Home | History | Annotate | Download | only in Analysis
      1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the classes used to generate code from scalar expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
     15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
     16 
     17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     18 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
     19 #include "llvm/Analysis/TargetFolder.h"
     20 #include "llvm/IR/IRBuilder.h"
     21 #include "llvm/IR/ValueHandle.h"
     22 #include <set>
     23 
     24 namespace llvm {
     25   class TargetTransformInfo;
     26 
     27   /// Return true if the given expression is safe to expand in the sense that
     28   /// all materialized values are safe to speculate.
     29   bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
     30 
     31   /// This class uses information about analyze scalars to
     32   /// rewrite expressions in canonical form.
     33   ///
     34   /// Clients should create an instance of this class when rewriting is needed,
     35   /// and destroy it when finished to allow the release of the associated
     36   /// memory.
     37   class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
     38     ScalarEvolution &SE;
     39     const DataLayout &DL;
     40 
     41     // New instructions receive a name to identifies them with the current pass.
     42     const char* IVName;
     43 
     44     // InsertedExpressions caches Values for reuse, so must track RAUW.
     45     std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >
     46       InsertedExpressions;
     47     // InsertedValues only flags inserted instructions so needs no RAUW.
     48     std::set<AssertingVH<Value> > InsertedValues;
     49     std::set<AssertingVH<Value> > InsertedPostIncValues;
     50 
     51     /// A memoization of the "relevant" loop for a given SCEV.
     52     DenseMap<const SCEV *, const Loop *> RelevantLoops;
     53 
     54     /// \brief Addrecs referring to any of the given loops are expanded
     55     /// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
     56     /// returns the add instruction that adds one to the phi for {0,+,1}<L>,
     57     /// as opposed to a new phi starting at 1. This is only supported in
     58     /// non-canonical mode.
     59     PostIncLoopSet PostIncLoops;
     60 
     61     /// \brief When this is non-null, addrecs expanded in the loop it indicates
     62     /// should be inserted with increments at IVIncInsertPos.
     63     const Loop *IVIncInsertLoop;
     64 
     65     /// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV
     66     /// increment at this position.
     67     Instruction *IVIncInsertPos;
     68 
     69     /// \brief Phis that complete an IV chain. Reuse
     70     std::set<AssertingVH<PHINode> > ChainedPhis;
     71 
     72     /// \brief When true, expressions are expanded in "canonical" form. In
     73     /// particular, addrecs are expanded as arithmetic based on a canonical
     74     /// induction variable. When false, expression are expanded in a more
     75     /// literal form.
     76     bool CanonicalMode;
     77 
     78     /// \brief When invoked from LSR, the expander is in "strength reduction"
     79     /// mode. The only difference is that phi's are only reused if they are
     80     /// already in "expanded" form.
     81     bool LSRMode;
     82 
     83     typedef IRBuilder<true, TargetFolder> BuilderType;
     84     BuilderType Builder;
     85 
     86 #ifndef NDEBUG
     87     const char *DebugType;
     88 #endif
     89 
     90     friend struct SCEVVisitor<SCEVExpander, Value*>;
     91 
     92   public:
     93     /// \brief Construct a SCEVExpander in "canonical" mode.
     94     explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
     95                           const char *name)
     96         : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
     97           IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
     98           Builder(se.getContext(), TargetFolder(DL)) {
     99 #ifndef NDEBUG
    100       DebugType = "";
    101 #endif
    102     }
    103 
    104 #ifndef NDEBUG
    105     void setDebugType(const char* s) { DebugType = s; }
    106 #endif
    107 
    108     /// \brief Erase the contents of the InsertedExpressions map so that users
    109     /// trying to expand the same expression into multiple BasicBlocks or
    110     /// different places within the same BasicBlock can do so.
    111     void clear() {
    112       InsertedExpressions.clear();
    113       InsertedValues.clear();
    114       InsertedPostIncValues.clear();
    115       ChainedPhis.clear();
    116     }
    117 
    118     /// \brief Return true for expressions that may incur non-trivial cost to
    119     /// evaluate at runtime.
    120     bool isHighCostExpansion(const SCEV *Expr, Loop *L) {
    121       SmallPtrSet<const SCEV *, 8> Processed;
    122       return isHighCostExpansionHelper(Expr, L, Processed);
    123     }
    124 
    125     /// \brief This method returns the canonical induction variable of the
    126     /// specified type for the specified loop (inserting one if there is none).
    127     /// A canonical induction variable starts at zero and steps by one on each
    128     /// iteration.
    129     PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
    130 
    131     /// \brief Return the induction variable increment's IV operand.
    132     Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
    133                                  bool allowScale);
    134 
    135     /// \brief Utility for hoisting an IV increment.
    136     bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
    137 
    138     /// \brief replace congruent phis with their most canonical
    139     /// representative. Return the number of phis eliminated.
    140     unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
    141                                  SmallVectorImpl<WeakVH> &DeadInsts,
    142                                  const TargetTransformInfo *TTI = nullptr);
    143 
    144     /// \brief Insert code to directly compute the specified SCEV expression
    145     /// into the program.  The inserted code is inserted into the specified
    146     /// block.
    147     Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
    148 
    149     /// \brief Set the current IV increment loop and position.
    150     void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
    151       assert(!CanonicalMode &&
    152              "IV increment positions are not supported in CanonicalMode");
    153       IVIncInsertLoop = L;
    154       IVIncInsertPos = Pos;
    155     }
    156 
    157     /// \brief Enable post-inc expansion for addrecs referring to the given
    158     /// loops. Post-inc expansion is only supported in non-canonical mode.
    159     void setPostInc(const PostIncLoopSet &L) {
    160       assert(!CanonicalMode &&
    161              "Post-inc expansion is not supported in CanonicalMode");
    162       PostIncLoops = L;
    163     }
    164 
    165     /// \brief Disable all post-inc expansion.
    166     void clearPostInc() {
    167       PostIncLoops.clear();
    168 
    169       // When we change the post-inc loop set, cached expansions may no
    170       // longer be valid.
    171       InsertedPostIncValues.clear();
    172     }
    173 
    174     /// \brief Disable the behavior of expanding expressions in canonical form
    175     /// rather than in a more literal form. Non-canonical mode is useful for
    176     /// late optimization passes.
    177     void disableCanonicalMode() { CanonicalMode = false; }
    178 
    179     void enableLSRMode() { LSRMode = true; }
    180 
    181     /// \brief Clear the current insertion point. This is useful if the
    182     /// instruction that had been serving as the insertion point may have been
    183     /// deleted.
    184     void clearInsertPoint() {
    185       Builder.ClearInsertionPoint();
    186     }
    187 
    188     /// \brief Return true if the specified instruction was inserted by the code
    189     /// rewriter.  If so, the client should not modify the instruction.
    190     bool isInsertedInstruction(Instruction *I) const {
    191       return InsertedValues.count(I) || InsertedPostIncValues.count(I);
    192     }
    193 
    194     void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
    195 
    196   private:
    197     LLVMContext &getContext() const { return SE.getContext(); }
    198 
    199     /// \brief Recursive helper function for isHighCostExpansion.
    200     bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
    201                                    SmallPtrSetImpl<const SCEV *> &Processed);
    202 
    203     /// \brief Insert the specified binary operator, doing a small amount
    204     /// of work to avoid inserting an obviously redundant operation.
    205     Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
    206 
    207     /// \brief Arrange for there to be a cast of V to Ty at IP, reusing an
    208     /// existing cast if a suitable one exists, moving an existing cast if a
    209     /// suitable one exists but isn't in the right place, or or creating a new
    210     /// one.
    211     Value *ReuseOrCreateCast(Value *V, Type *Ty,
    212                              Instruction::CastOps Op,
    213                              BasicBlock::iterator IP);
    214 
    215     /// \brief Insert a cast of V to the specified type, which must be possible
    216     /// with a noop cast, doing what we can to share the casts.
    217     Value *InsertNoopCastOfTo(Value *V, Type *Ty);
    218 
    219     /// \brief Expand a SCEVAddExpr with a pointer type into a GEP
    220     /// instead of using ptrtoint+arithmetic+inttoptr.
    221     Value *expandAddToGEP(const SCEV *const *op_begin,
    222                           const SCEV *const *op_end,
    223                           PointerType *PTy, Type *Ty, Value *V);
    224 
    225     Value *expand(const SCEV *S);
    226 
    227     /// \brief Insert code to directly compute the specified SCEV expression
    228     /// into the program.  The inserted code is inserted into the SCEVExpander's
    229     /// current insertion point. If a type is specified, the result will be
    230     /// expanded to have that type, with a cast if necessary.
    231     Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
    232 
    233     /// \brief Determine the most "relevant" loop for the given SCEV.
    234     const Loop *getRelevantLoop(const SCEV *);
    235 
    236     Value *visitConstant(const SCEVConstant *S) {
    237       return S->getValue();
    238     }
    239 
    240     Value *visitTruncateExpr(const SCEVTruncateExpr *S);
    241 
    242     Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
    243 
    244     Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
    245 
    246     Value *visitAddExpr(const SCEVAddExpr *S);
    247 
    248     Value *visitMulExpr(const SCEVMulExpr *S);
    249 
    250     Value *visitUDivExpr(const SCEVUDivExpr *S);
    251 
    252     Value *visitAddRecExpr(const SCEVAddRecExpr *S);
    253 
    254     Value *visitSMaxExpr(const SCEVSMaxExpr *S);
    255 
    256     Value *visitUMaxExpr(const SCEVUMaxExpr *S);
    257 
    258     Value *visitUnknown(const SCEVUnknown *S) {
    259       return S->getValue();
    260     }
    261 
    262     void rememberInstruction(Value *I);
    263 
    264     bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
    265 
    266     bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
    267 
    268     Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
    269     PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
    270                                        const Loop *L,
    271                                        Type *ExpandTy,
    272                                        Type *IntTy,
    273                                        Type *&TruncTy,
    274                                        bool &InvertStep);
    275     Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
    276                        Type *ExpandTy, Type *IntTy, bool useSubtract);
    277   };
    278 }
    279 
    280 #endif
    281