Home | History | Annotate | Download | only in Scalar
      1 //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass converts vector operations into scalar operations, in order
     11 // to expose optimization opportunities on the individual scalar operations.
     12 // It is mainly intended for targets that do not have vector units, but it
     13 // may also be useful for revectorizing code to different vector widths.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/IR/IRBuilder.h"
     19 #include "llvm/IR/InstVisitor.h"
     20 #include "llvm/Pass.h"
     21 #include "llvm/Support/CommandLine.h"
     22 #include "llvm/Transforms/Scalar.h"
     23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "scalarizer"
     28 
     29 namespace {
     30 // Used to store the scattered form of a vector.
     31 typedef SmallVector<Value *, 8> ValueVector;
     32 
     33 // Used to map a vector Value to its scattered form.  We use std::map
     34 // because we want iterators to persist across insertion and because the
     35 // values are relatively large.
     36 typedef std::map<Value *, ValueVector> ScatterMap;
     37 
     38 // Lists Instructions that have been replaced with scalar implementations,
     39 // along with a pointer to their scattered forms.
     40 typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
     41 
     42 // Provides a very limited vector-like interface for lazily accessing one
     43 // component of a scattered vector or vector pointer.
     44 class Scatterer {
     45 public:
     46   Scatterer() {}
     47 
     48   // Scatter V into Size components.  If new instructions are needed,
     49   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
     50   // the results.
     51   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
     52             ValueVector *cachePtr = nullptr);
     53 
     54   // Return component I, creating a new Value for it if necessary.
     55   Value *operator[](unsigned I);
     56 
     57   // Return the number of components.
     58   unsigned size() const { return Size; }
     59 
     60 private:
     61   BasicBlock *BB;
     62   BasicBlock::iterator BBI;
     63   Value *V;
     64   ValueVector *CachePtr;
     65   PointerType *PtrTy;
     66   ValueVector Tmp;
     67   unsigned Size;
     68 };
     69 
     70 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
     71 // called Name that compares X and Y in the same way as FCI.
     72 struct FCmpSplitter {
     73   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
     74   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
     75                     const Twine &Name) const {
     76     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
     77   }
     78   FCmpInst &FCI;
     79 };
     80 
     81 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
     82 // called Name that compares X and Y in the same way as ICI.
     83 struct ICmpSplitter {
     84   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
     85   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
     86                     const Twine &Name) const {
     87     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
     88   }
     89   ICmpInst &ICI;
     90 };
     91 
     92 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
     93 // a binary operator like BO called Name with operands X and Y.
     94 struct BinarySplitter {
     95   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
     96   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
     97                     const Twine &Name) const {
     98     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
     99   }
    100   BinaryOperator &BO;
    101 };
    102 
    103 // Information about a load or store that we're scalarizing.
    104 struct VectorLayout {
    105   VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
    106 
    107   // Return the alignment of element I.
    108   uint64_t getElemAlign(unsigned I) {
    109     return MinAlign(VecAlign, I * ElemSize);
    110   }
    111 
    112   // The type of the vector.
    113   VectorType *VecTy;
    114 
    115   // The type of each element.
    116   Type *ElemTy;
    117 
    118   // The alignment of the vector.
    119   uint64_t VecAlign;
    120 
    121   // The size of each element.
    122   uint64_t ElemSize;
    123 };
    124 
    125 class Scalarizer : public FunctionPass,
    126                    public InstVisitor<Scalarizer, bool> {
    127 public:
    128   static char ID;
    129 
    130   Scalarizer() :
    131     FunctionPass(ID) {
    132     initializeScalarizerPass(*PassRegistry::getPassRegistry());
    133   }
    134 
    135   bool doInitialization(Module &M) override;
    136   bool runOnFunction(Function &F) override;
    137 
    138   // InstVisitor methods.  They return true if the instruction was scalarized,
    139   // false if nothing changed.
    140   bool visitInstruction(Instruction &) { return false; }
    141   bool visitSelectInst(SelectInst &SI);
    142   bool visitICmpInst(ICmpInst &);
    143   bool visitFCmpInst(FCmpInst &);
    144   bool visitBinaryOperator(BinaryOperator &);
    145   bool visitGetElementPtrInst(GetElementPtrInst &);
    146   bool visitCastInst(CastInst &);
    147   bool visitBitCastInst(BitCastInst &);
    148   bool visitShuffleVectorInst(ShuffleVectorInst &);
    149   bool visitPHINode(PHINode &);
    150   bool visitLoadInst(LoadInst &);
    151   bool visitStoreInst(StoreInst &);
    152 
    153   static void registerOptions() {
    154     // This is disabled by default because having separate loads and stores
    155     // makes it more likely that the -combiner-alias-analysis limits will be
    156     // reached.
    157     OptionRegistry::registerOption<bool, Scalarizer,
    158                                  &Scalarizer::ScalarizeLoadStore>(
    159         "scalarize-load-store",
    160         "Allow the scalarizer pass to scalarize loads and store", false);
    161   }
    162 
    163 private:
    164   Scatterer scatter(Instruction *, Value *);
    165   void gather(Instruction *, const ValueVector &);
    166   bool canTransferMetadata(unsigned Kind);
    167   void transferMetadata(Instruction *, const ValueVector &);
    168   bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
    169   bool finish();
    170 
    171   template<typename T> bool splitBinary(Instruction &, const T &);
    172 
    173   ScatterMap Scattered;
    174   GatherList Gathered;
    175   unsigned ParallelLoopAccessMDKind;
    176   bool ScalarizeLoadStore;
    177 };
    178 
    179 char Scalarizer::ID = 0;
    180 } // end anonymous namespace
    181 
    182 INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
    183                              "Scalarize vector operations", false, false)
    184 
    185 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
    186                      ValueVector *cachePtr)
    187   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
    188   Type *Ty = V->getType();
    189   PtrTy = dyn_cast<PointerType>(Ty);
    190   if (PtrTy)
    191     Ty = PtrTy->getElementType();
    192   Size = Ty->getVectorNumElements();
    193   if (!CachePtr)
    194     Tmp.resize(Size, nullptr);
    195   else if (CachePtr->empty())
    196     CachePtr->resize(Size, nullptr);
    197   else
    198     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
    199 }
    200 
    201 // Return component I, creating a new Value for it if necessary.
    202 Value *Scatterer::operator[](unsigned I) {
    203   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
    204   // Try to reuse a previous value.
    205   if (CV[I])
    206     return CV[I];
    207   IRBuilder<> Builder(BB, BBI);
    208   if (PtrTy) {
    209     if (!CV[0]) {
    210       Type *Ty =
    211         PointerType::get(PtrTy->getElementType()->getVectorElementType(),
    212                          PtrTy->getAddressSpace());
    213       CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
    214     }
    215     if (I != 0)
    216       CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
    217                                          V->getName() + ".i" + Twine(I));
    218   } else {
    219     // Search through a chain of InsertElementInsts looking for element I.
    220     // Record other elements in the cache.  The new V is still suitable
    221     // for all uncached indices.
    222     for (;;) {
    223       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
    224       if (!Insert)
    225         break;
    226       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
    227       if (!Idx)
    228         break;
    229       unsigned J = Idx->getZExtValue();
    230       CV[J] = Insert->getOperand(1);
    231       V = Insert->getOperand(0);
    232       if (I == J)
    233         return CV[J];
    234     }
    235     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
    236                                          V->getName() + ".i" + Twine(I));
    237   }
    238   return CV[I];
    239 }
    240 
    241 bool Scalarizer::doInitialization(Module &M) {
    242   ParallelLoopAccessMDKind =
    243       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
    244   ScalarizeLoadStore =
    245       M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
    246   return false;
    247 }
    248 
    249 bool Scalarizer::runOnFunction(Function &F) {
    250   for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
    251     BasicBlock *BB = BBI;
    252     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
    253       Instruction *I = II;
    254       bool Done = visit(I);
    255       ++II;
    256       if (Done && I->getType()->isVoidTy())
    257         I->eraseFromParent();
    258     }
    259   }
    260   return finish();
    261 }
    262 
    263 // Return a scattered form of V that can be accessed by Point.  V must be a
    264 // vector or a pointer to a vector.
    265 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
    266   if (Argument *VArg = dyn_cast<Argument>(V)) {
    267     // Put the scattered form of arguments in the entry block,
    268     // so that it can be used everywhere.
    269     Function *F = VArg->getParent();
    270     BasicBlock *BB = &F->getEntryBlock();
    271     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
    272   }
    273   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
    274     // Put the scattered form of an instruction directly after the
    275     // instruction.
    276     BasicBlock *BB = VOp->getParent();
    277     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
    278                      V, &Scattered[V]);
    279   }
    280   // In the fallback case, just put the scattered before Point and
    281   // keep the result local to Point.
    282   return Scatterer(Point->getParent(), Point, V);
    283 }
    284 
    285 // Replace Op with the gathered form of the components in CV.  Defer the
    286 // deletion of Op and creation of the gathered form to the end of the pass,
    287 // so that we can avoid creating the gathered form if all uses of Op are
    288 // replaced with uses of CV.
    289 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
    290   // Since we're not deleting Op yet, stub out its operands, so that it
    291   // doesn't make anything live unnecessarily.
    292   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
    293     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
    294 
    295   transferMetadata(Op, CV);
    296 
    297   // If we already have a scattered form of Op (created from ExtractElements
    298   // of Op itself), replace them with the new form.
    299   ValueVector &SV = Scattered[Op];
    300   if (!SV.empty()) {
    301     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
    302       Instruction *Old = cast<Instruction>(SV[I]);
    303       CV[I]->takeName(Old);
    304       Old->replaceAllUsesWith(CV[I]);
    305       Old->eraseFromParent();
    306     }
    307   }
    308   SV = CV;
    309   Gathered.push_back(GatherList::value_type(Op, &SV));
    310 }
    311 
    312 // Return true if it is safe to transfer the given metadata tag from
    313 // vector to scalar instructions.
    314 bool Scalarizer::canTransferMetadata(unsigned Tag) {
    315   return (Tag == LLVMContext::MD_tbaa
    316           || Tag == LLVMContext::MD_fpmath
    317           || Tag == LLVMContext::MD_tbaa_struct
    318           || Tag == LLVMContext::MD_invariant_load
    319           || Tag == LLVMContext::MD_alias_scope
    320           || Tag == LLVMContext::MD_noalias
    321           || Tag == ParallelLoopAccessMDKind);
    322 }
    323 
    324 // Transfer metadata from Op to the instructions in CV if it is known
    325 // to be safe to do so.
    326 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
    327   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    328   Op->getAllMetadataOtherThanDebugLoc(MDs);
    329   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
    330     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
    331       for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
    332                MI = MDs.begin(),
    333                ME = MDs.end();
    334            MI != ME; ++MI)
    335         if (canTransferMetadata(MI->first))
    336           New->setMetadata(MI->first, MI->second);
    337       New->setDebugLoc(Op->getDebugLoc());
    338     }
    339   }
    340 }
    341 
    342 // Try to fill in Layout from Ty, returning true on success.  Alignment is
    343 // the alignment of the vector, or 0 if the ABI default should be used.
    344 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
    345                                  VectorLayout &Layout, const DataLayout &DL) {
    346   // Make sure we're dealing with a vector.
    347   Layout.VecTy = dyn_cast<VectorType>(Ty);
    348   if (!Layout.VecTy)
    349     return false;
    350 
    351   // Check that we're dealing with full-byte elements.
    352   Layout.ElemTy = Layout.VecTy->getElementType();
    353   if (DL.getTypeSizeInBits(Layout.ElemTy) !=
    354       DL.getTypeStoreSizeInBits(Layout.ElemTy))
    355     return false;
    356 
    357   if (Alignment)
    358     Layout.VecAlign = Alignment;
    359   else
    360     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
    361   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
    362   return true;
    363 }
    364 
    365 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
    366 // to create an instruction like I with operands X and Y and name Name.
    367 template<typename Splitter>
    368 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
    369   VectorType *VT = dyn_cast<VectorType>(I.getType());
    370   if (!VT)
    371     return false;
    372 
    373   unsigned NumElems = VT->getNumElements();
    374   IRBuilder<> Builder(I.getParent(), &I);
    375   Scatterer Op0 = scatter(&I, I.getOperand(0));
    376   Scatterer Op1 = scatter(&I, I.getOperand(1));
    377   assert(Op0.size() == NumElems && "Mismatched binary operation");
    378   assert(Op1.size() == NumElems && "Mismatched binary operation");
    379   ValueVector Res;
    380   Res.resize(NumElems);
    381   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
    382     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
    383                       I.getName() + ".i" + Twine(Elem));
    384   gather(&I, Res);
    385   return true;
    386 }
    387 
    388 bool Scalarizer::visitSelectInst(SelectInst &SI) {
    389   VectorType *VT = dyn_cast<VectorType>(SI.getType());
    390   if (!VT)
    391     return false;
    392 
    393   unsigned NumElems = VT->getNumElements();
    394   IRBuilder<> Builder(SI.getParent(), &SI);
    395   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
    396   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
    397   assert(Op1.size() == NumElems && "Mismatched select");
    398   assert(Op2.size() == NumElems && "Mismatched select");
    399   ValueVector Res;
    400   Res.resize(NumElems);
    401 
    402   if (SI.getOperand(0)->getType()->isVectorTy()) {
    403     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
    404     assert(Op0.size() == NumElems && "Mismatched select");
    405     for (unsigned I = 0; I < NumElems; ++I)
    406       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
    407                                     SI.getName() + ".i" + Twine(I));
    408   } else {
    409     Value *Op0 = SI.getOperand(0);
    410     for (unsigned I = 0; I < NumElems; ++I)
    411       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
    412                                     SI.getName() + ".i" + Twine(I));
    413   }
    414   gather(&SI, Res);
    415   return true;
    416 }
    417 
    418 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
    419   return splitBinary(ICI, ICmpSplitter(ICI));
    420 }
    421 
    422 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
    423   return splitBinary(FCI, FCmpSplitter(FCI));
    424 }
    425 
    426 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
    427   return splitBinary(BO, BinarySplitter(BO));
    428 }
    429 
    430 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
    431   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
    432   if (!VT)
    433     return false;
    434 
    435   IRBuilder<> Builder(GEPI.getParent(), &GEPI);
    436   unsigned NumElems = VT->getNumElements();
    437   unsigned NumIndices = GEPI.getNumIndices();
    438 
    439   Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
    440 
    441   SmallVector<Scatterer, 8> Ops;
    442   Ops.resize(NumIndices);
    443   for (unsigned I = 0; I < NumIndices; ++I)
    444     Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
    445 
    446   ValueVector Res;
    447   Res.resize(NumElems);
    448   for (unsigned I = 0; I < NumElems; ++I) {
    449     SmallVector<Value *, 8> Indices;
    450     Indices.resize(NumIndices);
    451     for (unsigned J = 0; J < NumIndices; ++J)
    452       Indices[J] = Ops[J][I];
    453     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
    454                                GEPI.getName() + ".i" + Twine(I));
    455     if (GEPI.isInBounds())
    456       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
    457         NewGEPI->setIsInBounds();
    458   }
    459   gather(&GEPI, Res);
    460   return true;
    461 }
    462 
    463 bool Scalarizer::visitCastInst(CastInst &CI) {
    464   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
    465   if (!VT)
    466     return false;
    467 
    468   unsigned NumElems = VT->getNumElements();
    469   IRBuilder<> Builder(CI.getParent(), &CI);
    470   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
    471   assert(Op0.size() == NumElems && "Mismatched cast");
    472   ValueVector Res;
    473   Res.resize(NumElems);
    474   for (unsigned I = 0; I < NumElems; ++I)
    475     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
    476                                 CI.getName() + ".i" + Twine(I));
    477   gather(&CI, Res);
    478   return true;
    479 }
    480 
    481 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
    482   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
    483   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
    484   if (!DstVT || !SrcVT)
    485     return false;
    486 
    487   unsigned DstNumElems = DstVT->getNumElements();
    488   unsigned SrcNumElems = SrcVT->getNumElements();
    489   IRBuilder<> Builder(BCI.getParent(), &BCI);
    490   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
    491   ValueVector Res;
    492   Res.resize(DstNumElems);
    493 
    494   if (DstNumElems == SrcNumElems) {
    495     for (unsigned I = 0; I < DstNumElems; ++I)
    496       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
    497                                      BCI.getName() + ".i" + Twine(I));
    498   } else if (DstNumElems > SrcNumElems) {
    499     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
    500     // individual elements to the destination.
    501     unsigned FanOut = DstNumElems / SrcNumElems;
    502     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
    503     unsigned ResI = 0;
    504     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
    505       Value *V = Op0[Op0I];
    506       Instruction *VI;
    507       // Look through any existing bitcasts before converting to <N x t2>.
    508       // In the best case, the resulting conversion might be a no-op.
    509       while ((VI = dyn_cast<Instruction>(V)) &&
    510              VI->getOpcode() == Instruction::BitCast)
    511         V = VI->getOperand(0);
    512       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
    513       Scatterer Mid = scatter(&BCI, V);
    514       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
    515         Res[ResI++] = Mid[MidI];
    516     }
    517   } else {
    518     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
    519     unsigned FanIn = SrcNumElems / DstNumElems;
    520     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
    521     unsigned Op0I = 0;
    522     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
    523       Value *V = UndefValue::get(MidTy);
    524       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
    525         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
    526                                         BCI.getName() + ".i" + Twine(ResI)
    527                                         + ".upto" + Twine(MidI));
    528       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
    529                                         BCI.getName() + ".i" + Twine(ResI));
    530     }
    531   }
    532   gather(&BCI, Res);
    533   return true;
    534 }
    535 
    536 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
    537   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
    538   if (!VT)
    539     return false;
    540 
    541   unsigned NumElems = VT->getNumElements();
    542   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
    543   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
    544   ValueVector Res;
    545   Res.resize(NumElems);
    546 
    547   for (unsigned I = 0; I < NumElems; ++I) {
    548     int Selector = SVI.getMaskValue(I);
    549     if (Selector < 0)
    550       Res[I] = UndefValue::get(VT->getElementType());
    551     else if (unsigned(Selector) < Op0.size())
    552       Res[I] = Op0[Selector];
    553     else
    554       Res[I] = Op1[Selector - Op0.size()];
    555   }
    556   gather(&SVI, Res);
    557   return true;
    558 }
    559 
    560 bool Scalarizer::visitPHINode(PHINode &PHI) {
    561   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
    562   if (!VT)
    563     return false;
    564 
    565   unsigned NumElems = VT->getNumElements();
    566   IRBuilder<> Builder(PHI.getParent(), &PHI);
    567   ValueVector Res;
    568   Res.resize(NumElems);
    569 
    570   unsigned NumOps = PHI.getNumOperands();
    571   for (unsigned I = 0; I < NumElems; ++I)
    572     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
    573                                PHI.getName() + ".i" + Twine(I));
    574 
    575   for (unsigned I = 0; I < NumOps; ++I) {
    576     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
    577     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
    578     for (unsigned J = 0; J < NumElems; ++J)
    579       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
    580   }
    581   gather(&PHI, Res);
    582   return true;
    583 }
    584 
    585 bool Scalarizer::visitLoadInst(LoadInst &LI) {
    586   if (!ScalarizeLoadStore)
    587     return false;
    588   if (!LI.isSimple())
    589     return false;
    590 
    591   VectorLayout Layout;
    592   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
    593                        LI.getModule()->getDataLayout()))
    594     return false;
    595 
    596   unsigned NumElems = Layout.VecTy->getNumElements();
    597   IRBuilder<> Builder(LI.getParent(), &LI);
    598   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
    599   ValueVector Res;
    600   Res.resize(NumElems);
    601 
    602   for (unsigned I = 0; I < NumElems; ++I)
    603     Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
    604                                        LI.getName() + ".i" + Twine(I));
    605   gather(&LI, Res);
    606   return true;
    607 }
    608 
    609 bool Scalarizer::visitStoreInst(StoreInst &SI) {
    610   if (!ScalarizeLoadStore)
    611     return false;
    612   if (!SI.isSimple())
    613     return false;
    614 
    615   VectorLayout Layout;
    616   Value *FullValue = SI.getValueOperand();
    617   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
    618                        SI.getModule()->getDataLayout()))
    619     return false;
    620 
    621   unsigned NumElems = Layout.VecTy->getNumElements();
    622   IRBuilder<> Builder(SI.getParent(), &SI);
    623   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
    624   Scatterer Val = scatter(&SI, FullValue);
    625 
    626   ValueVector Stores;
    627   Stores.resize(NumElems);
    628   for (unsigned I = 0; I < NumElems; ++I) {
    629     unsigned Align = Layout.getElemAlign(I);
    630     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
    631   }
    632   transferMetadata(&SI, Stores);
    633   return true;
    634 }
    635 
    636 // Delete the instructions that we scalarized.  If a full vector result
    637 // is still needed, recreate it using InsertElements.
    638 bool Scalarizer::finish() {
    639   if (Gathered.empty())
    640     return false;
    641   for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
    642        GMI != GME; ++GMI) {
    643     Instruction *Op = GMI->first;
    644     ValueVector &CV = *GMI->second;
    645     if (!Op->use_empty()) {
    646       // The value is still needed, so recreate it using a series of
    647       // InsertElements.
    648       Type *Ty = Op->getType();
    649       Value *Res = UndefValue::get(Ty);
    650       BasicBlock *BB = Op->getParent();
    651       unsigned Count = Ty->getVectorNumElements();
    652       IRBuilder<> Builder(BB, Op);
    653       if (isa<PHINode>(Op))
    654         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
    655       for (unsigned I = 0; I < Count; ++I)
    656         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
    657                                           Op->getName() + ".upto" + Twine(I));
    658       Res->takeName(Op);
    659       Op->replaceAllUsesWith(Res);
    660     }
    661     Op->eraseFromParent();
    662   }
    663   Gathered.clear();
    664   Scattered.clear();
    665   return true;
    666 }
    667 
    668 FunctionPass *llvm::createScalarizerPass() {
    669   return new Scalarizer();
    670 }
    671