast<LocalAsMetadata>(get(Local));
    265   }
    266 
    267   static ValueAsMetadata *getIfExists(Value *V);
    268   static ConstantAsMetadata *getConstantIfExists(Value *C) {
    269     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
    270   }
    271   static LocalAsMetadata *getLocalIfExists(Value *Local) {
    272     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
    273   }
    274 
    275   Value *getValue() const { return V; }
    276   Type *getType() const { return V->getType(); }
    277   LLVMContext &getContext() const { return V->getContext(); }
    278 
    279   static void handleDeletion(Value *V);
    280   static void handleRAUW(Value *From, Value *To);
    281 
    282 protected:
    283   /// \brief Handle collisions after \a Value::replaceAllUsesWith().
    284   ///
    285   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
    286   /// \a Value gets RAUW'ed and the target already exists, this is used to
    287   /// merge the two metadata nodes.
    288   void replaceAllUsesWith(Metadata *MD) {
    289     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
    290   }
    291 
    292 public:
    293   static bool classof(const Metadata *MD) {
    294     return MD->getMetadataID() == LocalAsMetadataKind ||
    295            MD->getMetadataID() == ConstantAsMetadataKind;
    296   }
    297 };
    298 
    299 class ConstantAsMetadata : public ValueAsMetadata {
    300   friend class ValueAsMetadata;
    301 
    302   ConstantAsMetadata(Constant *C)
    303       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
    304 
    305 public:
    306   static ConstantAsMetadata *get(Constant *C) {
    307     return ValueAsMetadata::getConstant(C);
    308   }
    309   static ConstantAsMetadata *getIfExists(Constant *C) {
    310     return ValueAsMetadata::getConstantIfExists(C);
    311   }
    312 
    313   Constant *getValue() const {
    314     return cast<Constant>(ValueAsMetadata::getValue());
    315   }
    316 
    317   static bool classof(const Metadata *MD) {
    318     return MD->getMetadataID() == ConstantAsMetadataKind;
    319   }
    320 };
    321 
    322 class LocalAsMetadata : public ValueAsMetadata {
    323   friend class ValueAsMetadata;
    324 
    325   LocalAsMetadata(Value *Local)
    326       : ValueAsMetadata(LocalAsMetadataKind, Local) {
    327     assert(!isa<Constant>(Local) && "Expected local value");
    328   }
    329 
    330 public:
    331   static LocalAsMetadata *get(Value *Local) {
    332     return ValueAsMetadata::getLocal(Local);
    333   }
    334   static LocalAsMetadata *getIfExists(Value *Local) {
    335     return ValueAsMetadata::getLocalIfExists(Local);
    336   }
    337 
    338   static bool classof(const Metadata *MD) {
    339     return MD->getMetadataID() == LocalAsMetadataKind;
    340   }
    341 };
    342 
    343 /// \brief Transitional API for extracting constants from Metadata.
    344 ///
    345 /// This namespace contains transitional functions for metadata that points to
    346 /// \a Constants.
    347 ///
    348 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
    349 /// operands could refer to any \a Value.  There's was a lot of code like this:
    350 ///
    351 /// \code
    352 ///     MDNode *N = ...;
    353 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
    354 /// \endcode
    355 ///
    356 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
    357 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
    358 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
    359 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
    360 /// requires subtle control flow changes.
    361 ///
    362 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
    363 /// so that metadata can refer to numbers without traversing a bridge to the \a
    364 /// Value hierarchy.  In this final state, the code above would look like this:
    365 ///
    366 /// \code
    367 ///     MDNode *N = ...;
    368 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
    369 /// \endcode
    370 ///
    371 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
    372 /// yet, and even once it does, changing each metadata schema to use it is its
    373 /// own mini-project.  In the meantime this API prevents us from introducing
    374 /// complex and bug-prone control flow that will disappear in the end.  In
    375 /// particular, the above code looks like this:
    376 ///
    377 /// \code
    378 ///     MDNode *N = ...;
    379 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
    380 /// \endcode
    381 ///
    382 /// The full set of provided functions includes:
    383 ///
    384 ///   mdconst::hasa                <=> isa
    385 ///   mdconst::extract             <=> cast
    386 ///   mdconst::extract_or_null     <=> cast_or_null
    387 ///   mdconst::dyn_extract         <=> dyn_cast
    388 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
    389 ///
    390 /// The target of the cast must be a subclass of \a Constant.
    391 namespace mdconst {
    392 
    393 namespace detail {
    394 template <class T> T &make();
    395 template <class T, class Result> struct HasDereference {
    396   typedef char Yes[1];
    397   typedef char No[2];
    398   template <size_t N> struct SFINAE {};
    399 
    400   template <class U, class V>
    401   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
    402   template <class U, class V> static No &hasDereference(...);
    403 
    404   static const bool value =
    405       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
    406 };
    407 template <class V, class M> struct IsValidPointer {
    408   static const bool value = std::is_base_of<Constant, V>::value &&
    409                             HasDereference<M, const Metadata &>::value;
    410 };
    411 template <class V, class M> struct IsValidReference {
    412   static const bool value = std::is_base_of<Constant, V>::value &&
    413                             std::is_convertible<M, const Metadata &>::value;
    414 };
    415 } // end namespace detail
    416 
    417 /// \brief Check whether Metadata has a Value.
    418 ///
    419 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
    420 /// type \c X.
    421 template <class X, class Y>
    422 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
    423 hasa(Y &&MD) {
    424   assert(MD && "Null pointer sent into hasa");
    425   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    426     return isa<X>(V->getValue());
    427   return false;
    428 }
    429 template <class X, class Y>
    430 inline
    431     typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
    432     hasa(Y &MD) {
    433   return hasa(&MD);
    434 }
    435 
    436 /// \brief Extract a Value from Metadata.
    437 ///
    438 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
    439 template <class X, class Y>
    440 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    441 extract(Y &&MD) {
    442   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
    443 }
    444 template <class X, class Y>
    445 inline
    446     typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
    447     extract(Y &MD) {
    448   return extract(&MD);
    449 }
    450 
    451 /// \brief Extract a Value from Metadata, allowing null.
    452 ///
    453 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
    454 /// from \c MD, allowing \c MD to be null.
    455 template <class X, class Y>
    456 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    457 extract_or_null(Y &&MD) {
    458   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
    459     return cast<X>(V->getValue());
    460   return nullptr;
    461 }
    462 
    463 /// \brief Extract a Value from Metadata, if any.
    464 ///
    465 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
    466 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
    467 /// Value it does contain is of the wrong subclass.
    468 template <class X, class Y>
    469 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    470 dyn_extract(Y &&MD) {
    471   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    472     return dyn_cast<X>(V->getValue());
    473   return nullptr;
    474 }
    475 
    476 /// \brief Extract a Value from Metadata, if any, allowing null.
    477 ///
    478 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
    479 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
    480 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
    481 template <class X, class Y>
    482 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
    483 dyn_extract_or_null(Y &&MD) {
    484   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
    485     return dyn_cast<X>(V->getValue());
    486   return nullptr;
    487 }
    488 
    489 } // end namespace mdconst
    490 
    491 //===----------------------------------------------------------------------===//
    492 /// \brief A single uniqued string.
    493 ///
    494 /// These are used to efficiently contain a byte sequence for metadata.
    495 /// MDString is always unnamed.
    496 class MDString : public Metadata {
    497   friend class StringMapEntry<MDString>;
    498 
    499   MDString(const MDString &) = delete;
    500   MDString &operator=(MDString &&) = delete;
    501   MDString &operator=(const MDString &) = delete;
    502 
    503   StringMapEntry<MDString> *Entry;
    504   MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
    505   MDString(MDString &&) : Metadata(MDStringKind, Uniqued) {}
    506 
    507 public:
    508   static MDString *get(LLVMContext &Context, StringRef Str);
    509   static MDString *get(LLVMContext &Context, const char *Str) {
    510     return get(Context, Str ? StringRef(Str) : StringRef());
    511   }
    512 
    513   StringRef getString() const;
    514 
    515   unsigned getLength() const { return (unsigned)getString().size(); }
    516 
    517   typedef StringRef::iterator iterator;
    518 
    519   /// \brief Pointer to the first byte of the string.
    520   iterator begin() const { return getString().begin(); }
    521 
    522   /// \brief Pointer to one byte past the end of the string.
    523   iterator end() const { return getString().end(); }
    524 
    525   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
    526   const unsigned char *bytes_end() const { return getString().bytes_end(); }
    527 
    528   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
    529   static bool classof(const Metadata *MD) {
    530     return MD->getMetadataID() == MDStringKind;
    531   }
    532 };
    533 
    534 /// \brief A collection of metadata nodes that might be associated with a
    535 /// memory access used by the alias-analysis infrastructure.
    536 struct AAMDNodes {
    537   explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
    538                      MDNode *N = nullptr)
    539       : TBAA(T), Scope(S), NoAlias(N) {}
    540 
    541   bool operator==(const AAMDNodes &A) const {
    542     return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
    543   }
    544 
    545   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
    546 
    547   explicit operator bool() const { return TBAA || Scope || NoAlias; }
    548 
    549   /// \brief The tag for type-based alias analysis.
    550   MDNode *TBAA;
    551 
    552   /// \brief The tag for alias scope specification (used with noalias).
    553   MDNode *Scope;
    554 
    555   /// \brief The tag specifying the noalias scope.
    556   MDNode *NoAlias;
    557 };
    558 
    559 // Specialize DenseMapInfo for AAMDNodes.
    560 template<>
    561 struct DenseMapInfo<AAMDNodes> {
    562   static inline AAMDNodes getEmptyKey() {
    563     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(), 0, 0);
    564   }
    565   static inline AAMDNodes getTombstoneKey() {
    566     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(), 0, 0);
    567   }
    568   static unsigned getHashValue(const AAMDNodes &Val) {
    569     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
    570            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
    571            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
    572   }
    573   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
    574     return LHS == RHS;
    575   }
    576 };
    577 
    578 /// \brief Tracking metadata reference owned by Metadata.
    579 ///
    580 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
    581 /// of \a Metadata, which has the option of registering itself for callbacks to
    582 /// re-unique itself.
    583 ///
    584 /// In particular, this is used by \a MDNode.
    585 class MDOperand {
    586   MDOperand(MDOperand &&) = delete;
    587   MDOperand(const MDOperand &) = delete;
    588   MDOperand &operator=(MDOperand &&) = delete;
    589   MDOperand &operator=(const MDOperand &) = delete;
    590 
    591   Metadata *MD;
    592 
    593 public:
    594   MDOperand() : MD(nullptr) {}
    595   ~MDOperand() { untrack(); }
    596 
    597   Metadata *get() const { return MD; }
    598   operator Metadata *() const { return get(); }
    599   Metadata *operator->() const { return get(); }
    600   Metadata &operator*() const { return *get(); }
    601 
    602   void reset() {
    603     untrack();
    604     MD = nullptr;
    605   }
    606   void reset(Metadata *MD, Metadata *Owner) {
    607     untrack();
    608     this->MD = MD;
    609     track(Owner);
    610   }
    611 
    612 private:
    613   void track(Metadata *Owner) {
    614     if (MD) {
    615       if (Owner)
    616         MetadataTracking::track(this, *MD, *Owner);
    617       else
    618         MetadataTracking::track(MD);
    619     }
    620   }
    621   void untrack() {
    622     assert(static_cast<void *>(this) == &MD && "Expected same address");
    623     if (MD)
    624       MetadataTracking::untrack(MD);
    625   }
    626 };
    627 
    628 template <> struct simplify_type<MDOperand> {
    629   typedef Metadata *SimpleType;
    630   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
    631 };
    632 
    633 template <> struct simplify_type<const MDOperand> {
    634   typedef Metadata *SimpleType;
    635   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
    636 };
    637 
    638 /// \brief Pointer to the context, with optional RAUW support.
    639 ///
    640 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
    641 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
    642 class ContextAndReplaceableUses {
    643   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
    644 
    645   ContextAndReplaceableUses() = delete;
    646   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
    647   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
    648   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
    649   ContextAndReplaceableUses &
    650   operator=(const ContextAndReplaceableUses &) = delete;
    651 
    652 public:
    653   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
    654   ContextAndReplaceableUses(
    655       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
    656       : Ptr(ReplaceableUses.release()) {
    657     assert(getReplaceableUses() && "Expected non-null replaceable uses");
    658   }
    659   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
    660 
    661   operator LLVMContext &() { return getContext(); }
    662 
    663   /// \brief Whether this contains RAUW support.
    664   bool hasReplaceableUses() const {
    665     return Ptr.is<ReplaceableMetadataImpl *>();
    666   }
    667   LLVMContext &getContext() const {
    668     if (hasReplaceableUses())
    669       return getReplaceableUses()->getContext();
    670     return *Ptr.get<LLVMContext *>();
    671   }
    672   ReplaceableMetadataImpl *getReplaceableUses() const {
    673     if (hasReplaceableUses())
    674       return Ptr.get<ReplaceableMetadataImpl *>();
    675     return nullptr;
    676   }
    677 
    678   /// \brief Assign RAUW support to this.
    679   ///
    680   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
    681   /// not be null).
    682   void
    683   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
    684     assert(ReplaceableUses && "Expected non-null replaceable uses");
    685     assert(&ReplaceableUses->getContext() == &getContext() &&
    686            "Expected same context");
    687     delete getReplaceableUses();
    688     Ptr = ReplaceableUses.release();
    689   }
    690 
    691   /// \brief Drop RAUW support.
    692   ///
    693   /// Cede ownership of RAUW support, returning it.
    694   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
    695     assert(hasReplaceableUses() && "Expected to own replaceable uses");
    696     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
    697         getReplaceableUses());
    698     Ptr = &ReplaceableUses->getContext();
    699     return ReplaceableUses;
    700   }
    701 };
    702 
    703 struct TempMDNodeDeleter {
    704   inline void operator()(MDNode *Node) const;
    705 };
    706 
    707 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    708   typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
    709 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
    710 #include "llvm/IR/Metadata.def"
    711 
    712 /// \brief Metadata node.
    713 ///
    714 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
    715 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
    716 /// until forward references are known.  The basic metadata node is an \a
    717 /// MDTuple.
    718 ///
    719 /// There is limited support for RAUW at construction time.  At construction
    720 /// time, if any operand is a temporary node (or an unresolved uniqued node,
    721 /// which indicates a transitive temporary operand), the node itself will be
    722 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
    723 /// support permanently.
    724 ///
    725 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
    726 /// to be called on some member of the cycle once all temporary nodes have been
    727 /// replaced.
    728 class MDNode : public Metadata {
    729   friend class ReplaceableMetadataImpl;
    730   friend class LLVMContextImpl;
    731 
    732   MDNode(const MDNode &) = delete;
    733   void operator=(const MDNode &) = delete;
    734   void *operator new(size_t) = delete;
    735 
    736   unsigned NumOperands;
    737   unsigned NumUnresolved;
    738 
    739 protected:
    740   ContextAndReplaceableUses Context;
    741 
    742   void *operator new(size_t Size, unsigned NumOps);
    743   void operator delete(void *Mem);
    744 
    745   /// \brief Required by std, but never called.
    746   void operator delete(void *, unsigned) {
    747     llvm_unreachable("Constructor throws?");
    748   }
    749 
    750   /// \brief Required by std, but never called.
    751   void operator delete(void *, unsigned, bool) {
    752     llvm_unreachable("Constructor throws?");
    753   }
    754 
    755   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
    756          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
    757   ~MDNode() = default;
    758 
    759   void dropAllReferences();
    760 
    761   MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
    762   MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
    763 
    764   typedef iterator_range<MDOperand *> mutable_op_range;
    765   mutable_op_range mutable_operands() {
    766     return mutable_op_range(mutable_begin(), mutable_end());
    767   }
    768 
    769 public:
    770   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
    771   static inline MDTuple *getIfExists(LLVMContext &Context,
    772                                      ArrayRef<Metadata *> MDs);
    773   static inline MDTuple *getDistinct(LLVMContext &Context,
    774                                      ArrayRef<Metadata *> MDs);
    775   static inline TempMDTuple getTemporary(LLVMContext &Context,
    776                                          ArrayRef<Metadata *> MDs);
    777 
    778   /// \brief Create a (temporary) clone of this.
    779   TempMDNode clone() const;
    780 
    781   /// \brief Deallocate a node created by getTemporary.
    782   ///
    783   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
    784   /// references will be reset.
    785   static void deleteTemporary(MDNode *N);
    786 
    787   LLVMContext &getContext() const { return Context.getContext(); }
    788 
    789   /// \brief Replace a specific operand.
    790   void replaceOperandWith(unsigned I, Metadata *New);
    791 
    792   /// \brief Check if node is fully resolved.
    793   ///
    794   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
    795   /// this always returns \c true.
    796   ///
    797   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
    798   /// support (because all operands are resolved).
    799   ///
    800   /// As forward declarations are resolved, their containers should get
    801   /// resolved automatically.  However, if this (or one of its operands) is
    802   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
    803   bool isResolved() const { return !Context.hasReplaceableUses(); }
    804 
    805   bool isUniqued() const { return Storage == Uniqued; }
    806   bool isDistinct() const { return Storage == Distinct; }
    807   bool isTemporary() const { return Storage == Temporary; }
    808 
    809   /// \brief RAUW a temporary.
    810   ///
    811   /// \pre \a isTemporary() must be \c true.
    812   void replaceAllUsesWith(Metadata *MD) {
    813     assert(isTemporary() && "Expected temporary node");
    814     assert(!isResolved() && "Expected RAUW support");
    815     Context.getReplaceableUses()->replaceAllUsesWith(MD);
    816   }
    817 
    818   /// \brief Resolve cycles.
    819   ///
    820   /// Once all forward declarations have been resolved, force cycles to be
    821   /// resolved.
    822   ///
    823   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
    824   void resolveCycles();
    825 
    826   /// \brief Replace a temporary node with a permanent one.
    827   ///
    828   /// Try to create a uniqued version of \c N -- in place, if possible -- and
    829   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
    830   template <class T>
    831   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
    832   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
    833     return cast<T>(N.release()->replaceWithPermanentImpl());
    834   }
    835 
    836   /// \brief Replace a temporary node with a uniqued one.
    837   ///
    838   /// Create a uniqued version of \c N -- in place, if possible -- and return
    839   /// it.  Takes ownership of the temporary node.
    840   ///
    841   /// \pre N does not self-reference.
    842   template <class T>
    843   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
    844   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
    845     return cast<T>(N.release()->replaceWithUniquedImpl());
    846   }
    847 
    848   /// \brief Replace a temporary node with a distinct one.
    849   ///
    850   /// Create a distinct version of \c N -- in place, if possible -- and return
    851   /// it.  Takes ownership of the temporary node.
    852   template <class T>
    853   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
    854   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
    855     return cast<T>(N.release()->replaceWithDistinctImpl());
    856   }
    857 
    858 private:
    859   MDNode *replaceWithPermanentImpl();
    860   MDNode *replaceWithUniquedImpl();
    861   MDNode *replaceWithDistinctImpl();
    862 
    863 protected:
    864   /// \brief Set an operand.
    865   ///
    866   /// Sets the operand directly, without worrying about uniquing.
    867   void setOperand(unsigned I, Metadata *New);
    868 
    869   void storeDistinctInContext();
    870   template <class T, class StoreT>
    871   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
    872 
    873 private:
    874   void handleChangedOperand(void *Ref, Metadata *New);
    875 
    876   void resolve();
    877   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
    878   void decrementUnresolvedOperandCount();
    879   unsigned countUnresolvedOperands();
    880 
    881   /// \brief Mutate this to be "uniqued".
    882   ///
    883   /// Mutate this so that \a isUniqued().
    884   /// \pre \a isTemporary().
    885   /// \pre already added to uniquing set.
    886   void makeUniqued();
    887 
    888   /// \brief Mutate this to be "distinct".
    889   ///
    890   /// Mutate this so that \a isDistinct().
    891   /// \pre \a isTemporary().
    892   void makeDistinct();
    893 
    894   void deleteAsSubclass();
    895   MDNode *uniquify();
    896   void eraseFromStore();
    897 
    898   template <class NodeTy> struct HasCachedHash;
    899   template <class NodeTy>
    900   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
    901     N->recalculateHash();
    902   }
    903   template <class NodeTy>
    904   static void dispatchRecalculateHash(NodeTy *N, std::false_type) {}
    905   template <class NodeTy>
    906   static void dispatchResetHash(NodeTy *N, std::true_type) {
    907     N->setHash(0);
    908   }
    909   template <class NodeTy>
    910   static void dispatchResetHash(NodeTy *N, std::false_type) {}
    911 
    912 public:
    913   typedef const MDOperand *op_iterator;
    914   typedef iterator_range<op_iterator> op_range;
    915 
    916   op_iterator op_begin() const {
    917     return const_cast<MDNode *>(this)->mutable_begin();
    918   }
    919   op_iterator op_end() const {
    920     return const_cast<MDNode *>(this)->mutable_end();
    921   }
    922   op_range operands() const { return op_range(op_begin(), op_end()); }
    923 
    924   const MDOperand &getOperand(unsigned I) const {
    925     assert(I < NumOperands && "Out of range");
    926     return op_begin()[I];
    927   }
    928 
    929   /// \brief Return number of MDNode operands.
    930   unsigned getNumOperands() const { return NumOperands; }
    931 
    932   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
    933   static bool classof(const Metadata *MD) {
    934     switch (MD->getMetadataID()) {
    935     default:
    936       return false;
    937 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    938   case CLASS##Kind:                                                            \
    939     return true;
    940 #include "llvm/IR/Metadata.def"
    941     }
    942   }
    943 
    944   /// \brief Check whether MDNode is a vtable access.
    945   bool isTBAAVtableAccess() const;
    946 
    947   /// \brief Methods for metadata merging.
    948   static MDNode *concatenate(MDNode *A, MDNode *B);
    949   static MDNode *intersect(MDNode *A, MDNode *B);
    950   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
    951   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
    952   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
    953   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
    954 };
    955 
    956 /// \brief Tuple of metadata.
    957 ///
    958 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
    959 /// default based on their operands.
    960 class MDTuple : public MDNode {
    961   friend class LLVMContextImpl;
    962   friend class MDNode;
    963 
    964   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
    965           ArrayRef<Metadata *> Vals)
    966       : MDNode(C, MDTupleKind, Storage, Vals) {
    967     setHash(Hash);
    968   }
    969   ~MDTuple() { dropAllReferences(); }
    970 
    971   void setHash(unsigned Hash) { SubclassData32 = Hash; }
    972   void recalculateHash();
    973 
    974   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
    975                           StorageType Storage, bool ShouldCreate = true);
    976 
    977   TempMDTuple cloneImpl() const {
    978     return getTemporary(getContext(),
    979                         SmallVector<Metadata *, 4>(op_begin(), op_end()));
    980   }
    981 
    982 public:
    983   /// \brief Get the hash, if any.
    984   unsigned getHash() const { return SubclassData32; }
    985 
    986   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    987     return getImpl(Context, MDs, Uniqued);
    988   }
    989   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    990     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
    991   }
    992 
    993   /// \brief Return a distinct node.
    994   ///
    995   /// Return a distinct node -- i.e., a node that is not uniqued.
    996   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    997     return getImpl(Context, MDs, Distinct);
    998   }
    999 
   1000   /// \brief Return a temporary node.
   1001   ///
   1002   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
   1003   /// not uniqued, may be RAUW'd, and must be manually deleted with
   1004   /// deleteTemporary.
   1005   static TempMDTuple getTemporary(LLVMContext &Context,
   1006                                   ArrayRef<Metadata *> MDs) {
   1007     return TempMDTuple(getImpl(Context, MDs, Temporary));
   1008   }
   1009 
   1010   /// \brief Return a (temporary) clone of this.
   1011   TempMDTuple clone() const { return cloneImpl(); }
   1012 
   1013   static bool classof(const Metadata *MD) {
   1014     return MD->getMetadataID() == MDTupleKind;
   1015   }
   1016 };
   1017 
   1018 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1019   return MDTuple::get(Context, MDs);
   1020 }
   1021 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1022   return MDTuple::getIfExists(Context, MDs);
   1023 }
   1024 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
   1025   return MDTuple::getDistinct(Context, MDs);
   1026 }
   1027 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
   1028                                  ArrayRef<Metadata *> MDs) {
   1029   return MDTuple::getTemporary(Context, MDs);
   1030 }
   1031 
   1032 void TempMDNodeDeleter::operator()(MDNode *Node) const {
   1033   MDNode::deleteTemporary(Node);
   1034 }
   1035 
   1036 /// \brief Typed iterator through MDNode operands.
   1037 ///
   1038 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
   1039 /// particular Metadata subclass.
   1040 template <class T>
   1041 class TypedMDOperandIterator
   1042     : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
   1043   MDNode::op_iterator I = nullptr;
   1044 
   1045 public:
   1046   TypedMDOperandIterator() = default;
   1047   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
   1048   T *operator*() const { return cast_or_null<T>(*I); }
   1049   TypedMDOperandIterator &operator++() {
   1050     ++I;
   1051     return *this;
   1052   }
   1053   TypedMDOperandIterator operator++(int) {
   1054     TypedMDOperandIterator Temp(*this);
   1055     ++I;
   1056     return Temp;
   1057   }
   1058   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
   1059   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
   1060 };
   1061 
   1062 /// \brief Typed, array-like tuple of metadata.
   1063 ///
   1064 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
   1065 /// particular type of metadata.
   1066 template <class T> class MDTupleTypedArrayWrapper {
   1067   const MDTuple *N = nullptr;
   1068 
   1069 public:
   1070   MDTupleTypedArrayWrapper() = default;
   1071   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
   1072 
   1073   template <class U>
   1074   MDTupleTypedArrayWrapper(
   1075       const MDTupleTypedArrayWrapper<U> &Other,
   1076       typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
   1077           nullptr)
   1078       : N(Other.get()) {}
   1079 
   1080   template <class U>
   1081   explicit MDTupleTypedArrayWrapper(
   1082       const MDTupleTypedArrayWrapper<U> &Other,
   1083       typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
   1084           nullptr)
   1085       : N(Other.get()) {}
   1086 
   1087   explicit operator bool() const { return get(); }
   1088   explicit operator MDTuple *() const { return get(); }
   1089 
   1090   MDTuple *get() const { return const_cast<MDTuple *>(N); }
   1091   MDTuple *operator->() const { return get(); }
   1092   MDTuple &operator*() const { return *get(); }
   1093 
   1094   // FIXME: Fix callers and remove condition on N.
   1095   unsigned size() const { return N ? N->getNumOperands() : 0u; }
   1096   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
   1097 
   1098   // FIXME: Fix callers and remove condition on N.
   1099   typedef TypedMDOperandIterator<T> iterator;
   1100   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
   1101   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
   1102 };
   1103 
   1104 #define HANDLE_METADATA(CLASS)                                                 \
   1105   typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
   1106 #include "llvm/IR/Metadata.def"
   1107 
   1108 //===----------------------------------------------------------------------===//
   1109 /// \brief A tuple of MDNodes.
   1110 ///
   1111 /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
   1112 /// to modules, have names, and contain lists of MDNodes.
   1113 ///
   1114 /// TODO: Inherit from Metadata.
   1115 class NamedMDNode : public ilist_node<NamedMDNode> {
   1116   friend class SymbolTableListTraits<NamedMDNode, Module>;
   1117   friend struct ilist_traits<NamedMDNode>;
   1118   friend class LLVMContextImpl;
   1119   friend class Module;
   1120   NamedMDNode(const NamedMDNode &) = delete;
   1121 
   1122   std::string Name;
   1123   Module *Parent;
   1124   void *Operands; // SmallVector<TrackingMDRef, 4>
   1125 
   1126   void setParent(Module *M) { Parent = M; }
   1127 
   1128   explicit NamedMDNode(const Twine &N);
   1129 
   1130   template<class T1, class T2>
   1131   class op_iterator_impl :
   1132       public std::iterator<std::bidirectional_iterator_tag, T2> {
   1133     const NamedMDNode *Node;
   1134     unsigned Idx;
   1135     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
   1136 
   1137     friend class NamedMDNode;
   1138 
   1139   public:
   1140     op_iterator_impl() : Node(nullptr), Idx(0) { }
   1141 
   1142     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
   1143     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
   1144     op_iterator_impl &operator++() {
   1145       ++Idx;
   1146       return *this;
   1147     }
   1148     op_iterator_impl operator++(int) {
   1149       op_iterator_impl tmp(*this);
   1150       operator++();
   1151       return tmp;
   1152     }
   1153     op_iterator_impl &operator--() {
   1154       --Idx;
   1155       return *this;
   1156     }
   1157     op_iterator_impl operator--(int) {
   1158       op_iterator_impl tmp(*this);
   1159       operator--();
   1160       return tmp;
   1161     }
   1162 
   1163     T1 operator*() const { return Node->getOperand(Idx); }
   1164   };
   1165 
   1166 public:
   1167   /// \brief Drop all references and remove the node from parent module.
   1168   void eraseFromParent();
   1169 
   1170   /// \brief Remove all uses and clear node vector.
   1171   void dropAllReferences();
   1172 
   1173   ~NamedMDNode();
   1174 
   1175   /// \brief Get the module that holds this named metadata collection.
   1176   inline Module *getParent() { return Parent; }
   1177   inline const Module *getParent() const { return Parent; }
   1178 
   1179   MDNode *getOperand(unsigned i) const;
   1180   unsigned getNumOperands() const;
   1181   void addOperand(MDNode *M);
   1182   void setOperand(unsigned I, MDNode *New);
   1183   StringRef getName() const;
   1184   void print(raw_ostream &ROS) const;
   1185   void dump() const;
   1186 
   1187   // ---------------------------------------------------------------------------
   1188   // Operand Iterator interface...
   1189   //
   1190   typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
   1191   op_iterator op_begin() { return op_iterator(this, 0); }
   1192   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
   1193 
   1194   typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
   1195   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
   1196   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
   1197 
   1198   inline iterator_range<op_iterator>  operands() {
   1199     return iterator_range<op_iterator>(op_begin(), op_end());
   1200   }
   1201   inline iterator_range<const_op_iterator> operands() const {
   1202     return iterator_range<const_op_iterator>(op_begin(), op_end());
   1203   }
   1204 };
   1205 
   1206 } // end llvm namespace
   1207 
   1208 #endif
   1209