Home | History | Annotate | Download | only in Utils
      1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CloneFunctionInto interface, which is used as the
     11 // low-level function cloner.  This is used by the CloneFunction and function
     12 // inliner to do the dirty work of copying the body of a function around.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/Cloning.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Analysis/ConstantFolding.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/IR/CFG.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DebugInfo.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/GlobalVariable.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Metadata.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include "llvm/Transforms/Utils/ValueMapper.h"
     34 #include <map>
     35 using namespace llvm;
     36 
     37 /// See comments in Cloning.h.
     38 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
     39                                   ValueToValueMapTy &VMap,
     40                                   const Twine &NameSuffix, Function *F,
     41                                   ClonedCodeInfo *CodeInfo) {
     42   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
     43   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
     44 
     45   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
     46 
     47   // Loop over all instructions, and copy them over.
     48   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
     49        II != IE; ++II) {
     50     Instruction *NewInst = II->clone();
     51     if (II->hasName())
     52       NewInst->setName(II->getName()+NameSuffix);
     53     NewBB->getInstList().push_back(NewInst);
     54     VMap[II] = NewInst;                // Add instruction map to value.
     55 
     56     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
     57     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     58       if (isa<ConstantInt>(AI->getArraySize()))
     59         hasStaticAllocas = true;
     60       else
     61         hasDynamicAllocas = true;
     62     }
     63   }
     64 
     65   if (CodeInfo) {
     66     CodeInfo->ContainsCalls          |= hasCalls;
     67     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
     68     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
     69                                         BB != &BB->getParent()->getEntryBlock();
     70   }
     71   return NewBB;
     72 }
     73 
     74 // Clone OldFunc into NewFunc, transforming the old arguments into references to
     75 // VMap values.
     76 //
     77 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
     78                              ValueToValueMapTy &VMap,
     79                              bool ModuleLevelChanges,
     80                              SmallVectorImpl<ReturnInst*> &Returns,
     81                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
     82                              ValueMapTypeRemapper *TypeMapper,
     83                              ValueMaterializer *Materializer) {
     84   assert(NameSuffix && "NameSuffix cannot be null!");
     85 
     86 #ifndef NDEBUG
     87   for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     88        E = OldFunc->arg_end(); I != E; ++I)
     89     assert(VMap.count(I) && "No mapping from source argument specified!");
     90 #endif
     91 
     92   // Copy all attributes other than those stored in the AttributeSet.  We need
     93   // to remap the parameter indices of the AttributeSet.
     94   AttributeSet NewAttrs = NewFunc->getAttributes();
     95   NewFunc->copyAttributesFrom(OldFunc);
     96   NewFunc->setAttributes(NewAttrs);
     97 
     98   AttributeSet OldAttrs = OldFunc->getAttributes();
     99   // Clone any argument attributes that are present in the VMap.
    100   for (const Argument &OldArg : OldFunc->args())
    101     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
    102       AttributeSet attrs =
    103           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
    104       if (attrs.getNumSlots() > 0)
    105         NewArg->addAttr(attrs);
    106     }
    107 
    108   NewFunc->setAttributes(
    109       NewFunc->getAttributes()
    110           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
    111                          OldAttrs.getRetAttributes())
    112           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
    113                          OldAttrs.getFnAttributes()));
    114 
    115   // Loop over all of the basic blocks in the function, cloning them as
    116   // appropriate.  Note that we save BE this way in order to handle cloning of
    117   // recursive functions into themselves.
    118   //
    119   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    120        BI != BE; ++BI) {
    121     const BasicBlock &BB = *BI;
    122 
    123     // Create a new basic block and copy instructions into it!
    124     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    125 
    126     // Add basic block mapping.
    127     VMap[&BB] = CBB;
    128 
    129     // It is only legal to clone a function if a block address within that
    130     // function is never referenced outside of the function.  Given that, we
    131     // want to map block addresses from the old function to block addresses in
    132     // the clone. (This is different from the generic ValueMapper
    133     // implementation, which generates an invalid blockaddress when
    134     // cloning a function.)
    135     if (BB.hasAddressTaken()) {
    136       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    137                                               const_cast<BasicBlock*>(&BB));
    138       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
    139     }
    140 
    141     // Note return instructions for the caller.
    142     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
    143       Returns.push_back(RI);
    144   }
    145 
    146   // Loop over all of the instructions in the function, fixing up operand
    147   // references as we go.  This uses VMap to do all the hard work.
    148   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
    149          BE = NewFunc->end(); BB != BE; ++BB)
    150     // Loop over all instructions, fixing each one as we find it...
    151     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
    152       RemapInstruction(II, VMap,
    153                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    154                        TypeMapper, Materializer);
    155 }
    156 
    157 // Find the MDNode which corresponds to the DISubprogram data that described F.
    158 static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
    159   for (DISubprogram Subprogram : Finder.subprograms()) {
    160     if (Subprogram->describes(F))
    161       return Subprogram;
    162   }
    163   return nullptr;
    164 }
    165 
    166 // Add an operand to an existing MDNode. The new operand will be added at the
    167 // back of the operand list.
    168 static void AddOperand(DICompileUnit CU, MDSubprogramArray SPs, Metadata *NewSP) {
    169   SmallVector<Metadata *, 16> NewSPs;
    170   NewSPs.reserve(SPs.size() + 1);
    171   for (auto *SP : SPs)
    172     NewSPs.push_back(SP);
    173   NewSPs.push_back(NewSP);
    174   CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
    175 }
    176 
    177 // Clone the module-level debug info associated with OldFunc. The cloned data
    178 // will point to NewFunc instead.
    179 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
    180                             ValueToValueMapTy &VMap) {
    181   DebugInfoFinder Finder;
    182   Finder.processModule(*OldFunc->getParent());
    183 
    184   const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
    185   if (!OldSubprogramMDNode) return;
    186 
    187   // Ensure that OldFunc appears in the map.
    188   // (if it's already there it must point to NewFunc anyway)
    189   VMap[OldFunc] = NewFunc;
    190   DISubprogram NewSubprogram =
    191       cast<MDSubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
    192 
    193   for (DICompileUnit CU : Finder.compile_units()) {
    194     auto Subprograms = CU->getSubprograms();
    195     // If the compile unit's function list contains the old function, it should
    196     // also contain the new one.
    197     for (auto *SP : Subprograms) {
    198       if (SP == OldSubprogramMDNode) {
    199         AddOperand(CU, Subprograms, NewSubprogram);
    200         break;
    201       }
    202     }
    203   }
    204 }
    205 
    206 /// Return a copy of the specified function, but without
    207 /// embedding the function into another module.  Also, any references specified
    208 /// in the VMap are changed to refer to their mapped value instead of the
    209 /// original one.  If any of the arguments to the function are in the VMap,
    210 /// the arguments are deleted from the resultant function.  The VMap is
    211 /// updated to include mappings from all of the instructions and basicblocks in
    212 /// the function from their old to new values.
    213 ///
    214 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
    215                               bool ModuleLevelChanges,
    216                               ClonedCodeInfo *CodeInfo) {
    217   std::vector<Type*> ArgTypes;
    218 
    219   // The user might be deleting arguments to the function by specifying them in
    220   // the VMap.  If so, we need to not add the arguments to the arg ty vector
    221   //
    222   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    223        I != E; ++I)
    224     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
    225       ArgTypes.push_back(I->getType());
    226 
    227   // Create a new function type...
    228   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
    229                                     ArgTypes, F->getFunctionType()->isVarArg());
    230 
    231   // Create the new function...
    232   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
    233 
    234   // Loop over the arguments, copying the names of the mapped arguments over...
    235   Function::arg_iterator DestI = NewF->arg_begin();
    236   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    237        I != E; ++I)
    238     if (VMap.count(I) == 0) {   // Is this argument preserved?
    239       DestI->setName(I->getName()); // Copy the name over...
    240       VMap[I] = DestI++;        // Add mapping to VMap
    241     }
    242 
    243   if (ModuleLevelChanges)
    244     CloneDebugInfoMetadata(NewF, F, VMap);
    245 
    246   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
    247   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
    248   return NewF;
    249 }
    250 
    251 
    252 
    253 namespace {
    254   /// This is a private class used to implement CloneAndPruneFunctionInto.
    255   struct PruningFunctionCloner {
    256     Function *NewFunc;
    257     const Function *OldFunc;
    258     ValueToValueMapTy &VMap;
    259     bool ModuleLevelChanges;
    260     const char *NameSuffix;
    261     ClonedCodeInfo *CodeInfo;
    262     CloningDirector *Director;
    263     ValueMapTypeRemapper *TypeMapper;
    264     ValueMaterializer *Materializer;
    265 
    266   public:
    267     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
    268                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
    269                           const char *nameSuffix, ClonedCodeInfo *codeInfo,
    270                           CloningDirector *Director)
    271         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
    272           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
    273           CodeInfo(codeInfo), Director(Director) {
    274       // These are optional components.  The Director may return null.
    275       if (Director) {
    276         TypeMapper = Director->getTypeRemapper();
    277         Materializer = Director->getValueMaterializer();
    278       } else {
    279         TypeMapper = nullptr;
    280         Materializer = nullptr;
    281       }
    282     }
    283 
    284     /// The specified block is found to be reachable, clone it and
    285     /// anything that it can reach.
    286     void CloneBlock(const BasicBlock *BB,
    287                     BasicBlock::const_iterator StartingInst,
    288                     std::vector<const BasicBlock*> &ToClone);
    289   };
    290 }
    291 
    292 /// The specified block is found to be reachable, clone it and
    293 /// anything that it can reach.
    294 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
    295                                        BasicBlock::const_iterator StartingInst,
    296                                        std::vector<const BasicBlock*> &ToClone){
    297   WeakVH &BBEntry = VMap[BB];
    298 
    299   // Have we already cloned this block?
    300   if (BBEntry) return;
    301 
    302   // Nope, clone it now.
    303   BasicBlock *NewBB;
    304   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
    305   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
    306 
    307   // It is only legal to clone a function if a block address within that
    308   // function is never referenced outside of the function.  Given that, we
    309   // want to map block addresses from the old function to block addresses in
    310   // the clone. (This is different from the generic ValueMapper
    311   // implementation, which generates an invalid blockaddress when
    312   // cloning a function.)
    313   //
    314   // Note that we don't need to fix the mapping for unreachable blocks;
    315   // the default mapping there is safe.
    316   if (BB->hasAddressTaken()) {
    317     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    318                                             const_cast<BasicBlock*>(BB));
    319     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
    320   }
    321 
    322   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
    323 
    324   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
    325   // loop doesn't include the terminator.
    326   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
    327        II != IE; ++II) {
    328     // If the "Director" remaps the instruction, don't clone it.
    329     if (Director) {
    330       CloningDirector::CloningAction Action
    331                               = Director->handleInstruction(VMap, II, NewBB);
    332       // If the cloning director says stop, we want to stop everything, not
    333       // just break out of the loop (which would cause the terminator to be
    334       // cloned).  The cloning director is responsible for inserting a proper
    335       // terminator into the new basic block in this case.
    336       if (Action == CloningDirector::StopCloningBB)
    337         return;
    338       // If the cloning director says skip, continue to the next instruction.
    339       // In this case, the cloning director is responsible for mapping the
    340       // skipped instruction to some value that is defined in the new
    341       // basic block.
    342       if (Action == CloningDirector::SkipInstruction)
    343         continue;
    344     }
    345 
    346     Instruction *NewInst = II->clone();
    347 
    348     // Eagerly remap operands to the newly cloned instruction, except for PHI
    349     // nodes for which we defer processing until we update the CFG.
    350     if (!isa<PHINode>(NewInst)) {
    351       RemapInstruction(NewInst, VMap,
    352                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    353                        TypeMapper, Materializer);
    354 
    355       // If we can simplify this instruction to some other value, simply add
    356       // a mapping to that value rather than inserting a new instruction into
    357       // the basic block.
    358       if (Value *V =
    359               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
    360         // On the off-chance that this simplifies to an instruction in the old
    361         // function, map it back into the new function.
    362         if (Value *MappedV = VMap.lookup(V))
    363           V = MappedV;
    364 
    365         VMap[II] = V;
    366         delete NewInst;
    367         continue;
    368       }
    369     }
    370 
    371     if (II->hasName())
    372       NewInst->setName(II->getName()+NameSuffix);
    373     VMap[II] = NewInst;                // Add instruction map to value.
    374     NewBB->getInstList().push_back(NewInst);
    375     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
    376     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    377       if (isa<ConstantInt>(AI->getArraySize()))
    378         hasStaticAllocas = true;
    379       else
    380         hasDynamicAllocas = true;
    381     }
    382   }
    383 
    384   // Finally, clone over the terminator.
    385   const TerminatorInst *OldTI = BB->getTerminator();
    386   bool TerminatorDone = false;
    387   if (Director) {
    388     CloningDirector::CloningAction Action
    389                            = Director->handleInstruction(VMap, OldTI, NewBB);
    390     // If the cloning director says stop, we want to stop everything, not
    391     // just break out of the loop (which would cause the terminator to be
    392     // cloned).  The cloning director is responsible for inserting a proper
    393     // terminator into the new basic block in this case.
    394     if (Action == CloningDirector::StopCloningBB)
    395       return;
    396     if (Action == CloningDirector::CloneSuccessors) {
    397       // If the director says to skip with a terminate instruction, we still
    398       // need to clone this block's successors.
    399       const TerminatorInst *TI = NewBB->getTerminator();
    400       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    401         ToClone.push_back(TI->getSuccessor(i));
    402       return;
    403     }
    404     assert(Action != CloningDirector::SkipInstruction &&
    405            "SkipInstruction is not valid for terminators.");
    406   }
    407   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    408     if (BI->isConditional()) {
    409       // If the condition was a known constant in the callee...
    410       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    411       // Or is a known constant in the caller...
    412       if (!Cond) {
    413         Value *V = VMap[BI->getCondition()];
    414         Cond = dyn_cast_or_null<ConstantInt>(V);
    415       }
    416 
    417       // Constant fold to uncond branch!
    418       if (Cond) {
    419         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
    420         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    421         ToClone.push_back(Dest);
    422         TerminatorDone = true;
    423       }
    424     }
    425   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    426     // If switching on a value known constant in the caller.
    427     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    428     if (!Cond) { // Or known constant after constant prop in the callee...
    429       Value *V = VMap[SI->getCondition()];
    430       Cond = dyn_cast_or_null<ConstantInt>(V);
    431     }
    432     if (Cond) {     // Constant fold to uncond branch!
    433       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
    434       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
    435       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    436       ToClone.push_back(Dest);
    437       TerminatorDone = true;
    438     }
    439   }
    440 
    441   if (!TerminatorDone) {
    442     Instruction *NewInst = OldTI->clone();
    443     if (OldTI->hasName())
    444       NewInst->setName(OldTI->getName()+NameSuffix);
    445     NewBB->getInstList().push_back(NewInst);
    446     VMap[OldTI] = NewInst;             // Add instruction map to value.
    447 
    448     // Recursively clone any reachable successor blocks.
    449     const TerminatorInst *TI = BB->getTerminator();
    450     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    451       ToClone.push_back(TI->getSuccessor(i));
    452   }
    453 
    454   if (CodeInfo) {
    455     CodeInfo->ContainsCalls          |= hasCalls;
    456     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    457     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
    458       BB != &BB->getParent()->front();
    459   }
    460 }
    461 
    462 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
    463 /// entire function. Instead it starts at an instruction provided by the caller
    464 /// and copies (and prunes) only the code reachable from that instruction.
    465 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
    466                                      const Instruction *StartingInst,
    467                                      ValueToValueMapTy &VMap,
    468                                      bool ModuleLevelChanges,
    469                                      SmallVectorImpl<ReturnInst *> &Returns,
    470                                      const char *NameSuffix,
    471                                      ClonedCodeInfo *CodeInfo,
    472                                      CloningDirector *Director) {
    473   assert(NameSuffix && "NameSuffix cannot be null!");
    474 
    475   ValueMapTypeRemapper *TypeMapper = nullptr;
    476   ValueMaterializer *Materializer = nullptr;
    477 
    478   if (Director) {
    479     TypeMapper = Director->getTypeRemapper();
    480     Materializer = Director->getValueMaterializer();
    481   }
    482 
    483 #ifndef NDEBUG
    484   // If the cloning starts at the begining of the function, verify that
    485   // the function arguments are mapped.
    486   if (!StartingInst)
    487     for (Function::const_arg_iterator II = OldFunc->arg_begin(),
    488          E = OldFunc->arg_end(); II != E; ++II)
    489       assert(VMap.count(II) && "No mapping from source argument specified!");
    490 #endif
    491 
    492   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
    493                             NameSuffix, CodeInfo, Director);
    494   const BasicBlock *StartingBB;
    495   if (StartingInst)
    496     StartingBB = StartingInst->getParent();
    497   else {
    498     StartingBB = &OldFunc->getEntryBlock();
    499     StartingInst = StartingBB->begin();
    500   }
    501 
    502   // Clone the entry block, and anything recursively reachable from it.
    503   std::vector<const BasicBlock*> CloneWorklist;
    504   PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist);
    505   while (!CloneWorklist.empty()) {
    506     const BasicBlock *BB = CloneWorklist.back();
    507     CloneWorklist.pop_back();
    508     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
    509   }
    510 
    511   // Loop over all of the basic blocks in the old function.  If the block was
    512   // reachable, we have cloned it and the old block is now in the value map:
    513   // insert it into the new function in the right order.  If not, ignore it.
    514   //
    515   // Defer PHI resolution until rest of function is resolved.
    516   SmallVector<const PHINode*, 16> PHIToResolve;
    517   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    518        BI != BE; ++BI) {
    519     Value *V = VMap[BI];
    520     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    521     if (!NewBB) continue;  // Dead block.
    522 
    523     // Add the new block to the new function.
    524     NewFunc->getBasicBlockList().push_back(NewBB);
    525 
    526     // Handle PHI nodes specially, as we have to remove references to dead
    527     // blocks.
    528     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
    529       // PHI nodes may have been remapped to non-PHI nodes by the caller or
    530       // during the cloning process.
    531       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
    532         if (isa<PHINode>(VMap[PN]))
    533           PHIToResolve.push_back(PN);
    534         else
    535           break;
    536       } else {
    537         break;
    538       }
    539     }
    540 
    541     // Finally, remap the terminator instructions, as those can't be remapped
    542     // until all BBs are mapped.
    543     RemapInstruction(NewBB->getTerminator(), VMap,
    544                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    545                      TypeMapper, Materializer);
    546   }
    547 
    548   // Defer PHI resolution until rest of function is resolved, PHI resolution
    549   // requires the CFG to be up-to-date.
    550   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    551     const PHINode *OPN = PHIToResolve[phino];
    552     unsigned NumPreds = OPN->getNumIncomingValues();
    553     const BasicBlock *OldBB = OPN->getParent();
    554     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
    555 
    556     // Map operands for blocks that are live and remove operands for blocks
    557     // that are dead.
    558     for (; phino != PHIToResolve.size() &&
    559          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
    560       OPN = PHIToResolve[phino];
    561       PHINode *PN = cast<PHINode>(VMap[OPN]);
    562       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
    563         Value *V = VMap[PN->getIncomingBlock(pred)];
    564         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
    565           Value *InVal = MapValue(PN->getIncomingValue(pred),
    566                                   VMap,
    567                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    568           assert(InVal && "Unknown input value?");
    569           PN->setIncomingValue(pred, InVal);
    570           PN->setIncomingBlock(pred, MappedBlock);
    571         } else {
    572           PN->removeIncomingValue(pred, false);
    573           --pred, --e;  // Revisit the next entry.
    574         }
    575       }
    576     }
    577 
    578     // The loop above has removed PHI entries for those blocks that are dead
    579     // and has updated others.  However, if a block is live (i.e. copied over)
    580     // but its terminator has been changed to not go to this block, then our
    581     // phi nodes will have invalid entries.  Update the PHI nodes in this
    582     // case.
    583     PHINode *PN = cast<PHINode>(NewBB->begin());
    584     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    585     if (NumPreds != PN->getNumIncomingValues()) {
    586       assert(NumPreds < PN->getNumIncomingValues());
    587       // Count how many times each predecessor comes to this block.
    588       std::map<BasicBlock*, unsigned> PredCount;
    589       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
    590            PI != E; ++PI)
    591         --PredCount[*PI];
    592 
    593       // Figure out how many entries to remove from each PHI.
    594       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    595         ++PredCount[PN->getIncomingBlock(i)];
    596 
    597       // At this point, the excess predecessor entries are positive in the
    598       // map.  Loop over all of the PHIs and remove excess predecessor
    599       // entries.
    600       BasicBlock::iterator I = NewBB->begin();
    601       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
    602         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
    603              E = PredCount.end(); PCI != E; ++PCI) {
    604           BasicBlock *Pred     = PCI->first;
    605           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
    606             PN->removeIncomingValue(Pred, false);
    607         }
    608       }
    609     }
    610 
    611     // If the loops above have made these phi nodes have 0 or 1 operand,
    612     // replace them with undef or the input value.  We must do this for
    613     // correctness, because 0-operand phis are not valid.
    614     PN = cast<PHINode>(NewBB->begin());
    615     if (PN->getNumIncomingValues() == 0) {
    616       BasicBlock::iterator I = NewBB->begin();
    617       BasicBlock::const_iterator OldI = OldBB->begin();
    618       while ((PN = dyn_cast<PHINode>(I++))) {
    619         Value *NV = UndefValue::get(PN->getType());
    620         PN->replaceAllUsesWith(NV);
    621         assert(VMap[OldI] == PN && "VMap mismatch");
    622         VMap[OldI] = NV;
    623         PN->eraseFromParent();
    624         ++OldI;
    625       }
    626     }
    627   }
    628 
    629   // Make a second pass over the PHINodes now that all of them have been
    630   // remapped into the new function, simplifying the PHINode and performing any
    631   // recursive simplifications exposed. This will transparently update the
    632   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
    633   // two PHINodes, the iteration over the old PHIs remains valid, and the
    634   // mapping will just map us to the new node (which may not even be a PHI
    635   // node).
    636   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    637     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
    638       recursivelySimplifyInstruction(PN);
    639 
    640   // Now that the inlined function body has been fully constructed, go through
    641   // and zap unconditional fall-through branches. This happens all the time when
    642   // specializing code: code specialization turns conditional branches into
    643   // uncond branches, and this code folds them.
    644   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]);
    645   Function::iterator I = Begin;
    646   while (I != NewFunc->end()) {
    647     // Check if this block has become dead during inlining or other
    648     // simplifications. Note that the first block will appear dead, as it has
    649     // not yet been wired up properly.
    650     if (I != Begin && (pred_begin(I) == pred_end(I) ||
    651                        I->getSinglePredecessor() == I)) {
    652       BasicBlock *DeadBB = I++;
    653       DeleteDeadBlock(DeadBB);
    654       continue;
    655     }
    656 
    657     // We need to simplify conditional branches and switches with a constant
    658     // operand. We try to prune these out when cloning, but if the
    659     // simplification required looking through PHI nodes, those are only
    660     // available after forming the full basic block. That may leave some here,
    661     // and we still want to prune the dead code as early as possible.
    662     ConstantFoldTerminator(I);
    663 
    664     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    665     if (!BI || BI->isConditional()) { ++I; continue; }
    666 
    667     BasicBlock *Dest = BI->getSuccessor(0);
    668     if (!Dest->getSinglePredecessor()) {
    669       ++I; continue;
    670     }
    671 
    672     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    673     // above should have zapped all of them..
    674     assert(!isa<PHINode>(Dest->begin()));
    675 
    676     // We know all single-entry PHI nodes in the inlined function have been
    677     // removed, so we just need to splice the blocks.
    678     BI->eraseFromParent();
    679 
    680     // Make all PHI nodes that referred to Dest now refer to I as their source.
    681     Dest->replaceAllUsesWith(I);
    682 
    683     // Move all the instructions in the succ to the pred.
    684     I->getInstList().splice(I->end(), Dest->getInstList());
    685 
    686     // Remove the dest block.
    687     Dest->eraseFromParent();
    688 
    689     // Do not increment I, iteratively merge all things this block branches to.
    690   }
    691 
    692   // Make a final pass over the basic blocks from the old function to gather
    693   // any return instructions which survived folding. We have to do this here
    694   // because we can iteratively remove and merge returns above.
    695   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]),
    696                           E = NewFunc->end();
    697        I != E; ++I)
    698     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
    699       Returns.push_back(RI);
    700 }
    701 
    702 
    703 /// This works exactly like CloneFunctionInto,
    704 /// except that it does some simple constant prop and DCE on the fly.  The
    705 /// effect of this is to copy significantly less code in cases where (for
    706 /// example) a function call with constant arguments is inlined, and those
    707 /// constant arguments cause a significant amount of code in the callee to be
    708 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
    709 /// used for things like CloneFunction or CloneModule.
    710 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    711                                      ValueToValueMapTy &VMap,
    712                                      bool ModuleLevelChanges,
    713                                      SmallVectorImpl<ReturnInst*> &Returns,
    714                                      const char *NameSuffix,
    715                                      ClonedCodeInfo *CodeInfo,
    716                                      Instruction *TheCall) {
    717   CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap,
    718                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
    719                             nullptr);
    720 }
    721