Home | History | Annotate | Download | only in Scalar
      1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates n-ary add expressions and eliminates the redundancy
     11 // exposed by the reassociation.
     12 //
     13 // A motivating example:
     14 //
     15 //   void foo(int a, int b) {
     16 //     bar(a + b);
     17 //     bar((a + 2) + b);
     18 //   }
     19 //
     20 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
     21 // the above code to
     22 //
     23 //   int t = a + b;
     24 //   bar(t);
     25 //   bar(t + 2);
     26 //
     27 // However, the Reassociate pass is unable to do that because it processes each
     28 // instruction individually and believes (a + 2) + b is the best form according
     29 // to its rank system.
     30 //
     31 // To address this limitation, NaryReassociate reassociates an expression in a
     32 // form that reuses existing instructions. As a result, NaryReassociate can
     33 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
     34 // (a + b) is computed before.
     35 //
     36 // NaryReassociate works as follows. For every instruction in the form of (a +
     37 // b) + c, it checks whether a + c or b + c is already computed by a dominating
     38 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
     39 // c) + a and removes the redundancy accordingly. To efficiently look up whether
     40 // an expression is computed before, we store each instruction seen and its SCEV
     41 // into an SCEV-to-instruction map.
     42 //
     43 // Although the algorithm pattern-matches only ternary additions, it
     44 // automatically handles many >3-ary expressions by walking through the function
     45 // in the depth-first order. For example, given
     46 //
     47 //   (a + c) + d
     48 //   ((a + b) + c) + d
     49 //
     50 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
     51 // ((a + c) + b) + d into ((a + c) + d) + b.
     52 //
     53 // Finally, the above dominator-based algorithm may need to be run multiple
     54 // iterations before emitting optimal code. One source of this need is that we
     55 // only split an operand when it is used only once. The above algorithm can
     56 // eliminate an instruction and decrease the usage count of its operands. As a
     57 // result, an instruction that previously had multiple uses may become a
     58 // single-use instruction and thus eligible for split consideration. For
     59 // example,
     60 //
     61 //   ac = a + c
     62 //   ab = a + b
     63 //   abc = ab + c
     64 //   ab2 = ab + b
     65 //   ab2c = ab2 + c
     66 //
     67 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
     68 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
     69 // result, ab2 becomes dead and ab will be used only once in the second
     70 // iteration.
     71 //
     72 // Limitations and TODO items:
     73 //
     74 // 1) We only considers n-ary adds for now. This should be extended and
     75 // generalized.
     76 //
     77 // 2) Besides arithmetic operations, similar reassociation can be applied to
     78 // GEPs. For example, if
     79 //   X = &arr[a]
     80 // dominates
     81 //   Y = &arr[a + b]
     82 // we may rewrite Y into X + b.
     83 //
     84 //===----------------------------------------------------------------------===//
     85 
     86 #include "llvm/Analysis/ScalarEvolution.h"
     87 #include "llvm/Analysis/TargetLibraryInfo.h"
     88 #include "llvm/IR/Dominators.h"
     89 #include "llvm/IR/Module.h"
     90 #include "llvm/IR/PatternMatch.h"
     91 #include "llvm/Transforms/Scalar.h"
     92 #include "llvm/Transforms/Utils/Local.h"
     93 using namespace llvm;
     94 using namespace PatternMatch;
     95 
     96 #define DEBUG_TYPE "nary-reassociate"
     97 
     98 namespace {
     99 class NaryReassociate : public FunctionPass {
    100 public:
    101   static char ID;
    102 
    103   NaryReassociate(): FunctionPass(ID) {
    104     initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
    105   }
    106 
    107   bool runOnFunction(Function &F) override;
    108 
    109   void getAnalysisUsage(AnalysisUsage &AU) const override {
    110     AU.addPreserved<DominatorTreeWrapperPass>();
    111     AU.addPreserved<ScalarEvolution>();
    112     AU.addPreserved<TargetLibraryInfoWrapperPass>();
    113     AU.addRequired<DominatorTreeWrapperPass>();
    114     AU.addRequired<ScalarEvolution>();
    115     AU.addRequired<TargetLibraryInfoWrapperPass>();
    116     AU.setPreservesCFG();
    117   }
    118 
    119 private:
    120   // Runs only one iteration of the dominator-based algorithm. See the header
    121   // comments for why we need multiple iterations.
    122   bool doOneIteration(Function &F);
    123   // Reasssociates I to a better form.
    124   Instruction *tryReassociateAdd(Instruction *I);
    125   // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
    126   Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
    127   // Rewrites I to LHS + RHS if LHS is computed already.
    128   Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
    129 
    130   DominatorTree *DT;
    131   ScalarEvolution *SE;
    132   TargetLibraryInfo *TLI;
    133   // A lookup table quickly telling which instructions compute the given SCEV.
    134   // Note that there can be multiple instructions at different locations
    135   // computing to the same SCEV, so we map a SCEV to an instruction list.  For
    136   // example,
    137   //
    138   //   if (p1)
    139   //     foo(a + b);
    140   //   if (p2)
    141   //     bar(a + b);
    142   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
    143 };
    144 } // anonymous namespace
    145 
    146 char NaryReassociate::ID = 0;
    147 INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
    148                       false, false)
    149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    150 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    151 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    152 INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
    153                     false, false)
    154 
    155 FunctionPass *llvm::createNaryReassociatePass() {
    156   return new NaryReassociate();
    157 }
    158 
    159 bool NaryReassociate::runOnFunction(Function &F) {
    160   if (skipOptnoneFunction(F))
    161     return false;
    162 
    163   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    164   SE = &getAnalysis<ScalarEvolution>();
    165   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    166 
    167   bool Changed = false, ChangedInThisIteration;
    168   do {
    169     ChangedInThisIteration = doOneIteration(F);
    170     Changed |= ChangedInThisIteration;
    171   } while (ChangedInThisIteration);
    172   return Changed;
    173 }
    174 
    175 bool NaryReassociate::doOneIteration(Function &F) {
    176   bool Changed = false;
    177   SeenExprs.clear();
    178   // Traverse the dominator tree in the depth-first order. This order makes sure
    179   // all bases of a candidate are in Candidates when we process it.
    180   for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
    181        Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
    182     BasicBlock *BB = Node->getBlock();
    183     for (auto I = BB->begin(); I != BB->end(); ++I) {
    184       if (I->getOpcode() == Instruction::Add) {
    185         if (Instruction *NewI = tryReassociateAdd(I)) {
    186           Changed = true;
    187           SE->forgetValue(I);
    188           I->replaceAllUsesWith(NewI);
    189           RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    190           I = NewI;
    191         }
    192         // We should add the rewritten instruction because tryReassociateAdd may
    193         // have invalidated the original one.
    194         SeenExprs[SE->getSCEV(I)].push_back(I);
    195       }
    196     }
    197   }
    198   return Changed;
    199 }
    200 
    201 Instruction *NaryReassociate::tryReassociateAdd(Instruction *I) {
    202   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
    203   if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
    204     return NewI;
    205   if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
    206     return NewI;
    207   return nullptr;
    208 }
    209 
    210 Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
    211                                                 Instruction *I) {
    212   Value *A = nullptr, *B = nullptr;
    213   // To be conservative, we reassociate I only when it is the only user of A+B.
    214   if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
    215     // I = (A + B) + RHS
    216     //   = (A + RHS) + B or (B + RHS) + A
    217     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
    218     const SCEV *RHSExpr = SE->getSCEV(RHS);
    219     if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
    220       return NewI;
    221     if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
    222       return NewI;
    223   }
    224   return nullptr;
    225 }
    226 
    227 Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
    228                                                  Value *RHS, Instruction *I) {
    229   auto Pos = SeenExprs.find(LHSExpr);
    230   // Bail out if LHSExpr is not previously seen.
    231   if (Pos == SeenExprs.end())
    232     return nullptr;
    233 
    234   auto &LHSCandidates = Pos->second;
    235   // Look for the closest dominator LHS of I that computes LHSExpr, and replace
    236   // I with LHS + RHS.
    237   //
    238   // Because we traverse the dominator tree in the pre-order, a
    239   // candidate that doesn't dominate the current instruction won't dominate any
    240   // future instruction either. Therefore, we pop it out of the stack. This
    241   // optimization makes the algorithm O(n).
    242   while (!LHSCandidates.empty()) {
    243     Instruction *LHS = LHSCandidates.back();
    244     if (DT->dominates(LHS, I)) {
    245       Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
    246       NewI->takeName(I);
    247       return NewI;
    248     }
    249     LHSCandidates.pop_back();
    250   }
    251   return nullptr;
    252 }
    253