Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
     15 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
     16 
     17 #include "MCTargetDesc/X86BaseInfo.h"
     18 #include "X86RegisterInfo.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 
     22 #define GET_INSTRINFO_HEADER
     23 #include "X86GenInstrInfo.inc"
     24 
     25 namespace llvm {
     26   class X86RegisterInfo;
     27   class X86Subtarget;
     28 
     29 namespace X86 {
     30   // X86 specific condition code. These correspond to X86_*_COND in
     31   // X86InstrInfo.td. They must be kept in synch.
     32   enum CondCode {
     33     COND_A  = 0,
     34     COND_AE = 1,
     35     COND_B  = 2,
     36     COND_BE = 3,
     37     COND_E  = 4,
     38     COND_G  = 5,
     39     COND_GE = 6,
     40     COND_L  = 7,
     41     COND_LE = 8,
     42     COND_NE = 9,
     43     COND_NO = 10,
     44     COND_NP = 11,
     45     COND_NS = 12,
     46     COND_O  = 13,
     47     COND_P  = 14,
     48     COND_S  = 15,
     49     LAST_VALID_COND = COND_S,
     50 
     51     // Artificial condition codes. These are used by AnalyzeBranch
     52     // to indicate a block terminated with two conditional branches to
     53     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
     54     // which can't be represented on x86 with a single condition. These
     55     // are never used in MachineInstrs.
     56     COND_NE_OR_P,
     57     COND_NP_OR_E,
     58 
     59     COND_INVALID
     60   };
     61 
     62   // Turn condition code into conditional branch opcode.
     63   unsigned GetCondBranchFromCond(CondCode CC);
     64 
     65   /// \brief Return a set opcode for the given condition and whether it has
     66   /// a memory operand.
     67   unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
     68 
     69   /// \brief Return a cmov opcode for the given condition, register size in
     70   /// bytes, and operand type.
     71   unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
     72                            bool HasMemoryOperand = false);
     73 
     74   // Turn CMov opcode into condition code.
     75   CondCode getCondFromCMovOpc(unsigned Opc);
     76 
     77   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
     78   /// e.g. turning COND_E to COND_NE.
     79   CondCode GetOppositeBranchCondition(CondCode CC);
     80 }  // end namespace X86;
     81 
     82 
     83 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
     84 /// a reference to a stub for a global, not the global itself.
     85 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
     86   switch (TargetFlag) {
     87   case X86II::MO_DLLIMPORT: // dllimport stub.
     88   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
     89   case X86II::MO_GOT:       // normal GOT reference.
     90   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
     91   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
     92   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
     93     return true;
     94   default:
     95     return false;
     96   }
     97 }
     98 
     99 /// isGlobalRelativeToPICBase - Return true if the specified global value
    100 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
    101 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
    102 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
    103   switch (TargetFlag) {
    104   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
    105   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
    106   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
    107   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
    108   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
    109   case X86II::MO_TLVP:                           // ??? Pretty sure..
    110     return true;
    111   default:
    112     return false;
    113   }
    114 }
    115 
    116 inline static bool isScale(const MachineOperand &MO) {
    117   return MO.isImm() &&
    118     (MO.getImm() == 1 || MO.getImm() == 2 ||
    119      MO.getImm() == 4 || MO.getImm() == 8);
    120 }
    121 
    122 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
    123   if (MI->getOperand(Op).isFI()) return true;
    124   return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
    125     MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
    126     isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
    127     MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
    128     (MI->getOperand(Op+X86::AddrDisp).isImm() ||
    129      MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
    130      MI->getOperand(Op+X86::AddrDisp).isCPI() ||
    131      MI->getOperand(Op+X86::AddrDisp).isJTI());
    132 }
    133 
    134 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
    135   if (MI->getOperand(Op).isFI()) return true;
    136   return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
    137     MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
    138     isLeaMem(MI, Op);
    139 }
    140 
    141 class X86InstrInfo final : public X86GenInstrInfo {
    142   X86Subtarget &Subtarget;
    143   const X86RegisterInfo RI;
    144 
    145   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
    146   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
    147   ///
    148   typedef DenseMap<unsigned,
    149                    std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
    150   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
    151   RegOp2MemOpTableType RegOp2MemOpTable0;
    152   RegOp2MemOpTableType RegOp2MemOpTable1;
    153   RegOp2MemOpTableType RegOp2MemOpTable2;
    154   RegOp2MemOpTableType RegOp2MemOpTable3;
    155   RegOp2MemOpTableType RegOp2MemOpTable4;
    156 
    157   /// MemOp2RegOpTable - Load / store unfolding opcode map.
    158   ///
    159   typedef DenseMap<unsigned,
    160                    std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
    161   MemOp2RegOpTableType MemOp2RegOpTable;
    162 
    163   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
    164                             MemOp2RegOpTableType &M2RTable,
    165                             unsigned RegOp, unsigned MemOp, unsigned Flags);
    166 
    167   virtual void anchor();
    168 
    169 public:
    170   explicit X86InstrInfo(X86Subtarget &STI);
    171 
    172   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
    173   /// such, whenever a client has an instance of instruction info, it should
    174   /// always be able to get register info as well (through this method).
    175   ///
    176   const X86RegisterInfo &getRegisterInfo() const { return RI; }
    177 
    178   /// getSPAdjust - This returns the stack pointer adjustment made by
    179   /// this instruction. For x86, we need to handle more complex call
    180   /// sequences involving PUSHes.
    181   int getSPAdjust(const MachineInstr *MI) const override;
    182 
    183   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    184   /// extension instruction. That is, it's like a copy where it's legal for the
    185   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    186   /// true, then it's expected the pre-extension value is available as a subreg
    187   /// of the result register. This also returns the sub-register index in
    188   /// SubIdx.
    189   bool isCoalescableExtInstr(const MachineInstr &MI,
    190                              unsigned &SrcReg, unsigned &DstReg,
    191                              unsigned &SubIdx) const override;
    192 
    193   unsigned isLoadFromStackSlot(const MachineInstr *MI,
    194                                int &FrameIndex) const override;
    195   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    196   /// stack locations as well.  This uses a heuristic so it isn't
    197   /// reliable for correctness.
    198   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    199                                      int &FrameIndex) const override;
    200 
    201   unsigned isStoreToStackSlot(const MachineInstr *MI,
    202                               int &FrameIndex) const override;
    203   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    204   /// stack locations as well.  This uses a heuristic so it isn't
    205   /// reliable for correctness.
    206   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    207                                     int &FrameIndex) const override;
    208 
    209   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
    210                                          AliasAnalysis *AA) const override;
    211   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    212                      unsigned DestReg, unsigned SubIdx,
    213                      const MachineInstr *Orig,
    214                      const TargetRegisterInfo &TRI) const override;
    215 
    216   /// Given an operand within a MachineInstr, insert preceding code to put it
    217   /// into the right format for a particular kind of LEA instruction. This may
    218   /// involve using an appropriate super-register instead (with an implicit use
    219   /// of the original) or creating a new virtual register and inserting COPY
    220   /// instructions to get the data into the right class.
    221   ///
    222   /// Reference parameters are set to indicate how caller should add this
    223   /// operand to the LEA instruction.
    224   bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
    225                       unsigned LEAOpcode, bool AllowSP,
    226                       unsigned &NewSrc, bool &isKill,
    227                       bool &isUndef, MachineOperand &ImplicitOp) const;
    228 
    229   /// convertToThreeAddress - This method must be implemented by targets that
    230   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    231   /// may be able to convert a two-address instruction into a true
    232   /// three-address instruction on demand.  This allows the X86 target (for
    233   /// example) to convert ADD and SHL instructions into LEA instructions if they
    234   /// would require register copies due to two-addressness.
    235   ///
    236   /// This method returns a null pointer if the transformation cannot be
    237   /// performed, otherwise it returns the new instruction.
    238   ///
    239   MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
    240                                       MachineBasicBlock::iterator &MBBI,
    241                                       LiveVariables *LV) const override;
    242 
    243   /// commuteInstruction - We have a few instructions that must be hacked on to
    244   /// commute them.
    245   ///
    246   MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
    247 
    248   bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    249                              unsigned &SrcOpIdx2) const override;
    250 
    251   // Branch analysis.
    252   bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
    253   bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    254                      MachineBasicBlock *&FBB,
    255                      SmallVectorImpl<MachineOperand> &Cond,
    256                      bool AllowModify) const override;
    257   unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
    258   unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    259                         MachineBasicBlock *FBB,
    260                         const SmallVectorImpl<MachineOperand> &Cond,
    261                         DebugLoc DL) const override;
    262   bool canInsertSelect(const MachineBasicBlock&,
    263                        const SmallVectorImpl<MachineOperand> &Cond,
    264                        unsigned, unsigned, int&, int&, int&) const override;
    265   void insertSelect(MachineBasicBlock &MBB,
    266                     MachineBasicBlock::iterator MI, DebugLoc DL,
    267                     unsigned DstReg,
    268                     const SmallVectorImpl<MachineOperand> &Cond,
    269                     unsigned TrueReg, unsigned FalseReg) const override;
    270   void copyPhysReg(MachineBasicBlock &MBB,
    271                    MachineBasicBlock::iterator MI, DebugLoc DL,
    272                    unsigned DestReg, unsigned SrcReg,
    273                    bool KillSrc) const override;
    274   void storeRegToStackSlot(MachineBasicBlock &MBB,
    275                            MachineBasicBlock::iterator MI,
    276                            unsigned SrcReg, bool isKill, int FrameIndex,
    277                            const TargetRegisterClass *RC,
    278                            const TargetRegisterInfo *TRI) const override;
    279 
    280   void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
    281                       SmallVectorImpl<MachineOperand> &Addr,
    282                       const TargetRegisterClass *RC,
    283                       MachineInstr::mmo_iterator MMOBegin,
    284                       MachineInstr::mmo_iterator MMOEnd,
    285                       SmallVectorImpl<MachineInstr*> &NewMIs) const;
    286 
    287   void loadRegFromStackSlot(MachineBasicBlock &MBB,
    288                             MachineBasicBlock::iterator MI,
    289                             unsigned DestReg, int FrameIndex,
    290                             const TargetRegisterClass *RC,
    291                             const TargetRegisterInfo *TRI) const override;
    292 
    293   void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    294                        SmallVectorImpl<MachineOperand> &Addr,
    295                        const TargetRegisterClass *RC,
    296                        MachineInstr::mmo_iterator MMOBegin,
    297                        MachineInstr::mmo_iterator MMOEnd,
    298                        SmallVectorImpl<MachineInstr*> &NewMIs) const;
    299 
    300   bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
    301 
    302   /// foldMemoryOperand - If this target supports it, fold a load or store of
    303   /// the specified stack slot into the specified machine instruction for the
    304   /// specified operand(s).  If this is possible, the target should perform the
    305   /// folding and return true, otherwise it should return false.  If it folds
    306   /// the instruction, it is likely that the MachineInstruction the iterator
    307   /// references has been changed.
    308   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
    309                                       ArrayRef<unsigned> Ops,
    310                                       int FrameIndex) const override;
    311 
    312   /// foldMemoryOperand - Same as the previous version except it allows folding
    313   /// of any load and store from / to any address, not just from a specific
    314   /// stack slot.
    315   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
    316                                       ArrayRef<unsigned> Ops,
    317                                       MachineInstr *LoadMI) const override;
    318 
    319   /// canFoldMemoryOperand - Returns true if the specified load / store is
    320   /// folding is possible.
    321   bool canFoldMemoryOperand(const MachineInstr *,
    322                             ArrayRef<unsigned>) const override;
    323 
    324   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    325   /// a store or a load and a store into two or more instruction. If this is
    326   /// possible, returns true as well as the new instructions by reference.
    327   bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    328                          unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    329                          SmallVectorImpl<MachineInstr*> &NewMIs) const override;
    330 
    331   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    332                            SmallVectorImpl<SDNode*> &NewNodes) const override;
    333 
    334   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    335   /// instruction after load / store are unfolded from an instruction of the
    336   /// specified opcode. It returns zero if the specified unfolding is not
    337   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    338   /// index of the operand which will hold the register holding the loaded
    339   /// value.
    340   unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    341                               bool UnfoldLoad, bool UnfoldStore,
    342                               unsigned *LoadRegIndex = nullptr) const override;
    343 
    344   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    345   /// to determine if two loads are loading from the same base address. It
    346   /// should only return true if the base pointers are the same and the
    347   /// only differences between the two addresses are the offset. It also returns
    348   /// the offsets by reference.
    349   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
    350                                int64_t &Offset2) const override;
    351 
    352   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    353   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    354   /// be scheduled togther. On some targets if two loads are loading from
    355   /// addresses in the same cache line, it's better if they are scheduled
    356   /// together. This function takes two integers that represent the load offsets
    357   /// from the common base address. It returns true if it decides it's desirable
    358   /// to schedule the two loads together. "NumLoads" is the number of loads that
    359   /// have already been scheduled after Load1.
    360   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    361                                int64_t Offset1, int64_t Offset2,
    362                                unsigned NumLoads) const override;
    363 
    364   bool shouldScheduleAdjacent(MachineInstr* First,
    365                               MachineInstr *Second) const override;
    366 
    367   void getNoopForMachoTarget(MCInst &NopInst) const override;
    368 
    369   bool
    370   ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
    371 
    372   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    373   /// instruction that defines the specified register class.
    374   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
    375 
    376   /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
    377   /// would clobber the EFLAGS condition register. Note the result may be
    378   /// conservative. If it cannot definitely determine the safety after visiting
    379   /// a few instructions in each direction it assumes it's not safe.
    380   bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
    381                              MachineBasicBlock::iterator I) const;
    382 
    383   static bool isX86_64ExtendedReg(const MachineOperand &MO) {
    384     if (!MO.isReg()) return false;
    385     return X86II::isX86_64ExtendedReg(MO.getReg());
    386   }
    387 
    388   /// getGlobalBaseReg - Return a virtual register initialized with the
    389   /// the global base register value. Output instructions required to
    390   /// initialize the register in the function entry block, if necessary.
    391   ///
    392   unsigned getGlobalBaseReg(MachineFunction *MF) const;
    393 
    394   std::pair<uint16_t, uint16_t>
    395   getExecutionDomain(const MachineInstr *MI) const override;
    396 
    397   void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
    398 
    399   unsigned
    400     getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    401                                  const TargetRegisterInfo *TRI) const override;
    402   unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
    403                                 const TargetRegisterInfo *TRI) const override;
    404   void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
    405                                  const TargetRegisterInfo *TRI) const override;
    406 
    407   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
    408                                       unsigned OpNum,
    409                                       ArrayRef<MachineOperand> MOs,
    410                                       unsigned Size, unsigned Alignment,
    411                                       bool AllowCommute) const;
    412 
    413   void
    414   getUnconditionalBranch(MCInst &Branch,
    415                          const MCSymbolRefExpr *BranchTarget) const override;
    416 
    417   void getTrap(MCInst &MI) const override;
    418 
    419   unsigned getJumpInstrTableEntryBound() const override;
    420 
    421   bool isHighLatencyDef(int opc) const override;
    422 
    423   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    424                              const MachineRegisterInfo *MRI,
    425                              const MachineInstr *DefMI, unsigned DefIdx,
    426                              const MachineInstr *UseMI,
    427                              unsigned UseIdx) const override;
    428 
    429   /// analyzeCompare - For a comparison instruction, return the source registers
    430   /// in SrcReg and SrcReg2 if having two register operands, and the value it
    431   /// compares against in CmpValue. Return true if the comparison instruction
    432   /// can be analyzed.
    433   bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
    434                       unsigned &SrcReg2, int &CmpMask,
    435                       int &CmpValue) const override;
    436 
    437   /// optimizeCompareInstr - Check if there exists an earlier instruction that
    438   /// operates on the same source operands and sets flags in the same way as
    439   /// Compare; remove Compare if possible.
    440   bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
    441                             unsigned SrcReg2, int CmpMask, int CmpValue,
    442                             const MachineRegisterInfo *MRI) const override;
    443 
    444   /// optimizeLoadInstr - Try to remove the load by folding it to a register
    445   /// operand at the use. We fold the load instructions if and only if the
    446   /// def and use are in the same BB. We only look at one load and see
    447   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
    448   /// defined by the load we are trying to fold. DefMI returns the machine
    449   /// instruction that defines FoldAsLoadDefReg, and the function returns
    450   /// the machine instruction generated due to folding.
    451   MachineInstr* optimizeLoadInstr(MachineInstr *MI,
    452                                   const MachineRegisterInfo *MRI,
    453                                   unsigned &FoldAsLoadDefReg,
    454                                   MachineInstr *&DefMI) const override;
    455 
    456 private:
    457   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
    458                                               MachineFunction::iterator &MFI,
    459                                               MachineBasicBlock::iterator &MBBI,
    460                                               LiveVariables *LV) const;
    461 
    462   /// isFrameOperand - Return true and the FrameIndex if the specified
    463   /// operand and follow operands form a reference to the stack frame.
    464   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
    465                       int &FrameIndex) const;
    466 };
    467 
    468 } // End llvm namespace
    469 
    470 #endif
    471