Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #include "llvm/Transforms/Scalar.h"
     41 #include "llvm/ADT/DepthFirstIterator.h"
     42 #include "llvm/ADT/SetOperations.h"
     43 #include "llvm/ADT/SetVector.h"
     44 #include "llvm/ADT/SmallVector.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/Analysis/AliasAnalysis.h"
     47 #include "llvm/Analysis/AssumptionCache.h"
     48 #include "llvm/Analysis/DependenceAnalysis.h"
     49 #include "llvm/Analysis/InstructionSimplify.h"
     50 #include "llvm/Analysis/LoopInfo.h"
     51 #include "llvm/Analysis/ScalarEvolution.h"
     52 #include "llvm/IR/CFG.h"
     53 #include "llvm/IR/Constants.h"
     54 #include "llvm/IR/DataLayout.h"
     55 #include "llvm/IR/Dominators.h"
     56 #include "llvm/IR/Function.h"
     57 #include "llvm/IR/Instructions.h"
     58 #include "llvm/IR/IntrinsicInst.h"
     59 #include "llvm/IR/LLVMContext.h"
     60 #include "llvm/IR/Module.h"
     61 #include "llvm/IR/Type.h"
     62 #include "llvm/Support/Debug.h"
     63 #include "llvm/Support/raw_ostream.h"
     64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     65 #include "llvm/Transforms/Utils/Local.h"
     66 #include "llvm/Transforms/Utils/LoopUtils.h"
     67 using namespace llvm;
     68 
     69 #define DEBUG_TYPE "loop-simplify"
     70 
     71 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     72 STATISTIC(NumNested  , "Number of nested loops split out");
     73 
     74 // If the block isn't already, move the new block to right after some 'outside
     75 // block' block.  This prevents the preheader from being placed inside the loop
     76 // body, e.g. when the loop hasn't been rotated.
     77 static void placeSplitBlockCarefully(BasicBlock *NewBB,
     78                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
     79                                      Loop *L) {
     80   // Check to see if NewBB is already well placed.
     81   Function::iterator BBI = NewBB; --BBI;
     82   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     83     if (&*BBI == SplitPreds[i])
     84       return;
     85   }
     86 
     87   // If it isn't already after an outside block, move it after one.  This is
     88   // always good as it makes the uncond branch from the outside block into a
     89   // fall-through.
     90 
     91   // Figure out *which* outside block to put this after.  Prefer an outside
     92   // block that neighbors a BB actually in the loop.
     93   BasicBlock *FoundBB = nullptr;
     94   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     95     Function::iterator BBI = SplitPreds[i];
     96     if (++BBI != NewBB->getParent()->end() &&
     97         L->contains(BBI)) {
     98       FoundBB = SplitPreds[i];
     99       break;
    100     }
    101   }
    102 
    103   // If our heuristic for a *good* bb to place this after doesn't find
    104   // anything, just pick something.  It's likely better than leaving it within
    105   // the loop.
    106   if (!FoundBB)
    107     FoundBB = SplitPreds[0];
    108   NewBB->moveAfter(FoundBB);
    109 }
    110 
    111 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    112 /// preheader, this method is called to insert one.  This method has two phases:
    113 /// preheader insertion and analysis updating.
    114 ///
    115 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
    116   BasicBlock *Header = L->getHeader();
    117 
    118   // Get analyses that we try to update.
    119   auto *AA = PP->getAnalysisIfAvailable<AliasAnalysis>();
    120   auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    121   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    122   auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>();
    123   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
    124   bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
    125 
    126   // Compute the set of predecessors of the loop that are not in the loop.
    127   SmallVector<BasicBlock*, 8> OutsideBlocks;
    128   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    129        PI != PE; ++PI) {
    130     BasicBlock *P = *PI;
    131     if (!L->contains(P)) {         // Coming in from outside the loop?
    132       // If the loop is branched to from an indirect branch, we won't
    133       // be able to fully transform the loop, because it prohibits
    134       // edge splitting.
    135       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    136 
    137       // Keep track of it.
    138       OutsideBlocks.push_back(P);
    139     }
    140   }
    141 
    142   // Split out the loop pre-header.
    143   BasicBlock *PreheaderBB;
    144   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
    145                                        AA, DT, LI, PreserveLCSSA);
    146 
    147   PreheaderBB->getTerminator()->setDebugLoc(
    148                                       Header->getFirstNonPHI()->getDebugLoc());
    149   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    150                << PreheaderBB->getName() << "\n");
    151 
    152   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    153   // code layout too horribly.
    154   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    155 
    156   return PreheaderBB;
    157 }
    158 
    159 /// \brief Ensure that the loop preheader dominates all exit blocks.
    160 ///
    161 /// This method is used to split exit blocks that have predecessors outside of
    162 /// the loop.
    163 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
    164                                         AliasAnalysis *AA, DominatorTree *DT,
    165                                         LoopInfo *LI, Pass *PP) {
    166   SmallVector<BasicBlock*, 8> LoopBlocks;
    167   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    168     BasicBlock *P = *I;
    169     if (L->contains(P)) {
    170       // Don't do this if the loop is exited via an indirect branch.
    171       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    172 
    173       LoopBlocks.push_back(P);
    174     }
    175   }
    176 
    177   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    178   BasicBlock *NewExitBB = nullptr;
    179 
    180   bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
    181 
    182   NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", AA, DT,
    183                                      LI, PreserveLCSSA);
    184 
    185   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    186                << NewExitBB->getName() << "\n");
    187   return NewExitBB;
    188 }
    189 
    190 /// Add the specified block, and all of its predecessors, to the specified set,
    191 /// if it's not already in there.  Stop predecessor traversal when we reach
    192 /// StopBlock.
    193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    194                                   std::set<BasicBlock*> &Blocks) {
    195   SmallVector<BasicBlock *, 8> Worklist;
    196   Worklist.push_back(InputBB);
    197   do {
    198     BasicBlock *BB = Worklist.pop_back_val();
    199     if (Blocks.insert(BB).second && BB != StopBlock)
    200       // If BB is not already processed and it is not a stop block then
    201       // insert its predecessor in the work list
    202       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    203         BasicBlock *WBB = *I;
    204         Worklist.push_back(WBB);
    205       }
    206   } while (!Worklist.empty());
    207 }
    208 
    209 /// \brief The first part of loop-nestification is to find a PHI node that tells
    210 /// us how to partition the loops.
    211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
    212                                         DominatorTree *DT,
    213                                         AssumptionCache *AC) {
    214   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    215   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    216     PHINode *PN = cast<PHINode>(I);
    217     ++I;
    218     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
    219       // This is a degenerate PHI already, don't modify it!
    220       PN->replaceAllUsesWith(V);
    221       if (AA) AA->deleteValue(PN);
    222       PN->eraseFromParent();
    223       continue;
    224     }
    225 
    226     // Scan this PHI node looking for a use of the PHI node by itself.
    227     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    228       if (PN->getIncomingValue(i) == PN &&
    229           L->contains(PN->getIncomingBlock(i)))
    230         // We found something tasty to remove.
    231         return PN;
    232   }
    233   return nullptr;
    234 }
    235 
    236 /// \brief If this loop has multiple backedges, try to pull one of them out into
    237 /// a nested loop.
    238 ///
    239 /// This is important for code that looks like
    240 /// this:
    241 ///
    242 ///  Loop:
    243 ///     ...
    244 ///     br cond, Loop, Next
    245 ///     ...
    246 ///     br cond2, Loop, Out
    247 ///
    248 /// To identify this common case, we look at the PHI nodes in the header of the
    249 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    250 /// that change in the "outer" loop, but not in the "inner" loop.
    251 ///
    252 /// If we are able to separate out a loop, return the new outer loop that was
    253 /// created.
    254 ///
    255 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
    256                                 AliasAnalysis *AA, DominatorTree *DT,
    257                                 LoopInfo *LI, ScalarEvolution *SE, Pass *PP,
    258                                 AssumptionCache *AC) {
    259   // Don't try to separate loops without a preheader.
    260   if (!Preheader)
    261     return nullptr;
    262 
    263   // The header is not a landing pad; preheader insertion should ensure this.
    264   assert(!L->getHeader()->isLandingPad() &&
    265          "Can't insert backedge to landing pad");
    266 
    267   PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AC);
    268   if (!PN) return nullptr;  // No known way to partition.
    269 
    270   // Pull out all predecessors that have varying values in the loop.  This
    271   // handles the case when a PHI node has multiple instances of itself as
    272   // arguments.
    273   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    274   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    275     if (PN->getIncomingValue(i) != PN ||
    276         !L->contains(PN->getIncomingBlock(i))) {
    277       // We can't split indirectbr edges.
    278       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    279         return nullptr;
    280       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    281     }
    282   }
    283   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    284 
    285   // If ScalarEvolution is around and knows anything about values in
    286   // this loop, tell it to forget them, because we're about to
    287   // substantially change it.
    288   if (SE)
    289     SE->forgetLoop(L);
    290 
    291   bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
    292 
    293   BasicBlock *Header = L->getHeader();
    294   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
    295                                              AA, DT, LI, PreserveLCSSA);
    296 
    297   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    298   // code layout too horribly.
    299   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    300 
    301   // Create the new outer loop.
    302   Loop *NewOuter = new Loop();
    303 
    304   // Change the parent loop to use the outer loop as its child now.
    305   if (Loop *Parent = L->getParentLoop())
    306     Parent->replaceChildLoopWith(L, NewOuter);
    307   else
    308     LI->changeTopLevelLoop(L, NewOuter);
    309 
    310   // L is now a subloop of our outer loop.
    311   NewOuter->addChildLoop(L);
    312 
    313   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    314        I != E; ++I)
    315     NewOuter->addBlockEntry(*I);
    316 
    317   // Now reset the header in L, which had been moved by
    318   // SplitBlockPredecessors for the outer loop.
    319   L->moveToHeader(Header);
    320 
    321   // Determine which blocks should stay in L and which should be moved out to
    322   // the Outer loop now.
    323   std::set<BasicBlock*> BlocksInL;
    324   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    325     BasicBlock *P = *PI;
    326     if (DT->dominates(Header, P))
    327       addBlockAndPredsToSet(P, Header, BlocksInL);
    328   }
    329 
    330   // Scan all of the loop children of L, moving them to OuterLoop if they are
    331   // not part of the inner loop.
    332   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    333   for (size_t I = 0; I != SubLoops.size(); )
    334     if (BlocksInL.count(SubLoops[I]->getHeader()))
    335       ++I;   // Loop remains in L
    336     else
    337       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    338 
    339   // Now that we know which blocks are in L and which need to be moved to
    340   // OuterLoop, move any blocks that need it.
    341   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    342     BasicBlock *BB = L->getBlocks()[i];
    343     if (!BlocksInL.count(BB)) {
    344       // Move this block to the parent, updating the exit blocks sets
    345       L->removeBlockFromLoop(BB);
    346       if ((*LI)[BB] == L)
    347         LI->changeLoopFor(BB, NewOuter);
    348       --i;
    349     }
    350   }
    351 
    352   return NewOuter;
    353 }
    354 
    355 /// \brief This method is called when the specified loop has more than one
    356 /// backedge in it.
    357 ///
    358 /// If this occurs, revector all of these backedges to target a new basic block
    359 /// and have that block branch to the loop header.  This ensures that loops
    360 /// have exactly one backedge.
    361 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
    362                                              AliasAnalysis *AA,
    363                                              DominatorTree *DT, LoopInfo *LI) {
    364   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    365 
    366   // Get information about the loop
    367   BasicBlock *Header = L->getHeader();
    368   Function *F = Header->getParent();
    369 
    370   // Unique backedge insertion currently depends on having a preheader.
    371   if (!Preheader)
    372     return nullptr;
    373 
    374   // The header is not a landing pad; preheader insertion should ensure this.
    375   assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
    376 
    377   // Figure out which basic blocks contain back-edges to the loop header.
    378   std::vector<BasicBlock*> BackedgeBlocks;
    379   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    380     BasicBlock *P = *I;
    381 
    382     // Indirectbr edges cannot be split, so we must fail if we find one.
    383     if (isa<IndirectBrInst>(P->getTerminator()))
    384       return nullptr;
    385 
    386     if (P != Preheader) BackedgeBlocks.push_back(P);
    387   }
    388 
    389   // Create and insert the new backedge block...
    390   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    391                                            Header->getName()+".backedge", F);
    392   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    393 
    394   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    395                << BEBlock->getName() << "\n");
    396 
    397   // Move the new backedge block to right after the last backedge block.
    398   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
    399   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    400 
    401   // Now that the block has been inserted into the function, create PHI nodes in
    402   // the backedge block which correspond to any PHI nodes in the header block.
    403   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    404     PHINode *PN = cast<PHINode>(I);
    405     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    406                                      PN->getName()+".be", BETerminator);
    407     if (AA) AA->copyValue(PN, NewPN);
    408 
    409     // Loop over the PHI node, moving all entries except the one for the
    410     // preheader over to the new PHI node.
    411     unsigned PreheaderIdx = ~0U;
    412     bool HasUniqueIncomingValue = true;
    413     Value *UniqueValue = nullptr;
    414     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    415       BasicBlock *IBB = PN->getIncomingBlock(i);
    416       Value *IV = PN->getIncomingValue(i);
    417       if (IBB == Preheader) {
    418         PreheaderIdx = i;
    419       } else {
    420         NewPN->addIncoming(IV, IBB);
    421         if (HasUniqueIncomingValue) {
    422           if (!UniqueValue)
    423             UniqueValue = IV;
    424           else if (UniqueValue != IV)
    425             HasUniqueIncomingValue = false;
    426         }
    427       }
    428     }
    429 
    430     // Delete all of the incoming values from the old PN except the preheader's
    431     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    432     if (PreheaderIdx != 0) {
    433       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    434       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    435     }
    436     // Nuke all entries except the zero'th.
    437     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    438       PN->removeIncomingValue(e-i, false);
    439 
    440     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    441     PN->addIncoming(NewPN, BEBlock);
    442 
    443     // As an optimization, if all incoming values in the new PhiNode (which is a
    444     // subset of the incoming values of the old PHI node) have the same value,
    445     // eliminate the PHI Node.
    446     if (HasUniqueIncomingValue) {
    447       NewPN->replaceAllUsesWith(UniqueValue);
    448       if (AA) AA->deleteValue(NewPN);
    449       BEBlock->getInstList().erase(NewPN);
    450     }
    451   }
    452 
    453   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    454   // backedge blocks to just to the BEBlock instead of the header.
    455   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    456     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    457     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    458       if (TI->getSuccessor(Op) == Header)
    459         TI->setSuccessor(Op, BEBlock);
    460   }
    461 
    462   //===--- Update all analyses which we must preserve now -----------------===//
    463 
    464   // Update Loop Information - we know that this block is now in the current
    465   // loop and all parent loops.
    466   L->addBasicBlockToLoop(BEBlock, *LI);
    467 
    468   // Update dominator information
    469   DT->splitBlock(BEBlock);
    470 
    471   return BEBlock;
    472 }
    473 
    474 /// \brief Simplify one loop and queue further loops for simplification.
    475 ///
    476 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw
    477 /// Pass pointer. The Pass pointer is used by numerous utilities to update
    478 /// specific analyses. Rather than a pass it would be much cleaner and more
    479 /// explicit if they accepted the analysis directly and then updated it.
    480 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
    481                             AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
    482                             ScalarEvolution *SE, Pass *PP,
    483                             AssumptionCache *AC) {
    484   bool Changed = false;
    485 ReprocessLoop:
    486 
    487   // Check to see that no blocks (other than the header) in this loop have
    488   // predecessors that are not in the loop.  This is not valid for natural
    489   // loops, but can occur if the blocks are unreachable.  Since they are
    490   // unreachable we can just shamelessly delete those CFG edges!
    491   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    492        BB != E; ++BB) {
    493     if (*BB == L->getHeader()) continue;
    494 
    495     SmallPtrSet<BasicBlock*, 4> BadPreds;
    496     for (pred_iterator PI = pred_begin(*BB),
    497          PE = pred_end(*BB); PI != PE; ++PI) {
    498       BasicBlock *P = *PI;
    499       if (!L->contains(P))
    500         BadPreds.insert(P);
    501     }
    502 
    503     // Delete each unique out-of-loop (and thus dead) predecessor.
    504     for (BasicBlock *P : BadPreds) {
    505 
    506       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    507                    << P->getName() << "\n");
    508 
    509       // Inform each successor of each dead pred.
    510       for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
    511         (*SI)->removePredecessor(P);
    512       // Zap the dead pred's terminator and replace it with unreachable.
    513       TerminatorInst *TI = P->getTerminator();
    514        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
    515       P->getTerminator()->eraseFromParent();
    516       new UnreachableInst(P->getContext(), P);
    517       Changed = true;
    518     }
    519   }
    520 
    521   // If there are exiting blocks with branches on undef, resolve the undef in
    522   // the direction which will exit the loop. This will help simplify loop
    523   // trip count computations.
    524   SmallVector<BasicBlock*, 8> ExitingBlocks;
    525   L->getExitingBlocks(ExitingBlocks);
    526   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
    527        E = ExitingBlocks.end(); I != E; ++I)
    528     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
    529       if (BI->isConditional()) {
    530         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    531 
    532           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    533                        << (*I)->getName() << "\n");
    534 
    535           BI->setCondition(ConstantInt::get(Cond->getType(),
    536                                             !L->contains(BI->getSuccessor(0))));
    537 
    538           // This may make the loop analyzable, force SCEV recomputation.
    539           if (SE)
    540             SE->forgetLoop(L);
    541 
    542           Changed = true;
    543         }
    544       }
    545 
    546   // Does the loop already have a preheader?  If so, don't insert one.
    547   BasicBlock *Preheader = L->getLoopPreheader();
    548   if (!Preheader) {
    549     Preheader = InsertPreheaderForLoop(L, PP);
    550     if (Preheader) {
    551       ++NumInserted;
    552       Changed = true;
    553     }
    554   }
    555 
    556   // Next, check to make sure that all exit nodes of the loop only have
    557   // predecessors that are inside of the loop.  This check guarantees that the
    558   // loop preheader/header will dominate the exit blocks.  If the exit block has
    559   // predecessors from outside of the loop, split the edge now.
    560   SmallVector<BasicBlock*, 8> ExitBlocks;
    561   L->getExitBlocks(ExitBlocks);
    562 
    563   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    564                                                ExitBlocks.end());
    565   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
    566          E = ExitBlockSet.end(); I != E; ++I) {
    567     BasicBlock *ExitBlock = *I;
    568     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    569          PI != PE; ++PI)
    570       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    571       // allowed.
    572       if (!L->contains(*PI)) {
    573         if (rewriteLoopExitBlock(L, ExitBlock, AA, DT, LI, PP)) {
    574           ++NumInserted;
    575           Changed = true;
    576         }
    577         break;
    578       }
    579   }
    580 
    581   // If the header has more than two predecessors at this point (from the
    582   // preheader and from multiple backedges), we must adjust the loop.
    583   BasicBlock *LoopLatch = L->getLoopLatch();
    584   if (!LoopLatch) {
    585     // If this is really a nested loop, rip it out into a child loop.  Don't do
    586     // this for loops with a giant number of backedges, just factor them into a
    587     // common backedge instead.
    588     if (L->getNumBackEdges() < 8) {
    589       if (Loop *OuterL =
    590               separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP, AC)) {
    591         ++NumNested;
    592         // Enqueue the outer loop as it should be processed next in our
    593         // depth-first nest walk.
    594         Worklist.push_back(OuterL);
    595 
    596         // This is a big restructuring change, reprocess the whole loop.
    597         Changed = true;
    598         // GCC doesn't tail recursion eliminate this.
    599         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
    600         goto ReprocessLoop;
    601       }
    602     }
    603 
    604     // If we either couldn't, or didn't want to, identify nesting of the loops,
    605     // insert a new block that all backedges target, then make it jump to the
    606     // loop header.
    607     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
    608     if (LoopLatch) {
    609       ++NumInserted;
    610       Changed = true;
    611     }
    612   }
    613 
    614   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    615 
    616   // Scan over the PHI nodes in the loop header.  Since they now have only two
    617   // incoming values (the loop is canonicalized), we may have simplified the PHI
    618   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    619   PHINode *PN;
    620   for (BasicBlock::iterator I = L->getHeader()->begin();
    621        (PN = dyn_cast<PHINode>(I++)); )
    622     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
    623       if (AA) AA->deleteValue(PN);
    624       if (SE) SE->forgetValue(PN);
    625       PN->replaceAllUsesWith(V);
    626       PN->eraseFromParent();
    627     }
    628 
    629   // If this loop has multiple exits and the exits all go to the same
    630   // block, attempt to merge the exits. This helps several passes, such
    631   // as LoopRotation, which do not support loops with multiple exits.
    632   // SimplifyCFG also does this (and this code uses the same utility
    633   // function), however this code is loop-aware, where SimplifyCFG is
    634   // not. That gives it the advantage of being able to hoist
    635   // loop-invariant instructions out of the way to open up more
    636   // opportunities, and the disadvantage of having the responsibility
    637   // to preserve dominator information.
    638   bool UniqueExit = true;
    639   if (!ExitBlocks.empty())
    640     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    641       if (ExitBlocks[i] != ExitBlocks[0]) {
    642         UniqueExit = false;
    643         break;
    644       }
    645   if (UniqueExit) {
    646     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    647       BasicBlock *ExitingBlock = ExitingBlocks[i];
    648       if (!ExitingBlock->getSinglePredecessor()) continue;
    649       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    650       if (!BI || !BI->isConditional()) continue;
    651       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    652       if (!CI || CI->getParent() != ExitingBlock) continue;
    653 
    654       // Attempt to hoist out all instructions except for the
    655       // comparison and the branch.
    656       bool AllInvariant = true;
    657       bool AnyInvariant = false;
    658       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    659         Instruction *Inst = I++;
    660         // Skip debug info intrinsics.
    661         if (isa<DbgInfoIntrinsic>(Inst))
    662           continue;
    663         if (Inst == CI)
    664           continue;
    665         if (!L->makeLoopInvariant(Inst, AnyInvariant,
    666                                   Preheader ? Preheader->getTerminator()
    667                                             : nullptr)) {
    668           AllInvariant = false;
    669           break;
    670         }
    671       }
    672       if (AnyInvariant) {
    673         Changed = true;
    674         // The loop disposition of all SCEV expressions that depend on any
    675         // hoisted values have also changed.
    676         if (SE)
    677           SE->forgetLoopDispositions(L);
    678       }
    679       if (!AllInvariant) continue;
    680 
    681       // The block has now been cleared of all instructions except for
    682       // a comparison and a conditional branch. SimplifyCFG may be able
    683       // to fold it now.
    684       if (!FoldBranchToCommonDest(BI))
    685         continue;
    686 
    687       // Success. The block is now dead, so remove it from the loop,
    688       // update the dominator tree and delete it.
    689       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    690                    << ExitingBlock->getName() << "\n");
    691 
    692       // Notify ScalarEvolution before deleting this block. Currently assume the
    693       // parent loop doesn't change (spliting edges doesn't count). If blocks,
    694       // CFG edges, or other values in the parent loop change, then we need call
    695       // to forgetLoop() for the parent instead.
    696       if (SE)
    697         SE->forgetLoop(L);
    698 
    699       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    700       Changed = true;
    701       LI->removeBlock(ExitingBlock);
    702 
    703       DomTreeNode *Node = DT->getNode(ExitingBlock);
    704       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    705         Node->getChildren();
    706       while (!Children.empty()) {
    707         DomTreeNode *Child = Children.front();
    708         DT->changeImmediateDominator(Child, Node->getIDom());
    709       }
    710       DT->eraseNode(ExitingBlock);
    711 
    712       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
    713       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
    714       ExitingBlock->eraseFromParent();
    715     }
    716   }
    717 
    718   return Changed;
    719 }
    720 
    721 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
    722                         AliasAnalysis *AA, ScalarEvolution *SE,
    723                         AssumptionCache *AC) {
    724   bool Changed = false;
    725 
    726   // Worklist maintains our depth-first queue of loops in this nest to process.
    727   SmallVector<Loop *, 4> Worklist;
    728   Worklist.push_back(L);
    729 
    730   // Walk the worklist from front to back, pushing newly found sub loops onto
    731   // the back. This will let us process loops from back to front in depth-first
    732   // order. We can use this simple process because loops form a tree.
    733   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    734     Loop *L2 = Worklist[Idx];
    735     Worklist.append(L2->begin(), L2->end());
    736   }
    737 
    738   while (!Worklist.empty())
    739     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
    740                                SE, PP, AC);
    741 
    742   return Changed;
    743 }
    744 
    745 namespace {
    746   struct LoopSimplify : public FunctionPass {
    747     static char ID; // Pass identification, replacement for typeid
    748     LoopSimplify() : FunctionPass(ID) {
    749       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
    750     }
    751 
    752     // AA - If we have an alias analysis object to update, this is it, otherwise
    753     // this is null.
    754     AliasAnalysis *AA;
    755     DominatorTree *DT;
    756     LoopInfo *LI;
    757     ScalarEvolution *SE;
    758     AssumptionCache *AC;
    759 
    760     bool runOnFunction(Function &F) override;
    761 
    762     void getAnalysisUsage(AnalysisUsage &AU) const override {
    763       AU.addRequired<AssumptionCacheTracker>();
    764 
    765       // We need loop information to identify the loops...
    766       AU.addRequired<DominatorTreeWrapperPass>();
    767       AU.addPreserved<DominatorTreeWrapperPass>();
    768 
    769       AU.addRequired<LoopInfoWrapperPass>();
    770       AU.addPreserved<LoopInfoWrapperPass>();
    771 
    772       AU.addPreserved<AliasAnalysis>();
    773       AU.addPreserved<ScalarEvolution>();
    774       AU.addPreserved<DependenceAnalysis>();
    775       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
    776     }
    777 
    778     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
    779     void verifyAnalysis() const override;
    780   };
    781 }
    782 
    783 char LoopSimplify::ID = 0;
    784 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    785                 "Canonicalize natural loops", false, false)
    786 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    787 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    788 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    789 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    790                 "Canonicalize natural loops", false, false)
    791 
    792 // Publicly exposed interface to pass...
    793 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    794 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    795 
    796 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
    797 /// it in any convenient order) inserting preheaders...
    798 ///
    799 bool LoopSimplify::runOnFunction(Function &F) {
    800   bool Changed = false;
    801   AA = getAnalysisIfAvailable<AliasAnalysis>();
    802   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    803   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    804   SE = getAnalysisIfAvailable<ScalarEvolution>();
    805   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    806 
    807   // Simplify each loop nest in the function.
    808   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    809     Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, AC);
    810 
    811   return Changed;
    812 }
    813 
    814 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
    815 // below.
    816 #if 0
    817 static void verifyLoop(Loop *L) {
    818   // Verify subloops.
    819   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    820     verifyLoop(*I);
    821 
    822   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    823   // with the introduction of indirectbr, there are now cases where it's
    824   // not possible to transform a loop as necessary. We can at least check
    825   // that there is an indirectbr near any time there's trouble.
    826 
    827   // Indirectbr can interfere with preheader and unique backedge insertion.
    828   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    829     bool HasIndBrPred = false;
    830     for (pred_iterator PI = pred_begin(L->getHeader()),
    831          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    832       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    833         HasIndBrPred = true;
    834         break;
    835       }
    836     assert(HasIndBrPred &&
    837            "LoopSimplify has no excuse for missing loop header info!");
    838     (void)HasIndBrPred;
    839   }
    840 
    841   // Indirectbr can interfere with exit block canonicalization.
    842   if (!L->hasDedicatedExits()) {
    843     bool HasIndBrExiting = false;
    844     SmallVector<BasicBlock*, 8> ExitingBlocks;
    845     L->getExitingBlocks(ExitingBlocks);
    846     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    847       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    848         HasIndBrExiting = true;
    849         break;
    850       }
    851     }
    852 
    853     assert(HasIndBrExiting &&
    854            "LoopSimplify has no excuse for missing exit block info!");
    855     (void)HasIndBrExiting;
    856   }
    857 }
    858 #endif
    859 
    860 void LoopSimplify::verifyAnalysis() const {
    861   // FIXME: This routine is being called mid-way through the loop pass manager
    862   // as loop passes destroy this analysis. That's actually fine, but we have no
    863   // way of expressing that here. Once all of the passes that destroy this are
    864   // hoisted out of the loop pass manager we can add back verification here.
    865 #if 0
    866   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    867     verifyLoop(*I);
    868 #endif
    869 }
    870