Home | History | Annotate | Download | only in Sema
      1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for statements.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTDiagnostic.h"
     17 #include "clang/AST/CharUnits.h"
     18 #include "clang/AST/CXXInheritance.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/AST/ExprObjC.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/AST/StmtObjC.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/AST/TypeOrdering.h"
     28 #include "clang/Lex/Preprocessor.h"
     29 #include "clang/Sema/Initialization.h"
     30 #include "clang/Sema/Lookup.h"
     31 #include "clang/Sema/Scope.h"
     32 #include "clang/Sema/ScopeInfo.h"
     33 #include "llvm/ADT/ArrayRef.h"
     34 #include "llvm/ADT/DenseMap.h"
     35 #include "llvm/ADT/STLExtras.h"
     36 #include "llvm/ADT/SmallPtrSet.h"
     37 #include "llvm/ADT/SmallString.h"
     38 #include "llvm/ADT/SmallVector.h"
     39 using namespace clang;
     40 using namespace sema;
     41 
     42 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
     43   if (FE.isInvalid())
     44     return StmtError();
     45 
     46   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
     47                            /*DiscardedValue*/ true);
     48   if (FE.isInvalid())
     49     return StmtError();
     50 
     51   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
     52   // void expression for its side effects.  Conversion to void allows any
     53   // operand, even incomplete types.
     54 
     55   // Same thing in for stmt first clause (when expr) and third clause.
     56   return StmtResult(FE.getAs<Stmt>());
     57 }
     58 
     59 
     60 StmtResult Sema::ActOnExprStmtError() {
     61   DiscardCleanupsInEvaluationContext();
     62   return StmtError();
     63 }
     64 
     65 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
     66                                bool HasLeadingEmptyMacro) {
     67   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
     68 }
     69 
     70 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
     71                                SourceLocation EndLoc) {
     72   DeclGroupRef DG = dg.get();
     73 
     74   // If we have an invalid decl, just return an error.
     75   if (DG.isNull()) return StmtError();
     76 
     77   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
     78 }
     79 
     80 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
     81   DeclGroupRef DG = dg.get();
     82 
     83   // If we don't have a declaration, or we have an invalid declaration,
     84   // just return.
     85   if (DG.isNull() || !DG.isSingleDecl())
     86     return;
     87 
     88   Decl *decl = DG.getSingleDecl();
     89   if (!decl || decl->isInvalidDecl())
     90     return;
     91 
     92   // Only variable declarations are permitted.
     93   VarDecl *var = dyn_cast<VarDecl>(decl);
     94   if (!var) {
     95     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
     96     decl->setInvalidDecl();
     97     return;
     98   }
     99 
    100   // foreach variables are never actually initialized in the way that
    101   // the parser came up with.
    102   var->setInit(nullptr);
    103 
    104   // In ARC, we don't need to retain the iteration variable of a fast
    105   // enumeration loop.  Rather than actually trying to catch that
    106   // during declaration processing, we remove the consequences here.
    107   if (getLangOpts().ObjCAutoRefCount) {
    108     QualType type = var->getType();
    109 
    110     // Only do this if we inferred the lifetime.  Inferred lifetime
    111     // will show up as a local qualifier because explicit lifetime
    112     // should have shown up as an AttributedType instead.
    113     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
    114       // Add 'const' and mark the variable as pseudo-strong.
    115       var->setType(type.withConst());
    116       var->setARCPseudoStrong(true);
    117     }
    118   }
    119 }
    120 
    121 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
    122 /// For '==' and '!=', suggest fixits for '=' or '|='.
    123 ///
    124 /// Adding a cast to void (or other expression wrappers) will prevent the
    125 /// warning from firing.
    126 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
    127   SourceLocation Loc;
    128   bool IsNotEqual, CanAssign, IsRelational;
    129 
    130   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
    131     if (!Op->isComparisonOp())
    132       return false;
    133 
    134     IsRelational = Op->isRelationalOp();
    135     Loc = Op->getOperatorLoc();
    136     IsNotEqual = Op->getOpcode() == BO_NE;
    137     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
    138   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
    139     switch (Op->getOperator()) {
    140     default:
    141       return false;
    142     case OO_EqualEqual:
    143     case OO_ExclaimEqual:
    144       IsRelational = false;
    145       break;
    146     case OO_Less:
    147     case OO_Greater:
    148     case OO_GreaterEqual:
    149     case OO_LessEqual:
    150       IsRelational = true;
    151       break;
    152     }
    153 
    154     Loc = Op->getOperatorLoc();
    155     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
    156     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
    157   } else {
    158     // Not a typo-prone comparison.
    159     return false;
    160   }
    161 
    162   // Suppress warnings when the operator, suspicious as it may be, comes from
    163   // a macro expansion.
    164   if (S.SourceMgr.isMacroBodyExpansion(Loc))
    165     return false;
    166 
    167   S.Diag(Loc, diag::warn_unused_comparison)
    168     << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
    169 
    170   // If the LHS is a plausible entity to assign to, provide a fixit hint to
    171   // correct common typos.
    172   if (!IsRelational && CanAssign) {
    173     if (IsNotEqual)
    174       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
    175         << FixItHint::CreateReplacement(Loc, "|=");
    176     else
    177       S.Diag(Loc, diag::note_equality_comparison_to_assign)
    178         << FixItHint::CreateReplacement(Loc, "=");
    179   }
    180 
    181   return true;
    182 }
    183 
    184 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
    185   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
    186     return DiagnoseUnusedExprResult(Label->getSubStmt());
    187 
    188   const Expr *E = dyn_cast_or_null<Expr>(S);
    189   if (!E)
    190     return;
    191 
    192   // If we are in an unevaluated expression context, then there can be no unused
    193   // results because the results aren't expected to be used in the first place.
    194   if (isUnevaluatedContext())
    195     return;
    196 
    197   SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
    198   // In most cases, we don't want to warn if the expression is written in a
    199   // macro body, or if the macro comes from a system header. If the offending
    200   // expression is a call to a function with the warn_unused_result attribute,
    201   // we warn no matter the location. Because of the order in which the various
    202   // checks need to happen, we factor out the macro-related test here.
    203   bool ShouldSuppress =
    204       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
    205       SourceMgr.isInSystemMacro(ExprLoc);
    206 
    207   const Expr *WarnExpr;
    208   SourceLocation Loc;
    209   SourceRange R1, R2;
    210   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
    211     return;
    212 
    213   // If this is a GNU statement expression expanded from a macro, it is probably
    214   // unused because it is a function-like macro that can be used as either an
    215   // expression or statement.  Don't warn, because it is almost certainly a
    216   // false positive.
    217   if (isa<StmtExpr>(E) && Loc.isMacroID())
    218     return;
    219 
    220   // Okay, we have an unused result.  Depending on what the base expression is,
    221   // we might want to make a more specific diagnostic.  Check for one of these
    222   // cases now.
    223   unsigned DiagID = diag::warn_unused_expr;
    224   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
    225     E = Temps->getSubExpr();
    226   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
    227     E = TempExpr->getSubExpr();
    228 
    229   if (DiagnoseUnusedComparison(*this, E))
    230     return;
    231 
    232   E = WarnExpr;
    233   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    234     if (E->getType()->isVoidType())
    235       return;
    236 
    237     // If the callee has attribute pure, const, or warn_unused_result, warn with
    238     // a more specific message to make it clear what is happening. If the call
    239     // is written in a macro body, only warn if it has the warn_unused_result
    240     // attribute.
    241     if (const Decl *FD = CE->getCalleeDecl()) {
    242       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
    243       if (Func ? Func->hasUnusedResultAttr()
    244                : FD->hasAttr<WarnUnusedResultAttr>()) {
    245         Diag(Loc, diag::warn_unused_result) << R1 << R2;
    246         return;
    247       }
    248       if (ShouldSuppress)
    249         return;
    250       if (FD->hasAttr<PureAttr>()) {
    251         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
    252         return;
    253       }
    254       if (FD->hasAttr<ConstAttr>()) {
    255         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
    256         return;
    257       }
    258     }
    259   } else if (ShouldSuppress)
    260     return;
    261 
    262   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
    263     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
    264       Diag(Loc, diag::err_arc_unused_init_message) << R1;
    265       return;
    266     }
    267     const ObjCMethodDecl *MD = ME->getMethodDecl();
    268     if (MD) {
    269       if (MD->hasAttr<WarnUnusedResultAttr>()) {
    270         Diag(Loc, diag::warn_unused_result) << R1 << R2;
    271         return;
    272       }
    273     }
    274   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
    275     const Expr *Source = POE->getSyntacticForm();
    276     if (isa<ObjCSubscriptRefExpr>(Source))
    277       DiagID = diag::warn_unused_container_subscript_expr;
    278     else
    279       DiagID = diag::warn_unused_property_expr;
    280   } else if (const CXXFunctionalCastExpr *FC
    281                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
    282     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
    283         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
    284       return;
    285   }
    286   // Diagnose "(void*) blah" as a typo for "(void) blah".
    287   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
    288     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
    289     QualType T = TI->getType();
    290 
    291     // We really do want to use the non-canonical type here.
    292     if (T == Context.VoidPtrTy) {
    293       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
    294 
    295       Diag(Loc, diag::warn_unused_voidptr)
    296         << FixItHint::CreateRemoval(TL.getStarLoc());
    297       return;
    298     }
    299   }
    300 
    301   if (E->isGLValue() && E->getType().isVolatileQualified()) {
    302     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
    303     return;
    304   }
    305 
    306   DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
    307 }
    308 
    309 void Sema::ActOnStartOfCompoundStmt() {
    310   PushCompoundScope();
    311 }
    312 
    313 void Sema::ActOnFinishOfCompoundStmt() {
    314   PopCompoundScope();
    315 }
    316 
    317 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
    318   return getCurFunction()->CompoundScopes.back();
    319 }
    320 
    321 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
    322                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
    323   const unsigned NumElts = Elts.size();
    324 
    325   // If we're in C89 mode, check that we don't have any decls after stmts.  If
    326   // so, emit an extension diagnostic.
    327   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
    328     // Note that __extension__ can be around a decl.
    329     unsigned i = 0;
    330     // Skip over all declarations.
    331     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
    332       /*empty*/;
    333 
    334     // We found the end of the list or a statement.  Scan for another declstmt.
    335     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
    336       /*empty*/;
    337 
    338     if (i != NumElts) {
    339       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
    340       Diag(D->getLocation(), diag::ext_mixed_decls_code);
    341     }
    342   }
    343   // Warn about unused expressions in statements.
    344   for (unsigned i = 0; i != NumElts; ++i) {
    345     // Ignore statements that are last in a statement expression.
    346     if (isStmtExpr && i == NumElts - 1)
    347       continue;
    348 
    349     DiagnoseUnusedExprResult(Elts[i]);
    350   }
    351 
    352   // Check for suspicious empty body (null statement) in `for' and `while'
    353   // statements.  Don't do anything for template instantiations, this just adds
    354   // noise.
    355   if (NumElts != 0 && !CurrentInstantiationScope &&
    356       getCurCompoundScope().HasEmptyLoopBodies) {
    357     for (unsigned i = 0; i != NumElts - 1; ++i)
    358       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
    359   }
    360 
    361   return new (Context) CompoundStmt(Context, Elts, L, R);
    362 }
    363 
    364 StmtResult
    365 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
    366                     SourceLocation DotDotDotLoc, Expr *RHSVal,
    367                     SourceLocation ColonLoc) {
    368   assert(LHSVal && "missing expression in case statement");
    369 
    370   if (getCurFunction()->SwitchStack.empty()) {
    371     Diag(CaseLoc, diag::err_case_not_in_switch);
    372     return StmtError();
    373   }
    374 
    375   ExprResult LHS =
    376       CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
    377         if (!getLangOpts().CPlusPlus11)
    378           return VerifyIntegerConstantExpression(E);
    379         if (Expr *CondExpr =
    380                 getCurFunction()->SwitchStack.back()->getCond()) {
    381           QualType CondType = CondExpr->getType();
    382           llvm::APSInt TempVal;
    383           return CheckConvertedConstantExpression(E, CondType, TempVal,
    384                                                         CCEK_CaseValue);
    385         }
    386         return ExprError();
    387       });
    388   if (LHS.isInvalid())
    389     return StmtError();
    390   LHSVal = LHS.get();
    391 
    392   if (!getLangOpts().CPlusPlus11) {
    393     // C99 6.8.4.2p3: The expression shall be an integer constant.
    394     // However, GCC allows any evaluatable integer expression.
    395     if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
    396       LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
    397       if (!LHSVal)
    398         return StmtError();
    399     }
    400 
    401     // GCC extension: The expression shall be an integer constant.
    402 
    403     if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
    404       RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
    405       // Recover from an error by just forgetting about it.
    406     }
    407   }
    408 
    409   LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
    410                                  getLangOpts().CPlusPlus11);
    411   if (LHS.isInvalid())
    412     return StmtError();
    413 
    414   auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
    415                                           getLangOpts().CPlusPlus11)
    416                     : ExprResult();
    417   if (RHS.isInvalid())
    418     return StmtError();
    419 
    420   CaseStmt *CS = new (Context)
    421       CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
    422   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
    423   return CS;
    424 }
    425 
    426 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
    427 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
    428   DiagnoseUnusedExprResult(SubStmt);
    429 
    430   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
    431   CS->setSubStmt(SubStmt);
    432 }
    433 
    434 StmtResult
    435 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
    436                        Stmt *SubStmt, Scope *CurScope) {
    437   DiagnoseUnusedExprResult(SubStmt);
    438 
    439   if (getCurFunction()->SwitchStack.empty()) {
    440     Diag(DefaultLoc, diag::err_default_not_in_switch);
    441     return SubStmt;
    442   }
    443 
    444   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
    445   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
    446   return DS;
    447 }
    448 
    449 StmtResult
    450 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
    451                      SourceLocation ColonLoc, Stmt *SubStmt) {
    452   // If the label was multiply defined, reject it now.
    453   if (TheDecl->getStmt()) {
    454     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
    455     Diag(TheDecl->getLocation(), diag::note_previous_definition);
    456     return SubStmt;
    457   }
    458 
    459   // Otherwise, things are good.  Fill in the declaration and return it.
    460   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
    461   TheDecl->setStmt(LS);
    462   if (!TheDecl->isGnuLocal()) {
    463     TheDecl->setLocStart(IdentLoc);
    464     if (!TheDecl->isMSAsmLabel()) {
    465       // Don't update the location of MS ASM labels.  These will result in
    466       // a diagnostic, and changing the location here will mess that up.
    467       TheDecl->setLocation(IdentLoc);
    468     }
    469   }
    470   return LS;
    471 }
    472 
    473 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
    474                                      ArrayRef<const Attr*> Attrs,
    475                                      Stmt *SubStmt) {
    476   // Fill in the declaration and return it.
    477   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
    478   return LS;
    479 }
    480 
    481 StmtResult
    482 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
    483                   Stmt *thenStmt, SourceLocation ElseLoc,
    484                   Stmt *elseStmt) {
    485   // If the condition was invalid, discard the if statement.  We could recover
    486   // better by replacing it with a valid expr, but don't do that yet.
    487   if (!CondVal.get() && !CondVar) {
    488     getCurFunction()->setHasDroppedStmt();
    489     return StmtError();
    490   }
    491 
    492   ExprResult CondResult(CondVal.release());
    493 
    494   VarDecl *ConditionVar = nullptr;
    495   if (CondVar) {
    496     ConditionVar = cast<VarDecl>(CondVar);
    497     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
    498     if (CondResult.isInvalid())
    499       return StmtError();
    500   }
    501   Expr *ConditionExpr = CondResult.getAs<Expr>();
    502   if (!ConditionExpr)
    503     return StmtError();
    504 
    505   DiagnoseUnusedExprResult(thenStmt);
    506 
    507   if (!elseStmt) {
    508     DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
    509                           diag::warn_empty_if_body);
    510   }
    511 
    512   DiagnoseUnusedExprResult(elseStmt);
    513 
    514   return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
    515                               thenStmt, ElseLoc, elseStmt);
    516 }
    517 
    518 namespace {
    519   struct CaseCompareFunctor {
    520     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    521                     const llvm::APSInt &RHS) {
    522       return LHS.first < RHS;
    523     }
    524     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    525                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    526       return LHS.first < RHS.first;
    527     }
    528     bool operator()(const llvm::APSInt &LHS,
    529                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    530       return LHS < RHS.first;
    531     }
    532   };
    533 }
    534 
    535 /// CmpCaseVals - Comparison predicate for sorting case values.
    536 ///
    537 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
    538                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
    539   if (lhs.first < rhs.first)
    540     return true;
    541 
    542   if (lhs.first == rhs.first &&
    543       lhs.second->getCaseLoc().getRawEncoding()
    544        < rhs.second->getCaseLoc().getRawEncoding())
    545     return true;
    546   return false;
    547 }
    548 
    549 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
    550 ///
    551 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    552                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    553 {
    554   return lhs.first < rhs.first;
    555 }
    556 
    557 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
    558 ///
    559 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    560                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    561 {
    562   return lhs.first == rhs.first;
    563 }
    564 
    565 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
    566 /// potentially integral-promoted expression @p expr.
    567 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
    568   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
    569     expr = cleanups->getSubExpr();
    570   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
    571     if (impcast->getCastKind() != CK_IntegralCast) break;
    572     expr = impcast->getSubExpr();
    573   }
    574   return expr->getType();
    575 }
    576 
    577 StmtResult
    578 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
    579                              Decl *CondVar) {
    580   ExprResult CondResult;
    581 
    582   VarDecl *ConditionVar = nullptr;
    583   if (CondVar) {
    584     ConditionVar = cast<VarDecl>(CondVar);
    585     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
    586     if (CondResult.isInvalid())
    587       return StmtError();
    588 
    589     Cond = CondResult.get();
    590   }
    591 
    592   if (!Cond)
    593     return StmtError();
    594 
    595   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
    596     Expr *Cond;
    597 
    598   public:
    599     SwitchConvertDiagnoser(Expr *Cond)
    600         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
    601           Cond(Cond) {}
    602 
    603     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
    604                                          QualType T) override {
    605       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
    606     }
    607 
    608     SemaDiagnosticBuilder diagnoseIncomplete(
    609         Sema &S, SourceLocation Loc, QualType T) override {
    610       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
    611                << T << Cond->getSourceRange();
    612     }
    613 
    614     SemaDiagnosticBuilder diagnoseExplicitConv(
    615         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
    616       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
    617     }
    618 
    619     SemaDiagnosticBuilder noteExplicitConv(
    620         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
    621       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
    622         << ConvTy->isEnumeralType() << ConvTy;
    623     }
    624 
    625     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
    626                                             QualType T) override {
    627       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
    628     }
    629 
    630     SemaDiagnosticBuilder noteAmbiguous(
    631         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
    632       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
    633       << ConvTy->isEnumeralType() << ConvTy;
    634     }
    635 
    636     SemaDiagnosticBuilder diagnoseConversion(
    637         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
    638       llvm_unreachable("conversion functions are permitted");
    639     }
    640   } SwitchDiagnoser(Cond);
    641 
    642   CondResult =
    643       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
    644   if (CondResult.isInvalid()) return StmtError();
    645   Cond = CondResult.get();
    646 
    647   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
    648   CondResult = UsualUnaryConversions(Cond);
    649   if (CondResult.isInvalid()) return StmtError();
    650   Cond = CondResult.get();
    651 
    652   if (!CondVar) {
    653     CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
    654     if (CondResult.isInvalid())
    655       return StmtError();
    656     Cond = CondResult.get();
    657   }
    658 
    659   getCurFunction()->setHasBranchIntoScope();
    660 
    661   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
    662   getCurFunction()->SwitchStack.push_back(SS);
    663   return SS;
    664 }
    665 
    666 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
    667   Val = Val.extOrTrunc(BitWidth);
    668   Val.setIsSigned(IsSigned);
    669 }
    670 
    671 /// Check the specified case value is in range for the given unpromoted switch
    672 /// type.
    673 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
    674                            unsigned UnpromotedWidth, bool UnpromotedSign) {
    675   // If the case value was signed and negative and the switch expression is
    676   // unsigned, don't bother to warn: this is implementation-defined behavior.
    677   // FIXME: Introduce a second, default-ignored warning for this case?
    678   if (UnpromotedWidth < Val.getBitWidth()) {
    679     llvm::APSInt ConvVal(Val);
    680     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
    681     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
    682     // FIXME: Use different diagnostics for overflow  in conversion to promoted
    683     // type versus "switch expression cannot have this value". Use proper
    684     // IntRange checking rather than just looking at the unpromoted type here.
    685     if (ConvVal != Val)
    686       S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
    687                                                   << ConvVal.toString(10);
    688   }
    689 }
    690 
    691 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
    692 
    693 /// Returns true if we should emit a diagnostic about this case expression not
    694 /// being a part of the enum used in the switch controlling expression.
    695 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
    696                                               const EnumDecl *ED,
    697                                               const Expr *CaseExpr,
    698                                               EnumValsTy::iterator &EI,
    699                                               EnumValsTy::iterator &EIEnd,
    700                                               const llvm::APSInt &Val) {
    701   bool FlagType = ED->hasAttr<FlagEnumAttr>();
    702 
    703   if (const DeclRefExpr *DRE =
    704           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
    705     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
    706       QualType VarType = VD->getType();
    707       QualType EnumType = S.Context.getTypeDeclType(ED);
    708       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
    709           S.Context.hasSameUnqualifiedType(EnumType, VarType))
    710         return false;
    711     }
    712   }
    713 
    714   if (FlagType) {
    715     return !S.IsValueInFlagEnum(ED, Val, false);
    716   } else {
    717     while (EI != EIEnd && EI->first < Val)
    718       EI++;
    719 
    720     if (EI != EIEnd && EI->first == Val)
    721       return false;
    722   }
    723 
    724   return true;
    725 }
    726 
    727 StmtResult
    728 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
    729                             Stmt *BodyStmt) {
    730   SwitchStmt *SS = cast<SwitchStmt>(Switch);
    731   assert(SS == getCurFunction()->SwitchStack.back() &&
    732          "switch stack missing push/pop!");
    733 
    734   getCurFunction()->SwitchStack.pop_back();
    735 
    736   if (!BodyStmt) return StmtError();
    737   SS->setBody(BodyStmt, SwitchLoc);
    738 
    739   Expr *CondExpr = SS->getCond();
    740   if (!CondExpr) return StmtError();
    741 
    742   QualType CondType = CondExpr->getType();
    743 
    744   Expr *CondExprBeforePromotion = CondExpr;
    745   QualType CondTypeBeforePromotion =
    746       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
    747 
    748   // C++ 6.4.2.p2:
    749   // Integral promotions are performed (on the switch condition).
    750   //
    751   // A case value unrepresentable by the original switch condition
    752   // type (before the promotion) doesn't make sense, even when it can
    753   // be represented by the promoted type.  Therefore we need to find
    754   // the pre-promotion type of the switch condition.
    755   if (!CondExpr->isTypeDependent()) {
    756     // We have already converted the expression to an integral or enumeration
    757     // type, when we started the switch statement. If we don't have an
    758     // appropriate type now, just return an error.
    759     if (!CondType->isIntegralOrEnumerationType())
    760       return StmtError();
    761 
    762     if (CondExpr->isKnownToHaveBooleanValue()) {
    763       // switch(bool_expr) {...} is often a programmer error, e.g.
    764       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
    765       // One can always use an if statement instead of switch(bool_expr).
    766       Diag(SwitchLoc, diag::warn_bool_switch_condition)
    767           << CondExpr->getSourceRange();
    768     }
    769   }
    770 
    771   // Get the bitwidth of the switched-on value after promotions. We must
    772   // convert the integer case values to this width before comparison.
    773   bool HasDependentValue
    774     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
    775   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
    776   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
    777 
    778   // Get the width and signedness that the condition might actually have, for
    779   // warning purposes.
    780   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
    781   // type.
    782   unsigned CondWidthBeforePromotion
    783     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
    784   bool CondIsSignedBeforePromotion
    785     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
    786 
    787   // Accumulate all of the case values in a vector so that we can sort them
    788   // and detect duplicates.  This vector contains the APInt for the case after
    789   // it has been converted to the condition type.
    790   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
    791   CaseValsTy CaseVals;
    792 
    793   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
    794   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
    795   CaseRangesTy CaseRanges;
    796 
    797   DefaultStmt *TheDefaultStmt = nullptr;
    798 
    799   bool CaseListIsErroneous = false;
    800 
    801   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
    802        SC = SC->getNextSwitchCase()) {
    803 
    804     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
    805       if (TheDefaultStmt) {
    806         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
    807         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
    808 
    809         // FIXME: Remove the default statement from the switch block so that
    810         // we'll return a valid AST.  This requires recursing down the AST and
    811         // finding it, not something we are set up to do right now.  For now,
    812         // just lop the entire switch stmt out of the AST.
    813         CaseListIsErroneous = true;
    814       }
    815       TheDefaultStmt = DS;
    816 
    817     } else {
    818       CaseStmt *CS = cast<CaseStmt>(SC);
    819 
    820       Expr *Lo = CS->getLHS();
    821 
    822       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
    823         HasDependentValue = true;
    824         break;
    825       }
    826 
    827       llvm::APSInt LoVal;
    828 
    829       if (getLangOpts().CPlusPlus11) {
    830         // C++11 [stmt.switch]p2: the constant-expression shall be a converted
    831         // constant expression of the promoted type of the switch condition.
    832         ExprResult ConvLo =
    833           CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
    834         if (ConvLo.isInvalid()) {
    835           CaseListIsErroneous = true;
    836           continue;
    837         }
    838         Lo = ConvLo.get();
    839       } else {
    840         // We already verified that the expression has a i-c-e value (C99
    841         // 6.8.4.2p3) - get that value now.
    842         LoVal = Lo->EvaluateKnownConstInt(Context);
    843 
    844         // If the LHS is not the same type as the condition, insert an implicit
    845         // cast.
    846         Lo = DefaultLvalueConversion(Lo).get();
    847         Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
    848       }
    849 
    850       // Check the unconverted value is within the range of possible values of
    851       // the switch expression.
    852       checkCaseValue(*this, Lo->getLocStart(), LoVal,
    853                      CondWidthBeforePromotion, CondIsSignedBeforePromotion);
    854 
    855       // Convert the value to the same width/sign as the condition.
    856       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
    857 
    858       CS->setLHS(Lo);
    859 
    860       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
    861       if (CS->getRHS()) {
    862         if (CS->getRHS()->isTypeDependent() ||
    863             CS->getRHS()->isValueDependent()) {
    864           HasDependentValue = true;
    865           break;
    866         }
    867         CaseRanges.push_back(std::make_pair(LoVal, CS));
    868       } else
    869         CaseVals.push_back(std::make_pair(LoVal, CS));
    870     }
    871   }
    872 
    873   if (!HasDependentValue) {
    874     // If we don't have a default statement, check whether the
    875     // condition is constant.
    876     llvm::APSInt ConstantCondValue;
    877     bool HasConstantCond = false;
    878     if (!HasDependentValue && !TheDefaultStmt) {
    879       HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
    880                                                 Expr::SE_AllowSideEffects);
    881       assert(!HasConstantCond ||
    882              (ConstantCondValue.getBitWidth() == CondWidth &&
    883               ConstantCondValue.isSigned() == CondIsSigned));
    884     }
    885     bool ShouldCheckConstantCond = HasConstantCond;
    886 
    887     // Sort all the scalar case values so we can easily detect duplicates.
    888     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
    889 
    890     if (!CaseVals.empty()) {
    891       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
    892         if (ShouldCheckConstantCond &&
    893             CaseVals[i].first == ConstantCondValue)
    894           ShouldCheckConstantCond = false;
    895 
    896         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
    897           // If we have a duplicate, report it.
    898           // First, determine if either case value has a name
    899           StringRef PrevString, CurrString;
    900           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
    901           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
    902           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
    903             PrevString = DeclRef->getDecl()->getName();
    904           }
    905           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
    906             CurrString = DeclRef->getDecl()->getName();
    907           }
    908           SmallString<16> CaseValStr;
    909           CaseVals[i-1].first.toString(CaseValStr);
    910 
    911           if (PrevString == CurrString)
    912             Diag(CaseVals[i].second->getLHS()->getLocStart(),
    913                  diag::err_duplicate_case) <<
    914                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
    915           else
    916             Diag(CaseVals[i].second->getLHS()->getLocStart(),
    917                  diag::err_duplicate_case_differing_expr) <<
    918                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
    919                  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
    920                  CaseValStr;
    921 
    922           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
    923                diag::note_duplicate_case_prev);
    924           // FIXME: We really want to remove the bogus case stmt from the
    925           // substmt, but we have no way to do this right now.
    926           CaseListIsErroneous = true;
    927         }
    928       }
    929     }
    930 
    931     // Detect duplicate case ranges, which usually don't exist at all in
    932     // the first place.
    933     if (!CaseRanges.empty()) {
    934       // Sort all the case ranges by their low value so we can easily detect
    935       // overlaps between ranges.
    936       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
    937 
    938       // Scan the ranges, computing the high values and removing empty ranges.
    939       std::vector<llvm::APSInt> HiVals;
    940       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
    941         llvm::APSInt &LoVal = CaseRanges[i].first;
    942         CaseStmt *CR = CaseRanges[i].second;
    943         Expr *Hi = CR->getRHS();
    944         llvm::APSInt HiVal;
    945 
    946         if (getLangOpts().CPlusPlus11) {
    947           // C++11 [stmt.switch]p2: the constant-expression shall be a converted
    948           // constant expression of the promoted type of the switch condition.
    949           ExprResult ConvHi =
    950             CheckConvertedConstantExpression(Hi, CondType, HiVal,
    951                                              CCEK_CaseValue);
    952           if (ConvHi.isInvalid()) {
    953             CaseListIsErroneous = true;
    954             continue;
    955           }
    956           Hi = ConvHi.get();
    957         } else {
    958           HiVal = Hi->EvaluateKnownConstInt(Context);
    959 
    960           // If the RHS is not the same type as the condition, insert an
    961           // implicit cast.
    962           Hi = DefaultLvalueConversion(Hi).get();
    963           Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
    964         }
    965 
    966         // Check the unconverted value is within the range of possible values of
    967         // the switch expression.
    968         checkCaseValue(*this, Hi->getLocStart(), HiVal,
    969                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
    970 
    971         // Convert the value to the same width/sign as the condition.
    972         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
    973 
    974         CR->setRHS(Hi);
    975 
    976         // If the low value is bigger than the high value, the case is empty.
    977         if (LoVal > HiVal) {
    978           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
    979             << SourceRange(CR->getLHS()->getLocStart(),
    980                            Hi->getLocEnd());
    981           CaseRanges.erase(CaseRanges.begin()+i);
    982           --i, --e;
    983           continue;
    984         }
    985 
    986         if (ShouldCheckConstantCond &&
    987             LoVal <= ConstantCondValue &&
    988             ConstantCondValue <= HiVal)
    989           ShouldCheckConstantCond = false;
    990 
    991         HiVals.push_back(HiVal);
    992       }
    993 
    994       // Rescan the ranges, looking for overlap with singleton values and other
    995       // ranges.  Since the range list is sorted, we only need to compare case
    996       // ranges with their neighbors.
    997       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
    998         llvm::APSInt &CRLo = CaseRanges[i].first;
    999         llvm::APSInt &CRHi = HiVals[i];
   1000         CaseStmt *CR = CaseRanges[i].second;
   1001 
   1002         // Check to see whether the case range overlaps with any
   1003         // singleton cases.
   1004         CaseStmt *OverlapStmt = nullptr;
   1005         llvm::APSInt OverlapVal(32);
   1006 
   1007         // Find the smallest value >= the lower bound.  If I is in the
   1008         // case range, then we have overlap.
   1009         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
   1010                                                   CaseVals.end(), CRLo,
   1011                                                   CaseCompareFunctor());
   1012         if (I != CaseVals.end() && I->first < CRHi) {
   1013           OverlapVal  = I->first;   // Found overlap with scalar.
   1014           OverlapStmt = I->second;
   1015         }
   1016 
   1017         // Find the smallest value bigger than the upper bound.
   1018         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
   1019         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
   1020           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
   1021           OverlapStmt = (I-1)->second;
   1022         }
   1023 
   1024         // Check to see if this case stmt overlaps with the subsequent
   1025         // case range.
   1026         if (i && CRLo <= HiVals[i-1]) {
   1027           OverlapVal  = HiVals[i-1];       // Found overlap with range.
   1028           OverlapStmt = CaseRanges[i-1].second;
   1029         }
   1030 
   1031         if (OverlapStmt) {
   1032           // If we have a duplicate, report it.
   1033           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
   1034             << OverlapVal.toString(10);
   1035           Diag(OverlapStmt->getLHS()->getLocStart(),
   1036                diag::note_duplicate_case_prev);
   1037           // FIXME: We really want to remove the bogus case stmt from the
   1038           // substmt, but we have no way to do this right now.
   1039           CaseListIsErroneous = true;
   1040         }
   1041       }
   1042     }
   1043 
   1044     // Complain if we have a constant condition and we didn't find a match.
   1045     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
   1046       // TODO: it would be nice if we printed enums as enums, chars as
   1047       // chars, etc.
   1048       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
   1049         << ConstantCondValue.toString(10)
   1050         << CondExpr->getSourceRange();
   1051     }
   1052 
   1053     // Check to see if switch is over an Enum and handles all of its
   1054     // values.  We only issue a warning if there is not 'default:', but
   1055     // we still do the analysis to preserve this information in the AST
   1056     // (which can be used by flow-based analyes).
   1057     //
   1058     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
   1059 
   1060     // If switch has default case, then ignore it.
   1061     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
   1062       const EnumDecl *ED = ET->getDecl();
   1063       EnumValsTy EnumVals;
   1064 
   1065       // Gather all enum values, set their type and sort them,
   1066       // allowing easier comparison with CaseVals.
   1067       for (auto *EDI : ED->enumerators()) {
   1068         llvm::APSInt Val = EDI->getInitVal();
   1069         AdjustAPSInt(Val, CondWidth, CondIsSigned);
   1070         EnumVals.push_back(std::make_pair(Val, EDI));
   1071       }
   1072       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
   1073       auto EI = EnumVals.begin(), EIEnd =
   1074         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
   1075 
   1076       // See which case values aren't in enum.
   1077       for (CaseValsTy::const_iterator CI = CaseVals.begin();
   1078           CI != CaseVals.end(); CI++) {
   1079         Expr *CaseExpr = CI->second->getLHS();
   1080         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1081                                               CI->first))
   1082           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1083             << CondTypeBeforePromotion;
   1084       }
   1085 
   1086       // See which of case ranges aren't in enum
   1087       EI = EnumVals.begin();
   1088       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
   1089           RI != CaseRanges.end(); RI++) {
   1090         Expr *CaseExpr = RI->second->getLHS();
   1091         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1092                                               RI->first))
   1093           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1094             << CondTypeBeforePromotion;
   1095 
   1096         llvm::APSInt Hi =
   1097           RI->second->getRHS()->EvaluateKnownConstInt(Context);
   1098         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
   1099 
   1100         CaseExpr = RI->second->getRHS();
   1101         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
   1102                                               Hi))
   1103           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
   1104             << CondTypeBeforePromotion;
   1105       }
   1106 
   1107       // Check which enum vals aren't in switch
   1108       auto CI = CaseVals.begin();
   1109       auto RI = CaseRanges.begin();
   1110       bool hasCasesNotInSwitch = false;
   1111 
   1112       SmallVector<DeclarationName,8> UnhandledNames;
   1113 
   1114       for (EI = EnumVals.begin(); EI != EIEnd; EI++){
   1115         // Drop unneeded case values
   1116         while (CI != CaseVals.end() && CI->first < EI->first)
   1117           CI++;
   1118 
   1119         if (CI != CaseVals.end() && CI->first == EI->first)
   1120           continue;
   1121 
   1122         // Drop unneeded case ranges
   1123         for (; RI != CaseRanges.end(); RI++) {
   1124           llvm::APSInt Hi =
   1125             RI->second->getRHS()->EvaluateKnownConstInt(Context);
   1126           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
   1127           if (EI->first <= Hi)
   1128             break;
   1129         }
   1130 
   1131         if (RI == CaseRanges.end() || EI->first < RI->first) {
   1132           hasCasesNotInSwitch = true;
   1133           UnhandledNames.push_back(EI->second->getDeclName());
   1134         }
   1135       }
   1136 
   1137       if (TheDefaultStmt && UnhandledNames.empty())
   1138         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
   1139 
   1140       // Produce a nice diagnostic if multiple values aren't handled.
   1141       if (!UnhandledNames.empty()) {
   1142         DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
   1143                                     TheDefaultStmt ? diag::warn_def_missing_case
   1144                                                    : diag::warn_missing_case)
   1145                                << (int)UnhandledNames.size();
   1146 
   1147         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
   1148              I != E; ++I)
   1149           DB << UnhandledNames[I];
   1150       }
   1151 
   1152       if (!hasCasesNotInSwitch)
   1153         SS->setAllEnumCasesCovered();
   1154     }
   1155   }
   1156 
   1157   if (BodyStmt)
   1158     DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
   1159                           diag::warn_empty_switch_body);
   1160 
   1161   // FIXME: If the case list was broken is some way, we don't have a good system
   1162   // to patch it up.  Instead, just return the whole substmt as broken.
   1163   if (CaseListIsErroneous)
   1164     return StmtError();
   1165 
   1166   return SS;
   1167 }
   1168 
   1169 void
   1170 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
   1171                              Expr *SrcExpr) {
   1172   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
   1173     return;
   1174 
   1175   if (const EnumType *ET = DstType->getAs<EnumType>())
   1176     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
   1177         SrcType->isIntegerType()) {
   1178       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
   1179           SrcExpr->isIntegerConstantExpr(Context)) {
   1180         // Get the bitwidth of the enum value before promotions.
   1181         unsigned DstWidth = Context.getIntWidth(DstType);
   1182         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
   1183 
   1184         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
   1185         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
   1186         const EnumDecl *ED = ET->getDecl();
   1187 
   1188         if (ED->hasAttr<FlagEnumAttr>()) {
   1189           if (!IsValueInFlagEnum(ED, RhsVal, true))
   1190             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
   1191               << DstType.getUnqualifiedType();
   1192         } else {
   1193           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
   1194               EnumValsTy;
   1195           EnumValsTy EnumVals;
   1196 
   1197           // Gather all enum values, set their type and sort them,
   1198           // allowing easier comparison with rhs constant.
   1199           for (auto *EDI : ED->enumerators()) {
   1200             llvm::APSInt Val = EDI->getInitVal();
   1201             AdjustAPSInt(Val, DstWidth, DstIsSigned);
   1202             EnumVals.push_back(std::make_pair(Val, EDI));
   1203           }
   1204           if (EnumVals.empty())
   1205             return;
   1206           std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
   1207           EnumValsTy::iterator EIend =
   1208               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
   1209 
   1210           // See which values aren't in the enum.
   1211           EnumValsTy::const_iterator EI = EnumVals.begin();
   1212           while (EI != EIend && EI->first < RhsVal)
   1213             EI++;
   1214           if (EI == EIend || EI->first != RhsVal) {
   1215             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
   1216                 << DstType.getUnqualifiedType();
   1217           }
   1218         }
   1219       }
   1220     }
   1221 }
   1222 
   1223 StmtResult
   1224 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
   1225                      Decl *CondVar, Stmt *Body) {
   1226   ExprResult CondResult(Cond.release());
   1227 
   1228   VarDecl *ConditionVar = nullptr;
   1229   if (CondVar) {
   1230     ConditionVar = cast<VarDecl>(CondVar);
   1231     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
   1232     if (CondResult.isInvalid())
   1233       return StmtError();
   1234   }
   1235   Expr *ConditionExpr = CondResult.get();
   1236   if (!ConditionExpr)
   1237     return StmtError();
   1238   CheckBreakContinueBinding(ConditionExpr);
   1239 
   1240   DiagnoseUnusedExprResult(Body);
   1241 
   1242   if (isa<NullStmt>(Body))
   1243     getCurCompoundScope().setHasEmptyLoopBodies();
   1244 
   1245   return new (Context)
   1246       WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
   1247 }
   1248 
   1249 StmtResult
   1250 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
   1251                   SourceLocation WhileLoc, SourceLocation CondLParen,
   1252                   Expr *Cond, SourceLocation CondRParen) {
   1253   assert(Cond && "ActOnDoStmt(): missing expression");
   1254 
   1255   CheckBreakContinueBinding(Cond);
   1256   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
   1257   if (CondResult.isInvalid())
   1258     return StmtError();
   1259   Cond = CondResult.get();
   1260 
   1261   CondResult = ActOnFinishFullExpr(Cond, DoLoc);
   1262   if (CondResult.isInvalid())
   1263     return StmtError();
   1264   Cond = CondResult.get();
   1265 
   1266   DiagnoseUnusedExprResult(Body);
   1267 
   1268   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
   1269 }
   1270 
   1271 namespace {
   1272   // This visitor will traverse a conditional statement and store all
   1273   // the evaluated decls into a vector.  Simple is set to true if none
   1274   // of the excluded constructs are used.
   1275   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
   1276     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
   1277     SmallVectorImpl<SourceRange> &Ranges;
   1278     bool Simple;
   1279   public:
   1280     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
   1281 
   1282     DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
   1283                   SmallVectorImpl<SourceRange> &Ranges) :
   1284         Inherited(S.Context),
   1285         Decls(Decls),
   1286         Ranges(Ranges),
   1287         Simple(true) {}
   1288 
   1289     bool isSimple() { return Simple; }
   1290 
   1291     // Replaces the method in EvaluatedExprVisitor.
   1292     void VisitMemberExpr(MemberExpr* E) {
   1293       Simple = false;
   1294     }
   1295 
   1296     // Any Stmt not whitelisted will cause the condition to be marked complex.
   1297     void VisitStmt(Stmt *S) {
   1298       Simple = false;
   1299     }
   1300 
   1301     void VisitBinaryOperator(BinaryOperator *E) {
   1302       Visit(E->getLHS());
   1303       Visit(E->getRHS());
   1304     }
   1305 
   1306     void VisitCastExpr(CastExpr *E) {
   1307       Visit(E->getSubExpr());
   1308     }
   1309 
   1310     void VisitUnaryOperator(UnaryOperator *E) {
   1311       // Skip checking conditionals with derefernces.
   1312       if (E->getOpcode() == UO_Deref)
   1313         Simple = false;
   1314       else
   1315         Visit(E->getSubExpr());
   1316     }
   1317 
   1318     void VisitConditionalOperator(ConditionalOperator *E) {
   1319       Visit(E->getCond());
   1320       Visit(E->getTrueExpr());
   1321       Visit(E->getFalseExpr());
   1322     }
   1323 
   1324     void VisitParenExpr(ParenExpr *E) {
   1325       Visit(E->getSubExpr());
   1326     }
   1327 
   1328     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
   1329       Visit(E->getOpaqueValue()->getSourceExpr());
   1330       Visit(E->getFalseExpr());
   1331     }
   1332 
   1333     void VisitIntegerLiteral(IntegerLiteral *E) { }
   1334     void VisitFloatingLiteral(FloatingLiteral *E) { }
   1335     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
   1336     void VisitCharacterLiteral(CharacterLiteral *E) { }
   1337     void VisitGNUNullExpr(GNUNullExpr *E) { }
   1338     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
   1339 
   1340     void VisitDeclRefExpr(DeclRefExpr *E) {
   1341       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
   1342       if (!VD) return;
   1343 
   1344       Ranges.push_back(E->getSourceRange());
   1345 
   1346       Decls.insert(VD);
   1347     }
   1348 
   1349   }; // end class DeclExtractor
   1350 
   1351   // DeclMatcher checks to see if the decls are used in a non-evauluated
   1352   // context.
   1353   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
   1354     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
   1355     bool FoundDecl;
   1356 
   1357   public:
   1358     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
   1359 
   1360     DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
   1361                 Stmt *Statement) :
   1362         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
   1363       if (!Statement) return;
   1364 
   1365       Visit(Statement);
   1366     }
   1367 
   1368     void VisitReturnStmt(ReturnStmt *S) {
   1369       FoundDecl = true;
   1370     }
   1371 
   1372     void VisitBreakStmt(BreakStmt *S) {
   1373       FoundDecl = true;
   1374     }
   1375 
   1376     void VisitGotoStmt(GotoStmt *S) {
   1377       FoundDecl = true;
   1378     }
   1379 
   1380     void VisitCastExpr(CastExpr *E) {
   1381       if (E->getCastKind() == CK_LValueToRValue)
   1382         CheckLValueToRValueCast(E->getSubExpr());
   1383       else
   1384         Visit(E->getSubExpr());
   1385     }
   1386 
   1387     void CheckLValueToRValueCast(Expr *E) {
   1388       E = E->IgnoreParenImpCasts();
   1389 
   1390       if (isa<DeclRefExpr>(E)) {
   1391         return;
   1392       }
   1393 
   1394       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   1395         Visit(CO->getCond());
   1396         CheckLValueToRValueCast(CO->getTrueExpr());
   1397         CheckLValueToRValueCast(CO->getFalseExpr());
   1398         return;
   1399       }
   1400 
   1401       if (BinaryConditionalOperator *BCO =
   1402               dyn_cast<BinaryConditionalOperator>(E)) {
   1403         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
   1404         CheckLValueToRValueCast(BCO->getFalseExpr());
   1405         return;
   1406       }
   1407 
   1408       Visit(E);
   1409     }
   1410 
   1411     void VisitDeclRefExpr(DeclRefExpr *E) {
   1412       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   1413         if (Decls.count(VD))
   1414           FoundDecl = true;
   1415     }
   1416 
   1417     bool FoundDeclInUse() { return FoundDecl; }
   1418 
   1419   };  // end class DeclMatcher
   1420 
   1421   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
   1422                                         Expr *Third, Stmt *Body) {
   1423     // Condition is empty
   1424     if (!Second) return;
   1425 
   1426     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
   1427                           Second->getLocStart()))
   1428       return;
   1429 
   1430     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
   1431     llvm::SmallPtrSet<VarDecl*, 8> Decls;
   1432     SmallVector<SourceRange, 10> Ranges;
   1433     DeclExtractor DE(S, Decls, Ranges);
   1434     DE.Visit(Second);
   1435 
   1436     // Don't analyze complex conditionals.
   1437     if (!DE.isSimple()) return;
   1438 
   1439     // No decls found.
   1440     if (Decls.size() == 0) return;
   1441 
   1442     // Don't warn on volatile, static, or global variables.
   1443     for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
   1444                                                    E = Decls.end();
   1445          I != E; ++I)
   1446       if ((*I)->getType().isVolatileQualified() ||
   1447           (*I)->hasGlobalStorage()) return;
   1448 
   1449     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
   1450         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
   1451         DeclMatcher(S, Decls, Body).FoundDeclInUse())
   1452       return;
   1453 
   1454     // Load decl names into diagnostic.
   1455     if (Decls.size() > 4)
   1456       PDiag << 0;
   1457     else {
   1458       PDiag << Decls.size();
   1459       for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
   1460                                                      E = Decls.end();
   1461            I != E; ++I)
   1462         PDiag << (*I)->getDeclName();
   1463     }
   1464 
   1465     // Load SourceRanges into diagnostic if there is room.
   1466     // Otherwise, load the SourceRange of the conditional expression.
   1467     if (Ranges.size() <= PartialDiagnostic::MaxArguments)
   1468       for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
   1469                                                   E = Ranges.end();
   1470            I != E; ++I)
   1471         PDiag << *I;
   1472     else
   1473       PDiag << Second->getSourceRange();
   1474 
   1475     S.Diag(Ranges.begin()->getBegin(), PDiag);
   1476   }
   1477 
   1478   // If Statement is an incemement or decrement, return true and sets the
   1479   // variables Increment and DRE.
   1480   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
   1481                             DeclRefExpr *&DRE) {
   1482     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
   1483       switch (UO->getOpcode()) {
   1484         default: return false;
   1485         case UO_PostInc:
   1486         case UO_PreInc:
   1487           Increment = true;
   1488           break;
   1489         case UO_PostDec:
   1490         case UO_PreDec:
   1491           Increment = false;
   1492           break;
   1493       }
   1494       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
   1495       return DRE;
   1496     }
   1497 
   1498     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
   1499       FunctionDecl *FD = Call->getDirectCallee();
   1500       if (!FD || !FD->isOverloadedOperator()) return false;
   1501       switch (FD->getOverloadedOperator()) {
   1502         default: return false;
   1503         case OO_PlusPlus:
   1504           Increment = true;
   1505           break;
   1506         case OO_MinusMinus:
   1507           Increment = false;
   1508           break;
   1509       }
   1510       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
   1511       return DRE;
   1512     }
   1513 
   1514     return false;
   1515   }
   1516 
   1517   // A visitor to determine if a continue or break statement is a
   1518   // subexpression.
   1519   class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
   1520     SourceLocation BreakLoc;
   1521     SourceLocation ContinueLoc;
   1522   public:
   1523     BreakContinueFinder(Sema &S, Stmt* Body) :
   1524         Inherited(S.Context) {
   1525       Visit(Body);
   1526     }
   1527 
   1528     typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
   1529 
   1530     void VisitContinueStmt(ContinueStmt* E) {
   1531       ContinueLoc = E->getContinueLoc();
   1532     }
   1533 
   1534     void VisitBreakStmt(BreakStmt* E) {
   1535       BreakLoc = E->getBreakLoc();
   1536     }
   1537 
   1538     bool ContinueFound() { return ContinueLoc.isValid(); }
   1539     bool BreakFound() { return BreakLoc.isValid(); }
   1540     SourceLocation GetContinueLoc() { return ContinueLoc; }
   1541     SourceLocation GetBreakLoc() { return BreakLoc; }
   1542 
   1543   };  // end class BreakContinueFinder
   1544 
   1545   // Emit a warning when a loop increment/decrement appears twice per loop
   1546   // iteration.  The conditions which trigger this warning are:
   1547   // 1) The last statement in the loop body and the third expression in the
   1548   //    for loop are both increment or both decrement of the same variable
   1549   // 2) No continue statements in the loop body.
   1550   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
   1551     // Return when there is nothing to check.
   1552     if (!Body || !Third) return;
   1553 
   1554     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
   1555                           Third->getLocStart()))
   1556       return;
   1557 
   1558     // Get the last statement from the loop body.
   1559     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
   1560     if (!CS || CS->body_empty()) return;
   1561     Stmt *LastStmt = CS->body_back();
   1562     if (!LastStmt) return;
   1563 
   1564     bool LoopIncrement, LastIncrement;
   1565     DeclRefExpr *LoopDRE, *LastDRE;
   1566 
   1567     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
   1568     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
   1569 
   1570     // Check that the two statements are both increments or both decrements
   1571     // on the same variable.
   1572     if (LoopIncrement != LastIncrement ||
   1573         LoopDRE->getDecl() != LastDRE->getDecl()) return;
   1574 
   1575     if (BreakContinueFinder(S, Body).ContinueFound()) return;
   1576 
   1577     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
   1578          << LastDRE->getDecl() << LastIncrement;
   1579     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
   1580          << LoopIncrement;
   1581   }
   1582 
   1583 } // end namespace
   1584 
   1585 
   1586 void Sema::CheckBreakContinueBinding(Expr *E) {
   1587   if (!E || getLangOpts().CPlusPlus)
   1588     return;
   1589   BreakContinueFinder BCFinder(*this, E);
   1590   Scope *BreakParent = CurScope->getBreakParent();
   1591   if (BCFinder.BreakFound() && BreakParent) {
   1592     if (BreakParent->getFlags() & Scope::SwitchScope) {
   1593       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
   1594     } else {
   1595       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
   1596           << "break";
   1597     }
   1598   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
   1599     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
   1600         << "continue";
   1601   }
   1602 }
   1603 
   1604 StmtResult
   1605 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
   1606                    Stmt *First, FullExprArg second, Decl *secondVar,
   1607                    FullExprArg third,
   1608                    SourceLocation RParenLoc, Stmt *Body) {
   1609   if (!getLangOpts().CPlusPlus) {
   1610     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
   1611       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
   1612       // declare identifiers for objects having storage class 'auto' or
   1613       // 'register'.
   1614       for (auto *DI : DS->decls()) {
   1615         VarDecl *VD = dyn_cast<VarDecl>(DI);
   1616         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
   1617           VD = nullptr;
   1618         if (!VD) {
   1619           Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
   1620           DI->setInvalidDecl();
   1621         }
   1622       }
   1623     }
   1624   }
   1625 
   1626   CheckBreakContinueBinding(second.get());
   1627   CheckBreakContinueBinding(third.get());
   1628 
   1629   CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
   1630   CheckForRedundantIteration(*this, third.get(), Body);
   1631 
   1632   ExprResult SecondResult(second.release());
   1633   VarDecl *ConditionVar = nullptr;
   1634   if (secondVar) {
   1635     ConditionVar = cast<VarDecl>(secondVar);
   1636     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
   1637     if (SecondResult.isInvalid())
   1638       return StmtError();
   1639   }
   1640 
   1641   Expr *Third  = third.release().getAs<Expr>();
   1642 
   1643   DiagnoseUnusedExprResult(First);
   1644   DiagnoseUnusedExprResult(Third);
   1645   DiagnoseUnusedExprResult(Body);
   1646 
   1647   if (isa<NullStmt>(Body))
   1648     getCurCompoundScope().setHasEmptyLoopBodies();
   1649 
   1650   return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
   1651                                Third, Body, ForLoc, LParenLoc, RParenLoc);
   1652 }
   1653 
   1654 /// In an Objective C collection iteration statement:
   1655 ///   for (x in y)
   1656 /// x can be an arbitrary l-value expression.  Bind it up as a
   1657 /// full-expression.
   1658 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
   1659   // Reduce placeholder expressions here.  Note that this rejects the
   1660   // use of pseudo-object l-values in this position.
   1661   ExprResult result = CheckPlaceholderExpr(E);
   1662   if (result.isInvalid()) return StmtError();
   1663   E = result.get();
   1664 
   1665   ExprResult FullExpr = ActOnFinishFullExpr(E);
   1666   if (FullExpr.isInvalid())
   1667     return StmtError();
   1668   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
   1669 }
   1670 
   1671 ExprResult
   1672 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
   1673   if (!collection)
   1674     return ExprError();
   1675 
   1676   ExprResult result = CorrectDelayedTyposInExpr(collection);
   1677   if (!result.isUsable())
   1678     return ExprError();
   1679   collection = result.get();
   1680 
   1681   // Bail out early if we've got a type-dependent expression.
   1682   if (collection->isTypeDependent()) return collection;
   1683 
   1684   // Perform normal l-value conversion.
   1685   result = DefaultFunctionArrayLvalueConversion(collection);
   1686   if (result.isInvalid())
   1687     return ExprError();
   1688   collection = result.get();
   1689 
   1690   // The operand needs to have object-pointer type.
   1691   // TODO: should we do a contextual conversion?
   1692   const ObjCObjectPointerType *pointerType =
   1693     collection->getType()->getAs<ObjCObjectPointerType>();
   1694   if (!pointerType)
   1695     return Diag(forLoc, diag::err_collection_expr_type)
   1696              << collection->getType() << collection->getSourceRange();
   1697 
   1698   // Check that the operand provides
   1699   //   - countByEnumeratingWithState:objects:count:
   1700   const ObjCObjectType *objectType = pointerType->getObjectType();
   1701   ObjCInterfaceDecl *iface = objectType->getInterface();
   1702 
   1703   // If we have a forward-declared type, we can't do this check.
   1704   // Under ARC, it is an error not to have a forward-declared class.
   1705   if (iface &&
   1706       RequireCompleteType(forLoc, QualType(objectType, 0),
   1707                           getLangOpts().ObjCAutoRefCount
   1708                             ? diag::err_arc_collection_forward
   1709                             : 0,
   1710                           collection)) {
   1711     // Otherwise, if we have any useful type information, check that
   1712     // the type declares the appropriate method.
   1713   } else if (iface || !objectType->qual_empty()) {
   1714     IdentifierInfo *selectorIdents[] = {
   1715       &Context.Idents.get("countByEnumeratingWithState"),
   1716       &Context.Idents.get("objects"),
   1717       &Context.Idents.get("count")
   1718     };
   1719     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
   1720 
   1721     ObjCMethodDecl *method = nullptr;
   1722 
   1723     // If there's an interface, look in both the public and private APIs.
   1724     if (iface) {
   1725       method = iface->lookupInstanceMethod(selector);
   1726       if (!method) method = iface->lookupPrivateMethod(selector);
   1727     }
   1728 
   1729     // Also check protocol qualifiers.
   1730     if (!method)
   1731       method = LookupMethodInQualifiedType(selector, pointerType,
   1732                                            /*instance*/ true);
   1733 
   1734     // If we didn't find it anywhere, give up.
   1735     if (!method) {
   1736       Diag(forLoc, diag::warn_collection_expr_type)
   1737         << collection->getType() << selector << collection->getSourceRange();
   1738     }
   1739 
   1740     // TODO: check for an incompatible signature?
   1741   }
   1742 
   1743   // Wrap up any cleanups in the expression.
   1744   return collection;
   1745 }
   1746 
   1747 StmtResult
   1748 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
   1749                                  Stmt *First, Expr *collection,
   1750                                  SourceLocation RParenLoc) {
   1751 
   1752   ExprResult CollectionExprResult =
   1753     CheckObjCForCollectionOperand(ForLoc, collection);
   1754 
   1755   if (First) {
   1756     QualType FirstType;
   1757     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
   1758       if (!DS->isSingleDecl())
   1759         return StmtError(Diag((*DS->decl_begin())->getLocation(),
   1760                          diag::err_toomany_element_decls));
   1761 
   1762       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
   1763       if (!D || D->isInvalidDecl())
   1764         return StmtError();
   1765 
   1766       FirstType = D->getType();
   1767       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
   1768       // declare identifiers for objects having storage class 'auto' or
   1769       // 'register'.
   1770       if (!D->hasLocalStorage())
   1771         return StmtError(Diag(D->getLocation(),
   1772                               diag::err_non_local_variable_decl_in_for));
   1773 
   1774       // If the type contained 'auto', deduce the 'auto' to 'id'.
   1775       if (FirstType->getContainedAutoType()) {
   1776         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
   1777                                  VK_RValue);
   1778         Expr *DeducedInit = &OpaqueId;
   1779         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
   1780                 DAR_Failed)
   1781           DiagnoseAutoDeductionFailure(D, DeducedInit);
   1782         if (FirstType.isNull()) {
   1783           D->setInvalidDecl();
   1784           return StmtError();
   1785         }
   1786 
   1787         D->setType(FirstType);
   1788 
   1789         if (ActiveTemplateInstantiations.empty()) {
   1790           SourceLocation Loc =
   1791               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
   1792           Diag(Loc, diag::warn_auto_var_is_id)
   1793             << D->getDeclName();
   1794         }
   1795       }
   1796 
   1797     } else {
   1798       Expr *FirstE = cast<Expr>(First);
   1799       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
   1800         return StmtError(Diag(First->getLocStart(),
   1801                    diag::err_selector_element_not_lvalue)
   1802           << First->getSourceRange());
   1803 
   1804       FirstType = static_cast<Expr*>(First)->getType();
   1805       if (FirstType.isConstQualified())
   1806         Diag(ForLoc, diag::err_selector_element_const_type)
   1807           << FirstType << First->getSourceRange();
   1808     }
   1809     if (!FirstType->isDependentType() &&
   1810         !FirstType->isObjCObjectPointerType() &&
   1811         !FirstType->isBlockPointerType())
   1812         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
   1813                            << FirstType << First->getSourceRange());
   1814   }
   1815 
   1816   if (CollectionExprResult.isInvalid())
   1817     return StmtError();
   1818 
   1819   CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
   1820   if (CollectionExprResult.isInvalid())
   1821     return StmtError();
   1822 
   1823   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
   1824                                              nullptr, ForLoc, RParenLoc);
   1825 }
   1826 
   1827 /// Finish building a variable declaration for a for-range statement.
   1828 /// \return true if an error occurs.
   1829 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
   1830                                   SourceLocation Loc, int DiagID) {
   1831   // Deduce the type for the iterator variable now rather than leaving it to
   1832   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
   1833   QualType InitType;
   1834   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
   1835       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
   1836           Sema::DAR_Failed)
   1837     SemaRef.Diag(Loc, DiagID) << Init->getType();
   1838   if (InitType.isNull()) {
   1839     Decl->setInvalidDecl();
   1840     return true;
   1841   }
   1842   Decl->setType(InitType);
   1843 
   1844   // In ARC, infer lifetime.
   1845   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
   1846   // we're doing the equivalent of fast iteration.
   1847   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
   1848       SemaRef.inferObjCARCLifetime(Decl))
   1849     Decl->setInvalidDecl();
   1850 
   1851   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
   1852                                /*TypeMayContainAuto=*/false);
   1853   SemaRef.FinalizeDeclaration(Decl);
   1854   SemaRef.CurContext->addHiddenDecl(Decl);
   1855   return false;
   1856 }
   1857 
   1858 namespace {
   1859 
   1860 /// Produce a note indicating which begin/end function was implicitly called
   1861 /// by a C++11 for-range statement. This is often not obvious from the code,
   1862 /// nor from the diagnostics produced when analysing the implicit expressions
   1863 /// required in a for-range statement.
   1864 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
   1865                                   Sema::BeginEndFunction BEF) {
   1866   CallExpr *CE = dyn_cast<CallExpr>(E);
   1867   if (!CE)
   1868     return;
   1869   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1870   if (!D)
   1871     return;
   1872   SourceLocation Loc = D->getLocation();
   1873 
   1874   std::string Description;
   1875   bool IsTemplate = false;
   1876   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
   1877     Description = SemaRef.getTemplateArgumentBindingsText(
   1878       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
   1879     IsTemplate = true;
   1880   }
   1881 
   1882   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
   1883     << BEF << IsTemplate << Description << E->getType();
   1884 }
   1885 
   1886 /// Build a variable declaration for a for-range statement.
   1887 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
   1888                               QualType Type, const char *Name) {
   1889   DeclContext *DC = SemaRef.CurContext;
   1890   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
   1891   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
   1892   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
   1893                                   TInfo, SC_None);
   1894   Decl->setImplicit();
   1895   return Decl;
   1896 }
   1897 
   1898 }
   1899 
   1900 static bool ObjCEnumerationCollection(Expr *Collection) {
   1901   return !Collection->isTypeDependent()
   1902           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
   1903 }
   1904 
   1905 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
   1906 ///
   1907 /// C++11 [stmt.ranged]:
   1908 ///   A range-based for statement is equivalent to
   1909 ///
   1910 ///   {
   1911 ///     auto && __range = range-init;
   1912 ///     for ( auto __begin = begin-expr,
   1913 ///           __end = end-expr;
   1914 ///           __begin != __end;
   1915 ///           ++__begin ) {
   1916 ///       for-range-declaration = *__begin;
   1917 ///       statement
   1918 ///     }
   1919 ///   }
   1920 ///
   1921 /// The body of the loop is not available yet, since it cannot be analysed until
   1922 /// we have determined the type of the for-range-declaration.
   1923 StmtResult
   1924 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
   1925                            Stmt *First, SourceLocation ColonLoc, Expr *Range,
   1926                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
   1927   if (!First)
   1928     return StmtError();
   1929 
   1930   if (Range && ObjCEnumerationCollection(Range))
   1931     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
   1932 
   1933   DeclStmt *DS = dyn_cast<DeclStmt>(First);
   1934   assert(DS && "first part of for range not a decl stmt");
   1935 
   1936   if (!DS->isSingleDecl()) {
   1937     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
   1938     return StmtError();
   1939   }
   1940 
   1941   Decl *LoopVar = DS->getSingleDecl();
   1942   if (LoopVar->isInvalidDecl() || !Range ||
   1943       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
   1944     LoopVar->setInvalidDecl();
   1945     return StmtError();
   1946   }
   1947 
   1948   // Build  auto && __range = range-init
   1949   SourceLocation RangeLoc = Range->getLocStart();
   1950   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
   1951                                            Context.getAutoRRefDeductType(),
   1952                                            "__range");
   1953   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
   1954                             diag::err_for_range_deduction_failure)) {
   1955     LoopVar->setInvalidDecl();
   1956     return StmtError();
   1957   }
   1958 
   1959   // Claim the type doesn't contain auto: we've already done the checking.
   1960   DeclGroupPtrTy RangeGroup =
   1961       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
   1962                            /*TypeMayContainAuto=*/ false);
   1963   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
   1964   if (RangeDecl.isInvalid()) {
   1965     LoopVar->setInvalidDecl();
   1966     return StmtError();
   1967   }
   1968 
   1969   return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
   1970                               /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
   1971                               /*Inc=*/nullptr, DS, RParenLoc, Kind);
   1972 }
   1973 
   1974 /// \brief Create the initialization, compare, and increment steps for
   1975 /// the range-based for loop expression.
   1976 /// This function does not handle array-based for loops,
   1977 /// which are created in Sema::BuildCXXForRangeStmt.
   1978 ///
   1979 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
   1980 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
   1981 /// CandidateSet and BEF are set and some non-success value is returned on
   1982 /// failure.
   1983 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
   1984                                             Expr *BeginRange, Expr *EndRange,
   1985                                             QualType RangeType,
   1986                                             VarDecl *BeginVar,
   1987                                             VarDecl *EndVar,
   1988                                             SourceLocation ColonLoc,
   1989                                             OverloadCandidateSet *CandidateSet,
   1990                                             ExprResult *BeginExpr,
   1991                                             ExprResult *EndExpr,
   1992                                             Sema::BeginEndFunction *BEF) {
   1993   DeclarationNameInfo BeginNameInfo(
   1994       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
   1995   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
   1996                                   ColonLoc);
   1997 
   1998   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
   1999                                  Sema::LookupMemberName);
   2000   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
   2001 
   2002   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
   2003     // - if _RangeT is a class type, the unqualified-ids begin and end are
   2004     //   looked up in the scope of class _RangeT as if by class member access
   2005     //   lookup (3.4.5), and if either (or both) finds at least one
   2006     //   declaration, begin-expr and end-expr are __range.begin() and
   2007     //   __range.end(), respectively;
   2008     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
   2009     SemaRef.LookupQualifiedName(EndMemberLookup, D);
   2010 
   2011     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
   2012       SourceLocation RangeLoc = BeginVar->getLocation();
   2013       *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
   2014 
   2015       SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
   2016           << RangeLoc << BeginRange->getType() << *BEF;
   2017       return Sema::FRS_DiagnosticIssued;
   2018     }
   2019   } else {
   2020     // - otherwise, begin-expr and end-expr are begin(__range) and
   2021     //   end(__range), respectively, where begin and end are looked up with
   2022     //   argument-dependent lookup (3.4.2). For the purposes of this name
   2023     //   lookup, namespace std is an associated namespace.
   2024 
   2025   }
   2026 
   2027   *BEF = Sema::BEF_begin;
   2028   Sema::ForRangeStatus RangeStatus =
   2029       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
   2030                                         Sema::BEF_begin, BeginNameInfo,
   2031                                         BeginMemberLookup, CandidateSet,
   2032                                         BeginRange, BeginExpr);
   2033 
   2034   if (RangeStatus != Sema::FRS_Success)
   2035     return RangeStatus;
   2036   if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
   2037                             diag::err_for_range_iter_deduction_failure)) {
   2038     NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
   2039     return Sema::FRS_DiagnosticIssued;
   2040   }
   2041 
   2042   *BEF = Sema::BEF_end;
   2043   RangeStatus =
   2044       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
   2045                                         Sema::BEF_end, EndNameInfo,
   2046                                         EndMemberLookup, CandidateSet,
   2047                                         EndRange, EndExpr);
   2048   if (RangeStatus != Sema::FRS_Success)
   2049     return RangeStatus;
   2050   if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
   2051                             diag::err_for_range_iter_deduction_failure)) {
   2052     NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
   2053     return Sema::FRS_DiagnosticIssued;
   2054   }
   2055   return Sema::FRS_Success;
   2056 }
   2057 
   2058 /// Speculatively attempt to dereference an invalid range expression.
   2059 /// If the attempt fails, this function will return a valid, null StmtResult
   2060 /// and emit no diagnostics.
   2061 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
   2062                                                  SourceLocation ForLoc,
   2063                                                  Stmt *LoopVarDecl,
   2064                                                  SourceLocation ColonLoc,
   2065                                                  Expr *Range,
   2066                                                  SourceLocation RangeLoc,
   2067                                                  SourceLocation RParenLoc) {
   2068   // Determine whether we can rebuild the for-range statement with a
   2069   // dereferenced range expression.
   2070   ExprResult AdjustedRange;
   2071   {
   2072     Sema::SFINAETrap Trap(SemaRef);
   2073 
   2074     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
   2075     if (AdjustedRange.isInvalid())
   2076       return StmtResult();
   2077 
   2078     StmtResult SR =
   2079       SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
   2080                                    AdjustedRange.get(), RParenLoc,
   2081                                    Sema::BFRK_Check);
   2082     if (SR.isInvalid())
   2083       return StmtResult();
   2084   }
   2085 
   2086   // The attempt to dereference worked well enough that it could produce a valid
   2087   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
   2088   // case there are any other (non-fatal) problems with it.
   2089   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
   2090     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
   2091   return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
   2092                                       AdjustedRange.get(), RParenLoc,
   2093                                       Sema::BFRK_Rebuild);
   2094 }
   2095 
   2096 namespace {
   2097 /// RAII object to automatically invalidate a declaration if an error occurs.
   2098 struct InvalidateOnErrorScope {
   2099   InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
   2100       : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
   2101   ~InvalidateOnErrorScope() {
   2102     if (Enabled && Trap.hasErrorOccurred())
   2103       D->setInvalidDecl();
   2104   }
   2105 
   2106   DiagnosticErrorTrap Trap;
   2107   Decl *D;
   2108   bool Enabled;
   2109 };
   2110 }
   2111 
   2112 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
   2113 StmtResult
   2114 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
   2115                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
   2116                            Expr *Inc, Stmt *LoopVarDecl,
   2117                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
   2118   Scope *S = getCurScope();
   2119 
   2120   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
   2121   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
   2122   QualType RangeVarType = RangeVar->getType();
   2123 
   2124   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
   2125   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
   2126 
   2127   // If we hit any errors, mark the loop variable as invalid if its type
   2128   // contains 'auto'.
   2129   InvalidateOnErrorScope Invalidate(*this, LoopVar,
   2130                                     LoopVar->getType()->isUndeducedType());
   2131 
   2132   StmtResult BeginEndDecl = BeginEnd;
   2133   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
   2134 
   2135   if (RangeVarType->isDependentType()) {
   2136     // The range is implicitly used as a placeholder when it is dependent.
   2137     RangeVar->markUsed(Context);
   2138 
   2139     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
   2140     // them in properly when we instantiate the loop.
   2141     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
   2142       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
   2143   } else if (!BeginEndDecl.get()) {
   2144     SourceLocation RangeLoc = RangeVar->getLocation();
   2145 
   2146     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
   2147 
   2148     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   2149                                                 VK_LValue, ColonLoc);
   2150     if (BeginRangeRef.isInvalid())
   2151       return StmtError();
   2152 
   2153     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   2154                                               VK_LValue, ColonLoc);
   2155     if (EndRangeRef.isInvalid())
   2156       return StmtError();
   2157 
   2158     QualType AutoType = Context.getAutoDeductType();
   2159     Expr *Range = RangeVar->getInit();
   2160     if (!Range)
   2161       return StmtError();
   2162     QualType RangeType = Range->getType();
   2163 
   2164     if (RequireCompleteType(RangeLoc, RangeType,
   2165                             diag::err_for_range_incomplete_type))
   2166       return StmtError();
   2167 
   2168     // Build auto __begin = begin-expr, __end = end-expr.
   2169     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   2170                                              "__begin");
   2171     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   2172                                            "__end");
   2173 
   2174     // Build begin-expr and end-expr and attach to __begin and __end variables.
   2175     ExprResult BeginExpr, EndExpr;
   2176     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
   2177       // - if _RangeT is an array type, begin-expr and end-expr are __range and
   2178       //   __range + __bound, respectively, where __bound is the array bound. If
   2179       //   _RangeT is an array of unknown size or an array of incomplete type,
   2180       //   the program is ill-formed;
   2181 
   2182       // begin-expr is __range.
   2183       BeginExpr = BeginRangeRef;
   2184       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
   2185                                 diag::err_for_range_iter_deduction_failure)) {
   2186         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2187         return StmtError();
   2188       }
   2189 
   2190       // Find the array bound.
   2191       ExprResult BoundExpr;
   2192       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
   2193         BoundExpr = IntegerLiteral::Create(
   2194             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
   2195       else if (const VariableArrayType *VAT =
   2196                dyn_cast<VariableArrayType>(UnqAT))
   2197         BoundExpr = VAT->getSizeExpr();
   2198       else {
   2199         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
   2200         // UnqAT is not incomplete and Range is not type-dependent.
   2201         llvm_unreachable("Unexpected array type in for-range");
   2202       }
   2203 
   2204       // end-expr is __range + __bound.
   2205       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
   2206                            BoundExpr.get());
   2207       if (EndExpr.isInvalid())
   2208         return StmtError();
   2209       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
   2210                                 diag::err_for_range_iter_deduction_failure)) {
   2211         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2212         return StmtError();
   2213       }
   2214     } else {
   2215       OverloadCandidateSet CandidateSet(RangeLoc,
   2216                                         OverloadCandidateSet::CSK_Normal);
   2217       Sema::BeginEndFunction BEFFailure;
   2218       ForRangeStatus RangeStatus =
   2219           BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
   2220                                 EndRangeRef.get(), RangeType,
   2221                                 BeginVar, EndVar, ColonLoc, &CandidateSet,
   2222                                 &BeginExpr, &EndExpr, &BEFFailure);
   2223 
   2224       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
   2225           BEFFailure == BEF_begin) {
   2226         // If the range is being built from an array parameter, emit a
   2227         // a diagnostic that it is being treated as a pointer.
   2228         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
   2229           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
   2230             QualType ArrayTy = PVD->getOriginalType();
   2231             QualType PointerTy = PVD->getType();
   2232             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
   2233               Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
   2234                 << RangeLoc << PVD << ArrayTy << PointerTy;
   2235               Diag(PVD->getLocation(), diag::note_declared_at);
   2236               return StmtError();
   2237             }
   2238           }
   2239         }
   2240 
   2241         // If building the range failed, try dereferencing the range expression
   2242         // unless a diagnostic was issued or the end function is problematic.
   2243         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
   2244                                                        LoopVarDecl, ColonLoc,
   2245                                                        Range, RangeLoc,
   2246                                                        RParenLoc);
   2247         if (SR.isInvalid() || SR.isUsable())
   2248           return SR;
   2249       }
   2250 
   2251       // Otherwise, emit diagnostics if we haven't already.
   2252       if (RangeStatus == FRS_NoViableFunction) {
   2253         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
   2254         Diag(Range->getLocStart(), diag::err_for_range_invalid)
   2255             << RangeLoc << Range->getType() << BEFFailure;
   2256         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
   2257       }
   2258       // Return an error if no fix was discovered.
   2259       if (RangeStatus != FRS_Success)
   2260         return StmtError();
   2261     }
   2262 
   2263     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
   2264            "invalid range expression in for loop");
   2265 
   2266     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
   2267     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
   2268     if (!Context.hasSameType(BeginType, EndType)) {
   2269       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
   2270         << BeginType << EndType;
   2271       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2272       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2273     }
   2274 
   2275     Decl *BeginEndDecls[] = { BeginVar, EndVar };
   2276     // Claim the type doesn't contain auto: we've already done the checking.
   2277     DeclGroupPtrTy BeginEndGroup =
   2278         BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
   2279                              /*TypeMayContainAuto=*/ false);
   2280     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
   2281 
   2282     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
   2283     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2284                                            VK_LValue, ColonLoc);
   2285     if (BeginRef.isInvalid())
   2286       return StmtError();
   2287 
   2288     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
   2289                                          VK_LValue, ColonLoc);
   2290     if (EndRef.isInvalid())
   2291       return StmtError();
   2292 
   2293     // Build and check __begin != __end expression.
   2294     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
   2295                            BeginRef.get(), EndRef.get());
   2296     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
   2297     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
   2298     if (NotEqExpr.isInvalid()) {
   2299       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2300         << RangeLoc << 0 << BeginRangeRef.get()->getType();
   2301       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2302       if (!Context.hasSameType(BeginType, EndType))
   2303         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   2304       return StmtError();
   2305     }
   2306 
   2307     // Build and check ++__begin expression.
   2308     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2309                                 VK_LValue, ColonLoc);
   2310     if (BeginRef.isInvalid())
   2311       return StmtError();
   2312 
   2313     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
   2314     IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
   2315     if (IncrExpr.isInvalid()) {
   2316       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2317         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
   2318       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2319       return StmtError();
   2320     }
   2321 
   2322     // Build and check *__begin  expression.
   2323     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   2324                                 VK_LValue, ColonLoc);
   2325     if (BeginRef.isInvalid())
   2326       return StmtError();
   2327 
   2328     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
   2329     if (DerefExpr.isInvalid()) {
   2330       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
   2331         << RangeLoc << 1 << BeginRangeRef.get()->getType();
   2332       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2333       return StmtError();
   2334     }
   2335 
   2336     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
   2337     // trying to determine whether this would be a valid range.
   2338     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
   2339       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
   2340                            /*TypeMayContainAuto=*/true);
   2341       if (LoopVar->isInvalidDecl())
   2342         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   2343     }
   2344   }
   2345 
   2346   // Don't bother to actually allocate the result if we're just trying to
   2347   // determine whether it would be valid.
   2348   if (Kind == BFRK_Check)
   2349     return StmtResult();
   2350 
   2351   return new (Context) CXXForRangeStmt(
   2352       RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
   2353       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, ColonLoc, RParenLoc);
   2354 }
   2355 
   2356 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
   2357 /// statement.
   2358 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
   2359   if (!S || !B)
   2360     return StmtError();
   2361   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
   2362 
   2363   ForStmt->setBody(B);
   2364   return S;
   2365 }
   2366 
   2367 // Warn when the loop variable is a const reference that creates a copy.
   2368 // Suggest using the non-reference type for copies.  If a copy can be prevented
   2369 // suggest the const reference type that would do so.
   2370 // For instance, given "for (const &Foo : Range)", suggest
   2371 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
   2372 // possible, also suggest "for (const &Bar : Range)" if this type prevents
   2373 // the copy altogether.
   2374 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
   2375                                                     const VarDecl *VD,
   2376                                                     QualType RangeInitType) {
   2377   const Expr *InitExpr = VD->getInit();
   2378   if (!InitExpr)
   2379     return;
   2380 
   2381   QualType VariableType = VD->getType();
   2382 
   2383   const MaterializeTemporaryExpr *MTE =
   2384       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
   2385 
   2386   // No copy made.
   2387   if (!MTE)
   2388     return;
   2389 
   2390   const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
   2391 
   2392   // Searching for either UnaryOperator for dereference of a pointer or
   2393   // CXXOperatorCallExpr for handling iterators.
   2394   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
   2395     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
   2396       E = CCE->getArg(0);
   2397     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
   2398       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
   2399       E = ME->getBase();
   2400     } else {
   2401       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
   2402       E = MTE->GetTemporaryExpr();
   2403     }
   2404     E = E->IgnoreImpCasts();
   2405   }
   2406 
   2407   bool ReturnsReference = false;
   2408   if (isa<UnaryOperator>(E)) {
   2409     ReturnsReference = true;
   2410   } else {
   2411     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
   2412     const FunctionDecl *FD = Call->getDirectCallee();
   2413     QualType ReturnType = FD->getReturnType();
   2414     ReturnsReference = ReturnType->isReferenceType();
   2415   }
   2416 
   2417   if (ReturnsReference) {
   2418     // Loop variable creates a temporary.  Suggest either to go with
   2419     // non-reference loop variable to indiciate a copy is made, or
   2420     // the correct time to bind a const reference.
   2421     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
   2422         << VD << VariableType << E->getType();
   2423     QualType NonReferenceType = VariableType.getNonReferenceType();
   2424     NonReferenceType.removeLocalConst();
   2425     QualType NewReferenceType =
   2426         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
   2427     SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
   2428         << NonReferenceType << NewReferenceType << VD->getSourceRange();
   2429   } else {
   2430     // The range always returns a copy, so a temporary is always created.
   2431     // Suggest removing the reference from the loop variable.
   2432     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
   2433         << VD << RangeInitType;
   2434     QualType NonReferenceType = VariableType.getNonReferenceType();
   2435     NonReferenceType.removeLocalConst();
   2436     SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
   2437         << NonReferenceType << VD->getSourceRange();
   2438   }
   2439 }
   2440 
   2441 // Warns when the loop variable can be changed to a reference type to
   2442 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
   2443 // "for (const Foo &x : Range)" if this form does not make a copy.
   2444 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
   2445                                                 const VarDecl *VD) {
   2446   const Expr *InitExpr = VD->getInit();
   2447   if (!InitExpr)
   2448     return;
   2449 
   2450   QualType VariableType = VD->getType();
   2451 
   2452   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
   2453     if (!CE->getConstructor()->isCopyConstructor())
   2454       return;
   2455   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
   2456     if (CE->getCastKind() != CK_LValueToRValue)
   2457       return;
   2458   } else {
   2459     return;
   2460   }
   2461 
   2462   // TODO: Determine a maximum size that a POD type can be before a diagnostic
   2463   // should be emitted.  Also, only ignore POD types with trivial copy
   2464   // constructors.
   2465   if (VariableType.isPODType(SemaRef.Context))
   2466     return;
   2467 
   2468   // Suggest changing from a const variable to a const reference variable
   2469   // if doing so will prevent a copy.
   2470   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
   2471       << VD << VariableType << InitExpr->getType();
   2472   SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
   2473       << SemaRef.Context.getLValueReferenceType(VariableType)
   2474       << VD->getSourceRange();
   2475 }
   2476 
   2477 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
   2478 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
   2479 ///    using "const foo x" to show that a copy is made
   2480 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
   2481 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
   2482 ///    prevent the copy.
   2483 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
   2484 ///    Suggest "const foo &x" to prevent the copy.
   2485 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
   2486                                            const CXXForRangeStmt *ForStmt) {
   2487   if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
   2488                               ForStmt->getLocStart()) &&
   2489       SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
   2490                               ForStmt->getLocStart()) &&
   2491       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
   2492                               ForStmt->getLocStart())) {
   2493     return;
   2494   }
   2495 
   2496   const VarDecl *VD = ForStmt->getLoopVariable();
   2497   if (!VD)
   2498     return;
   2499 
   2500   QualType VariableType = VD->getType();
   2501 
   2502   if (VariableType->isIncompleteType())
   2503     return;
   2504 
   2505   const Expr *InitExpr = VD->getInit();
   2506   if (!InitExpr)
   2507     return;
   2508 
   2509   if (VariableType->isReferenceType()) {
   2510     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
   2511                                             ForStmt->getRangeInit()->getType());
   2512   } else if (VariableType.isConstQualified()) {
   2513     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
   2514   }
   2515 }
   2516 
   2517 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
   2518 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
   2519 /// body cannot be performed until after the type of the range variable is
   2520 /// determined.
   2521 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
   2522   if (!S || !B)
   2523     return StmtError();
   2524 
   2525   if (isa<ObjCForCollectionStmt>(S))
   2526     return FinishObjCForCollectionStmt(S, B);
   2527 
   2528   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
   2529   ForStmt->setBody(B);
   2530 
   2531   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
   2532                         diag::warn_empty_range_based_for_body);
   2533 
   2534   DiagnoseForRangeVariableCopies(*this, ForStmt);
   2535 
   2536   return S;
   2537 }
   2538 
   2539 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
   2540                                SourceLocation LabelLoc,
   2541                                LabelDecl *TheDecl) {
   2542   getCurFunction()->setHasBranchIntoScope();
   2543   TheDecl->markUsed(Context);
   2544   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
   2545 }
   2546 
   2547 StmtResult
   2548 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
   2549                             Expr *E) {
   2550   // Convert operand to void*
   2551   if (!E->isTypeDependent()) {
   2552     QualType ETy = E->getType();
   2553     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
   2554     ExprResult ExprRes = E;
   2555     AssignConvertType ConvTy =
   2556       CheckSingleAssignmentConstraints(DestTy, ExprRes);
   2557     if (ExprRes.isInvalid())
   2558       return StmtError();
   2559     E = ExprRes.get();
   2560     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
   2561       return StmtError();
   2562   }
   2563 
   2564   ExprResult ExprRes = ActOnFinishFullExpr(E);
   2565   if (ExprRes.isInvalid())
   2566     return StmtError();
   2567   E = ExprRes.get();
   2568 
   2569   getCurFunction()->setHasIndirectGoto();
   2570 
   2571   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
   2572 }
   2573 
   2574 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
   2575                                      const Scope &DestScope) {
   2576   if (!S.CurrentSEHFinally.empty() &&
   2577       DestScope.Contains(*S.CurrentSEHFinally.back())) {
   2578     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
   2579   }
   2580 }
   2581 
   2582 StmtResult
   2583 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
   2584   Scope *S = CurScope->getContinueParent();
   2585   if (!S) {
   2586     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
   2587     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
   2588   }
   2589   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
   2590 
   2591   return new (Context) ContinueStmt(ContinueLoc);
   2592 }
   2593 
   2594 StmtResult
   2595 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
   2596   Scope *S = CurScope->getBreakParent();
   2597   if (!S) {
   2598     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
   2599     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
   2600   }
   2601   if (S->isOpenMPLoopScope())
   2602     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
   2603                      << "break");
   2604   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
   2605 
   2606   return new (Context) BreakStmt(BreakLoc);
   2607 }
   2608 
   2609 /// \brief Determine whether the given expression is a candidate for
   2610 /// copy elision in either a return statement or a throw expression.
   2611 ///
   2612 /// \param ReturnType If we're determining the copy elision candidate for
   2613 /// a return statement, this is the return type of the function. If we're
   2614 /// determining the copy elision candidate for a throw expression, this will
   2615 /// be a NULL type.
   2616 ///
   2617 /// \param E The expression being returned from the function or block, or
   2618 /// being thrown.
   2619 ///
   2620 /// \param AllowFunctionParameter Whether we allow function parameters to
   2621 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
   2622 /// we re-use this logic to determine whether we should try to move as part of
   2623 /// a return or throw (which does allow function parameters).
   2624 ///
   2625 /// \returns The NRVO candidate variable, if the return statement may use the
   2626 /// NRVO, or NULL if there is no such candidate.
   2627 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
   2628                                        Expr *E,
   2629                                        bool AllowFunctionParameter) {
   2630   if (!getLangOpts().CPlusPlus)
   2631     return nullptr;
   2632 
   2633   // - in a return statement in a function [where] ...
   2634   // ... the expression is the name of a non-volatile automatic object ...
   2635   DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
   2636   if (!DR || DR->refersToEnclosingVariableOrCapture())
   2637     return nullptr;
   2638   VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
   2639   if (!VD)
   2640     return nullptr;
   2641 
   2642   if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
   2643     return VD;
   2644   return nullptr;
   2645 }
   2646 
   2647 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
   2648                                   bool AllowFunctionParameter) {
   2649   QualType VDType = VD->getType();
   2650   // - in a return statement in a function with ...
   2651   // ... a class return type ...
   2652   if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
   2653     if (!ReturnType->isRecordType())
   2654       return false;
   2655     // ... the same cv-unqualified type as the function return type ...
   2656     if (!VDType->isDependentType() &&
   2657         !Context.hasSameUnqualifiedType(ReturnType, VDType))
   2658       return false;
   2659   }
   2660 
   2661   // ...object (other than a function or catch-clause parameter)...
   2662   if (VD->getKind() != Decl::Var &&
   2663       !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
   2664     return false;
   2665   if (VD->isExceptionVariable()) return false;
   2666 
   2667   // ...automatic...
   2668   if (!VD->hasLocalStorage()) return false;
   2669 
   2670   // ...non-volatile...
   2671   if (VD->getType().isVolatileQualified()) return false;
   2672 
   2673   // __block variables can't be allocated in a way that permits NRVO.
   2674   if (VD->hasAttr<BlocksAttr>()) return false;
   2675 
   2676   // Variables with higher required alignment than their type's ABI
   2677   // alignment cannot use NRVO.
   2678   if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
   2679       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
   2680     return false;
   2681 
   2682   return true;
   2683 }
   2684 
   2685 /// \brief Perform the initialization of a potentially-movable value, which
   2686 /// is the result of return value.
   2687 ///
   2688 /// This routine implements C++0x [class.copy]p33, which attempts to treat
   2689 /// returned lvalues as rvalues in certain cases (to prefer move construction),
   2690 /// then falls back to treating them as lvalues if that failed.
   2691 ExprResult
   2692 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
   2693                                       const VarDecl *NRVOCandidate,
   2694                                       QualType ResultType,
   2695                                       Expr *Value,
   2696                                       bool AllowNRVO) {
   2697   // C++0x [class.copy]p33:
   2698   //   When the criteria for elision of a copy operation are met or would
   2699   //   be met save for the fact that the source object is a function
   2700   //   parameter, and the object to be copied is designated by an lvalue,
   2701   //   overload resolution to select the constructor for the copy is first
   2702   //   performed as if the object were designated by an rvalue.
   2703   ExprResult Res = ExprError();
   2704   if (AllowNRVO &&
   2705       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
   2706     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
   2707                               Value->getType(), CK_NoOp, Value, VK_XValue);
   2708 
   2709     Expr *InitExpr = &AsRvalue;
   2710     InitializationKind Kind
   2711       = InitializationKind::CreateCopy(Value->getLocStart(),
   2712                                        Value->getLocStart());
   2713     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
   2714 
   2715     //   [...] If overload resolution fails, or if the type of the first
   2716     //   parameter of the selected constructor is not an rvalue reference
   2717     //   to the object's type (possibly cv-qualified), overload resolution
   2718     //   is performed again, considering the object as an lvalue.
   2719     if (Seq) {
   2720       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
   2721            StepEnd = Seq.step_end();
   2722            Step != StepEnd; ++Step) {
   2723         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
   2724           continue;
   2725 
   2726         CXXConstructorDecl *Constructor
   2727         = cast<CXXConstructorDecl>(Step->Function.Function);
   2728 
   2729         const RValueReferenceType *RRefType
   2730           = Constructor->getParamDecl(0)->getType()
   2731                                                  ->getAs<RValueReferenceType>();
   2732 
   2733         // If we don't meet the criteria, break out now.
   2734         if (!RRefType ||
   2735             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
   2736                             Context.getTypeDeclType(Constructor->getParent())))
   2737           break;
   2738 
   2739         // Promote "AsRvalue" to the heap, since we now need this
   2740         // expression node to persist.
   2741         Value = ImplicitCastExpr::Create(Context, Value->getType(),
   2742                                          CK_NoOp, Value, nullptr, VK_XValue);
   2743 
   2744         // Complete type-checking the initialization of the return type
   2745         // using the constructor we found.
   2746         Res = Seq.Perform(*this, Entity, Kind, Value);
   2747       }
   2748     }
   2749   }
   2750 
   2751   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
   2752   // above, or overload resolution failed. Either way, we need to try
   2753   // (again) now with the return value expression as written.
   2754   if (Res.isInvalid())
   2755     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
   2756 
   2757   return Res;
   2758 }
   2759 
   2760 /// \brief Determine whether the declared return type of the specified function
   2761 /// contains 'auto'.
   2762 static bool hasDeducedReturnType(FunctionDecl *FD) {
   2763   const FunctionProtoType *FPT =
   2764       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
   2765   return FPT->getReturnType()->isUndeducedType();
   2766 }
   2767 
   2768 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
   2769 /// for capturing scopes.
   2770 ///
   2771 StmtResult
   2772 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   2773   // If this is the first return we've seen, infer the return type.
   2774   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
   2775   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
   2776   QualType FnRetType = CurCap->ReturnType;
   2777   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
   2778 
   2779   if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
   2780     // In C++1y, the return type may involve 'auto'.
   2781     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
   2782     FunctionDecl *FD = CurLambda->CallOperator;
   2783     if (CurCap->ReturnType.isNull())
   2784       CurCap->ReturnType = FD->getReturnType();
   2785 
   2786     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
   2787     assert(AT && "lost auto type from lambda return type");
   2788     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
   2789       FD->setInvalidDecl();
   2790       return StmtError();
   2791     }
   2792     CurCap->ReturnType = FnRetType = FD->getReturnType();
   2793   } else if (CurCap->HasImplicitReturnType) {
   2794     // For blocks/lambdas with implicit return types, we check each return
   2795     // statement individually, and deduce the common return type when the block
   2796     // or lambda is completed.
   2797     // FIXME: Fold this into the 'auto' codepath above.
   2798     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
   2799       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
   2800       if (Result.isInvalid())
   2801         return StmtError();
   2802       RetValExp = Result.get();
   2803 
   2804       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
   2805       // when deducing a return type for a lambda-expression (or by extension
   2806       // for a block). These rules differ from the stated C++11 rules only in
   2807       // that they remove top-level cv-qualifiers.
   2808       if (!CurContext->isDependentContext())
   2809         FnRetType = RetValExp->getType().getUnqualifiedType();
   2810       else
   2811         FnRetType = CurCap->ReturnType = Context.DependentTy;
   2812     } else {
   2813       if (RetValExp) {
   2814         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
   2815         // initializer list, because it is not an expression (even
   2816         // though we represent it as one). We still deduce 'void'.
   2817         Diag(ReturnLoc, diag::err_lambda_return_init_list)
   2818           << RetValExp->getSourceRange();
   2819       }
   2820 
   2821       FnRetType = Context.VoidTy;
   2822     }
   2823 
   2824     // Although we'll properly infer the type of the block once it's completed,
   2825     // make sure we provide a return type now for better error recovery.
   2826     if (CurCap->ReturnType.isNull())
   2827       CurCap->ReturnType = FnRetType;
   2828   }
   2829   assert(!FnRetType.isNull());
   2830 
   2831   if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
   2832     if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
   2833       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
   2834       return StmtError();
   2835     }
   2836   } else if (CapturedRegionScopeInfo *CurRegion =
   2837                  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
   2838     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
   2839     return StmtError();
   2840   } else {
   2841     assert(CurLambda && "unknown kind of captured scope");
   2842     if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
   2843             ->getNoReturnAttr()) {
   2844       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
   2845       return StmtError();
   2846     }
   2847   }
   2848 
   2849   // Otherwise, verify that this result type matches the previous one.  We are
   2850   // pickier with blocks than for normal functions because we don't have GCC
   2851   // compatibility to worry about here.
   2852   const VarDecl *NRVOCandidate = nullptr;
   2853   if (FnRetType->isDependentType()) {
   2854     // Delay processing for now.  TODO: there are lots of dependent
   2855     // types we can conclusively prove aren't void.
   2856   } else if (FnRetType->isVoidType()) {
   2857     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
   2858         !(getLangOpts().CPlusPlus &&
   2859           (RetValExp->isTypeDependent() ||
   2860            RetValExp->getType()->isVoidType()))) {
   2861       if (!getLangOpts().CPlusPlus &&
   2862           RetValExp->getType()->isVoidType())
   2863         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
   2864       else {
   2865         Diag(ReturnLoc, diag::err_return_block_has_expr);
   2866         RetValExp = nullptr;
   2867       }
   2868     }
   2869   } else if (!RetValExp) {
   2870     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
   2871   } else if (!RetValExp->isTypeDependent()) {
   2872     // we have a non-void block with an expression, continue checking
   2873 
   2874     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   2875     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   2876     // function return.
   2877 
   2878     // In C++ the return statement is handled via a copy initialization.
   2879     // the C version of which boils down to CheckSingleAssignmentConstraints.
   2880     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   2881     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   2882                                                                    FnRetType,
   2883                                                       NRVOCandidate != nullptr);
   2884     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   2885                                                      FnRetType, RetValExp);
   2886     if (Res.isInvalid()) {
   2887       // FIXME: Cleanup temporaries here, anyway?
   2888       return StmtError();
   2889     }
   2890     RetValExp = Res.get();
   2891     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
   2892   } else {
   2893     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   2894   }
   2895 
   2896   if (RetValExp) {
   2897     ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   2898     if (ER.isInvalid())
   2899       return StmtError();
   2900     RetValExp = ER.get();
   2901   }
   2902   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
   2903                                                 NRVOCandidate);
   2904 
   2905   // If we need to check for the named return value optimization,
   2906   // or if we need to infer the return type,
   2907   // save the return statement in our scope for later processing.
   2908   if (CurCap->HasImplicitReturnType || NRVOCandidate)
   2909     FunctionScopes.back()->Returns.push_back(Result);
   2910 
   2911   return Result;
   2912 }
   2913 
   2914 namespace {
   2915 /// \brief Marks all typedefs in all local classes in a type referenced.
   2916 ///
   2917 /// In a function like
   2918 /// auto f() {
   2919 ///   struct S { typedef int a; };
   2920 ///   return S();
   2921 /// }
   2922 ///
   2923 /// the local type escapes and could be referenced in some TUs but not in
   2924 /// others. Pretend that all local typedefs are always referenced, to not warn
   2925 /// on this. This isn't necessary if f has internal linkage, or the typedef
   2926 /// is private.
   2927 class LocalTypedefNameReferencer
   2928     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
   2929 public:
   2930   LocalTypedefNameReferencer(Sema &S) : S(S) {}
   2931   bool VisitRecordType(const RecordType *RT);
   2932 private:
   2933   Sema &S;
   2934 };
   2935 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
   2936   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
   2937   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
   2938       R->isDependentType())
   2939     return true;
   2940   for (auto *TmpD : R->decls())
   2941     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
   2942       if (T->getAccess() != AS_private || R->hasFriends())
   2943         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
   2944   return true;
   2945 }
   2946 }
   2947 
   2948 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
   2949   TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
   2950   while (auto ATL = TL.getAs<AttributedTypeLoc>())
   2951     TL = ATL.getModifiedLoc().IgnoreParens();
   2952   return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
   2953 }
   2954 
   2955 /// Deduce the return type for a function from a returned expression, per
   2956 /// C++1y [dcl.spec.auto]p6.
   2957 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
   2958                                             SourceLocation ReturnLoc,
   2959                                             Expr *&RetExpr,
   2960                                             AutoType *AT) {
   2961   TypeLoc OrigResultType = getReturnTypeLoc(FD);
   2962   QualType Deduced;
   2963 
   2964   if (RetExpr && isa<InitListExpr>(RetExpr)) {
   2965     //  If the deduction is for a return statement and the initializer is
   2966     //  a braced-init-list, the program is ill-formed.
   2967     Diag(RetExpr->getExprLoc(),
   2968          getCurLambda() ? diag::err_lambda_return_init_list
   2969                         : diag::err_auto_fn_return_init_list)
   2970         << RetExpr->getSourceRange();
   2971     return true;
   2972   }
   2973 
   2974   if (FD->isDependentContext()) {
   2975     // C++1y [dcl.spec.auto]p12:
   2976     //   Return type deduction [...] occurs when the definition is
   2977     //   instantiated even if the function body contains a return
   2978     //   statement with a non-type-dependent operand.
   2979     assert(AT->isDeduced() && "should have deduced to dependent type");
   2980     return false;
   2981   } else if (RetExpr) {
   2982     //  If the deduction is for a return statement and the initializer is
   2983     //  a braced-init-list, the program is ill-formed.
   2984     if (isa<InitListExpr>(RetExpr)) {
   2985       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list);
   2986       return true;
   2987     }
   2988 
   2989     //  Otherwise, [...] deduce a value for U using the rules of template
   2990     //  argument deduction.
   2991     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
   2992 
   2993     if (DAR == DAR_Failed && !FD->isInvalidDecl())
   2994       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
   2995         << OrigResultType.getType() << RetExpr->getType();
   2996 
   2997     if (DAR != DAR_Succeeded)
   2998       return true;
   2999 
   3000     // If a local type is part of the returned type, mark its fields as
   3001     // referenced.
   3002     LocalTypedefNameReferencer Referencer(*this);
   3003     Referencer.TraverseType(RetExpr->getType());
   3004   } else {
   3005     //  In the case of a return with no operand, the initializer is considered
   3006     //  to be void().
   3007     //
   3008     // Deduction here can only succeed if the return type is exactly 'cv auto'
   3009     // or 'decltype(auto)', so just check for that case directly.
   3010     if (!OrigResultType.getType()->getAs<AutoType>()) {
   3011       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
   3012         << OrigResultType.getType();
   3013       return true;
   3014     }
   3015     // We always deduce U = void in this case.
   3016     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
   3017     if (Deduced.isNull())
   3018       return true;
   3019   }
   3020 
   3021   //  If a function with a declared return type that contains a placeholder type
   3022   //  has multiple return statements, the return type is deduced for each return
   3023   //  statement. [...] if the type deduced is not the same in each deduction,
   3024   //  the program is ill-formed.
   3025   if (AT->isDeduced() && !FD->isInvalidDecl()) {
   3026     AutoType *NewAT = Deduced->getContainedAutoType();
   3027     if (!FD->isDependentContext() &&
   3028         !Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
   3029       const LambdaScopeInfo *LambdaSI = getCurLambda();
   3030       if (LambdaSI && LambdaSI->HasImplicitReturnType) {
   3031         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
   3032           << NewAT->getDeducedType() << AT->getDeducedType()
   3033           << true /*IsLambda*/;
   3034       } else {
   3035         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
   3036           << (AT->isDecltypeAuto() ? 1 : 0)
   3037           << NewAT->getDeducedType() << AT->getDeducedType();
   3038       }
   3039       return true;
   3040     }
   3041   } else if (!FD->isInvalidDecl()) {
   3042     // Update all declarations of the function to have the deduced return type.
   3043     Context.adjustDeducedFunctionResultType(FD, Deduced);
   3044   }
   3045 
   3046   return false;
   3047 }
   3048 
   3049 StmtResult
   3050 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
   3051                       Scope *CurScope) {
   3052   StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
   3053   if (R.isInvalid()) {
   3054     return R;
   3055   }
   3056 
   3057   if (VarDecl *VD =
   3058       const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
   3059     CurScope->addNRVOCandidate(VD);
   3060   } else {
   3061     CurScope->setNoNRVO();
   3062   }
   3063 
   3064   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
   3065 
   3066   return R;
   3067 }
   3068 
   3069 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   3070   // Check for unexpanded parameter packs.
   3071   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
   3072     return StmtError();
   3073 
   3074   if (isa<CapturingScopeInfo>(getCurFunction()))
   3075     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
   3076 
   3077   QualType FnRetType;
   3078   QualType RelatedRetType;
   3079   const AttrVec *Attrs = nullptr;
   3080   bool isObjCMethod = false;
   3081 
   3082   if (const FunctionDecl *FD = getCurFunctionDecl()) {
   3083     FnRetType = FD->getReturnType();
   3084     if (FD->hasAttrs())
   3085       Attrs = &FD->getAttrs();
   3086     if (FD->isNoReturn())
   3087       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
   3088         << FD->getDeclName();
   3089   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
   3090     FnRetType = MD->getReturnType();
   3091     isObjCMethod = true;
   3092     if (MD->hasAttrs())
   3093       Attrs = &MD->getAttrs();
   3094     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
   3095       // In the implementation of a method with a related return type, the
   3096       // type used to type-check the validity of return statements within the
   3097       // method body is a pointer to the type of the class being implemented.
   3098       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
   3099       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
   3100     }
   3101   } else // If we don't have a function/method context, bail.
   3102     return StmtError();
   3103 
   3104   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
   3105   // deduction.
   3106   if (getLangOpts().CPlusPlus14) {
   3107     if (AutoType *AT = FnRetType->getContainedAutoType()) {
   3108       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
   3109       if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
   3110         FD->setInvalidDecl();
   3111         return StmtError();
   3112       } else {
   3113         FnRetType = FD->getReturnType();
   3114       }
   3115     }
   3116   }
   3117 
   3118   bool HasDependentReturnType = FnRetType->isDependentType();
   3119 
   3120   ReturnStmt *Result = nullptr;
   3121   if (FnRetType->isVoidType()) {
   3122     if (RetValExp) {
   3123       if (isa<InitListExpr>(RetValExp)) {
   3124         // We simply never allow init lists as the return value of void
   3125         // functions. This is compatible because this was never allowed before,
   3126         // so there's no legacy code to deal with.
   3127         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3128         int FunctionKind = 0;
   3129         if (isa<ObjCMethodDecl>(CurDecl))
   3130           FunctionKind = 1;
   3131         else if (isa<CXXConstructorDecl>(CurDecl))
   3132           FunctionKind = 2;
   3133         else if (isa<CXXDestructorDecl>(CurDecl))
   3134           FunctionKind = 3;
   3135 
   3136         Diag(ReturnLoc, diag::err_return_init_list)
   3137           << CurDecl->getDeclName() << FunctionKind
   3138           << RetValExp->getSourceRange();
   3139 
   3140         // Drop the expression.
   3141         RetValExp = nullptr;
   3142       } else if (!RetValExp->isTypeDependent()) {
   3143         // C99 6.8.6.4p1 (ext_ since GCC warns)
   3144         unsigned D = diag::ext_return_has_expr;
   3145         if (RetValExp->getType()->isVoidType()) {
   3146           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3147           if (isa<CXXConstructorDecl>(CurDecl) ||
   3148               isa<CXXDestructorDecl>(CurDecl))
   3149             D = diag::err_ctor_dtor_returns_void;
   3150           else
   3151             D = diag::ext_return_has_void_expr;
   3152         }
   3153         else {
   3154           ExprResult Result = RetValExp;
   3155           Result = IgnoredValueConversions(Result.get());
   3156           if (Result.isInvalid())
   3157             return StmtError();
   3158           RetValExp = Result.get();
   3159           RetValExp = ImpCastExprToType(RetValExp,
   3160                                         Context.VoidTy, CK_ToVoid).get();
   3161         }
   3162         // return of void in constructor/destructor is illegal in C++.
   3163         if (D == diag::err_ctor_dtor_returns_void) {
   3164           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3165           Diag(ReturnLoc, D)
   3166             << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
   3167             << RetValExp->getSourceRange();
   3168         }
   3169         // return (some void expression); is legal in C++.
   3170         else if (D != diag::ext_return_has_void_expr ||
   3171             !getLangOpts().CPlusPlus) {
   3172           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   3173 
   3174           int FunctionKind = 0;
   3175           if (isa<ObjCMethodDecl>(CurDecl))
   3176             FunctionKind = 1;
   3177           else if (isa<CXXConstructorDecl>(CurDecl))
   3178             FunctionKind = 2;
   3179           else if (isa<CXXDestructorDecl>(CurDecl))
   3180             FunctionKind = 3;
   3181 
   3182           Diag(ReturnLoc, D)
   3183             << CurDecl->getDeclName() << FunctionKind
   3184             << RetValExp->getSourceRange();
   3185         }
   3186       }
   3187 
   3188       if (RetValExp) {
   3189         ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   3190         if (ER.isInvalid())
   3191           return StmtError();
   3192         RetValExp = ER.get();
   3193       }
   3194     }
   3195 
   3196     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
   3197   } else if (!RetValExp && !HasDependentReturnType) {
   3198     FunctionDecl *FD = getCurFunctionDecl();
   3199 
   3200     unsigned DiagID;
   3201     if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
   3202       // C++11 [stmt.return]p2
   3203       DiagID = diag::err_constexpr_return_missing_expr;
   3204       FD->setInvalidDecl();
   3205     } else if (getLangOpts().C99) {
   3206       // C99 6.8.6.4p1 (ext_ since GCC warns)
   3207       DiagID = diag::ext_return_missing_expr;
   3208     } else {
   3209       // C90 6.6.6.4p4
   3210       DiagID = diag::warn_return_missing_expr;
   3211     }
   3212 
   3213     if (FD)
   3214       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
   3215     else
   3216       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
   3217 
   3218     Result = new (Context) ReturnStmt(ReturnLoc);
   3219   } else {
   3220     assert(RetValExp || HasDependentReturnType);
   3221     const VarDecl *NRVOCandidate = nullptr;
   3222 
   3223     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
   3224 
   3225     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   3226     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   3227     // function return.
   3228 
   3229     // In C++ the return statement is handled via a copy initialization,
   3230     // the C version of which boils down to CheckSingleAssignmentConstraints.
   3231     if (RetValExp)
   3232       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   3233     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
   3234       // we have a non-void function with an expression, continue checking
   3235       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   3236                                                                      RetType,
   3237                                                       NRVOCandidate != nullptr);
   3238       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   3239                                                        RetType, RetValExp);
   3240       if (Res.isInvalid()) {
   3241         // FIXME: Clean up temporaries here anyway?
   3242         return StmtError();
   3243       }
   3244       RetValExp = Res.getAs<Expr>();
   3245 
   3246       // If we have a related result type, we need to implicitly
   3247       // convert back to the formal result type.  We can't pretend to
   3248       // initialize the result again --- we might end double-retaining
   3249       // --- so instead we initialize a notional temporary.
   3250       if (!RelatedRetType.isNull()) {
   3251         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
   3252                                                             FnRetType);
   3253         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
   3254         if (Res.isInvalid()) {
   3255           // FIXME: Clean up temporaries here anyway?
   3256           return StmtError();
   3257         }
   3258         RetValExp = Res.getAs<Expr>();
   3259       }
   3260 
   3261       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
   3262                          getCurFunctionDecl());
   3263     }
   3264 
   3265     if (RetValExp) {
   3266       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
   3267       if (ER.isInvalid())
   3268         return StmtError();
   3269       RetValExp = ER.get();
   3270     }
   3271     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
   3272   }
   3273 
   3274   // If we need to check for the named return value optimization, save the
   3275   // return statement in our scope for later processing.
   3276   if (Result->getNRVOCandidate())
   3277     FunctionScopes.back()->Returns.push_back(Result);
   3278 
   3279   return Result;
   3280 }
   3281 
   3282 StmtResult
   3283 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
   3284                            SourceLocation RParen, Decl *Parm,
   3285                            Stmt *Body) {
   3286   VarDecl *Var = cast_or_null<VarDecl>(Parm);
   3287   if (Var && Var->isInvalidDecl())
   3288     return StmtError();
   3289 
   3290   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
   3291 }
   3292 
   3293 StmtResult
   3294 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
   3295   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
   3296 }
   3297 
   3298 StmtResult
   3299 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
   3300                          MultiStmtArg CatchStmts, Stmt *Finally) {
   3301   if (!getLangOpts().ObjCExceptions)
   3302     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
   3303 
   3304   getCurFunction()->setHasBranchProtectedScope();
   3305   unsigned NumCatchStmts = CatchStmts.size();
   3306   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
   3307                                NumCatchStmts, Finally);
   3308 }
   3309 
   3310 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
   3311   if (Throw) {
   3312     ExprResult Result = DefaultLvalueConversion(Throw);
   3313     if (Result.isInvalid())
   3314       return StmtError();
   3315 
   3316     Result = ActOnFinishFullExpr(Result.get());
   3317     if (Result.isInvalid())
   3318       return StmtError();
   3319     Throw = Result.get();
   3320 
   3321     QualType ThrowType = Throw->getType();
   3322     // Make sure the expression type is an ObjC pointer or "void *".
   3323     if (!ThrowType->isDependentType() &&
   3324         !ThrowType->isObjCObjectPointerType()) {
   3325       const PointerType *PT = ThrowType->getAs<PointerType>();
   3326       if (!PT || !PT->getPointeeType()->isVoidType())
   3327         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
   3328                          << Throw->getType() << Throw->getSourceRange());
   3329     }
   3330   }
   3331 
   3332   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
   3333 }
   3334 
   3335 StmtResult
   3336 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
   3337                            Scope *CurScope) {
   3338   if (!getLangOpts().ObjCExceptions)
   3339     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
   3340 
   3341   if (!Throw) {
   3342     // @throw without an expression designates a rethrow (which must occur
   3343     // in the context of an @catch clause).
   3344     Scope *AtCatchParent = CurScope;
   3345     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
   3346       AtCatchParent = AtCatchParent->getParent();
   3347     if (!AtCatchParent)
   3348       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
   3349   }
   3350   return BuildObjCAtThrowStmt(AtLoc, Throw);
   3351 }
   3352 
   3353 ExprResult
   3354 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
   3355   ExprResult result = DefaultLvalueConversion(operand);
   3356   if (result.isInvalid())
   3357     return ExprError();
   3358   operand = result.get();
   3359 
   3360   // Make sure the expression type is an ObjC pointer or "void *".
   3361   QualType type = operand->getType();
   3362   if (!type->isDependentType() &&
   3363       !type->isObjCObjectPointerType()) {
   3364     const PointerType *pointerType = type->getAs<PointerType>();
   3365     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
   3366       if (getLangOpts().CPlusPlus) {
   3367         if (RequireCompleteType(atLoc, type,
   3368                                 diag::err_incomplete_receiver_type))
   3369           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3370                    << type << operand->getSourceRange();
   3371 
   3372         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
   3373         if (!result.isUsable())
   3374           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3375                    << type << operand->getSourceRange();
   3376 
   3377         operand = result.get();
   3378       } else {
   3379           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   3380                    << type << operand->getSourceRange();
   3381       }
   3382     }
   3383   }
   3384 
   3385   // The operand to @synchronized is a full-expression.
   3386   return ActOnFinishFullExpr(operand);
   3387 }
   3388 
   3389 StmtResult
   3390 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
   3391                                   Stmt *SyncBody) {
   3392   // We can't jump into or indirect-jump out of a @synchronized block.
   3393   getCurFunction()->setHasBranchProtectedScope();
   3394   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
   3395 }
   3396 
   3397 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
   3398 /// and creates a proper catch handler from them.
   3399 StmtResult
   3400 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
   3401                          Stmt *HandlerBlock) {
   3402   // There's nothing to test that ActOnExceptionDecl didn't already test.
   3403   return new (Context)
   3404       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
   3405 }
   3406 
   3407 StmtResult
   3408 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
   3409   getCurFunction()->setHasBranchProtectedScope();
   3410   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
   3411 }
   3412 
   3413 class CatchHandlerType {
   3414   QualType QT;
   3415   unsigned IsPointer : 1;
   3416 
   3417   // This is a special constructor to be used only with DenseMapInfo's
   3418   // getEmptyKey() and getTombstoneKey() functions.
   3419   friend struct llvm::DenseMapInfo<CatchHandlerType>;
   3420   enum Unique { ForDenseMap };
   3421   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
   3422 
   3423 public:
   3424   /// Used when creating a CatchHandlerType from a handler type; will determine
   3425   /// whether the type is a pointer or reference and will strip off the the top
   3426   /// level pointer and cv-qualifiers.
   3427   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
   3428     if (QT->isPointerType())
   3429       IsPointer = true;
   3430 
   3431     if (IsPointer || QT->isReferenceType())
   3432       QT = QT->getPointeeType();
   3433     QT = QT.getUnqualifiedType();
   3434   }
   3435 
   3436   /// Used when creating a CatchHandlerType from a base class type; pretends the
   3437   /// type passed in had the pointer qualifier, does not need to get an
   3438   /// unqualified type.
   3439   CatchHandlerType(QualType QT, bool IsPointer)
   3440       : QT(QT), IsPointer(IsPointer) {}
   3441 
   3442   QualType underlying() const { return QT; }
   3443   bool isPointer() const { return IsPointer; }
   3444 
   3445   friend bool operator==(const CatchHandlerType &LHS,
   3446                          const CatchHandlerType &RHS) {
   3447     // If the pointer qualification does not match, we can return early.
   3448     if (LHS.IsPointer != RHS.IsPointer)
   3449       return false;
   3450     // Otherwise, check the underlying type without cv-qualifiers.
   3451     return LHS.QT == RHS.QT;
   3452   }
   3453 };
   3454 
   3455 namespace llvm {
   3456 template <> struct DenseMapInfo<CatchHandlerType> {
   3457   static CatchHandlerType getEmptyKey() {
   3458     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
   3459                        CatchHandlerType::ForDenseMap);
   3460   }
   3461 
   3462   static CatchHandlerType getTombstoneKey() {
   3463     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
   3464                        CatchHandlerType::ForDenseMap);
   3465   }
   3466 
   3467   static unsigned getHashValue(const CatchHandlerType &Base) {
   3468     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
   3469   }
   3470 
   3471   static bool isEqual(const CatchHandlerType &LHS,
   3472                       const CatchHandlerType &RHS) {
   3473     return LHS == RHS;
   3474   }
   3475 };
   3476 
   3477 // It's OK to treat CatchHandlerType as a POD type.
   3478 template <> struct isPodLike<CatchHandlerType> {
   3479   static const bool value = true;
   3480 };
   3481 }
   3482 
   3483 namespace {
   3484 class CatchTypePublicBases {
   3485   ASTContext &Ctx;
   3486   const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
   3487   const bool CheckAgainstPointer;
   3488 
   3489   CXXCatchStmt *FoundHandler;
   3490   CanQualType FoundHandlerType;
   3491 
   3492 public:
   3493   CatchTypePublicBases(
   3494       ASTContext &Ctx,
   3495       const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
   3496       : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
   3497         FoundHandler(nullptr) {}
   3498 
   3499   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
   3500   CanQualType getFoundHandlerType() const { return FoundHandlerType; }
   3501 
   3502   static bool FindPublicBasesOfType(const CXXBaseSpecifier *S, CXXBasePath &,
   3503                                     void *User) {
   3504     auto &PBOT = *reinterpret_cast<CatchTypePublicBases *>(User);
   3505     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
   3506       CatchHandlerType Check(S->getType(), PBOT.CheckAgainstPointer);
   3507       auto M = PBOT.TypesToCheck;
   3508       auto I = M.find(Check);
   3509       if (I != M.end()) {
   3510         PBOT.FoundHandler = I->second;
   3511         PBOT.FoundHandlerType = PBOT.Ctx.getCanonicalType(S->getType());
   3512         return true;
   3513       }
   3514     }
   3515     return false;
   3516   }
   3517 };
   3518 }
   3519 
   3520 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
   3521 /// handlers and creates a try statement from them.
   3522 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
   3523                                   ArrayRef<Stmt *> Handlers) {
   3524   // Don't report an error if 'try' is used in system headers.
   3525   if (!getLangOpts().CXXExceptions &&
   3526       !getSourceManager().isInSystemHeader(TryLoc))
   3527     Diag(TryLoc, diag::err_exceptions_disabled) << "try";
   3528 
   3529   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
   3530     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
   3531 
   3532   sema::FunctionScopeInfo *FSI = getCurFunction();
   3533 
   3534   // C++ try is incompatible with SEH __try.
   3535   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
   3536     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
   3537     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
   3538   }
   3539 
   3540   const unsigned NumHandlers = Handlers.size();
   3541   assert(!Handlers.empty() &&
   3542          "The parser shouldn't call this if there are no handlers.");
   3543 
   3544   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
   3545   for (unsigned i = 0; i < NumHandlers; ++i) {
   3546     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
   3547 
   3548     // Diagnose when the handler is a catch-all handler, but it isn't the last
   3549     // handler for the try block. [except.handle]p5. Also, skip exception
   3550     // declarations that are invalid, since we can't usefully report on them.
   3551     if (!H->getExceptionDecl()) {
   3552       if (i < NumHandlers - 1)
   3553         return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
   3554       continue;
   3555     } else if (H->getExceptionDecl()->isInvalidDecl())
   3556       continue;
   3557 
   3558     // Walk the type hierarchy to diagnose when this type has already been
   3559     // handled (duplication), or cannot be handled (derivation inversion). We
   3560     // ignore top-level cv-qualifiers, per [except.handle]p3
   3561     CatchHandlerType HandlerCHT =
   3562         (QualType)Context.getCanonicalType(H->getCaughtType());
   3563 
   3564     // We can ignore whether the type is a reference or a pointer; we need the
   3565     // underlying declaration type in order to get at the underlying record
   3566     // decl, if there is one.
   3567     QualType Underlying = HandlerCHT.underlying();
   3568     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
   3569       if (!RD->hasDefinition())
   3570         continue;
   3571       // Check that none of the public, unambiguous base classes are in the
   3572       // map ([except.handle]p1). Give the base classes the same pointer
   3573       // qualification as the original type we are basing off of. This allows
   3574       // comparison against the handler type using the same top-level pointer
   3575       // as the original type.
   3576       CXXBasePaths Paths;
   3577       Paths.setOrigin(RD);
   3578       CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
   3579       if (RD->lookupInBases(CatchTypePublicBases::FindPublicBasesOfType, &CTPB,
   3580                             Paths)) {
   3581         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
   3582         if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
   3583           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
   3584                diag::warn_exception_caught_by_earlier_handler)
   3585               << H->getCaughtType();
   3586           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
   3587                 diag::note_previous_exception_handler)
   3588               << Problem->getCaughtType();
   3589         }
   3590       }
   3591     }
   3592 
   3593     // Add the type the list of ones we have handled; diagnose if we've already
   3594     // handled it.
   3595     auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
   3596     if (!R.second) {
   3597       const CXXCatchStmt *Problem = R.first->second;
   3598       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
   3599            diag::warn_exception_caught_by_earlier_handler)
   3600           << H->getCaughtType();
   3601       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
   3602            diag::note_previous_exception_handler)
   3603           << Problem->getCaughtType();
   3604     }
   3605   }
   3606 
   3607   FSI->setHasCXXTry(TryLoc);
   3608 
   3609   return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
   3610 }
   3611 
   3612 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
   3613                                   Stmt *TryBlock, Stmt *Handler) {
   3614   assert(TryBlock && Handler);
   3615 
   3616   sema::FunctionScopeInfo *FSI = getCurFunction();
   3617 
   3618   // SEH __try is incompatible with C++ try. Borland appears to support this,
   3619   // however.
   3620   if (!getLangOpts().Borland) {
   3621     if (FSI->FirstCXXTryLoc.isValid()) {
   3622       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
   3623       Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
   3624     }
   3625   }
   3626 
   3627   FSI->setHasSEHTry(TryLoc);
   3628 
   3629   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
   3630   // track if they use SEH.
   3631   DeclContext *DC = CurContext;
   3632   while (DC && !DC->isFunctionOrMethod())
   3633     DC = DC->getParent();
   3634   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
   3635   if (FD)
   3636     FD->setUsesSEHTry(true);
   3637   else
   3638     Diag(TryLoc, diag::err_seh_try_outside_functions);
   3639 
   3640   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
   3641 }
   3642 
   3643 StmtResult
   3644 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
   3645                           Expr *FilterExpr,
   3646                           Stmt *Block) {
   3647   assert(FilterExpr && Block);
   3648 
   3649   if(!FilterExpr->getType()->isIntegerType()) {
   3650     return StmtError(Diag(FilterExpr->getExprLoc(),
   3651                      diag::err_filter_expression_integral)
   3652                      << FilterExpr->getType());
   3653   }
   3654 
   3655   return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
   3656 }
   3657 
   3658 void Sema::ActOnStartSEHFinallyBlock() {
   3659   CurrentSEHFinally.push_back(CurScope);
   3660 }
   3661 
   3662 void Sema::ActOnAbortSEHFinallyBlock() {
   3663   CurrentSEHFinally.pop_back();
   3664 }
   3665 
   3666 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
   3667   assert(Block);
   3668   CurrentSEHFinally.pop_back();
   3669   return SEHFinallyStmt::Create(Context, Loc, Block);
   3670 }
   3671 
   3672 StmtResult
   3673 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
   3674   Scope *SEHTryParent = CurScope;
   3675   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
   3676     SEHTryParent = SEHTryParent->getParent();
   3677   if (!SEHTryParent)
   3678     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
   3679   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
   3680 
   3681   return new (Context) SEHLeaveStmt(Loc);
   3682 }
   3683 
   3684 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
   3685                                             bool IsIfExists,
   3686                                             NestedNameSpecifierLoc QualifierLoc,
   3687                                             DeclarationNameInfo NameInfo,
   3688                                             Stmt *Nested)
   3689 {
   3690   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
   3691                                              QualifierLoc, NameInfo,
   3692                                              cast<CompoundStmt>(Nested));
   3693 }
   3694 
   3695 
   3696 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
   3697                                             bool IsIfExists,
   3698                                             CXXScopeSpec &SS,
   3699                                             UnqualifiedId &Name,
   3700                                             Stmt *Nested) {
   3701   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
   3702                                     SS.getWithLocInContext(Context),
   3703                                     GetNameFromUnqualifiedId(Name),
   3704                                     Nested);
   3705 }
   3706 
   3707 RecordDecl*
   3708 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
   3709                                    unsigned NumParams) {
   3710   DeclContext *DC = CurContext;
   3711   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
   3712     DC = DC->getParent();
   3713 
   3714   RecordDecl *RD = nullptr;
   3715   if (getLangOpts().CPlusPlus)
   3716     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
   3717                                /*Id=*/nullptr);
   3718   else
   3719     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
   3720 
   3721   RD->setCapturedRecord();
   3722   DC->addDecl(RD);
   3723   RD->setImplicit();
   3724   RD->startDefinition();
   3725 
   3726   assert(NumParams > 0 && "CapturedStmt requires context parameter");
   3727   CD = CapturedDecl::Create(Context, CurContext, NumParams);
   3728   DC->addDecl(CD);
   3729   return RD;
   3730 }
   3731 
   3732 static void buildCapturedStmtCaptureList(
   3733     SmallVectorImpl<CapturedStmt::Capture> &Captures,
   3734     SmallVectorImpl<Expr *> &CaptureInits,
   3735     ArrayRef<CapturingScopeInfo::Capture> Candidates) {
   3736 
   3737   typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
   3738   for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
   3739 
   3740     if (Cap->isThisCapture()) {
   3741       Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
   3742                                                CapturedStmt::VCK_This));
   3743       CaptureInits.push_back(Cap->getInitExpr());
   3744       continue;
   3745     } else if (Cap->isVLATypeCapture()) {
   3746       Captures.push_back(
   3747           CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
   3748       CaptureInits.push_back(nullptr);
   3749       continue;
   3750     }
   3751 
   3752     assert(Cap->isReferenceCapture() &&
   3753            "non-reference capture not yet implemented");
   3754 
   3755     Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
   3756                                              CapturedStmt::VCK_ByRef,
   3757                                              Cap->getVariable()));
   3758     CaptureInits.push_back(Cap->getInitExpr());
   3759   }
   3760 }
   3761 
   3762 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
   3763                                     CapturedRegionKind Kind,
   3764                                     unsigned NumParams) {
   3765   CapturedDecl *CD = nullptr;
   3766   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
   3767 
   3768   // Build the context parameter
   3769   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
   3770   IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3771   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3772   ImplicitParamDecl *Param
   3773     = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3774   DC->addDecl(Param);
   3775 
   3776   CD->setContextParam(0, Param);
   3777 
   3778   // Enter the capturing scope for this captured region.
   3779   PushCapturedRegionScope(CurScope, CD, RD, Kind);
   3780 
   3781   if (CurScope)
   3782     PushDeclContext(CurScope, CD);
   3783   else
   3784     CurContext = CD;
   3785 
   3786   PushExpressionEvaluationContext(PotentiallyEvaluated);
   3787 }
   3788 
   3789 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
   3790                                     CapturedRegionKind Kind,
   3791                                     ArrayRef<CapturedParamNameType> Params) {
   3792   CapturedDecl *CD = nullptr;
   3793   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
   3794 
   3795   // Build the context parameter
   3796   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
   3797   bool ContextIsFound = false;
   3798   unsigned ParamNum = 0;
   3799   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
   3800                                                  E = Params.end();
   3801        I != E; ++I, ++ParamNum) {
   3802     if (I->second.isNull()) {
   3803       assert(!ContextIsFound &&
   3804              "null type has been found already for '__context' parameter");
   3805       IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3806       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3807       ImplicitParamDecl *Param
   3808         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3809       DC->addDecl(Param);
   3810       CD->setContextParam(ParamNum, Param);
   3811       ContextIsFound = true;
   3812     } else {
   3813       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
   3814       ImplicitParamDecl *Param
   3815         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
   3816       DC->addDecl(Param);
   3817       CD->setParam(ParamNum, Param);
   3818     }
   3819   }
   3820   assert(ContextIsFound && "no null type for '__context' parameter");
   3821   if (!ContextIsFound) {
   3822     // Add __context implicitly if it is not specified.
   3823     IdentifierInfo *ParamName = &Context.Idents.get("__context");
   3824     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
   3825     ImplicitParamDecl *Param =
   3826         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
   3827     DC->addDecl(Param);
   3828     CD->setContextParam(ParamNum, Param);
   3829   }
   3830   // Enter the capturing scope for this captured region.
   3831   PushCapturedRegionScope(CurScope, CD, RD, Kind);
   3832 
   3833   if (CurScope)
   3834     PushDeclContext(CurScope, CD);
   3835   else
   3836     CurContext = CD;
   3837 
   3838   PushExpressionEvaluationContext(PotentiallyEvaluated);
   3839 }
   3840 
   3841 void Sema::ActOnCapturedRegionError() {
   3842   DiscardCleanupsInEvaluationContext();
   3843   PopExpressionEvaluationContext();
   3844 
   3845   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
   3846   RecordDecl *Record = RSI->TheRecordDecl;
   3847   Record->setInvalidDecl();
   3848 
   3849   SmallVector<Decl*, 4> Fields(Record->fields());
   3850   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
   3851               SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
   3852 
   3853   PopDeclContext();
   3854   PopFunctionScopeInfo();
   3855 }
   3856 
   3857 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
   3858   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
   3859 
   3860   SmallVector<CapturedStmt::Capture, 4> Captures;
   3861   SmallVector<Expr *, 4> CaptureInits;
   3862   buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
   3863 
   3864   CapturedDecl *CD = RSI->TheCapturedDecl;
   3865   RecordDecl *RD = RSI->TheRecordDecl;
   3866 
   3867   CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
   3868                                            RSI->CapRegionKind, Captures,
   3869                                            CaptureInits, CD, RD);
   3870 
   3871   CD->setBody(Res->getCapturedStmt());
   3872   RD->completeDefinition();
   3873 
   3874   DiscardCleanupsInEvaluationContext();
   3875   PopExpressionEvaluationContext();
   3876 
   3877   PopDeclContext();
   3878   PopFunctionScopeInfo();
   3879 
   3880   return Res;
   3881 }
   3882