Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements semantic analysis for C++ templates.
     10 //===----------------------------------------------------------------------===/
     11 
     12 #include "TreeTransform.h"
     13 #include "clang/AST/ASTConsumer.h"
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/ASTMutationListener.h"
     16 #include "clang/AST/DeclFriend.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/RecursiveASTVisitor.h"
     21 #include "clang/AST/TypeVisitor.h"
     22 #include "clang/Basic/LangOptions.h"
     23 #include "clang/Basic/PartialDiagnostic.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Sema/DeclSpec.h"
     26 #include "clang/Sema/Lookup.h"
     27 #include "clang/Sema/ParsedTemplate.h"
     28 #include "clang/Sema/Scope.h"
     29 #include "clang/Sema/SemaInternal.h"
     30 #include "clang/Sema/Template.h"
     31 #include "clang/Sema/TemplateDeduction.h"
     32 #include "llvm/ADT/SmallBitVector.h"
     33 #include "llvm/ADT/SmallString.h"
     34 #include "llvm/ADT/StringExtras.h"
     35 using namespace clang;
     36 using namespace sema;
     37 
     38 // Exported for use by Parser.
     39 SourceRange
     40 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
     41                               unsigned N) {
     42   if (!N) return SourceRange();
     43   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
     44 }
     45 
     46 /// \brief Determine whether the declaration found is acceptable as the name
     47 /// of a template and, if so, return that template declaration. Otherwise,
     48 /// returns NULL.
     49 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
     50                                            NamedDecl *Orig,
     51                                            bool AllowFunctionTemplates) {
     52   NamedDecl *D = Orig->getUnderlyingDecl();
     53 
     54   if (isa<TemplateDecl>(D)) {
     55     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
     56       return nullptr;
     57 
     58     return Orig;
     59   }
     60 
     61   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
     62     // C++ [temp.local]p1:
     63     //   Like normal (non-template) classes, class templates have an
     64     //   injected-class-name (Clause 9). The injected-class-name
     65     //   can be used with or without a template-argument-list. When
     66     //   it is used without a template-argument-list, it is
     67     //   equivalent to the injected-class-name followed by the
     68     //   template-parameters of the class template enclosed in
     69     //   <>. When it is used with a template-argument-list, it
     70     //   refers to the specified class template specialization,
     71     //   which could be the current specialization or another
     72     //   specialization.
     73     if (Record->isInjectedClassName()) {
     74       Record = cast<CXXRecordDecl>(Record->getDeclContext());
     75       if (Record->getDescribedClassTemplate())
     76         return Record->getDescribedClassTemplate();
     77 
     78       if (ClassTemplateSpecializationDecl *Spec
     79             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
     80         return Spec->getSpecializedTemplate();
     81     }
     82 
     83     return nullptr;
     84   }
     85 
     86   return nullptr;
     87 }
     88 
     89 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
     90                                          bool AllowFunctionTemplates) {
     91   // The set of class templates we've already seen.
     92   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
     93   LookupResult::Filter filter = R.makeFilter();
     94   while (filter.hasNext()) {
     95     NamedDecl *Orig = filter.next();
     96     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
     97                                                AllowFunctionTemplates);
     98     if (!Repl)
     99       filter.erase();
    100     else if (Repl != Orig) {
    101 
    102       // C++ [temp.local]p3:
    103       //   A lookup that finds an injected-class-name (10.2) can result in an
    104       //   ambiguity in certain cases (for example, if it is found in more than
    105       //   one base class). If all of the injected-class-names that are found
    106       //   refer to specializations of the same class template, and if the name
    107       //   is used as a template-name, the reference refers to the class
    108       //   template itself and not a specialization thereof, and is not
    109       //   ambiguous.
    110       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
    111         if (!ClassTemplates.insert(ClassTmpl).second) {
    112           filter.erase();
    113           continue;
    114         }
    115 
    116       // FIXME: we promote access to public here as a workaround to
    117       // the fact that LookupResult doesn't let us remember that we
    118       // found this template through a particular injected class name,
    119       // which means we end up doing nasty things to the invariants.
    120       // Pretending that access is public is *much* safer.
    121       filter.replace(Repl, AS_public);
    122     }
    123   }
    124   filter.done();
    125 }
    126 
    127 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
    128                                          bool AllowFunctionTemplates) {
    129   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
    130     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
    131       return true;
    132 
    133   return false;
    134 }
    135 
    136 TemplateNameKind Sema::isTemplateName(Scope *S,
    137                                       CXXScopeSpec &SS,
    138                                       bool hasTemplateKeyword,
    139                                       UnqualifiedId &Name,
    140                                       ParsedType ObjectTypePtr,
    141                                       bool EnteringContext,
    142                                       TemplateTy &TemplateResult,
    143                                       bool &MemberOfUnknownSpecialization) {
    144   assert(getLangOpts().CPlusPlus && "No template names in C!");
    145 
    146   DeclarationName TName;
    147   MemberOfUnknownSpecialization = false;
    148 
    149   switch (Name.getKind()) {
    150   case UnqualifiedId::IK_Identifier:
    151     TName = DeclarationName(Name.Identifier);
    152     break;
    153 
    154   case UnqualifiedId::IK_OperatorFunctionId:
    155     TName = Context.DeclarationNames.getCXXOperatorName(
    156                                               Name.OperatorFunctionId.Operator);
    157     break;
    158 
    159   case UnqualifiedId::IK_LiteralOperatorId:
    160     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
    161     break;
    162 
    163   default:
    164     return TNK_Non_template;
    165   }
    166 
    167   QualType ObjectType = ObjectTypePtr.get();
    168 
    169   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
    170   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
    171                      MemberOfUnknownSpecialization);
    172   if (R.empty()) return TNK_Non_template;
    173   if (R.isAmbiguous()) {
    174     // Suppress diagnostics;  we'll redo this lookup later.
    175     R.suppressDiagnostics();
    176 
    177     // FIXME: we might have ambiguous templates, in which case we
    178     // should at least parse them properly!
    179     return TNK_Non_template;
    180   }
    181 
    182   TemplateName Template;
    183   TemplateNameKind TemplateKind;
    184 
    185   unsigned ResultCount = R.end() - R.begin();
    186   if (ResultCount > 1) {
    187     // We assume that we'll preserve the qualifier from a function
    188     // template name in other ways.
    189     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
    190     TemplateKind = TNK_Function_template;
    191 
    192     // We'll do this lookup again later.
    193     R.suppressDiagnostics();
    194   } else {
    195     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
    196 
    197     if (SS.isSet() && !SS.isInvalid()) {
    198       NestedNameSpecifier *Qualifier = SS.getScopeRep();
    199       Template = Context.getQualifiedTemplateName(Qualifier,
    200                                                   hasTemplateKeyword, TD);
    201     } else {
    202       Template = TemplateName(TD);
    203     }
    204 
    205     if (isa<FunctionTemplateDecl>(TD)) {
    206       TemplateKind = TNK_Function_template;
    207 
    208       // We'll do this lookup again later.
    209       R.suppressDiagnostics();
    210     } else {
    211       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
    212              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
    213       TemplateKind =
    214           isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
    215     }
    216   }
    217 
    218   TemplateResult = TemplateTy::make(Template);
    219   return TemplateKind;
    220 }
    221 
    222 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
    223                                        SourceLocation IILoc,
    224                                        Scope *S,
    225                                        const CXXScopeSpec *SS,
    226                                        TemplateTy &SuggestedTemplate,
    227                                        TemplateNameKind &SuggestedKind) {
    228   // We can't recover unless there's a dependent scope specifier preceding the
    229   // template name.
    230   // FIXME: Typo correction?
    231   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
    232       computeDeclContext(*SS))
    233     return false;
    234 
    235   // The code is missing a 'template' keyword prior to the dependent template
    236   // name.
    237   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
    238   Diag(IILoc, diag::err_template_kw_missing)
    239     << Qualifier << II.getName()
    240     << FixItHint::CreateInsertion(IILoc, "template ");
    241   SuggestedTemplate
    242     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
    243   SuggestedKind = TNK_Dependent_template_name;
    244   return true;
    245 }
    246 
    247 void Sema::LookupTemplateName(LookupResult &Found,
    248                               Scope *S, CXXScopeSpec &SS,
    249                               QualType ObjectType,
    250                               bool EnteringContext,
    251                               bool &MemberOfUnknownSpecialization) {
    252   // Determine where to perform name lookup
    253   MemberOfUnknownSpecialization = false;
    254   DeclContext *LookupCtx = nullptr;
    255   bool isDependent = false;
    256   if (!ObjectType.isNull()) {
    257     // This nested-name-specifier occurs in a member access expression, e.g.,
    258     // x->B::f, and we are looking into the type of the object.
    259     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    260     LookupCtx = computeDeclContext(ObjectType);
    261     isDependent = ObjectType->isDependentType();
    262     assert((isDependent || !ObjectType->isIncompleteType() ||
    263             ObjectType->castAs<TagType>()->isBeingDefined()) &&
    264            "Caller should have completed object type");
    265 
    266     // Template names cannot appear inside an Objective-C class or object type.
    267     if (ObjectType->isObjCObjectOrInterfaceType()) {
    268       Found.clear();
    269       return;
    270     }
    271   } else if (SS.isSet()) {
    272     // This nested-name-specifier occurs after another nested-name-specifier,
    273     // so long into the context associated with the prior nested-name-specifier.
    274     LookupCtx = computeDeclContext(SS, EnteringContext);
    275     isDependent = isDependentScopeSpecifier(SS);
    276 
    277     // The declaration context must be complete.
    278     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
    279       return;
    280   }
    281 
    282   bool ObjectTypeSearchedInScope = false;
    283   bool AllowFunctionTemplatesInLookup = true;
    284   if (LookupCtx) {
    285     // Perform "qualified" name lookup into the declaration context we
    286     // computed, which is either the type of the base of a member access
    287     // expression or the declaration context associated with a prior
    288     // nested-name-specifier.
    289     LookupQualifiedName(Found, LookupCtx);
    290     if (!ObjectType.isNull() && Found.empty()) {
    291       // C++ [basic.lookup.classref]p1:
    292       //   In a class member access expression (5.2.5), if the . or -> token is
    293       //   immediately followed by an identifier followed by a <, the
    294       //   identifier must be looked up to determine whether the < is the
    295       //   beginning of a template argument list (14.2) or a less-than operator.
    296       //   The identifier is first looked up in the class of the object
    297       //   expression. If the identifier is not found, it is then looked up in
    298       //   the context of the entire postfix-expression and shall name a class
    299       //   or function template.
    300       if (S) LookupName(Found, S);
    301       ObjectTypeSearchedInScope = true;
    302       AllowFunctionTemplatesInLookup = false;
    303     }
    304   } else if (isDependent && (!S || ObjectType.isNull())) {
    305     // We cannot look into a dependent object type or nested nme
    306     // specifier.
    307     MemberOfUnknownSpecialization = true;
    308     return;
    309   } else {
    310     // Perform unqualified name lookup in the current scope.
    311     LookupName(Found, S);
    312 
    313     if (!ObjectType.isNull())
    314       AllowFunctionTemplatesInLookup = false;
    315   }
    316 
    317   if (Found.empty() && !isDependent) {
    318     // If we did not find any names, attempt to correct any typos.
    319     DeclarationName Name = Found.getLookupName();
    320     Found.clear();
    321     // Simple filter callback that, for keywords, only accepts the C++ *_cast
    322     auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
    323     FilterCCC->WantTypeSpecifiers = false;
    324     FilterCCC->WantExpressionKeywords = false;
    325     FilterCCC->WantRemainingKeywords = false;
    326     FilterCCC->WantCXXNamedCasts = true;
    327     if (TypoCorrection Corrected = CorrectTypo(
    328             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
    329             std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
    330       Found.setLookupName(Corrected.getCorrection());
    331       if (Corrected.getCorrectionDecl())
    332         Found.addDecl(Corrected.getCorrectionDecl());
    333       FilterAcceptableTemplateNames(Found);
    334       if (!Found.empty()) {
    335         if (LookupCtx) {
    336           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    337           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    338                                   Name.getAsString() == CorrectedStr;
    339           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
    340                                     << Name << LookupCtx << DroppedSpecifier
    341                                     << SS.getRange());
    342         } else {
    343           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
    344         }
    345       }
    346     } else {
    347       Found.setLookupName(Name);
    348     }
    349   }
    350 
    351   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
    352   if (Found.empty()) {
    353     if (isDependent)
    354       MemberOfUnknownSpecialization = true;
    355     return;
    356   }
    357 
    358   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
    359       !getLangOpts().CPlusPlus11) {
    360     // C++03 [basic.lookup.classref]p1:
    361     //   [...] If the lookup in the class of the object expression finds a
    362     //   template, the name is also looked up in the context of the entire
    363     //   postfix-expression and [...]
    364     //
    365     // Note: C++11 does not perform this second lookup.
    366     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
    367                             LookupOrdinaryName);
    368     LookupName(FoundOuter, S);
    369     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
    370 
    371     if (FoundOuter.empty()) {
    372       //   - if the name is not found, the name found in the class of the
    373       //     object expression is used, otherwise
    374     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
    375                FoundOuter.isAmbiguous()) {
    376       //   - if the name is found in the context of the entire
    377       //     postfix-expression and does not name a class template, the name
    378       //     found in the class of the object expression is used, otherwise
    379       FoundOuter.clear();
    380     } else if (!Found.isSuppressingDiagnostics()) {
    381       //   - if the name found is a class template, it must refer to the same
    382       //     entity as the one found in the class of the object expression,
    383       //     otherwise the program is ill-formed.
    384       if (!Found.isSingleResult() ||
    385           Found.getFoundDecl()->getCanonicalDecl()
    386             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
    387         Diag(Found.getNameLoc(),
    388              diag::ext_nested_name_member_ref_lookup_ambiguous)
    389           << Found.getLookupName()
    390           << ObjectType;
    391         Diag(Found.getRepresentativeDecl()->getLocation(),
    392              diag::note_ambig_member_ref_object_type)
    393           << ObjectType;
    394         Diag(FoundOuter.getFoundDecl()->getLocation(),
    395              diag::note_ambig_member_ref_scope);
    396 
    397         // Recover by taking the template that we found in the object
    398         // expression's type.
    399       }
    400     }
    401   }
    402 }
    403 
    404 /// ActOnDependentIdExpression - Handle a dependent id-expression that
    405 /// was just parsed.  This is only possible with an explicit scope
    406 /// specifier naming a dependent type.
    407 ExprResult
    408 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
    409                                  SourceLocation TemplateKWLoc,
    410                                  const DeclarationNameInfo &NameInfo,
    411                                  bool isAddressOfOperand,
    412                            const TemplateArgumentListInfo *TemplateArgs) {
    413   DeclContext *DC = getFunctionLevelDeclContext();
    414 
    415   if (!isAddressOfOperand &&
    416       isa<CXXMethodDecl>(DC) &&
    417       cast<CXXMethodDecl>(DC)->isInstance()) {
    418     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
    419 
    420     // Since the 'this' expression is synthesized, we don't need to
    421     // perform the double-lookup check.
    422     NamedDecl *FirstQualifierInScope = nullptr;
    423 
    424     return CXXDependentScopeMemberExpr::Create(
    425         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
    426         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
    427         FirstQualifierInScope, NameInfo, TemplateArgs);
    428   }
    429 
    430   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
    431 }
    432 
    433 ExprResult
    434 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
    435                                 SourceLocation TemplateKWLoc,
    436                                 const DeclarationNameInfo &NameInfo,
    437                                 const TemplateArgumentListInfo *TemplateArgs) {
    438   return DependentScopeDeclRefExpr::Create(
    439       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
    440       TemplateArgs);
    441 }
    442 
    443 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
    444 /// that the template parameter 'PrevDecl' is being shadowed by a new
    445 /// declaration at location Loc. Returns true to indicate that this is
    446 /// an error, and false otherwise.
    447 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
    448   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
    449 
    450   // Microsoft Visual C++ permits template parameters to be shadowed.
    451   if (getLangOpts().MicrosoftExt)
    452     return;
    453 
    454   // C++ [temp.local]p4:
    455   //   A template-parameter shall not be redeclared within its
    456   //   scope (including nested scopes).
    457   Diag(Loc, diag::err_template_param_shadow)
    458     << cast<NamedDecl>(PrevDecl)->getDeclName();
    459   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
    460   return;
    461 }
    462 
    463 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
    464 /// the parameter D to reference the templated declaration and return a pointer
    465 /// to the template declaration. Otherwise, do nothing to D and return null.
    466 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
    467   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
    468     D = Temp->getTemplatedDecl();
    469     return Temp;
    470   }
    471   return nullptr;
    472 }
    473 
    474 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
    475                                              SourceLocation EllipsisLoc) const {
    476   assert(Kind == Template &&
    477          "Only template template arguments can be pack expansions here");
    478   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
    479          "Template template argument pack expansion without packs");
    480   ParsedTemplateArgument Result(*this);
    481   Result.EllipsisLoc = EllipsisLoc;
    482   return Result;
    483 }
    484 
    485 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
    486                                             const ParsedTemplateArgument &Arg) {
    487 
    488   switch (Arg.getKind()) {
    489   case ParsedTemplateArgument::Type: {
    490     TypeSourceInfo *DI;
    491     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
    492     if (!DI)
    493       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
    494     return TemplateArgumentLoc(TemplateArgument(T), DI);
    495   }
    496 
    497   case ParsedTemplateArgument::NonType: {
    498     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
    499     return TemplateArgumentLoc(TemplateArgument(E), E);
    500   }
    501 
    502   case ParsedTemplateArgument::Template: {
    503     TemplateName Template = Arg.getAsTemplate().get();
    504     TemplateArgument TArg;
    505     if (Arg.getEllipsisLoc().isValid())
    506       TArg = TemplateArgument(Template, Optional<unsigned int>());
    507     else
    508       TArg = Template;
    509     return TemplateArgumentLoc(TArg,
    510                                Arg.getScopeSpec().getWithLocInContext(
    511                                                               SemaRef.Context),
    512                                Arg.getLocation(),
    513                                Arg.getEllipsisLoc());
    514   }
    515   }
    516 
    517   llvm_unreachable("Unhandled parsed template argument");
    518 }
    519 
    520 /// \brief Translates template arguments as provided by the parser
    521 /// into template arguments used by semantic analysis.
    522 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
    523                                       TemplateArgumentListInfo &TemplateArgs) {
    524  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
    525    TemplateArgs.addArgument(translateTemplateArgument(*this,
    526                                                       TemplateArgsIn[I]));
    527 }
    528 
    529 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
    530                                                  SourceLocation Loc,
    531                                                  IdentifierInfo *Name) {
    532   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
    533       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
    534   if (PrevDecl && PrevDecl->isTemplateParameter())
    535     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
    536 }
    537 
    538 /// ActOnTypeParameter - Called when a C++ template type parameter
    539 /// (e.g., "typename T") has been parsed. Typename specifies whether
    540 /// the keyword "typename" was used to declare the type parameter
    541 /// (otherwise, "class" was used), and KeyLoc is the location of the
    542 /// "class" or "typename" keyword. ParamName is the name of the
    543 /// parameter (NULL indicates an unnamed template parameter) and
    544 /// ParamNameLoc is the location of the parameter name (if any).
    545 /// If the type parameter has a default argument, it will be added
    546 /// later via ActOnTypeParameterDefault.
    547 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
    548                                SourceLocation EllipsisLoc,
    549                                SourceLocation KeyLoc,
    550                                IdentifierInfo *ParamName,
    551                                SourceLocation ParamNameLoc,
    552                                unsigned Depth, unsigned Position,
    553                                SourceLocation EqualLoc,
    554                                ParsedType DefaultArg) {
    555   assert(S->isTemplateParamScope() &&
    556          "Template type parameter not in template parameter scope!");
    557   bool Invalid = false;
    558 
    559   SourceLocation Loc = ParamNameLoc;
    560   if (!ParamName)
    561     Loc = KeyLoc;
    562 
    563   bool IsParameterPack = EllipsisLoc.isValid();
    564   TemplateTypeParmDecl *Param
    565     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    566                                    KeyLoc, Loc, Depth, Position, ParamName,
    567                                    Typename, IsParameterPack);
    568   Param->setAccess(AS_public);
    569   if (Invalid)
    570     Param->setInvalidDecl();
    571 
    572   if (ParamName) {
    573     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
    574 
    575     // Add the template parameter into the current scope.
    576     S->AddDecl(Param);
    577     IdResolver.AddDecl(Param);
    578   }
    579 
    580   // C++0x [temp.param]p9:
    581   //   A default template-argument may be specified for any kind of
    582   //   template-parameter that is not a template parameter pack.
    583   if (DefaultArg && IsParameterPack) {
    584     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    585     DefaultArg = ParsedType();
    586   }
    587 
    588   // Handle the default argument, if provided.
    589   if (DefaultArg) {
    590     TypeSourceInfo *DefaultTInfo;
    591     GetTypeFromParser(DefaultArg, &DefaultTInfo);
    592 
    593     assert(DefaultTInfo && "expected source information for type");
    594 
    595     // Check for unexpanded parameter packs.
    596     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
    597                                         UPPC_DefaultArgument))
    598       return Param;
    599 
    600     // Check the template argument itself.
    601     if (CheckTemplateArgument(Param, DefaultTInfo)) {
    602       Param->setInvalidDecl();
    603       return Param;
    604     }
    605 
    606     Param->setDefaultArgument(DefaultTInfo, false);
    607   }
    608 
    609   return Param;
    610 }
    611 
    612 /// \brief Check that the type of a non-type template parameter is
    613 /// well-formed.
    614 ///
    615 /// \returns the (possibly-promoted) parameter type if valid;
    616 /// otherwise, produces a diagnostic and returns a NULL type.
    617 QualType
    618 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
    619   // We don't allow variably-modified types as the type of non-type template
    620   // parameters.
    621   if (T->isVariablyModifiedType()) {
    622     Diag(Loc, diag::err_variably_modified_nontype_template_param)
    623       << T;
    624     return QualType();
    625   }
    626 
    627   // C++ [temp.param]p4:
    628   //
    629   // A non-type template-parameter shall have one of the following
    630   // (optionally cv-qualified) types:
    631   //
    632   //       -- integral or enumeration type,
    633   if (T->isIntegralOrEnumerationType() ||
    634       //   -- pointer to object or pointer to function,
    635       T->isPointerType() ||
    636       //   -- reference to object or reference to function,
    637       T->isReferenceType() ||
    638       //   -- pointer to member,
    639       T->isMemberPointerType() ||
    640       //   -- std::nullptr_t.
    641       T->isNullPtrType() ||
    642       // If T is a dependent type, we can't do the check now, so we
    643       // assume that it is well-formed.
    644       T->isDependentType()) {
    645     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
    646     // are ignored when determining its type.
    647     return T.getUnqualifiedType();
    648   }
    649 
    650   // C++ [temp.param]p8:
    651   //
    652   //   A non-type template-parameter of type "array of T" or
    653   //   "function returning T" is adjusted to be of type "pointer to
    654   //   T" or "pointer to function returning T", respectively.
    655   else if (T->isArrayType() || T->isFunctionType())
    656     return Context.getDecayedType(T);
    657 
    658   Diag(Loc, diag::err_template_nontype_parm_bad_type)
    659     << T;
    660 
    661   return QualType();
    662 }
    663 
    664 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
    665                                           unsigned Depth,
    666                                           unsigned Position,
    667                                           SourceLocation EqualLoc,
    668                                           Expr *Default) {
    669   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
    670   QualType T = TInfo->getType();
    671 
    672   assert(S->isTemplateParamScope() &&
    673          "Non-type template parameter not in template parameter scope!");
    674   bool Invalid = false;
    675 
    676   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
    677   if (T.isNull()) {
    678     T = Context.IntTy; // Recover with an 'int' type.
    679     Invalid = true;
    680   }
    681 
    682   IdentifierInfo *ParamName = D.getIdentifier();
    683   bool IsParameterPack = D.hasEllipsis();
    684   NonTypeTemplateParmDecl *Param
    685     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    686                                       D.getLocStart(),
    687                                       D.getIdentifierLoc(),
    688                                       Depth, Position, ParamName, T,
    689                                       IsParameterPack, TInfo);
    690   Param->setAccess(AS_public);
    691 
    692   if (Invalid)
    693     Param->setInvalidDecl();
    694 
    695   if (ParamName) {
    696     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
    697                                          ParamName);
    698 
    699     // Add the template parameter into the current scope.
    700     S->AddDecl(Param);
    701     IdResolver.AddDecl(Param);
    702   }
    703 
    704   // C++0x [temp.param]p9:
    705   //   A default template-argument may be specified for any kind of
    706   //   template-parameter that is not a template parameter pack.
    707   if (Default && IsParameterPack) {
    708     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    709     Default = nullptr;
    710   }
    711 
    712   // Check the well-formedness of the default template argument, if provided.
    713   if (Default) {
    714     // Check for unexpanded parameter packs.
    715     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
    716       return Param;
    717 
    718     TemplateArgument Converted;
    719     ExprResult DefaultRes =
    720         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
    721     if (DefaultRes.isInvalid()) {
    722       Param->setInvalidDecl();
    723       return Param;
    724     }
    725     Default = DefaultRes.get();
    726 
    727     Param->setDefaultArgument(Default, false);
    728   }
    729 
    730   return Param;
    731 }
    732 
    733 /// ActOnTemplateTemplateParameter - Called when a C++ template template
    734 /// parameter (e.g. T in template <template \<typename> class T> class array)
    735 /// has been parsed. S is the current scope.
    736 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
    737                                            SourceLocation TmpLoc,
    738                                            TemplateParameterList *Params,
    739                                            SourceLocation EllipsisLoc,
    740                                            IdentifierInfo *Name,
    741                                            SourceLocation NameLoc,
    742                                            unsigned Depth,
    743                                            unsigned Position,
    744                                            SourceLocation EqualLoc,
    745                                            ParsedTemplateArgument Default) {
    746   assert(S->isTemplateParamScope() &&
    747          "Template template parameter not in template parameter scope!");
    748 
    749   // Construct the parameter object.
    750   bool IsParameterPack = EllipsisLoc.isValid();
    751   TemplateTemplateParmDecl *Param =
    752     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    753                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
    754                                      Depth, Position, IsParameterPack,
    755                                      Name, Params);
    756   Param->setAccess(AS_public);
    757 
    758   // If the template template parameter has a name, then link the identifier
    759   // into the scope and lookup mechanisms.
    760   if (Name) {
    761     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
    762 
    763     S->AddDecl(Param);
    764     IdResolver.AddDecl(Param);
    765   }
    766 
    767   if (Params->size() == 0) {
    768     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
    769     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
    770     Param->setInvalidDecl();
    771   }
    772 
    773   // C++0x [temp.param]p9:
    774   //   A default template-argument may be specified for any kind of
    775   //   template-parameter that is not a template parameter pack.
    776   if (IsParameterPack && !Default.isInvalid()) {
    777     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    778     Default = ParsedTemplateArgument();
    779   }
    780 
    781   if (!Default.isInvalid()) {
    782     // Check only that we have a template template argument. We don't want to
    783     // try to check well-formedness now, because our template template parameter
    784     // might have dependent types in its template parameters, which we wouldn't
    785     // be able to match now.
    786     //
    787     // If none of the template template parameter's template arguments mention
    788     // other template parameters, we could actually perform more checking here.
    789     // However, it isn't worth doing.
    790     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
    791     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
    792       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
    793         << DefaultArg.getSourceRange();
    794       return Param;
    795     }
    796 
    797     // Check for unexpanded parameter packs.
    798     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
    799                                         DefaultArg.getArgument().getAsTemplate(),
    800                                         UPPC_DefaultArgument))
    801       return Param;
    802 
    803     Param->setDefaultArgument(DefaultArg, false);
    804   }
    805 
    806   return Param;
    807 }
    808 
    809 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
    810 /// contains the template parameters in Params/NumParams.
    811 TemplateParameterList *
    812 Sema::ActOnTemplateParameterList(unsigned Depth,
    813                                  SourceLocation ExportLoc,
    814                                  SourceLocation TemplateLoc,
    815                                  SourceLocation LAngleLoc,
    816                                  Decl **Params, unsigned NumParams,
    817                                  SourceLocation RAngleLoc) {
    818   if (ExportLoc.isValid())
    819     Diag(ExportLoc, diag::warn_template_export_unsupported);
    820 
    821   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
    822                                        (NamedDecl**)Params, NumParams,
    823                                        RAngleLoc);
    824 }
    825 
    826 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
    827   if (SS.isSet())
    828     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
    829 }
    830 
    831 DeclResult
    832 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
    833                          SourceLocation KWLoc, CXXScopeSpec &SS,
    834                          IdentifierInfo *Name, SourceLocation NameLoc,
    835                          AttributeList *Attr,
    836                          TemplateParameterList *TemplateParams,
    837                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
    838                          SourceLocation FriendLoc,
    839                          unsigned NumOuterTemplateParamLists,
    840                          TemplateParameterList** OuterTemplateParamLists,
    841                          bool *SkipBody) {
    842   assert(TemplateParams && TemplateParams->size() > 0 &&
    843          "No template parameters");
    844   assert(TUK != TUK_Reference && "Can only declare or define class templates");
    845   bool Invalid = false;
    846 
    847   // Check that we can declare a template here.
    848   if (CheckTemplateDeclScope(S, TemplateParams))
    849     return true;
    850 
    851   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
    852   assert(Kind != TTK_Enum && "can't build template of enumerated type");
    853 
    854   // There is no such thing as an unnamed class template.
    855   if (!Name) {
    856     Diag(KWLoc, diag::err_template_unnamed_class);
    857     return true;
    858   }
    859 
    860   // Find any previous declaration with this name. For a friend with no
    861   // scope explicitly specified, we only look for tag declarations (per
    862   // C++11 [basic.lookup.elab]p2).
    863   DeclContext *SemanticContext;
    864   LookupResult Previous(*this, Name, NameLoc,
    865                         (SS.isEmpty() && TUK == TUK_Friend)
    866                           ? LookupTagName : LookupOrdinaryName,
    867                         ForRedeclaration);
    868   if (SS.isNotEmpty() && !SS.isInvalid()) {
    869     SemanticContext = computeDeclContext(SS, true);
    870     if (!SemanticContext) {
    871       // FIXME: Horrible, horrible hack! We can't currently represent this
    872       // in the AST, and historically we have just ignored such friend
    873       // class templates, so don't complain here.
    874       Diag(NameLoc, TUK == TUK_Friend
    875                         ? diag::warn_template_qualified_friend_ignored
    876                         : diag::err_template_qualified_declarator_no_match)
    877           << SS.getScopeRep() << SS.getRange();
    878       return TUK != TUK_Friend;
    879     }
    880 
    881     if (RequireCompleteDeclContext(SS, SemanticContext))
    882       return true;
    883 
    884     // If we're adding a template to a dependent context, we may need to
    885     // rebuilding some of the types used within the template parameter list,
    886     // now that we know what the current instantiation is.
    887     if (SemanticContext->isDependentContext()) {
    888       ContextRAII SavedContext(*this, SemanticContext);
    889       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
    890         Invalid = true;
    891     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
    892       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
    893 
    894     LookupQualifiedName(Previous, SemanticContext);
    895   } else {
    896     SemanticContext = CurContext;
    897     LookupName(Previous, S);
    898   }
    899 
    900   if (Previous.isAmbiguous())
    901     return true;
    902 
    903   NamedDecl *PrevDecl = nullptr;
    904   if (Previous.begin() != Previous.end())
    905     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
    906 
    907   // If there is a previous declaration with the same name, check
    908   // whether this is a valid redeclaration.
    909   ClassTemplateDecl *PrevClassTemplate
    910     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
    911 
    912   // We may have found the injected-class-name of a class template,
    913   // class template partial specialization, or class template specialization.
    914   // In these cases, grab the template that is being defined or specialized.
    915   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
    916       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
    917     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
    918     PrevClassTemplate
    919       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
    920     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
    921       PrevClassTemplate
    922         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
    923             ->getSpecializedTemplate();
    924     }
    925   }
    926 
    927   if (TUK == TUK_Friend) {
    928     // C++ [namespace.memdef]p3:
    929     //   [...] When looking for a prior declaration of a class or a function
    930     //   declared as a friend, and when the name of the friend class or
    931     //   function is neither a qualified name nor a template-id, scopes outside
    932     //   the innermost enclosing namespace scope are not considered.
    933     if (!SS.isSet()) {
    934       DeclContext *OutermostContext = CurContext;
    935       while (!OutermostContext->isFileContext())
    936         OutermostContext = OutermostContext->getLookupParent();
    937 
    938       if (PrevDecl &&
    939           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
    940            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
    941         SemanticContext = PrevDecl->getDeclContext();
    942       } else {
    943         // Declarations in outer scopes don't matter. However, the outermost
    944         // context we computed is the semantic context for our new
    945         // declaration.
    946         PrevDecl = PrevClassTemplate = nullptr;
    947         SemanticContext = OutermostContext;
    948 
    949         // Check that the chosen semantic context doesn't already contain a
    950         // declaration of this name as a non-tag type.
    951         LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
    952                               ForRedeclaration);
    953         DeclContext *LookupContext = SemanticContext;
    954         while (LookupContext->isTransparentContext())
    955           LookupContext = LookupContext->getLookupParent();
    956         LookupQualifiedName(Previous, LookupContext);
    957 
    958         if (Previous.isAmbiguous())
    959           return true;
    960 
    961         if (Previous.begin() != Previous.end())
    962           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
    963       }
    964     }
    965   } else if (PrevDecl &&
    966              !isDeclInScope(PrevDecl, SemanticContext, S, SS.isValid()))
    967     PrevDecl = PrevClassTemplate = nullptr;
    968 
    969   if (PrevClassTemplate) {
    970     // Ensure that the template parameter lists are compatible. Skip this check
    971     // for a friend in a dependent context: the template parameter list itself
    972     // could be dependent.
    973     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
    974         !TemplateParameterListsAreEqual(TemplateParams,
    975                                    PrevClassTemplate->getTemplateParameters(),
    976                                         /*Complain=*/true,
    977                                         TPL_TemplateMatch))
    978       return true;
    979 
    980     // C++ [temp.class]p4:
    981     //   In a redeclaration, partial specialization, explicit
    982     //   specialization or explicit instantiation of a class template,
    983     //   the class-key shall agree in kind with the original class
    984     //   template declaration (7.1.5.3).
    985     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
    986     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
    987                                       TUK == TUK_Definition,  KWLoc, *Name)) {
    988       Diag(KWLoc, diag::err_use_with_wrong_tag)
    989         << Name
    990         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
    991       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
    992       Kind = PrevRecordDecl->getTagKind();
    993     }
    994 
    995     // Check for redefinition of this class template.
    996     if (TUK == TUK_Definition) {
    997       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
    998         // If we have a prior definition that is not visible, treat this as
    999         // simply making that previous definition visible.
   1000         NamedDecl *Hidden = nullptr;
   1001         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
   1002           *SkipBody = true;
   1003           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
   1004           assert(Tmpl && "original definition of a class template is not a "
   1005                          "class template?");
   1006           if (auto *Listener = getASTMutationListener()) {
   1007             Listener->RedefinedHiddenDefinition(Hidden, KWLoc);
   1008             Listener->RedefinedHiddenDefinition(Tmpl, KWLoc);
   1009           }
   1010           Hidden->setHidden(false);
   1011           Tmpl->setHidden(false);
   1012           return Def;
   1013         }
   1014 
   1015         Diag(NameLoc, diag::err_redefinition) << Name;
   1016         Diag(Def->getLocation(), diag::note_previous_definition);
   1017         // FIXME: Would it make sense to try to "forget" the previous
   1018         // definition, as part of error recovery?
   1019         return true;
   1020       }
   1021     }
   1022   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
   1023     // Maybe we will complain about the shadowed template parameter.
   1024     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
   1025     // Just pretend that we didn't see the previous declaration.
   1026     PrevDecl = nullptr;
   1027   } else if (PrevDecl) {
   1028     // C++ [temp]p5:
   1029     //   A class template shall not have the same name as any other
   1030     //   template, class, function, object, enumeration, enumerator,
   1031     //   namespace, or type in the same scope (3.3), except as specified
   1032     //   in (14.5.4).
   1033     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   1034     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1035     return true;
   1036   }
   1037 
   1038   // Check the template parameter list of this declaration, possibly
   1039   // merging in the template parameter list from the previous class
   1040   // template declaration. Skip this check for a friend in a dependent
   1041   // context, because the template parameter list might be dependent.
   1042   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
   1043       CheckTemplateParameterList(
   1044           TemplateParams,
   1045           PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
   1046                             : nullptr,
   1047           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
   1048            SemanticContext->isDependentContext())
   1049               ? TPC_ClassTemplateMember
   1050               : TUK == TUK_Friend ? TPC_FriendClassTemplate
   1051                                   : TPC_ClassTemplate))
   1052     Invalid = true;
   1053 
   1054   if (SS.isSet()) {
   1055     // If the name of the template was qualified, we must be defining the
   1056     // template out-of-line.
   1057     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
   1058       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
   1059                                       : diag::err_member_decl_does_not_match)
   1060         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
   1061       Invalid = true;
   1062     }
   1063   }
   1064 
   1065   CXXRecordDecl *NewClass =
   1066     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
   1067                           PrevClassTemplate?
   1068                             PrevClassTemplate->getTemplatedDecl() : nullptr,
   1069                           /*DelayTypeCreation=*/true);
   1070   SetNestedNameSpecifier(NewClass, SS);
   1071   if (NumOuterTemplateParamLists > 0)
   1072     NewClass->setTemplateParameterListsInfo(Context,
   1073                                             NumOuterTemplateParamLists,
   1074                                             OuterTemplateParamLists);
   1075 
   1076   // Add alignment attributes if necessary; these attributes are checked when
   1077   // the ASTContext lays out the structure.
   1078   if (TUK == TUK_Definition) {
   1079     AddAlignmentAttributesForRecord(NewClass);
   1080     AddMsStructLayoutForRecord(NewClass);
   1081   }
   1082 
   1083   ClassTemplateDecl *NewTemplate
   1084     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
   1085                                 DeclarationName(Name), TemplateParams,
   1086                                 NewClass, PrevClassTemplate);
   1087   NewClass->setDescribedClassTemplate(NewTemplate);
   1088 
   1089   if (ModulePrivateLoc.isValid())
   1090     NewTemplate->setModulePrivate();
   1091 
   1092   // Build the type for the class template declaration now.
   1093   QualType T = NewTemplate->getInjectedClassNameSpecialization();
   1094   T = Context.getInjectedClassNameType(NewClass, T);
   1095   assert(T->isDependentType() && "Class template type is not dependent?");
   1096   (void)T;
   1097 
   1098   // If we are providing an explicit specialization of a member that is a
   1099   // class template, make a note of that.
   1100   if (PrevClassTemplate &&
   1101       PrevClassTemplate->getInstantiatedFromMemberTemplate())
   1102     PrevClassTemplate->setMemberSpecialization();
   1103 
   1104   // Set the access specifier.
   1105   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
   1106     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
   1107 
   1108   // Set the lexical context of these templates
   1109   NewClass->setLexicalDeclContext(CurContext);
   1110   NewTemplate->setLexicalDeclContext(CurContext);
   1111 
   1112   if (TUK == TUK_Definition)
   1113     NewClass->startDefinition();
   1114 
   1115   if (Attr)
   1116     ProcessDeclAttributeList(S, NewClass, Attr);
   1117 
   1118   if (PrevClassTemplate)
   1119     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
   1120 
   1121   AddPushedVisibilityAttribute(NewClass);
   1122 
   1123   if (TUK != TUK_Friend) {
   1124     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
   1125     Scope *Outer = S;
   1126     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
   1127       Outer = Outer->getParent();
   1128     PushOnScopeChains(NewTemplate, Outer);
   1129   } else {
   1130     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
   1131       NewTemplate->setAccess(PrevClassTemplate->getAccess());
   1132       NewClass->setAccess(PrevClassTemplate->getAccess());
   1133     }
   1134 
   1135     NewTemplate->setObjectOfFriendDecl();
   1136 
   1137     // Friend templates are visible in fairly strange ways.
   1138     if (!CurContext->isDependentContext()) {
   1139       DeclContext *DC = SemanticContext->getRedeclContext();
   1140       DC->makeDeclVisibleInContext(NewTemplate);
   1141       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   1142         PushOnScopeChains(NewTemplate, EnclosingScope,
   1143                           /* AddToContext = */ false);
   1144     }
   1145 
   1146     FriendDecl *Friend = FriendDecl::Create(
   1147         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
   1148     Friend->setAccess(AS_public);
   1149     CurContext->addDecl(Friend);
   1150   }
   1151 
   1152   if (Invalid) {
   1153     NewTemplate->setInvalidDecl();
   1154     NewClass->setInvalidDecl();
   1155   }
   1156 
   1157   ActOnDocumentableDecl(NewTemplate);
   1158 
   1159   return NewTemplate;
   1160 }
   1161 
   1162 /// \brief Diagnose the presence of a default template argument on a
   1163 /// template parameter, which is ill-formed in certain contexts.
   1164 ///
   1165 /// \returns true if the default template argument should be dropped.
   1166 static bool DiagnoseDefaultTemplateArgument(Sema &S,
   1167                                             Sema::TemplateParamListContext TPC,
   1168                                             SourceLocation ParamLoc,
   1169                                             SourceRange DefArgRange) {
   1170   switch (TPC) {
   1171   case Sema::TPC_ClassTemplate:
   1172   case Sema::TPC_VarTemplate:
   1173   case Sema::TPC_TypeAliasTemplate:
   1174     return false;
   1175 
   1176   case Sema::TPC_FunctionTemplate:
   1177   case Sema::TPC_FriendFunctionTemplateDefinition:
   1178     // C++ [temp.param]p9:
   1179     //   A default template-argument shall not be specified in a
   1180     //   function template declaration or a function template
   1181     //   definition [...]
   1182     //   If a friend function template declaration specifies a default
   1183     //   template-argument, that declaration shall be a definition and shall be
   1184     //   the only declaration of the function template in the translation unit.
   1185     // (C++98/03 doesn't have this wording; see DR226).
   1186     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
   1187          diag::warn_cxx98_compat_template_parameter_default_in_function_template
   1188            : diag::ext_template_parameter_default_in_function_template)
   1189       << DefArgRange;
   1190     return false;
   1191 
   1192   case Sema::TPC_ClassTemplateMember:
   1193     // C++0x [temp.param]p9:
   1194     //   A default template-argument shall not be specified in the
   1195     //   template-parameter-lists of the definition of a member of a
   1196     //   class template that appears outside of the member's class.
   1197     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
   1198       << DefArgRange;
   1199     return true;
   1200 
   1201   case Sema::TPC_FriendClassTemplate:
   1202   case Sema::TPC_FriendFunctionTemplate:
   1203     // C++ [temp.param]p9:
   1204     //   A default template-argument shall not be specified in a
   1205     //   friend template declaration.
   1206     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
   1207       << DefArgRange;
   1208     return true;
   1209 
   1210     // FIXME: C++0x [temp.param]p9 allows default template-arguments
   1211     // for friend function templates if there is only a single
   1212     // declaration (and it is a definition). Strange!
   1213   }
   1214 
   1215   llvm_unreachable("Invalid TemplateParamListContext!");
   1216 }
   1217 
   1218 /// \brief Check for unexpanded parameter packs within the template parameters
   1219 /// of a template template parameter, recursively.
   1220 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
   1221                                              TemplateTemplateParmDecl *TTP) {
   1222   // A template template parameter which is a parameter pack is also a pack
   1223   // expansion.
   1224   if (TTP->isParameterPack())
   1225     return false;
   1226 
   1227   TemplateParameterList *Params = TTP->getTemplateParameters();
   1228   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   1229     NamedDecl *P = Params->getParam(I);
   1230     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
   1231       if (!NTTP->isParameterPack() &&
   1232           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
   1233                                             NTTP->getTypeSourceInfo(),
   1234                                       Sema::UPPC_NonTypeTemplateParameterType))
   1235         return true;
   1236 
   1237       continue;
   1238     }
   1239 
   1240     if (TemplateTemplateParmDecl *InnerTTP
   1241                                         = dyn_cast<TemplateTemplateParmDecl>(P))
   1242       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
   1243         return true;
   1244   }
   1245 
   1246   return false;
   1247 }
   1248 
   1249 /// \brief Checks the validity of a template parameter list, possibly
   1250 /// considering the template parameter list from a previous
   1251 /// declaration.
   1252 ///
   1253 /// If an "old" template parameter list is provided, it must be
   1254 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
   1255 /// template parameter list.
   1256 ///
   1257 /// \param NewParams Template parameter list for a new template
   1258 /// declaration. This template parameter list will be updated with any
   1259 /// default arguments that are carried through from the previous
   1260 /// template parameter list.
   1261 ///
   1262 /// \param OldParams If provided, template parameter list from a
   1263 /// previous declaration of the same template. Default template
   1264 /// arguments will be merged from the old template parameter list to
   1265 /// the new template parameter list.
   1266 ///
   1267 /// \param TPC Describes the context in which we are checking the given
   1268 /// template parameter list.
   1269 ///
   1270 /// \returns true if an error occurred, false otherwise.
   1271 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
   1272                                       TemplateParameterList *OldParams,
   1273                                       TemplateParamListContext TPC) {
   1274   bool Invalid = false;
   1275 
   1276   // C++ [temp.param]p10:
   1277   //   The set of default template-arguments available for use with a
   1278   //   template declaration or definition is obtained by merging the
   1279   //   default arguments from the definition (if in scope) and all
   1280   //   declarations in scope in the same way default function
   1281   //   arguments are (8.3.6).
   1282   bool SawDefaultArgument = false;
   1283   SourceLocation PreviousDefaultArgLoc;
   1284 
   1285   // Dummy initialization to avoid warnings.
   1286   TemplateParameterList::iterator OldParam = NewParams->end();
   1287   if (OldParams)
   1288     OldParam = OldParams->begin();
   1289 
   1290   bool RemoveDefaultArguments = false;
   1291   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1292                                     NewParamEnd = NewParams->end();
   1293        NewParam != NewParamEnd; ++NewParam) {
   1294     // Variables used to diagnose redundant default arguments
   1295     bool RedundantDefaultArg = false;
   1296     SourceLocation OldDefaultLoc;
   1297     SourceLocation NewDefaultLoc;
   1298 
   1299     // Variable used to diagnose missing default arguments
   1300     bool MissingDefaultArg = false;
   1301 
   1302     // Variable used to diagnose non-final parameter packs
   1303     bool SawParameterPack = false;
   1304 
   1305     if (TemplateTypeParmDecl *NewTypeParm
   1306           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
   1307       // Check the presence of a default argument here.
   1308       if (NewTypeParm->hasDefaultArgument() &&
   1309           DiagnoseDefaultTemplateArgument(*this, TPC,
   1310                                           NewTypeParm->getLocation(),
   1311                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
   1312                                                        .getSourceRange()))
   1313         NewTypeParm->removeDefaultArgument();
   1314 
   1315       // Merge default arguments for template type parameters.
   1316       TemplateTypeParmDecl *OldTypeParm
   1317           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
   1318 
   1319       if (NewTypeParm->isParameterPack()) {
   1320         assert(!NewTypeParm->hasDefaultArgument() &&
   1321                "Parameter packs can't have a default argument!");
   1322         SawParameterPack = true;
   1323       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
   1324                  NewTypeParm->hasDefaultArgument()) {
   1325         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
   1326         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
   1327         SawDefaultArgument = true;
   1328         RedundantDefaultArg = true;
   1329         PreviousDefaultArgLoc = NewDefaultLoc;
   1330       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
   1331         // Merge the default argument from the old declaration to the
   1332         // new declaration.
   1333         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
   1334                                         true);
   1335         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
   1336       } else if (NewTypeParm->hasDefaultArgument()) {
   1337         SawDefaultArgument = true;
   1338         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
   1339       } else if (SawDefaultArgument)
   1340         MissingDefaultArg = true;
   1341     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
   1342                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
   1343       // Check for unexpanded parameter packs.
   1344       if (!NewNonTypeParm->isParameterPack() &&
   1345           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
   1346                                           NewNonTypeParm->getTypeSourceInfo(),
   1347                                           UPPC_NonTypeTemplateParameterType)) {
   1348         Invalid = true;
   1349         continue;
   1350       }
   1351 
   1352       // Check the presence of a default argument here.
   1353       if (NewNonTypeParm->hasDefaultArgument() &&
   1354           DiagnoseDefaultTemplateArgument(*this, TPC,
   1355                                           NewNonTypeParm->getLocation(),
   1356                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
   1357         NewNonTypeParm->removeDefaultArgument();
   1358       }
   1359 
   1360       // Merge default arguments for non-type template parameters
   1361       NonTypeTemplateParmDecl *OldNonTypeParm
   1362         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
   1363       if (NewNonTypeParm->isParameterPack()) {
   1364         assert(!NewNonTypeParm->hasDefaultArgument() &&
   1365                "Parameter packs can't have a default argument!");
   1366         if (!NewNonTypeParm->isPackExpansion())
   1367           SawParameterPack = true;
   1368       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
   1369                  NewNonTypeParm->hasDefaultArgument()) {
   1370         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1371         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1372         SawDefaultArgument = true;
   1373         RedundantDefaultArg = true;
   1374         PreviousDefaultArgLoc = NewDefaultLoc;
   1375       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
   1376         // Merge the default argument from the old declaration to the
   1377         // new declaration.
   1378         // FIXME: We need to create a new kind of "default argument"
   1379         // expression that points to a previous non-type template
   1380         // parameter.
   1381         NewNonTypeParm->setDefaultArgument(
   1382                                          OldNonTypeParm->getDefaultArgument(),
   1383                                          /*Inherited=*/ true);
   1384         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1385       } else if (NewNonTypeParm->hasDefaultArgument()) {
   1386         SawDefaultArgument = true;
   1387         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1388       } else if (SawDefaultArgument)
   1389         MissingDefaultArg = true;
   1390     } else {
   1391       TemplateTemplateParmDecl *NewTemplateParm
   1392         = cast<TemplateTemplateParmDecl>(*NewParam);
   1393 
   1394       // Check for unexpanded parameter packs, recursively.
   1395       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
   1396         Invalid = true;
   1397         continue;
   1398       }
   1399 
   1400       // Check the presence of a default argument here.
   1401       if (NewTemplateParm->hasDefaultArgument() &&
   1402           DiagnoseDefaultTemplateArgument(*this, TPC,
   1403                                           NewTemplateParm->getLocation(),
   1404                      NewTemplateParm->getDefaultArgument().getSourceRange()))
   1405         NewTemplateParm->removeDefaultArgument();
   1406 
   1407       // Merge default arguments for template template parameters
   1408       TemplateTemplateParmDecl *OldTemplateParm
   1409         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
   1410       if (NewTemplateParm->isParameterPack()) {
   1411         assert(!NewTemplateParm->hasDefaultArgument() &&
   1412                "Parameter packs can't have a default argument!");
   1413         if (!NewTemplateParm->isPackExpansion())
   1414           SawParameterPack = true;
   1415       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
   1416           NewTemplateParm->hasDefaultArgument()) {
   1417         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
   1418         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
   1419         SawDefaultArgument = true;
   1420         RedundantDefaultArg = true;
   1421         PreviousDefaultArgLoc = NewDefaultLoc;
   1422       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
   1423         // Merge the default argument from the old declaration to the
   1424         // new declaration.
   1425         // FIXME: We need to create a new kind of "default argument" expression
   1426         // that points to a previous template template parameter.
   1427         NewTemplateParm->setDefaultArgument(
   1428                                           OldTemplateParm->getDefaultArgument(),
   1429                                           /*Inherited=*/ true);
   1430         PreviousDefaultArgLoc
   1431           = OldTemplateParm->getDefaultArgument().getLocation();
   1432       } else if (NewTemplateParm->hasDefaultArgument()) {
   1433         SawDefaultArgument = true;
   1434         PreviousDefaultArgLoc
   1435           = NewTemplateParm->getDefaultArgument().getLocation();
   1436       } else if (SawDefaultArgument)
   1437         MissingDefaultArg = true;
   1438     }
   1439 
   1440     // C++11 [temp.param]p11:
   1441     //   If a template parameter of a primary class template or alias template
   1442     //   is a template parameter pack, it shall be the last template parameter.
   1443     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
   1444         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
   1445          TPC == TPC_TypeAliasTemplate)) {
   1446       Diag((*NewParam)->getLocation(),
   1447            diag::err_template_param_pack_must_be_last_template_parameter);
   1448       Invalid = true;
   1449     }
   1450 
   1451     if (RedundantDefaultArg) {
   1452       // C++ [temp.param]p12:
   1453       //   A template-parameter shall not be given default arguments
   1454       //   by two different declarations in the same scope.
   1455       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
   1456       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
   1457       Invalid = true;
   1458     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
   1459       // C++ [temp.param]p11:
   1460       //   If a template-parameter of a class template has a default
   1461       //   template-argument, each subsequent template-parameter shall either
   1462       //   have a default template-argument supplied or be a template parameter
   1463       //   pack.
   1464       Diag((*NewParam)->getLocation(),
   1465            diag::err_template_param_default_arg_missing);
   1466       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
   1467       Invalid = true;
   1468       RemoveDefaultArguments = true;
   1469     }
   1470 
   1471     // If we have an old template parameter list that we're merging
   1472     // in, move on to the next parameter.
   1473     if (OldParams)
   1474       ++OldParam;
   1475   }
   1476 
   1477   // We were missing some default arguments at the end of the list, so remove
   1478   // all of the default arguments.
   1479   if (RemoveDefaultArguments) {
   1480     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1481                                       NewParamEnd = NewParams->end();
   1482          NewParam != NewParamEnd; ++NewParam) {
   1483       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
   1484         TTP->removeDefaultArgument();
   1485       else if (NonTypeTemplateParmDecl *NTTP
   1486                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
   1487         NTTP->removeDefaultArgument();
   1488       else
   1489         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
   1490     }
   1491   }
   1492 
   1493   return Invalid;
   1494 }
   1495 
   1496 namespace {
   1497 
   1498 /// A class which looks for a use of a certain level of template
   1499 /// parameter.
   1500 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
   1501   typedef RecursiveASTVisitor<DependencyChecker> super;
   1502 
   1503   unsigned Depth;
   1504   bool Match;
   1505   SourceLocation MatchLoc;
   1506 
   1507   DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
   1508 
   1509   DependencyChecker(TemplateParameterList *Params) : Match(false) {
   1510     NamedDecl *ND = Params->getParam(0);
   1511     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
   1512       Depth = PD->getDepth();
   1513     } else if (NonTypeTemplateParmDecl *PD =
   1514                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
   1515       Depth = PD->getDepth();
   1516     } else {
   1517       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
   1518     }
   1519   }
   1520 
   1521   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
   1522     if (ParmDepth >= Depth) {
   1523       Match = true;
   1524       MatchLoc = Loc;
   1525       return true;
   1526     }
   1527     return false;
   1528   }
   1529 
   1530   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
   1531     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
   1532   }
   1533 
   1534   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
   1535     return !Matches(T->getDepth());
   1536   }
   1537 
   1538   bool TraverseTemplateName(TemplateName N) {
   1539     if (TemplateTemplateParmDecl *PD =
   1540           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
   1541       if (Matches(PD->getDepth()))
   1542         return false;
   1543     return super::TraverseTemplateName(N);
   1544   }
   1545 
   1546   bool VisitDeclRefExpr(DeclRefExpr *E) {
   1547     if (NonTypeTemplateParmDecl *PD =
   1548           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
   1549       if (Matches(PD->getDepth(), E->getExprLoc()))
   1550         return false;
   1551     return super::VisitDeclRefExpr(E);
   1552   }
   1553 
   1554   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
   1555     return TraverseType(T->getReplacementType());
   1556   }
   1557 
   1558   bool
   1559   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
   1560     return TraverseTemplateArgument(T->getArgumentPack());
   1561   }
   1562 
   1563   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
   1564     return TraverseType(T->getInjectedSpecializationType());
   1565   }
   1566 };
   1567 }
   1568 
   1569 /// Determines whether a given type depends on the given parameter
   1570 /// list.
   1571 static bool
   1572 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
   1573   DependencyChecker Checker(Params);
   1574   Checker.TraverseType(T);
   1575   return Checker.Match;
   1576 }
   1577 
   1578 // Find the source range corresponding to the named type in the given
   1579 // nested-name-specifier, if any.
   1580 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
   1581                                                        QualType T,
   1582                                                        const CXXScopeSpec &SS) {
   1583   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
   1584   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
   1585     if (const Type *CurType = NNS->getAsType()) {
   1586       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
   1587         return NNSLoc.getTypeLoc().getSourceRange();
   1588     } else
   1589       break;
   1590 
   1591     NNSLoc = NNSLoc.getPrefix();
   1592   }
   1593 
   1594   return SourceRange();
   1595 }
   1596 
   1597 /// \brief Match the given template parameter lists to the given scope
   1598 /// specifier, returning the template parameter list that applies to the
   1599 /// name.
   1600 ///
   1601 /// \param DeclStartLoc the start of the declaration that has a scope
   1602 /// specifier or a template parameter list.
   1603 ///
   1604 /// \param DeclLoc The location of the declaration itself.
   1605 ///
   1606 /// \param SS the scope specifier that will be matched to the given template
   1607 /// parameter lists. This scope specifier precedes a qualified name that is
   1608 /// being declared.
   1609 ///
   1610 /// \param TemplateId The template-id following the scope specifier, if there
   1611 /// is one. Used to check for a missing 'template<>'.
   1612 ///
   1613 /// \param ParamLists the template parameter lists, from the outermost to the
   1614 /// innermost template parameter lists.
   1615 ///
   1616 /// \param IsFriend Whether to apply the slightly different rules for
   1617 /// matching template parameters to scope specifiers in friend
   1618 /// declarations.
   1619 ///
   1620 /// \param IsExplicitSpecialization will be set true if the entity being
   1621 /// declared is an explicit specialization, false otherwise.
   1622 ///
   1623 /// \returns the template parameter list, if any, that corresponds to the
   1624 /// name that is preceded by the scope specifier @p SS. This template
   1625 /// parameter list may have template parameters (if we're declaring a
   1626 /// template) or may have no template parameters (if we're declaring a
   1627 /// template specialization), or may be NULL (if what we're declaring isn't
   1628 /// itself a template).
   1629 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
   1630     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
   1631     TemplateIdAnnotation *TemplateId,
   1632     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
   1633     bool &IsExplicitSpecialization, bool &Invalid) {
   1634   IsExplicitSpecialization = false;
   1635   Invalid = false;
   1636 
   1637   // The sequence of nested types to which we will match up the template
   1638   // parameter lists. We first build this list by starting with the type named
   1639   // by the nested-name-specifier and walking out until we run out of types.
   1640   SmallVector<QualType, 4> NestedTypes;
   1641   QualType T;
   1642   if (SS.getScopeRep()) {
   1643     if (CXXRecordDecl *Record
   1644               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
   1645       T = Context.getTypeDeclType(Record);
   1646     else
   1647       T = QualType(SS.getScopeRep()->getAsType(), 0);
   1648   }
   1649 
   1650   // If we found an explicit specialization that prevents us from needing
   1651   // 'template<>' headers, this will be set to the location of that
   1652   // explicit specialization.
   1653   SourceLocation ExplicitSpecLoc;
   1654 
   1655   while (!T.isNull()) {
   1656     NestedTypes.push_back(T);
   1657 
   1658     // Retrieve the parent of a record type.
   1659     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1660       // If this type is an explicit specialization, we're done.
   1661       if (ClassTemplateSpecializationDecl *Spec
   1662           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1663         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
   1664             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
   1665           ExplicitSpecLoc = Spec->getLocation();
   1666           break;
   1667         }
   1668       } else if (Record->getTemplateSpecializationKind()
   1669                                                 == TSK_ExplicitSpecialization) {
   1670         ExplicitSpecLoc = Record->getLocation();
   1671         break;
   1672       }
   1673 
   1674       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
   1675         T = Context.getTypeDeclType(Parent);
   1676       else
   1677         T = QualType();
   1678       continue;
   1679     }
   1680 
   1681     if (const TemplateSpecializationType *TST
   1682                                      = T->getAs<TemplateSpecializationType>()) {
   1683       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1684         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
   1685           T = Context.getTypeDeclType(Parent);
   1686         else
   1687           T = QualType();
   1688         continue;
   1689       }
   1690     }
   1691 
   1692     // Look one step prior in a dependent template specialization type.
   1693     if (const DependentTemplateSpecializationType *DependentTST
   1694                           = T->getAs<DependentTemplateSpecializationType>()) {
   1695       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
   1696         T = QualType(NNS->getAsType(), 0);
   1697       else
   1698         T = QualType();
   1699       continue;
   1700     }
   1701 
   1702     // Look one step prior in a dependent name type.
   1703     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
   1704       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
   1705         T = QualType(NNS->getAsType(), 0);
   1706       else
   1707         T = QualType();
   1708       continue;
   1709     }
   1710 
   1711     // Retrieve the parent of an enumeration type.
   1712     if (const EnumType *EnumT = T->getAs<EnumType>()) {
   1713       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
   1714       // check here.
   1715       EnumDecl *Enum = EnumT->getDecl();
   1716 
   1717       // Get to the parent type.
   1718       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
   1719         T = Context.getTypeDeclType(Parent);
   1720       else
   1721         T = QualType();
   1722       continue;
   1723     }
   1724 
   1725     T = QualType();
   1726   }
   1727   // Reverse the nested types list, since we want to traverse from the outermost
   1728   // to the innermost while checking template-parameter-lists.
   1729   std::reverse(NestedTypes.begin(), NestedTypes.end());
   1730 
   1731   // C++0x [temp.expl.spec]p17:
   1732   //   A member or a member template may be nested within many
   1733   //   enclosing class templates. In an explicit specialization for
   1734   //   such a member, the member declaration shall be preceded by a
   1735   //   template<> for each enclosing class template that is
   1736   //   explicitly specialized.
   1737   bool SawNonEmptyTemplateParameterList = false;
   1738 
   1739   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
   1740     if (SawNonEmptyTemplateParameterList) {
   1741       Diag(DeclLoc, diag::err_specialize_member_of_template)
   1742         << !Recovery << Range;
   1743       Invalid = true;
   1744       IsExplicitSpecialization = false;
   1745       return true;
   1746     }
   1747 
   1748     return false;
   1749   };
   1750 
   1751   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
   1752     // Check that we can have an explicit specialization here.
   1753     if (CheckExplicitSpecialization(Range, true))
   1754       return true;
   1755 
   1756     // We don't have a template header, but we should.
   1757     SourceLocation ExpectedTemplateLoc;
   1758     if (!ParamLists.empty())
   1759       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
   1760     else
   1761       ExpectedTemplateLoc = DeclStartLoc;
   1762 
   1763     Diag(DeclLoc, diag::err_template_spec_needs_header)
   1764       << Range
   1765       << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
   1766     return false;
   1767   };
   1768 
   1769   unsigned ParamIdx = 0;
   1770   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
   1771        ++TypeIdx) {
   1772     T = NestedTypes[TypeIdx];
   1773 
   1774     // Whether we expect a 'template<>' header.
   1775     bool NeedEmptyTemplateHeader = false;
   1776 
   1777     // Whether we expect a template header with parameters.
   1778     bool NeedNonemptyTemplateHeader = false;
   1779 
   1780     // For a dependent type, the set of template parameters that we
   1781     // expect to see.
   1782     TemplateParameterList *ExpectedTemplateParams = nullptr;
   1783 
   1784     // C++0x [temp.expl.spec]p15:
   1785     //   A member or a member template may be nested within many enclosing
   1786     //   class templates. In an explicit specialization for such a member, the
   1787     //   member declaration shall be preceded by a template<> for each
   1788     //   enclosing class template that is explicitly specialized.
   1789     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1790       if (ClassTemplatePartialSpecializationDecl *Partial
   1791             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
   1792         ExpectedTemplateParams = Partial->getTemplateParameters();
   1793         NeedNonemptyTemplateHeader = true;
   1794       } else if (Record->isDependentType()) {
   1795         if (Record->getDescribedClassTemplate()) {
   1796           ExpectedTemplateParams = Record->getDescribedClassTemplate()
   1797                                                       ->getTemplateParameters();
   1798           NeedNonemptyTemplateHeader = true;
   1799         }
   1800       } else if (ClassTemplateSpecializationDecl *Spec
   1801                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1802         // C++0x [temp.expl.spec]p4:
   1803         //   Members of an explicitly specialized class template are defined
   1804         //   in the same manner as members of normal classes, and not using
   1805         //   the template<> syntax.
   1806         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
   1807           NeedEmptyTemplateHeader = true;
   1808         else
   1809           continue;
   1810       } else if (Record->getTemplateSpecializationKind()) {
   1811         if (Record->getTemplateSpecializationKind()
   1812                                                 != TSK_ExplicitSpecialization &&
   1813             TypeIdx == NumTypes - 1)
   1814           IsExplicitSpecialization = true;
   1815 
   1816         continue;
   1817       }
   1818     } else if (const TemplateSpecializationType *TST
   1819                                      = T->getAs<TemplateSpecializationType>()) {
   1820       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1821         ExpectedTemplateParams = Template->getTemplateParameters();
   1822         NeedNonemptyTemplateHeader = true;
   1823       }
   1824     } else if (T->getAs<DependentTemplateSpecializationType>()) {
   1825       // FIXME:  We actually could/should check the template arguments here
   1826       // against the corresponding template parameter list.
   1827       NeedNonemptyTemplateHeader = false;
   1828     }
   1829 
   1830     // C++ [temp.expl.spec]p16:
   1831     //   In an explicit specialization declaration for a member of a class
   1832     //   template or a member template that ap- pears in namespace scope, the
   1833     //   member template and some of its enclosing class templates may remain
   1834     //   unspecialized, except that the declaration shall not explicitly
   1835     //   specialize a class member template if its en- closing class templates
   1836     //   are not explicitly specialized as well.
   1837     if (ParamIdx < ParamLists.size()) {
   1838       if (ParamLists[ParamIdx]->size() == 0) {
   1839         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
   1840                                         false))
   1841           return nullptr;
   1842       } else
   1843         SawNonEmptyTemplateParameterList = true;
   1844     }
   1845 
   1846     if (NeedEmptyTemplateHeader) {
   1847       // If we're on the last of the types, and we need a 'template<>' header
   1848       // here, then it's an explicit specialization.
   1849       if (TypeIdx == NumTypes - 1)
   1850         IsExplicitSpecialization = true;
   1851 
   1852       if (ParamIdx < ParamLists.size()) {
   1853         if (ParamLists[ParamIdx]->size() > 0) {
   1854           // The header has template parameters when it shouldn't. Complain.
   1855           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1856                diag::err_template_param_list_matches_nontemplate)
   1857             << T
   1858             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
   1859                            ParamLists[ParamIdx]->getRAngleLoc())
   1860             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1861           Invalid = true;
   1862           return nullptr;
   1863         }
   1864 
   1865         // Consume this template header.
   1866         ++ParamIdx;
   1867         continue;
   1868       }
   1869 
   1870       if (!IsFriend)
   1871         if (DiagnoseMissingExplicitSpecialization(
   1872                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
   1873           return nullptr;
   1874 
   1875       continue;
   1876     }
   1877 
   1878     if (NeedNonemptyTemplateHeader) {
   1879       // In friend declarations we can have template-ids which don't
   1880       // depend on the corresponding template parameter lists.  But
   1881       // assume that empty parameter lists are supposed to match this
   1882       // template-id.
   1883       if (IsFriend && T->isDependentType()) {
   1884         if (ParamIdx < ParamLists.size() &&
   1885             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
   1886           ExpectedTemplateParams = nullptr;
   1887         else
   1888           continue;
   1889       }
   1890 
   1891       if (ParamIdx < ParamLists.size()) {
   1892         // Check the template parameter list, if we can.
   1893         if (ExpectedTemplateParams &&
   1894             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
   1895                                             ExpectedTemplateParams,
   1896                                             true, TPL_TemplateMatch))
   1897           Invalid = true;
   1898 
   1899         if (!Invalid &&
   1900             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
   1901                                        TPC_ClassTemplateMember))
   1902           Invalid = true;
   1903 
   1904         ++ParamIdx;
   1905         continue;
   1906       }
   1907 
   1908       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
   1909         << T
   1910         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1911       Invalid = true;
   1912       continue;
   1913     }
   1914   }
   1915 
   1916   // If there were at least as many template-ids as there were template
   1917   // parameter lists, then there are no template parameter lists remaining for
   1918   // the declaration itself.
   1919   if (ParamIdx >= ParamLists.size()) {
   1920     if (TemplateId && !IsFriend) {
   1921       // We don't have a template header for the declaration itself, but we
   1922       // should.
   1923       IsExplicitSpecialization = true;
   1924       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
   1925                                                         TemplateId->RAngleLoc));
   1926 
   1927       // Fabricate an empty template parameter list for the invented header.
   1928       return TemplateParameterList::Create(Context, SourceLocation(),
   1929                                            SourceLocation(), nullptr, 0,
   1930                                            SourceLocation());
   1931     }
   1932 
   1933     return nullptr;
   1934   }
   1935 
   1936   // If there were too many template parameter lists, complain about that now.
   1937   if (ParamIdx < ParamLists.size() - 1) {
   1938     bool HasAnyExplicitSpecHeader = false;
   1939     bool AllExplicitSpecHeaders = true;
   1940     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
   1941       if (ParamLists[I]->size() == 0)
   1942         HasAnyExplicitSpecHeader = true;
   1943       else
   1944         AllExplicitSpecHeaders = false;
   1945     }
   1946 
   1947     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1948          AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
   1949                                 : diag::err_template_spec_extra_headers)
   1950         << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
   1951                        ParamLists[ParamLists.size() - 2]->getRAngleLoc());
   1952 
   1953     // If there was a specialization somewhere, such that 'template<>' is
   1954     // not required, and there were any 'template<>' headers, note where the
   1955     // specialization occurred.
   1956     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
   1957       Diag(ExplicitSpecLoc,
   1958            diag::note_explicit_template_spec_does_not_need_header)
   1959         << NestedTypes.back();
   1960 
   1961     // We have a template parameter list with no corresponding scope, which
   1962     // means that the resulting template declaration can't be instantiated
   1963     // properly (we'll end up with dependent nodes when we shouldn't).
   1964     if (!AllExplicitSpecHeaders)
   1965       Invalid = true;
   1966   }
   1967 
   1968   // C++ [temp.expl.spec]p16:
   1969   //   In an explicit specialization declaration for a member of a class
   1970   //   template or a member template that ap- pears in namespace scope, the
   1971   //   member template and some of its enclosing class templates may remain
   1972   //   unspecialized, except that the declaration shall not explicitly
   1973   //   specialize a class member template if its en- closing class templates
   1974   //   are not explicitly specialized as well.
   1975   if (ParamLists.back()->size() == 0 &&
   1976       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
   1977                                   false))
   1978     return nullptr;
   1979 
   1980   // Return the last template parameter list, which corresponds to the
   1981   // entity being declared.
   1982   return ParamLists.back();
   1983 }
   1984 
   1985 void Sema::NoteAllFoundTemplates(TemplateName Name) {
   1986   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   1987     Diag(Template->getLocation(), diag::note_template_declared_here)
   1988         << (isa<FunctionTemplateDecl>(Template)
   1989                 ? 0
   1990                 : isa<ClassTemplateDecl>(Template)
   1991                       ? 1
   1992                       : isa<VarTemplateDecl>(Template)
   1993                             ? 2
   1994                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
   1995         << Template->getDeclName();
   1996     return;
   1997   }
   1998 
   1999   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
   2000     for (OverloadedTemplateStorage::iterator I = OST->begin(),
   2001                                           IEnd = OST->end();
   2002          I != IEnd; ++I)
   2003       Diag((*I)->getLocation(), diag::note_template_declared_here)
   2004         << 0 << (*I)->getDeclName();
   2005 
   2006     return;
   2007   }
   2008 }
   2009 
   2010 QualType Sema::CheckTemplateIdType(TemplateName Name,
   2011                                    SourceLocation TemplateLoc,
   2012                                    TemplateArgumentListInfo &TemplateArgs) {
   2013   DependentTemplateName *DTN
   2014     = Name.getUnderlying().getAsDependentTemplateName();
   2015   if (DTN && DTN->isIdentifier())
   2016     // When building a template-id where the template-name is dependent,
   2017     // assume the template is a type template. Either our assumption is
   2018     // correct, or the code is ill-formed and will be diagnosed when the
   2019     // dependent name is substituted.
   2020     return Context.getDependentTemplateSpecializationType(ETK_None,
   2021                                                           DTN->getQualifier(),
   2022                                                           DTN->getIdentifier(),
   2023                                                           TemplateArgs);
   2024 
   2025   TemplateDecl *Template = Name.getAsTemplateDecl();
   2026   if (!Template || isa<FunctionTemplateDecl>(Template) ||
   2027       isa<VarTemplateDecl>(Template)) {
   2028     // We might have a substituted template template parameter pack. If so,
   2029     // build a template specialization type for it.
   2030     if (Name.getAsSubstTemplateTemplateParmPack())
   2031       return Context.getTemplateSpecializationType(Name, TemplateArgs);
   2032 
   2033     Diag(TemplateLoc, diag::err_template_id_not_a_type)
   2034       << Name;
   2035     NoteAllFoundTemplates(Name);
   2036     return QualType();
   2037   }
   2038 
   2039   // Check that the template argument list is well-formed for this
   2040   // template.
   2041   SmallVector<TemplateArgument, 4> Converted;
   2042   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
   2043                                 false, Converted))
   2044     return QualType();
   2045 
   2046   QualType CanonType;
   2047 
   2048   bool InstantiationDependent = false;
   2049   if (TypeAliasTemplateDecl *AliasTemplate =
   2050           dyn_cast<TypeAliasTemplateDecl>(Template)) {
   2051     // Find the canonical type for this type alias template specialization.
   2052     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
   2053     if (Pattern->isInvalidDecl())
   2054       return QualType();
   2055 
   2056     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2057                                       Converted.data(), Converted.size());
   2058 
   2059     // Only substitute for the innermost template argument list.
   2060     MultiLevelTemplateArgumentList TemplateArgLists;
   2061     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   2062     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
   2063     for (unsigned I = 0; I < Depth; ++I)
   2064       TemplateArgLists.addOuterTemplateArguments(None);
   2065 
   2066     LocalInstantiationScope Scope(*this);
   2067     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
   2068     if (Inst.isInvalid())
   2069       return QualType();
   2070 
   2071     CanonType = SubstType(Pattern->getUnderlyingType(),
   2072                           TemplateArgLists, AliasTemplate->getLocation(),
   2073                           AliasTemplate->getDeclName());
   2074     if (CanonType.isNull())
   2075       return QualType();
   2076   } else if (Name.isDependent() ||
   2077              TemplateSpecializationType::anyDependentTemplateArguments(
   2078                TemplateArgs, InstantiationDependent)) {
   2079     // This class template specialization is a dependent
   2080     // type. Therefore, its canonical type is another class template
   2081     // specialization type that contains all of the converted
   2082     // arguments in canonical form. This ensures that, e.g., A<T> and
   2083     // A<T, T> have identical types when A is declared as:
   2084     //
   2085     //   template<typename T, typename U = T> struct A;
   2086     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
   2087     CanonType = Context.getTemplateSpecializationType(CanonName,
   2088                                                       Converted.data(),
   2089                                                       Converted.size());
   2090 
   2091     // FIXME: CanonType is not actually the canonical type, and unfortunately
   2092     // it is a TemplateSpecializationType that we will never use again.
   2093     // In the future, we need to teach getTemplateSpecializationType to only
   2094     // build the canonical type and return that to us.
   2095     CanonType = Context.getCanonicalType(CanonType);
   2096 
   2097     // This might work out to be a current instantiation, in which
   2098     // case the canonical type needs to be the InjectedClassNameType.
   2099     //
   2100     // TODO: in theory this could be a simple hashtable lookup; most
   2101     // changes to CurContext don't change the set of current
   2102     // instantiations.
   2103     if (isa<ClassTemplateDecl>(Template)) {
   2104       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
   2105         // If we get out to a namespace, we're done.
   2106         if (Ctx->isFileContext()) break;
   2107 
   2108         // If this isn't a record, keep looking.
   2109         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
   2110         if (!Record) continue;
   2111 
   2112         // Look for one of the two cases with InjectedClassNameTypes
   2113         // and check whether it's the same template.
   2114         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
   2115             !Record->getDescribedClassTemplate())
   2116           continue;
   2117 
   2118         // Fetch the injected class name type and check whether its
   2119         // injected type is equal to the type we just built.
   2120         QualType ICNT = Context.getTypeDeclType(Record);
   2121         QualType Injected = cast<InjectedClassNameType>(ICNT)
   2122           ->getInjectedSpecializationType();
   2123 
   2124         if (CanonType != Injected->getCanonicalTypeInternal())
   2125           continue;
   2126 
   2127         // If so, the canonical type of this TST is the injected
   2128         // class name type of the record we just found.
   2129         assert(ICNT.isCanonical());
   2130         CanonType = ICNT;
   2131         break;
   2132       }
   2133     }
   2134   } else if (ClassTemplateDecl *ClassTemplate
   2135                = dyn_cast<ClassTemplateDecl>(Template)) {
   2136     // Find the class template specialization declaration that
   2137     // corresponds to these arguments.
   2138     void *InsertPos = nullptr;
   2139     ClassTemplateSpecializationDecl *Decl
   2140       = ClassTemplate->findSpecialization(Converted, InsertPos);
   2141     if (!Decl) {
   2142       // This is the first time we have referenced this class template
   2143       // specialization. Create the canonical declaration and add it to
   2144       // the set of specializations.
   2145       Decl = ClassTemplateSpecializationDecl::Create(Context,
   2146                             ClassTemplate->getTemplatedDecl()->getTagKind(),
   2147                                                 ClassTemplate->getDeclContext(),
   2148                             ClassTemplate->getTemplatedDecl()->getLocStart(),
   2149                                                 ClassTemplate->getLocation(),
   2150                                                      ClassTemplate,
   2151                                                      Converted.data(),
   2152                                                      Converted.size(), nullptr);
   2153       ClassTemplate->AddSpecialization(Decl, InsertPos);
   2154       if (ClassTemplate->isOutOfLine())
   2155         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
   2156     }
   2157 
   2158     // Diagnose uses of this specialization.
   2159     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
   2160 
   2161     CanonType = Context.getTypeDeclType(Decl);
   2162     assert(isa<RecordType>(CanonType) &&
   2163            "type of non-dependent specialization is not a RecordType");
   2164   }
   2165 
   2166   // Build the fully-sugared type for this class template
   2167   // specialization, which refers back to the class template
   2168   // specialization we created or found.
   2169   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
   2170 }
   2171 
   2172 TypeResult
   2173 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
   2174                           TemplateTy TemplateD, SourceLocation TemplateLoc,
   2175                           SourceLocation LAngleLoc,
   2176                           ASTTemplateArgsPtr TemplateArgsIn,
   2177                           SourceLocation RAngleLoc,
   2178                           bool IsCtorOrDtorName) {
   2179   if (SS.isInvalid())
   2180     return true;
   2181 
   2182   TemplateName Template = TemplateD.get();
   2183 
   2184   // Translate the parser's template argument list in our AST format.
   2185   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2186   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2187 
   2188   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2189     QualType T
   2190       = Context.getDependentTemplateSpecializationType(ETK_None,
   2191                                                        DTN->getQualifier(),
   2192                                                        DTN->getIdentifier(),
   2193                                                        TemplateArgs);
   2194     // Build type-source information.
   2195     TypeLocBuilder TLB;
   2196     DependentTemplateSpecializationTypeLoc SpecTL
   2197       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2198     SpecTL.setElaboratedKeywordLoc(SourceLocation());
   2199     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2200     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2201     SpecTL.setTemplateNameLoc(TemplateLoc);
   2202     SpecTL.setLAngleLoc(LAngleLoc);
   2203     SpecTL.setRAngleLoc(RAngleLoc);
   2204     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2205       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2206     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2207   }
   2208 
   2209   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2210 
   2211   if (Result.isNull())
   2212     return true;
   2213 
   2214   // Build type-source information.
   2215   TypeLocBuilder TLB;
   2216   TemplateSpecializationTypeLoc SpecTL
   2217     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2218   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2219   SpecTL.setTemplateNameLoc(TemplateLoc);
   2220   SpecTL.setLAngleLoc(LAngleLoc);
   2221   SpecTL.setRAngleLoc(RAngleLoc);
   2222   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2223     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2224 
   2225   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
   2226   // constructor or destructor name (in such a case, the scope specifier
   2227   // will be attached to the enclosing Decl or Expr node).
   2228   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
   2229     // Create an elaborated-type-specifier containing the nested-name-specifier.
   2230     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
   2231     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2232     ElabTL.setElaboratedKeywordLoc(SourceLocation());
   2233     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2234   }
   2235 
   2236   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2237 }
   2238 
   2239 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
   2240                                         TypeSpecifierType TagSpec,
   2241                                         SourceLocation TagLoc,
   2242                                         CXXScopeSpec &SS,
   2243                                         SourceLocation TemplateKWLoc,
   2244                                         TemplateTy TemplateD,
   2245                                         SourceLocation TemplateLoc,
   2246                                         SourceLocation LAngleLoc,
   2247                                         ASTTemplateArgsPtr TemplateArgsIn,
   2248                                         SourceLocation RAngleLoc) {
   2249   TemplateName Template = TemplateD.get();
   2250 
   2251   // Translate the parser's template argument list in our AST format.
   2252   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2253   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2254 
   2255   // Determine the tag kind
   2256   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   2257   ElaboratedTypeKeyword Keyword
   2258     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
   2259 
   2260   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2261     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
   2262                                                           DTN->getQualifier(),
   2263                                                           DTN->getIdentifier(),
   2264                                                                 TemplateArgs);
   2265 
   2266     // Build type-source information.
   2267     TypeLocBuilder TLB;
   2268     DependentTemplateSpecializationTypeLoc SpecTL
   2269       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2270     SpecTL.setElaboratedKeywordLoc(TagLoc);
   2271     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2272     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2273     SpecTL.setTemplateNameLoc(TemplateLoc);
   2274     SpecTL.setLAngleLoc(LAngleLoc);
   2275     SpecTL.setRAngleLoc(RAngleLoc);
   2276     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2277       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2278     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2279   }
   2280 
   2281   if (TypeAliasTemplateDecl *TAT =
   2282         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
   2283     // C++0x [dcl.type.elab]p2:
   2284     //   If the identifier resolves to a typedef-name or the simple-template-id
   2285     //   resolves to an alias template specialization, the
   2286     //   elaborated-type-specifier is ill-formed.
   2287     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
   2288     Diag(TAT->getLocation(), diag::note_declared_at);
   2289   }
   2290 
   2291   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2292   if (Result.isNull())
   2293     return TypeResult(true);
   2294 
   2295   // Check the tag kind
   2296   if (const RecordType *RT = Result->getAs<RecordType>()) {
   2297     RecordDecl *D = RT->getDecl();
   2298 
   2299     IdentifierInfo *Id = D->getIdentifier();
   2300     assert(Id && "templated class must have an identifier");
   2301 
   2302     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
   2303                                       TagLoc, *Id)) {
   2304       Diag(TagLoc, diag::err_use_with_wrong_tag)
   2305         << Result
   2306         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
   2307       Diag(D->getLocation(), diag::note_previous_use);
   2308     }
   2309   }
   2310 
   2311   // Provide source-location information for the template specialization.
   2312   TypeLocBuilder TLB;
   2313   TemplateSpecializationTypeLoc SpecTL
   2314     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2315   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2316   SpecTL.setTemplateNameLoc(TemplateLoc);
   2317   SpecTL.setLAngleLoc(LAngleLoc);
   2318   SpecTL.setRAngleLoc(RAngleLoc);
   2319   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2320     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2321 
   2322   // Construct an elaborated type containing the nested-name-specifier (if any)
   2323   // and tag keyword.
   2324   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
   2325   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2326   ElabTL.setElaboratedKeywordLoc(TagLoc);
   2327   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2328   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2329 }
   2330 
   2331 static bool CheckTemplatePartialSpecializationArgs(
   2332     Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
   2333     unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
   2334 
   2335 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
   2336                                              NamedDecl *PrevDecl,
   2337                                              SourceLocation Loc,
   2338                                              bool IsPartialSpecialization);
   2339 
   2340 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
   2341 
   2342 static bool isTemplateArgumentTemplateParameter(
   2343     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
   2344   switch (Arg.getKind()) {
   2345   case TemplateArgument::Null:
   2346   case TemplateArgument::NullPtr:
   2347   case TemplateArgument::Integral:
   2348   case TemplateArgument::Declaration:
   2349   case TemplateArgument::Pack:
   2350   case TemplateArgument::TemplateExpansion:
   2351     return false;
   2352 
   2353   case TemplateArgument::Type: {
   2354     QualType Type = Arg.getAsType();
   2355     const TemplateTypeParmType *TPT =
   2356         Arg.getAsType()->getAs<TemplateTypeParmType>();
   2357     return TPT && !Type.hasQualifiers() &&
   2358            TPT->getDepth() == Depth && TPT->getIndex() == Index;
   2359   }
   2360 
   2361   case TemplateArgument::Expression: {
   2362     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
   2363     if (!DRE || !DRE->getDecl())
   2364       return false;
   2365     const NonTypeTemplateParmDecl *NTTP =
   2366         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   2367     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
   2368   }
   2369 
   2370   case TemplateArgument::Template:
   2371     const TemplateTemplateParmDecl *TTP =
   2372         dyn_cast_or_null<TemplateTemplateParmDecl>(
   2373             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
   2374     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
   2375   }
   2376   llvm_unreachable("unexpected kind of template argument");
   2377 }
   2378 
   2379 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
   2380                                     ArrayRef<TemplateArgument> Args) {
   2381   if (Params->size() != Args.size())
   2382     return false;
   2383 
   2384   unsigned Depth = Params->getDepth();
   2385 
   2386   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   2387     TemplateArgument Arg = Args[I];
   2388 
   2389     // If the parameter is a pack expansion, the argument must be a pack
   2390     // whose only element is a pack expansion.
   2391     if (Params->getParam(I)->isParameterPack()) {
   2392       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
   2393           !Arg.pack_begin()->isPackExpansion())
   2394         return false;
   2395       Arg = Arg.pack_begin()->getPackExpansionPattern();
   2396     }
   2397 
   2398     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
   2399       return false;
   2400   }
   2401 
   2402   return true;
   2403 }
   2404 
   2405 /// Convert the parser's template argument list representation into our form.
   2406 static TemplateArgumentListInfo
   2407 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
   2408   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
   2409                                         TemplateId.RAngleLoc);
   2410   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
   2411                                      TemplateId.NumArgs);
   2412   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
   2413   return TemplateArgs;
   2414 }
   2415 
   2416 DeclResult Sema::ActOnVarTemplateSpecialization(
   2417     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
   2418     TemplateParameterList *TemplateParams, StorageClass SC,
   2419     bool IsPartialSpecialization) {
   2420   // D must be variable template id.
   2421   assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
   2422          "Variable template specialization is declared with a template it.");
   2423 
   2424   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   2425   TemplateArgumentListInfo TemplateArgs =
   2426       makeTemplateArgumentListInfo(*this, *TemplateId);
   2427   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
   2428   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
   2429   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
   2430 
   2431   TemplateName Name = TemplateId->Template.get();
   2432 
   2433   // The template-id must name a variable template.
   2434   VarTemplateDecl *VarTemplate =
   2435       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
   2436   if (!VarTemplate) {
   2437     NamedDecl *FnTemplate;
   2438     if (auto *OTS = Name.getAsOverloadedTemplate())
   2439       FnTemplate = *OTS->begin();
   2440     else
   2441       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
   2442     if (FnTemplate)
   2443       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
   2444                << FnTemplate->getDeclName();
   2445     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
   2446              << IsPartialSpecialization;
   2447   }
   2448 
   2449   // Check for unexpanded parameter packs in any of the template arguments.
   2450   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   2451     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
   2452                                         UPPC_PartialSpecialization))
   2453       return true;
   2454 
   2455   // Check that the template argument list is well-formed for this
   2456   // template.
   2457   SmallVector<TemplateArgument, 4> Converted;
   2458   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
   2459                                 false, Converted))
   2460     return true;
   2461 
   2462   // Check that the type of this variable template specialization
   2463   // matches the expected type.
   2464   TypeSourceInfo *ExpectedDI;
   2465   {
   2466     // Do substitution on the type of the declaration
   2467     TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
   2468                                          Converted.data(), Converted.size());
   2469     InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
   2470     if (Inst.isInvalid())
   2471       return true;
   2472     VarDecl *Templated = VarTemplate->getTemplatedDecl();
   2473     ExpectedDI =
   2474         SubstType(Templated->getTypeSourceInfo(),
   2475                   MultiLevelTemplateArgumentList(TemplateArgList),
   2476                   Templated->getTypeSpecStartLoc(), Templated->getDeclName());
   2477   }
   2478   if (!ExpectedDI)
   2479     return true;
   2480 
   2481   // Find the variable template (partial) specialization declaration that
   2482   // corresponds to these arguments.
   2483   if (IsPartialSpecialization) {
   2484     if (CheckTemplatePartialSpecializationArgs(
   2485             *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
   2486             TemplateArgs.size(), Converted))
   2487       return true;
   2488 
   2489     bool InstantiationDependent;
   2490     if (!Name.isDependent() &&
   2491         !TemplateSpecializationType::anyDependentTemplateArguments(
   2492             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
   2493             InstantiationDependent)) {
   2494       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
   2495           << VarTemplate->getDeclName();
   2496       IsPartialSpecialization = false;
   2497     }
   2498 
   2499     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
   2500                                 Converted)) {
   2501       // C++ [temp.class.spec]p9b3:
   2502       //
   2503       //   -- The argument list of the specialization shall not be identical
   2504       //      to the implicit argument list of the primary template.
   2505       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
   2506         << /*variable template*/ 1
   2507         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
   2508         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
   2509       // FIXME: Recover from this by treating the declaration as a redeclaration
   2510       // of the primary template.
   2511       return true;
   2512     }
   2513   }
   2514 
   2515   void *InsertPos = nullptr;
   2516   VarTemplateSpecializationDecl *PrevDecl = nullptr;
   2517 
   2518   if (IsPartialSpecialization)
   2519     // FIXME: Template parameter list matters too
   2520     PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
   2521   else
   2522     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
   2523 
   2524   VarTemplateSpecializationDecl *Specialization = nullptr;
   2525 
   2526   // Check whether we can declare a variable template specialization in
   2527   // the current scope.
   2528   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
   2529                                        TemplateNameLoc,
   2530                                        IsPartialSpecialization))
   2531     return true;
   2532 
   2533   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
   2534     // Since the only prior variable template specialization with these
   2535     // arguments was referenced but not declared,  reuse that
   2536     // declaration node as our own, updating its source location and
   2537     // the list of outer template parameters to reflect our new declaration.
   2538     Specialization = PrevDecl;
   2539     Specialization->setLocation(TemplateNameLoc);
   2540     PrevDecl = nullptr;
   2541   } else if (IsPartialSpecialization) {
   2542     // Create a new class template partial specialization declaration node.
   2543     VarTemplatePartialSpecializationDecl *PrevPartial =
   2544         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
   2545     VarTemplatePartialSpecializationDecl *Partial =
   2546         VarTemplatePartialSpecializationDecl::Create(
   2547             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
   2548             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
   2549             Converted.data(), Converted.size(), TemplateArgs);
   2550 
   2551     if (!PrevPartial)
   2552       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
   2553     Specialization = Partial;
   2554 
   2555     // If we are providing an explicit specialization of a member variable
   2556     // template specialization, make a note of that.
   2557     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
   2558       PrevPartial->setMemberSpecialization();
   2559 
   2560     // Check that all of the template parameters of the variable template
   2561     // partial specialization are deducible from the template
   2562     // arguments. If not, this variable template partial specialization
   2563     // will never be used.
   2564     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
   2565     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
   2566                                TemplateParams->getDepth(), DeducibleParams);
   2567 
   2568     if (!DeducibleParams.all()) {
   2569       unsigned NumNonDeducible =
   2570           DeducibleParams.size() - DeducibleParams.count();
   2571       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
   2572         << /*variable template*/ 1 << (NumNonDeducible > 1)
   2573         << SourceRange(TemplateNameLoc, RAngleLoc);
   2574       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
   2575         if (!DeducibleParams[I]) {
   2576           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
   2577           if (Param->getDeclName())
   2578             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
   2579                 << Param->getDeclName();
   2580           else
   2581             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
   2582                 << "(anonymous)";
   2583         }
   2584       }
   2585     }
   2586   } else {
   2587     // Create a new class template specialization declaration node for
   2588     // this explicit specialization or friend declaration.
   2589     Specialization = VarTemplateSpecializationDecl::Create(
   2590         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
   2591         VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
   2592     Specialization->setTemplateArgsInfo(TemplateArgs);
   2593 
   2594     if (!PrevDecl)
   2595       VarTemplate->AddSpecialization(Specialization, InsertPos);
   2596   }
   2597 
   2598   // C++ [temp.expl.spec]p6:
   2599   //   If a template, a member template or the member of a class template is
   2600   //   explicitly specialized then that specialization shall be declared
   2601   //   before the first use of that specialization that would cause an implicit
   2602   //   instantiation to take place, in every translation unit in which such a
   2603   //   use occurs; no diagnostic is required.
   2604   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
   2605     bool Okay = false;
   2606     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   2607       // Is there any previous explicit specialization declaration?
   2608       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   2609         Okay = true;
   2610         break;
   2611       }
   2612     }
   2613 
   2614     if (!Okay) {
   2615       SourceRange Range(TemplateNameLoc, RAngleLoc);
   2616       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
   2617           << Name << Range;
   2618 
   2619       Diag(PrevDecl->getPointOfInstantiation(),
   2620            diag::note_instantiation_required_here)
   2621           << (PrevDecl->getTemplateSpecializationKind() !=
   2622               TSK_ImplicitInstantiation);
   2623       return true;
   2624     }
   2625   }
   2626 
   2627   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
   2628   Specialization->setLexicalDeclContext(CurContext);
   2629 
   2630   // Add the specialization into its lexical context, so that it can
   2631   // be seen when iterating through the list of declarations in that
   2632   // context. However, specializations are not found by name lookup.
   2633   CurContext->addDecl(Specialization);
   2634 
   2635   // Note that this is an explicit specialization.
   2636   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
   2637 
   2638   if (PrevDecl) {
   2639     // Check that this isn't a redefinition of this specialization,
   2640     // merging with previous declarations.
   2641     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
   2642                           ForRedeclaration);
   2643     PrevSpec.addDecl(PrevDecl);
   2644     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
   2645   } else if (Specialization->isStaticDataMember() &&
   2646              Specialization->isOutOfLine()) {
   2647     Specialization->setAccess(VarTemplate->getAccess());
   2648   }
   2649 
   2650   // Link instantiations of static data members back to the template from
   2651   // which they were instantiated.
   2652   if (Specialization->isStaticDataMember())
   2653     Specialization->setInstantiationOfStaticDataMember(
   2654         VarTemplate->getTemplatedDecl(),
   2655         Specialization->getSpecializationKind());
   2656 
   2657   return Specialization;
   2658 }
   2659 
   2660 namespace {
   2661 /// \brief A partial specialization whose template arguments have matched
   2662 /// a given template-id.
   2663 struct PartialSpecMatchResult {
   2664   VarTemplatePartialSpecializationDecl *Partial;
   2665   TemplateArgumentList *Args;
   2666 };
   2667 }
   2668 
   2669 DeclResult
   2670 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
   2671                          SourceLocation TemplateNameLoc,
   2672                          const TemplateArgumentListInfo &TemplateArgs) {
   2673   assert(Template && "A variable template id without template?");
   2674 
   2675   // Check that the template argument list is well-formed for this template.
   2676   SmallVector<TemplateArgument, 4> Converted;
   2677   if (CheckTemplateArgumentList(
   2678           Template, TemplateNameLoc,
   2679           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
   2680           Converted))
   2681     return true;
   2682 
   2683   // Find the variable template specialization declaration that
   2684   // corresponds to these arguments.
   2685   void *InsertPos = nullptr;
   2686   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
   2687           Converted, InsertPos))
   2688     // If we already have a variable template specialization, return it.
   2689     return Spec;
   2690 
   2691   // This is the first time we have referenced this variable template
   2692   // specialization. Create the canonical declaration and add it to
   2693   // the set of specializations, based on the closest partial specialization
   2694   // that it represents. That is,
   2695   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
   2696   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
   2697                                        Converted.data(), Converted.size());
   2698   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
   2699   bool AmbiguousPartialSpec = false;
   2700   typedef PartialSpecMatchResult MatchResult;
   2701   SmallVector<MatchResult, 4> Matched;
   2702   SourceLocation PointOfInstantiation = TemplateNameLoc;
   2703   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
   2704 
   2705   // 1. Attempt to find the closest partial specialization that this
   2706   // specializes, if any.
   2707   // If any of the template arguments is dependent, then this is probably
   2708   // a placeholder for an incomplete declarative context; which must be
   2709   // complete by instantiation time. Thus, do not search through the partial
   2710   // specializations yet.
   2711   // TODO: Unify with InstantiateClassTemplateSpecialization()?
   2712   //       Perhaps better after unification of DeduceTemplateArguments() and
   2713   //       getMoreSpecializedPartialSpecialization().
   2714   bool InstantiationDependent = false;
   2715   if (!TemplateSpecializationType::anyDependentTemplateArguments(
   2716           TemplateArgs, InstantiationDependent)) {
   2717 
   2718     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
   2719     Template->getPartialSpecializations(PartialSpecs);
   2720 
   2721     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
   2722       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
   2723       TemplateDeductionInfo Info(FailedCandidates.getLocation());
   2724 
   2725       if (TemplateDeductionResult Result =
   2726               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
   2727         // Store the failed-deduction information for use in diagnostics, later.
   2728         // TODO: Actually use the failed-deduction info?
   2729         FailedCandidates.addCandidate()
   2730             .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
   2731         (void)Result;
   2732       } else {
   2733         Matched.push_back(PartialSpecMatchResult());
   2734         Matched.back().Partial = Partial;
   2735         Matched.back().Args = Info.take();
   2736       }
   2737     }
   2738 
   2739     if (Matched.size() >= 1) {
   2740       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
   2741       if (Matched.size() == 1) {
   2742         //   -- If exactly one matching specialization is found, the
   2743         //      instantiation is generated from that specialization.
   2744         // We don't need to do anything for this.
   2745       } else {
   2746         //   -- If more than one matching specialization is found, the
   2747         //      partial order rules (14.5.4.2) are used to determine
   2748         //      whether one of the specializations is more specialized
   2749         //      than the others. If none of the specializations is more
   2750         //      specialized than all of the other matching
   2751         //      specializations, then the use of the variable template is
   2752         //      ambiguous and the program is ill-formed.
   2753         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
   2754                                                    PEnd = Matched.end();
   2755              P != PEnd; ++P) {
   2756           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
   2757                                                       PointOfInstantiation) ==
   2758               P->Partial)
   2759             Best = P;
   2760         }
   2761 
   2762         // Determine if the best partial specialization is more specialized than
   2763         // the others.
   2764         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
   2765                                                    PEnd = Matched.end();
   2766              P != PEnd; ++P) {
   2767           if (P != Best && getMoreSpecializedPartialSpecialization(
   2768                                P->Partial, Best->Partial,
   2769                                PointOfInstantiation) != Best->Partial) {
   2770             AmbiguousPartialSpec = true;
   2771             break;
   2772           }
   2773         }
   2774       }
   2775 
   2776       // Instantiate using the best variable template partial specialization.
   2777       InstantiationPattern = Best->Partial;
   2778       InstantiationArgs = Best->Args;
   2779     } else {
   2780       //   -- If no match is found, the instantiation is generated
   2781       //      from the primary template.
   2782       // InstantiationPattern = Template->getTemplatedDecl();
   2783     }
   2784   }
   2785 
   2786   // 2. Create the canonical declaration.
   2787   // Note that we do not instantiate the variable just yet, since
   2788   // instantiation is handled in DoMarkVarDeclReferenced().
   2789   // FIXME: LateAttrs et al.?
   2790   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
   2791       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
   2792       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
   2793   if (!Decl)
   2794     return true;
   2795 
   2796   if (AmbiguousPartialSpec) {
   2797     // Partial ordering did not produce a clear winner. Complain.
   2798     Decl->setInvalidDecl();
   2799     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
   2800         << Decl;
   2801 
   2802     // Print the matching partial specializations.
   2803     for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
   2804                                                PEnd = Matched.end();
   2805          P != PEnd; ++P)
   2806       Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
   2807           << getTemplateArgumentBindingsText(
   2808                  P->Partial->getTemplateParameters(), *P->Args);
   2809     return true;
   2810   }
   2811 
   2812   if (VarTemplatePartialSpecializationDecl *D =
   2813           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
   2814     Decl->setInstantiationOf(D, InstantiationArgs);
   2815 
   2816   assert(Decl && "No variable template specialization?");
   2817   return Decl;
   2818 }
   2819 
   2820 ExprResult
   2821 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
   2822                          const DeclarationNameInfo &NameInfo,
   2823                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
   2824                          const TemplateArgumentListInfo *TemplateArgs) {
   2825 
   2826   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
   2827                                        *TemplateArgs);
   2828   if (Decl.isInvalid())
   2829     return ExprError();
   2830 
   2831   VarDecl *Var = cast<VarDecl>(Decl.get());
   2832   if (!Var->getTemplateSpecializationKind())
   2833     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
   2834                                        NameInfo.getLoc());
   2835 
   2836   // Build an ordinary singleton decl ref.
   2837   return BuildDeclarationNameExpr(SS, NameInfo, Var,
   2838                                   /*FoundD=*/nullptr, TemplateArgs);
   2839 }
   2840 
   2841 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
   2842                                      SourceLocation TemplateKWLoc,
   2843                                      LookupResult &R,
   2844                                      bool RequiresADL,
   2845                                  const TemplateArgumentListInfo *TemplateArgs) {
   2846   // FIXME: Can we do any checking at this point? I guess we could check the
   2847   // template arguments that we have against the template name, if the template
   2848   // name refers to a single template. That's not a terribly common case,
   2849   // though.
   2850   // foo<int> could identify a single function unambiguously
   2851   // This approach does NOT work, since f<int>(1);
   2852   // gets resolved prior to resorting to overload resolution
   2853   // i.e., template<class T> void f(double);
   2854   //       vs template<class T, class U> void f(U);
   2855 
   2856   // These should be filtered out by our callers.
   2857   assert(!R.empty() && "empty lookup results when building templateid");
   2858   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
   2859 
   2860   // In C++1y, check variable template ids.
   2861   bool InstantiationDependent;
   2862   if (R.getAsSingle<VarTemplateDecl>() &&
   2863       !TemplateSpecializationType::anyDependentTemplateArguments(
   2864            *TemplateArgs, InstantiationDependent)) {
   2865     return CheckVarTemplateId(SS, R.getLookupNameInfo(),
   2866                               R.getAsSingle<VarTemplateDecl>(),
   2867                               TemplateKWLoc, TemplateArgs);
   2868   }
   2869 
   2870   // We don't want lookup warnings at this point.
   2871   R.suppressDiagnostics();
   2872 
   2873   UnresolvedLookupExpr *ULE
   2874     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2875                                    SS.getWithLocInContext(Context),
   2876                                    TemplateKWLoc,
   2877                                    R.getLookupNameInfo(),
   2878                                    RequiresADL, TemplateArgs,
   2879                                    R.begin(), R.end());
   2880 
   2881   return ULE;
   2882 }
   2883 
   2884 // We actually only call this from template instantiation.
   2885 ExprResult
   2886 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
   2887                                    SourceLocation TemplateKWLoc,
   2888                                    const DeclarationNameInfo &NameInfo,
   2889                              const TemplateArgumentListInfo *TemplateArgs) {
   2890 
   2891   assert(TemplateArgs || TemplateKWLoc.isValid());
   2892   DeclContext *DC;
   2893   if (!(DC = computeDeclContext(SS, false)) ||
   2894       DC->isDependentContext() ||
   2895       RequireCompleteDeclContext(SS, DC))
   2896     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
   2897 
   2898   bool MemberOfUnknownSpecialization;
   2899   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2900   LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
   2901                      MemberOfUnknownSpecialization);
   2902 
   2903   if (R.isAmbiguous())
   2904     return ExprError();
   2905 
   2906   if (R.empty()) {
   2907     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
   2908       << NameInfo.getName() << SS.getRange();
   2909     return ExprError();
   2910   }
   2911 
   2912   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
   2913     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
   2914       << SS.getScopeRep()
   2915       << NameInfo.getName().getAsString() << SS.getRange();
   2916     Diag(Temp->getLocation(), diag::note_referenced_class_template);
   2917     return ExprError();
   2918   }
   2919 
   2920   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
   2921 }
   2922 
   2923 /// \brief Form a dependent template name.
   2924 ///
   2925 /// This action forms a dependent template name given the template
   2926 /// name and its (presumably dependent) scope specifier. For
   2927 /// example, given "MetaFun::template apply", the scope specifier \p
   2928 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
   2929 /// of the "template" keyword, and "apply" is the \p Name.
   2930 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
   2931                                                   CXXScopeSpec &SS,
   2932                                                   SourceLocation TemplateKWLoc,
   2933                                                   UnqualifiedId &Name,
   2934                                                   ParsedType ObjectType,
   2935                                                   bool EnteringContext,
   2936                                                   TemplateTy &Result) {
   2937   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
   2938     Diag(TemplateKWLoc,
   2939          getLangOpts().CPlusPlus11 ?
   2940            diag::warn_cxx98_compat_template_outside_of_template :
   2941            diag::ext_template_outside_of_template)
   2942       << FixItHint::CreateRemoval(TemplateKWLoc);
   2943 
   2944   DeclContext *LookupCtx = nullptr;
   2945   if (SS.isSet())
   2946     LookupCtx = computeDeclContext(SS, EnteringContext);
   2947   if (!LookupCtx && ObjectType)
   2948     LookupCtx = computeDeclContext(ObjectType.get());
   2949   if (LookupCtx) {
   2950     // C++0x [temp.names]p5:
   2951     //   If a name prefixed by the keyword template is not the name of
   2952     //   a template, the program is ill-formed. [Note: the keyword
   2953     //   template may not be applied to non-template members of class
   2954     //   templates. -end note ] [ Note: as is the case with the
   2955     //   typename prefix, the template prefix is allowed in cases
   2956     //   where it is not strictly necessary; i.e., when the
   2957     //   nested-name-specifier or the expression on the left of the ->
   2958     //   or . is not dependent on a template-parameter, or the use
   2959     //   does not appear in the scope of a template. -end note]
   2960     //
   2961     // Note: C++03 was more strict here, because it banned the use of
   2962     // the "template" keyword prior to a template-name that was not a
   2963     // dependent name. C++ DR468 relaxed this requirement (the
   2964     // "template" keyword is now permitted). We follow the C++0x
   2965     // rules, even in C++03 mode with a warning, retroactively applying the DR.
   2966     bool MemberOfUnknownSpecialization;
   2967     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
   2968                                           ObjectType, EnteringContext, Result,
   2969                                           MemberOfUnknownSpecialization);
   2970     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
   2971         isa<CXXRecordDecl>(LookupCtx) &&
   2972         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
   2973          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
   2974       // This is a dependent template. Handle it below.
   2975     } else if (TNK == TNK_Non_template) {
   2976       Diag(Name.getLocStart(),
   2977            diag::err_template_kw_refers_to_non_template)
   2978         << GetNameFromUnqualifiedId(Name).getName()
   2979         << Name.getSourceRange()
   2980         << TemplateKWLoc;
   2981       return TNK_Non_template;
   2982     } else {
   2983       // We found something; return it.
   2984       return TNK;
   2985     }
   2986   }
   2987 
   2988   NestedNameSpecifier *Qualifier = SS.getScopeRep();
   2989 
   2990   switch (Name.getKind()) {
   2991   case UnqualifiedId::IK_Identifier:
   2992     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   2993                                                               Name.Identifier));
   2994     return TNK_Dependent_template_name;
   2995 
   2996   case UnqualifiedId::IK_OperatorFunctionId:
   2997     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   2998                                              Name.OperatorFunctionId.Operator));
   2999     return TNK_Function_template;
   3000 
   3001   case UnqualifiedId::IK_LiteralOperatorId:
   3002     llvm_unreachable("literal operator id cannot have a dependent scope");
   3003 
   3004   default:
   3005     break;
   3006   }
   3007 
   3008   Diag(Name.getLocStart(),
   3009        diag::err_template_kw_refers_to_non_template)
   3010     << GetNameFromUnqualifiedId(Name).getName()
   3011     << Name.getSourceRange()
   3012     << TemplateKWLoc;
   3013   return TNK_Non_template;
   3014 }
   3015 
   3016 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
   3017                                      TemplateArgumentLoc &AL,
   3018                           SmallVectorImpl<TemplateArgument> &Converted) {
   3019   const TemplateArgument &Arg = AL.getArgument();
   3020   QualType ArgType;
   3021   TypeSourceInfo *TSI = nullptr;
   3022 
   3023   // Check template type parameter.
   3024   switch(Arg.getKind()) {
   3025   case TemplateArgument::Type:
   3026     // C++ [temp.arg.type]p1:
   3027     //   A template-argument for a template-parameter which is a
   3028     //   type shall be a type-id.
   3029     ArgType = Arg.getAsType();
   3030     TSI = AL.getTypeSourceInfo();
   3031     break;
   3032   case TemplateArgument::Template: {
   3033     // We have a template type parameter but the template argument
   3034     // is a template without any arguments.
   3035     SourceRange SR = AL.getSourceRange();
   3036     TemplateName Name = Arg.getAsTemplate();
   3037     Diag(SR.getBegin(), diag::err_template_missing_args)
   3038       << Name << SR;
   3039     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
   3040       Diag(Decl->getLocation(), diag::note_template_decl_here);
   3041 
   3042     return true;
   3043   }
   3044   case TemplateArgument::Expression: {
   3045     // We have a template type parameter but the template argument is an
   3046     // expression; see if maybe it is missing the "typename" keyword.
   3047     CXXScopeSpec SS;
   3048     DeclarationNameInfo NameInfo;
   3049 
   3050     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
   3051       SS.Adopt(ArgExpr->getQualifierLoc());
   3052       NameInfo = ArgExpr->getNameInfo();
   3053     } else if (DependentScopeDeclRefExpr *ArgExpr =
   3054                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
   3055       SS.Adopt(ArgExpr->getQualifierLoc());
   3056       NameInfo = ArgExpr->getNameInfo();
   3057     } else if (CXXDependentScopeMemberExpr *ArgExpr =
   3058                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
   3059       if (ArgExpr->isImplicitAccess()) {
   3060         SS.Adopt(ArgExpr->getQualifierLoc());
   3061         NameInfo = ArgExpr->getMemberNameInfo();
   3062       }
   3063     }
   3064 
   3065     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
   3066       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
   3067       LookupParsedName(Result, CurScope, &SS);
   3068 
   3069       if (Result.getAsSingle<TypeDecl>() ||
   3070           Result.getResultKind() ==
   3071               LookupResult::NotFoundInCurrentInstantiation) {
   3072         // Suggest that the user add 'typename' before the NNS.
   3073         SourceLocation Loc = AL.getSourceRange().getBegin();
   3074         Diag(Loc, getLangOpts().MSVCCompat
   3075                       ? diag::ext_ms_template_type_arg_missing_typename
   3076                       : diag::err_template_arg_must_be_type_suggest)
   3077             << FixItHint::CreateInsertion(Loc, "typename ");
   3078         Diag(Param->getLocation(), diag::note_template_param_here);
   3079 
   3080         // Recover by synthesizing a type using the location information that we
   3081         // already have.
   3082         ArgType =
   3083             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
   3084         TypeLocBuilder TLB;
   3085         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
   3086         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
   3087         TL.setQualifierLoc(SS.getWithLocInContext(Context));
   3088         TL.setNameLoc(NameInfo.getLoc());
   3089         TSI = TLB.getTypeSourceInfo(Context, ArgType);
   3090 
   3091         // Overwrite our input TemplateArgumentLoc so that we can recover
   3092         // properly.
   3093         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
   3094                                  TemplateArgumentLocInfo(TSI));
   3095 
   3096         break;
   3097       }
   3098     }
   3099     // fallthrough
   3100   }
   3101   default: {
   3102     // We have a template type parameter but the template argument
   3103     // is not a type.
   3104     SourceRange SR = AL.getSourceRange();
   3105     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
   3106     Diag(Param->getLocation(), diag::note_template_param_here);
   3107 
   3108     return true;
   3109   }
   3110   }
   3111 
   3112   if (CheckTemplateArgument(Param, TSI))
   3113     return true;
   3114 
   3115   // Add the converted template type argument.
   3116   ArgType = Context.getCanonicalType(ArgType);
   3117 
   3118   // Objective-C ARC:
   3119   //   If an explicitly-specified template argument type is a lifetime type
   3120   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
   3121   if (getLangOpts().ObjCAutoRefCount &&
   3122       ArgType->isObjCLifetimeType() &&
   3123       !ArgType.getObjCLifetime()) {
   3124     Qualifiers Qs;
   3125     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
   3126     ArgType = Context.getQualifiedType(ArgType, Qs);
   3127   }
   3128 
   3129   Converted.push_back(TemplateArgument(ArgType));
   3130   return false;
   3131 }
   3132 
   3133 /// \brief Substitute template arguments into the default template argument for
   3134 /// the given template type parameter.
   3135 ///
   3136 /// \param SemaRef the semantic analysis object for which we are performing
   3137 /// the substitution.
   3138 ///
   3139 /// \param Template the template that we are synthesizing template arguments
   3140 /// for.
   3141 ///
   3142 /// \param TemplateLoc the location of the template name that started the
   3143 /// template-id we are checking.
   3144 ///
   3145 /// \param RAngleLoc the location of the right angle bracket ('>') that
   3146 /// terminates the template-id.
   3147 ///
   3148 /// \param Param the template template parameter whose default we are
   3149 /// substituting into.
   3150 ///
   3151 /// \param Converted the list of template arguments provided for template
   3152 /// parameters that precede \p Param in the template parameter list.
   3153 /// \returns the substituted template argument, or NULL if an error occurred.
   3154 static TypeSourceInfo *
   3155 SubstDefaultTemplateArgument(Sema &SemaRef,
   3156                              TemplateDecl *Template,
   3157                              SourceLocation TemplateLoc,
   3158                              SourceLocation RAngleLoc,
   3159                              TemplateTypeParmDecl *Param,
   3160                          SmallVectorImpl<TemplateArgument> &Converted) {
   3161   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
   3162 
   3163   // If the argument type is dependent, instantiate it now based
   3164   // on the previously-computed template arguments.
   3165   if (ArgType->getType()->isDependentType()) {
   3166     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   3167                                      Template, Converted,
   3168                                      SourceRange(TemplateLoc, RAngleLoc));
   3169     if (Inst.isInvalid())
   3170       return nullptr;
   3171 
   3172     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   3173                                       Converted.data(), Converted.size());
   3174 
   3175     // Only substitute for the innermost template argument list.
   3176     MultiLevelTemplateArgumentList TemplateArgLists;
   3177     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   3178     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
   3179       TemplateArgLists.addOuterTemplateArguments(None);
   3180 
   3181     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
   3182     ArgType =
   3183         SemaRef.SubstType(ArgType, TemplateArgLists,
   3184                           Param->getDefaultArgumentLoc(), Param->getDeclName());
   3185   }
   3186 
   3187   return ArgType;
   3188 }
   3189 
   3190 /// \brief Substitute template arguments into the default template argument for
   3191 /// the given non-type template parameter.
   3192 ///
   3193 /// \param SemaRef the semantic analysis object for which we are performing
   3194 /// the substitution.
   3195 ///
   3196 /// \param Template the template that we are synthesizing template arguments
   3197 /// for.
   3198 ///
   3199 /// \param TemplateLoc the location of the template name that started the
   3200 /// template-id we are checking.
   3201 ///
   3202 /// \param RAngleLoc the location of the right angle bracket ('>') that
   3203 /// terminates the template-id.
   3204 ///
   3205 /// \param Param the non-type template parameter whose default we are
   3206 /// substituting into.
   3207 ///
   3208 /// \param Converted the list of template arguments provided for template
   3209 /// parameters that precede \p Param in the template parameter list.
   3210 ///
   3211 /// \returns the substituted template argument, or NULL if an error occurred.
   3212 static ExprResult
   3213 SubstDefaultTemplateArgument(Sema &SemaRef,
   3214                              TemplateDecl *Template,
   3215                              SourceLocation TemplateLoc,
   3216                              SourceLocation RAngleLoc,
   3217                              NonTypeTemplateParmDecl *Param,
   3218                         SmallVectorImpl<TemplateArgument> &Converted) {
   3219   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   3220                                    Template, Converted,
   3221                                    SourceRange(TemplateLoc, RAngleLoc));
   3222   if (Inst.isInvalid())
   3223     return ExprError();
   3224 
   3225   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   3226                                     Converted.data(), Converted.size());
   3227 
   3228   // Only substitute for the innermost template argument list.
   3229   MultiLevelTemplateArgumentList TemplateArgLists;
   3230   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   3231   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
   3232     TemplateArgLists.addOuterTemplateArguments(None);
   3233 
   3234   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
   3235   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
   3236   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
   3237 }
   3238 
   3239 /// \brief Substitute template arguments into the default template argument for
   3240 /// the given template template parameter.
   3241 ///
   3242 /// \param SemaRef the semantic analysis object for which we are performing
   3243 /// the substitution.
   3244 ///
   3245 /// \param Template the template that we are synthesizing template arguments
   3246 /// for.
   3247 ///
   3248 /// \param TemplateLoc the location of the template name that started the
   3249 /// template-id we are checking.
   3250 ///
   3251 /// \param RAngleLoc the location of the right angle bracket ('>') that
   3252 /// terminates the template-id.
   3253 ///
   3254 /// \param Param the template template parameter whose default we are
   3255 /// substituting into.
   3256 ///
   3257 /// \param Converted the list of template arguments provided for template
   3258 /// parameters that precede \p Param in the template parameter list.
   3259 ///
   3260 /// \param QualifierLoc Will be set to the nested-name-specifier (with
   3261 /// source-location information) that precedes the template name.
   3262 ///
   3263 /// \returns the substituted template argument, or NULL if an error occurred.
   3264 static TemplateName
   3265 SubstDefaultTemplateArgument(Sema &SemaRef,
   3266                              TemplateDecl *Template,
   3267                              SourceLocation TemplateLoc,
   3268                              SourceLocation RAngleLoc,
   3269                              TemplateTemplateParmDecl *Param,
   3270                        SmallVectorImpl<TemplateArgument> &Converted,
   3271                              NestedNameSpecifierLoc &QualifierLoc) {
   3272   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
   3273                                    SourceRange(TemplateLoc, RAngleLoc));
   3274   if (Inst.isInvalid())
   3275     return TemplateName();
   3276 
   3277   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   3278                                     Converted.data(), Converted.size());
   3279 
   3280   // Only substitute for the innermost template argument list.
   3281   MultiLevelTemplateArgumentList TemplateArgLists;
   3282   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   3283   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
   3284     TemplateArgLists.addOuterTemplateArguments(None);
   3285 
   3286   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
   3287   // Substitute into the nested-name-specifier first,
   3288   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
   3289   if (QualifierLoc) {
   3290     QualifierLoc =
   3291         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
   3292     if (!QualifierLoc)
   3293       return TemplateName();
   3294   }
   3295 
   3296   return SemaRef.SubstTemplateName(
   3297              QualifierLoc,
   3298              Param->getDefaultArgument().getArgument().getAsTemplate(),
   3299              Param->getDefaultArgument().getTemplateNameLoc(),
   3300              TemplateArgLists);
   3301 }
   3302 
   3303 /// \brief If the given template parameter has a default template
   3304 /// argument, substitute into that default template argument and
   3305 /// return the corresponding template argument.
   3306 TemplateArgumentLoc
   3307 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
   3308                                               SourceLocation TemplateLoc,
   3309                                               SourceLocation RAngleLoc,
   3310                                               Decl *Param,
   3311                                               SmallVectorImpl<TemplateArgument>
   3312                                                 &Converted,
   3313                                               bool &HasDefaultArg) {
   3314   HasDefaultArg = false;
   3315 
   3316   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
   3317     if (!TypeParm->hasDefaultArgument())
   3318       return TemplateArgumentLoc();
   3319 
   3320     HasDefaultArg = true;
   3321     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
   3322                                                       TemplateLoc,
   3323                                                       RAngleLoc,
   3324                                                       TypeParm,
   3325                                                       Converted);
   3326     if (DI)
   3327       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
   3328 
   3329     return TemplateArgumentLoc();
   3330   }
   3331 
   3332   if (NonTypeTemplateParmDecl *NonTypeParm
   3333         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   3334     if (!NonTypeParm->hasDefaultArgument())
   3335       return TemplateArgumentLoc();
   3336 
   3337     HasDefaultArg = true;
   3338     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
   3339                                                   TemplateLoc,
   3340                                                   RAngleLoc,
   3341                                                   NonTypeParm,
   3342                                                   Converted);
   3343     if (Arg.isInvalid())
   3344       return TemplateArgumentLoc();
   3345 
   3346     Expr *ArgE = Arg.getAs<Expr>();
   3347     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
   3348   }
   3349 
   3350   TemplateTemplateParmDecl *TempTempParm
   3351     = cast<TemplateTemplateParmDecl>(Param);
   3352   if (!TempTempParm->hasDefaultArgument())
   3353     return TemplateArgumentLoc();
   3354 
   3355   HasDefaultArg = true;
   3356   NestedNameSpecifierLoc QualifierLoc;
   3357   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
   3358                                                     TemplateLoc,
   3359                                                     RAngleLoc,
   3360                                                     TempTempParm,
   3361                                                     Converted,
   3362                                                     QualifierLoc);
   3363   if (TName.isNull())
   3364     return TemplateArgumentLoc();
   3365 
   3366   return TemplateArgumentLoc(TemplateArgument(TName),
   3367                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
   3368                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
   3369 }
   3370 
   3371 /// \brief Check that the given template argument corresponds to the given
   3372 /// template parameter.
   3373 ///
   3374 /// \param Param The template parameter against which the argument will be
   3375 /// checked.
   3376 ///
   3377 /// \param Arg The template argument, which may be updated due to conversions.
   3378 ///
   3379 /// \param Template The template in which the template argument resides.
   3380 ///
   3381 /// \param TemplateLoc The location of the template name for the template
   3382 /// whose argument list we're matching.
   3383 ///
   3384 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
   3385 /// the template argument list.
   3386 ///
   3387 /// \param ArgumentPackIndex The index into the argument pack where this
   3388 /// argument will be placed. Only valid if the parameter is a parameter pack.
   3389 ///
   3390 /// \param Converted The checked, converted argument will be added to the
   3391 /// end of this small vector.
   3392 ///
   3393 /// \param CTAK Describes how we arrived at this particular template argument:
   3394 /// explicitly written, deduced, etc.
   3395 ///
   3396 /// \returns true on error, false otherwise.
   3397 bool Sema::CheckTemplateArgument(NamedDecl *Param,
   3398                                  TemplateArgumentLoc &Arg,
   3399                                  NamedDecl *Template,
   3400                                  SourceLocation TemplateLoc,
   3401                                  SourceLocation RAngleLoc,
   3402                                  unsigned ArgumentPackIndex,
   3403                             SmallVectorImpl<TemplateArgument> &Converted,
   3404                                  CheckTemplateArgumentKind CTAK) {
   3405   // Check template type parameters.
   3406   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
   3407     return CheckTemplateTypeArgument(TTP, Arg, Converted);
   3408 
   3409   // Check non-type template parameters.
   3410   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   3411     // Do substitution on the type of the non-type template parameter
   3412     // with the template arguments we've seen thus far.  But if the
   3413     // template has a dependent context then we cannot substitute yet.
   3414     QualType NTTPType = NTTP->getType();
   3415     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
   3416       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
   3417 
   3418     if (NTTPType->isDependentType() &&
   3419         !isa<TemplateTemplateParmDecl>(Template) &&
   3420         !Template->getDeclContext()->isDependentContext()) {
   3421       // Do substitution on the type of the non-type template parameter.
   3422       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   3423                                  NTTP, Converted,
   3424                                  SourceRange(TemplateLoc, RAngleLoc));
   3425       if (Inst.isInvalid())
   3426         return true;
   3427 
   3428       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   3429                                         Converted.data(), Converted.size());
   3430       NTTPType = SubstType(NTTPType,
   3431                            MultiLevelTemplateArgumentList(TemplateArgs),
   3432                            NTTP->getLocation(),
   3433                            NTTP->getDeclName());
   3434       // If that worked, check the non-type template parameter type
   3435       // for validity.
   3436       if (!NTTPType.isNull())
   3437         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
   3438                                                      NTTP->getLocation());
   3439       if (NTTPType.isNull())
   3440         return true;
   3441     }
   3442 
   3443     switch (Arg.getArgument().getKind()) {
   3444     case TemplateArgument::Null:
   3445       llvm_unreachable("Should never see a NULL template argument here");
   3446 
   3447     case TemplateArgument::Expression: {
   3448       TemplateArgument Result;
   3449       ExprResult Res =
   3450         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
   3451                               Result, CTAK);
   3452       if (Res.isInvalid())
   3453         return true;
   3454 
   3455       // If the resulting expression is new, then use it in place of the
   3456       // old expression in the template argument.
   3457       if (Res.get() != Arg.getArgument().getAsExpr()) {
   3458         TemplateArgument TA(Res.get());
   3459         Arg = TemplateArgumentLoc(TA, Res.get());
   3460       }
   3461 
   3462       Converted.push_back(Result);
   3463       break;
   3464     }
   3465 
   3466     case TemplateArgument::Declaration:
   3467     case TemplateArgument::Integral:
   3468     case TemplateArgument::NullPtr:
   3469       // We've already checked this template argument, so just copy
   3470       // it to the list of converted arguments.
   3471       Converted.push_back(Arg.getArgument());
   3472       break;
   3473 
   3474     case TemplateArgument::Template:
   3475     case TemplateArgument::TemplateExpansion:
   3476       // We were given a template template argument. It may not be ill-formed;
   3477       // see below.
   3478       if (DependentTemplateName *DTN
   3479             = Arg.getArgument().getAsTemplateOrTemplatePattern()
   3480                                               .getAsDependentTemplateName()) {
   3481         // We have a template argument such as \c T::template X, which we
   3482         // parsed as a template template argument. However, since we now
   3483         // know that we need a non-type template argument, convert this
   3484         // template name into an expression.
   3485 
   3486         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
   3487                                      Arg.getTemplateNameLoc());
   3488 
   3489         CXXScopeSpec SS;
   3490         SS.Adopt(Arg.getTemplateQualifierLoc());
   3491         // FIXME: the template-template arg was a DependentTemplateName,
   3492         // so it was provided with a template keyword. However, its source
   3493         // location is not stored in the template argument structure.
   3494         SourceLocation TemplateKWLoc;
   3495         ExprResult E = DependentScopeDeclRefExpr::Create(
   3496             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   3497             nullptr);
   3498 
   3499         // If we parsed the template argument as a pack expansion, create a
   3500         // pack expansion expression.
   3501         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
   3502           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
   3503           if (E.isInvalid())
   3504             return true;
   3505         }
   3506 
   3507         TemplateArgument Result;
   3508         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
   3509         if (E.isInvalid())
   3510           return true;
   3511 
   3512         Converted.push_back(Result);
   3513         break;
   3514       }
   3515 
   3516       // We have a template argument that actually does refer to a class
   3517       // template, alias template, or template template parameter, and
   3518       // therefore cannot be a non-type template argument.
   3519       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
   3520         << Arg.getSourceRange();
   3521 
   3522       Diag(Param->getLocation(), diag::note_template_param_here);
   3523       return true;
   3524 
   3525     case TemplateArgument::Type: {
   3526       // We have a non-type template parameter but the template
   3527       // argument is a type.
   3528 
   3529       // C++ [temp.arg]p2:
   3530       //   In a template-argument, an ambiguity between a type-id and
   3531       //   an expression is resolved to a type-id, regardless of the
   3532       //   form of the corresponding template-parameter.
   3533       //
   3534       // We warn specifically about this case, since it can be rather
   3535       // confusing for users.
   3536       QualType T = Arg.getArgument().getAsType();
   3537       SourceRange SR = Arg.getSourceRange();
   3538       if (T->isFunctionType())
   3539         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
   3540       else
   3541         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
   3542       Diag(Param->getLocation(), diag::note_template_param_here);
   3543       return true;
   3544     }
   3545 
   3546     case TemplateArgument::Pack:
   3547       llvm_unreachable("Caller must expand template argument packs");
   3548     }
   3549 
   3550     return false;
   3551   }
   3552 
   3553 
   3554   // Check template template parameters.
   3555   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
   3556 
   3557   // Substitute into the template parameter list of the template
   3558   // template parameter, since previously-supplied template arguments
   3559   // may appear within the template template parameter.
   3560   {
   3561     // Set up a template instantiation context.
   3562     LocalInstantiationScope Scope(*this);
   3563     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   3564                                TempParm, Converted,
   3565                                SourceRange(TemplateLoc, RAngleLoc));
   3566     if (Inst.isInvalid())
   3567       return true;
   3568 
   3569     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   3570                                       Converted.data(), Converted.size());
   3571     TempParm = cast_or_null<TemplateTemplateParmDecl>(
   3572                       SubstDecl(TempParm, CurContext,
   3573                                 MultiLevelTemplateArgumentList(TemplateArgs)));
   3574     if (!TempParm)
   3575       return true;
   3576   }
   3577 
   3578   switch (Arg.getArgument().getKind()) {
   3579   case TemplateArgument::Null:
   3580     llvm_unreachable("Should never see a NULL template argument here");
   3581 
   3582   case TemplateArgument::Template:
   3583   case TemplateArgument::TemplateExpansion:
   3584     if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
   3585       return true;
   3586 
   3587     Converted.push_back(Arg.getArgument());
   3588     break;
   3589 
   3590   case TemplateArgument::Expression:
   3591   case TemplateArgument::Type:
   3592     // We have a template template parameter but the template
   3593     // argument does not refer to a template.
   3594     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
   3595       << getLangOpts().CPlusPlus11;
   3596     return true;
   3597 
   3598   case TemplateArgument::Declaration:
   3599     llvm_unreachable("Declaration argument with template template parameter");
   3600   case TemplateArgument::Integral:
   3601     llvm_unreachable("Integral argument with template template parameter");
   3602   case TemplateArgument::NullPtr:
   3603     llvm_unreachable("Null pointer argument with template template parameter");
   3604 
   3605   case TemplateArgument::Pack:
   3606     llvm_unreachable("Caller must expand template argument packs");
   3607   }
   3608 
   3609   return false;
   3610 }
   3611 
   3612 /// \brief Diagnose an arity mismatch in the
   3613 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
   3614                                   SourceLocation TemplateLoc,
   3615                                   TemplateArgumentListInfo &TemplateArgs) {
   3616   TemplateParameterList *Params = Template->getTemplateParameters();
   3617   unsigned NumParams = Params->size();
   3618   unsigned NumArgs = TemplateArgs.size();
   3619 
   3620   SourceRange Range;
   3621   if (NumArgs > NumParams)
   3622     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
   3623                         TemplateArgs.getRAngleLoc());
   3624   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   3625     << (NumArgs > NumParams)
   3626     << (isa<ClassTemplateDecl>(Template)? 0 :
   3627         isa<FunctionTemplateDecl>(Template)? 1 :
   3628         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   3629     << Template << Range;
   3630   S.Diag(Template->getLocation(), diag::note_template_decl_here)
   3631     << Params->getSourceRange();
   3632   return true;
   3633 }
   3634 
   3635 /// \brief Check whether the template parameter is a pack expansion, and if so,
   3636 /// determine the number of parameters produced by that expansion. For instance:
   3637 ///
   3638 /// \code
   3639 /// template<typename ...Ts> struct A {
   3640 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
   3641 /// };
   3642 /// \endcode
   3643 ///
   3644 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
   3645 /// is not a pack expansion, so returns an empty Optional.
   3646 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
   3647   if (NonTypeTemplateParmDecl *NTTP
   3648         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   3649     if (NTTP->isExpandedParameterPack())
   3650       return NTTP->getNumExpansionTypes();
   3651   }
   3652 
   3653   if (TemplateTemplateParmDecl *TTP
   3654         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
   3655     if (TTP->isExpandedParameterPack())
   3656       return TTP->getNumExpansionTemplateParameters();
   3657   }
   3658 
   3659   return None;
   3660 }
   3661 
   3662 /// \brief Check that the given template argument list is well-formed
   3663 /// for specializing the given template.
   3664 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
   3665                                      SourceLocation TemplateLoc,
   3666                                      TemplateArgumentListInfo &TemplateArgs,
   3667                                      bool PartialTemplateArgs,
   3668                           SmallVectorImpl<TemplateArgument> &Converted) {
   3669   // Make a copy of the template arguments for processing.  Only make the
   3670   // changes at the end when successful in matching the arguments to the
   3671   // template.
   3672   TemplateArgumentListInfo NewArgs = TemplateArgs;
   3673 
   3674   TemplateParameterList *Params = Template->getTemplateParameters();
   3675 
   3676   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
   3677 
   3678   // C++ [temp.arg]p1:
   3679   //   [...] The type and form of each template-argument specified in
   3680   //   a template-id shall match the type and form specified for the
   3681   //   corresponding parameter declared by the template in its
   3682   //   template-parameter-list.
   3683   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
   3684   SmallVector<TemplateArgument, 2> ArgumentPack;
   3685   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
   3686   LocalInstantiationScope InstScope(*this, true);
   3687   for (TemplateParameterList::iterator Param = Params->begin(),
   3688                                        ParamEnd = Params->end();
   3689        Param != ParamEnd; /* increment in loop */) {
   3690     // If we have an expanded parameter pack, make sure we don't have too
   3691     // many arguments.
   3692     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
   3693       if (*Expansions == ArgumentPack.size()) {
   3694         // We're done with this parameter pack. Pack up its arguments and add
   3695         // them to the list.
   3696         Converted.push_back(
   3697           TemplateArgument::CreatePackCopy(Context,
   3698                                            ArgumentPack.data(),
   3699                                            ArgumentPack.size()));
   3700         ArgumentPack.clear();
   3701 
   3702         // This argument is assigned to the next parameter.
   3703         ++Param;
   3704         continue;
   3705       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
   3706         // Not enough arguments for this parameter pack.
   3707         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   3708           << false
   3709           << (isa<ClassTemplateDecl>(Template)? 0 :
   3710               isa<FunctionTemplateDecl>(Template)? 1 :
   3711               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   3712           << Template;
   3713         Diag(Template->getLocation(), diag::note_template_decl_here)
   3714           << Params->getSourceRange();
   3715         return true;
   3716       }
   3717     }
   3718 
   3719     if (ArgIdx < NumArgs) {
   3720       // Check the template argument we were given.
   3721       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
   3722                                 TemplateLoc, RAngleLoc,
   3723                                 ArgumentPack.size(), Converted))
   3724         return true;
   3725 
   3726       bool PackExpansionIntoNonPack =
   3727           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
   3728           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
   3729       if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
   3730         // Core issue 1430: we have a pack expansion as an argument to an
   3731         // alias template, and it's not part of a parameter pack. This
   3732         // can't be canonicalized, so reject it now.
   3733         Diag(NewArgs[ArgIdx].getLocation(),
   3734              diag::err_alias_template_expansion_into_fixed_list)
   3735           << NewArgs[ArgIdx].getSourceRange();
   3736         Diag((*Param)->getLocation(), diag::note_template_param_here);
   3737         return true;
   3738       }
   3739 
   3740       // We're now done with this argument.
   3741       ++ArgIdx;
   3742 
   3743       if ((*Param)->isTemplateParameterPack()) {
   3744         // The template parameter was a template parameter pack, so take the
   3745         // deduced argument and place it on the argument pack. Note that we
   3746         // stay on the same template parameter so that we can deduce more
   3747         // arguments.
   3748         ArgumentPack.push_back(Converted.pop_back_val());
   3749       } else {
   3750         // Move to the next template parameter.
   3751         ++Param;
   3752       }
   3753 
   3754       // If we just saw a pack expansion into a non-pack, then directly convert
   3755       // the remaining arguments, because we don't know what parameters they'll
   3756       // match up with.
   3757       if (PackExpansionIntoNonPack) {
   3758         if (!ArgumentPack.empty()) {
   3759           // If we were part way through filling in an expanded parameter pack,
   3760           // fall back to just producing individual arguments.
   3761           Converted.insert(Converted.end(),
   3762                            ArgumentPack.begin(), ArgumentPack.end());
   3763           ArgumentPack.clear();
   3764         }
   3765 
   3766         while (ArgIdx < NumArgs) {
   3767           Converted.push_back(NewArgs[ArgIdx].getArgument());
   3768           ++ArgIdx;
   3769         }
   3770 
   3771         return false;
   3772       }
   3773 
   3774       continue;
   3775     }
   3776 
   3777     // If we're checking a partial template argument list, we're done.
   3778     if (PartialTemplateArgs) {
   3779       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
   3780         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
   3781                                                          ArgumentPack.data(),
   3782                                                          ArgumentPack.size()));
   3783 
   3784       return false;
   3785     }
   3786 
   3787     // If we have a template parameter pack with no more corresponding
   3788     // arguments, just break out now and we'll fill in the argument pack below.
   3789     if ((*Param)->isTemplateParameterPack()) {
   3790       assert(!getExpandedPackSize(*Param) &&
   3791              "Should have dealt with this already");
   3792 
   3793       // A non-expanded parameter pack before the end of the parameter list
   3794       // only occurs for an ill-formed template parameter list, unless we've
   3795       // got a partial argument list for a function template, so just bail out.
   3796       if (Param + 1 != ParamEnd)
   3797         return true;
   3798 
   3799       Converted.push_back(TemplateArgument::CreatePackCopy(Context,
   3800                                                        ArgumentPack.data(),
   3801                                                        ArgumentPack.size()));
   3802       ArgumentPack.clear();
   3803 
   3804       ++Param;
   3805       continue;
   3806     }
   3807 
   3808     // Check whether we have a default argument.
   3809     TemplateArgumentLoc Arg;
   3810 
   3811     // Retrieve the default template argument from the template
   3812     // parameter. For each kind of template parameter, we substitute the
   3813     // template arguments provided thus far and any "outer" template arguments
   3814     // (when the template parameter was part of a nested template) into
   3815     // the default argument.
   3816     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
   3817       if (!TTP->hasDefaultArgument())
   3818         return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
   3819 
   3820       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
   3821                                                              Template,
   3822                                                              TemplateLoc,
   3823                                                              RAngleLoc,
   3824                                                              TTP,
   3825                                                              Converted);
   3826       if (!ArgType)
   3827         return true;
   3828 
   3829       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
   3830                                 ArgType);
   3831     } else if (NonTypeTemplateParmDecl *NTTP
   3832                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
   3833       if (!NTTP->hasDefaultArgument())
   3834         return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
   3835 
   3836       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
   3837                                                               TemplateLoc,
   3838                                                               RAngleLoc,
   3839                                                               NTTP,
   3840                                                               Converted);
   3841       if (E.isInvalid())
   3842         return true;
   3843 
   3844       Expr *Ex = E.getAs<Expr>();
   3845       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
   3846     } else {
   3847       TemplateTemplateParmDecl *TempParm
   3848         = cast<TemplateTemplateParmDecl>(*Param);
   3849 
   3850       if (!TempParm->hasDefaultArgument())
   3851         return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
   3852 
   3853       NestedNameSpecifierLoc QualifierLoc;
   3854       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
   3855                                                        TemplateLoc,
   3856                                                        RAngleLoc,
   3857                                                        TempParm,
   3858                                                        Converted,
   3859                                                        QualifierLoc);
   3860       if (Name.isNull())
   3861         return true;
   3862 
   3863       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
   3864                            TempParm->getDefaultArgument().getTemplateNameLoc());
   3865     }
   3866 
   3867     // Introduce an instantiation record that describes where we are using
   3868     // the default template argument.
   3869     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
   3870                                SourceRange(TemplateLoc, RAngleLoc));
   3871     if (Inst.isInvalid())
   3872       return true;
   3873 
   3874     // Check the default template argument.
   3875     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
   3876                               RAngleLoc, 0, Converted))
   3877       return true;
   3878 
   3879     // Core issue 150 (assumed resolution): if this is a template template
   3880     // parameter, keep track of the default template arguments from the
   3881     // template definition.
   3882     if (isTemplateTemplateParameter)
   3883       NewArgs.addArgument(Arg);
   3884 
   3885     // Move to the next template parameter and argument.
   3886     ++Param;
   3887     ++ArgIdx;
   3888   }
   3889 
   3890   // If we're performing a partial argument substitution, allow any trailing
   3891   // pack expansions; they might be empty. This can happen even if
   3892   // PartialTemplateArgs is false (the list of arguments is complete but
   3893   // still dependent).
   3894   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
   3895       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
   3896     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
   3897       Converted.push_back(NewArgs[ArgIdx++].getArgument());
   3898   }
   3899 
   3900   // If we have any leftover arguments, then there were too many arguments.
   3901   // Complain and fail.
   3902   if (ArgIdx < NumArgs)
   3903     return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
   3904 
   3905   // No problems found with the new argument list, propagate changes back
   3906   // to caller.
   3907   TemplateArgs = NewArgs;
   3908 
   3909   return false;
   3910 }
   3911 
   3912 namespace {
   3913   class UnnamedLocalNoLinkageFinder
   3914     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
   3915   {
   3916     Sema &S;
   3917     SourceRange SR;
   3918 
   3919     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
   3920 
   3921   public:
   3922     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
   3923 
   3924     bool Visit(QualType T) {
   3925       return inherited::Visit(T.getTypePtr());
   3926     }
   3927 
   3928 #define TYPE(Class, Parent) \
   3929     bool Visit##Class##Type(const Class##Type *);
   3930 #define ABSTRACT_TYPE(Class, Parent) \
   3931     bool Visit##Class##Type(const Class##Type *) { return false; }
   3932 #define NON_CANONICAL_TYPE(Class, Parent) \
   3933     bool Visit##Class##Type(const Class##Type *) { return false; }
   3934 #include "clang/AST/TypeNodes.def"
   3935 
   3936     bool VisitTagDecl(const TagDecl *Tag);
   3937     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
   3938   };
   3939 }
   3940 
   3941 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
   3942   return false;
   3943 }
   3944 
   3945 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
   3946   return Visit(T->getElementType());
   3947 }
   3948 
   3949 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
   3950   return Visit(T->getPointeeType());
   3951 }
   3952 
   3953 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
   3954                                                     const BlockPointerType* T) {
   3955   return Visit(T->getPointeeType());
   3956 }
   3957 
   3958 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
   3959                                                 const LValueReferenceType* T) {
   3960   return Visit(T->getPointeeType());
   3961 }
   3962 
   3963 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
   3964                                                 const RValueReferenceType* T) {
   3965   return Visit(T->getPointeeType());
   3966 }
   3967 
   3968 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
   3969                                                   const MemberPointerType* T) {
   3970   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
   3971 }
   3972 
   3973 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
   3974                                                   const ConstantArrayType* T) {
   3975   return Visit(T->getElementType());
   3976 }
   3977 
   3978 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
   3979                                                  const IncompleteArrayType* T) {
   3980   return Visit(T->getElementType());
   3981 }
   3982 
   3983 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
   3984                                                    const VariableArrayType* T) {
   3985   return Visit(T->getElementType());
   3986 }
   3987 
   3988 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
   3989                                             const DependentSizedArrayType* T) {
   3990   return Visit(T->getElementType());
   3991 }
   3992 
   3993 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
   3994                                          const DependentSizedExtVectorType* T) {
   3995   return Visit(T->getElementType());
   3996 }
   3997 
   3998 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
   3999   return Visit(T->getElementType());
   4000 }
   4001 
   4002 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
   4003   return Visit(T->getElementType());
   4004 }
   4005 
   4006 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
   4007                                                   const FunctionProtoType* T) {
   4008   for (const auto &A : T->param_types()) {
   4009     if (Visit(A))
   4010       return true;
   4011   }
   4012 
   4013   return Visit(T->getReturnType());
   4014 }
   4015 
   4016 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
   4017                                                const FunctionNoProtoType* T) {
   4018   return Visit(T->getReturnType());
   4019 }
   4020 
   4021 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
   4022                                                   const UnresolvedUsingType*) {
   4023   return false;
   4024 }
   4025 
   4026 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
   4027   return false;
   4028 }
   4029 
   4030 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
   4031   return Visit(T->getUnderlyingType());
   4032 }
   4033 
   4034 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
   4035   return false;
   4036 }
   4037 
   4038 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
   4039                                                     const UnaryTransformType*) {
   4040   return false;
   4041 }
   4042 
   4043 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
   4044   return Visit(T->getDeducedType());
   4045 }
   4046 
   4047 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
   4048   return VisitTagDecl(T->getDecl());
   4049 }
   4050 
   4051 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
   4052   return VisitTagDecl(T->getDecl());
   4053 }
   4054 
   4055 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
   4056                                                  const TemplateTypeParmType*) {
   4057   return false;
   4058 }
   4059 
   4060 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
   4061                                         const SubstTemplateTypeParmPackType *) {
   4062   return false;
   4063 }
   4064 
   4065 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
   4066                                             const TemplateSpecializationType*) {
   4067   return false;
   4068 }
   4069 
   4070 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
   4071                                               const InjectedClassNameType* T) {
   4072   return VisitTagDecl(T->getDecl());
   4073 }
   4074 
   4075 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
   4076                                                    const DependentNameType* T) {
   4077   return VisitNestedNameSpecifier(T->getQualifier());
   4078 }
   4079 
   4080 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
   4081                                  const DependentTemplateSpecializationType* T) {
   4082   return VisitNestedNameSpecifier(T->getQualifier());
   4083 }
   4084 
   4085 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
   4086                                                    const PackExpansionType* T) {
   4087   return Visit(T->getPattern());
   4088 }
   4089 
   4090 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
   4091   return false;
   4092 }
   4093 
   4094 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
   4095                                                    const ObjCInterfaceType *) {
   4096   return false;
   4097 }
   4098 
   4099 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
   4100                                                 const ObjCObjectPointerType *) {
   4101   return false;
   4102 }
   4103 
   4104 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
   4105   return Visit(T->getValueType());
   4106 }
   4107 
   4108 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
   4109   if (Tag->getDeclContext()->isFunctionOrMethod()) {
   4110     S.Diag(SR.getBegin(),
   4111            S.getLangOpts().CPlusPlus11 ?
   4112              diag::warn_cxx98_compat_template_arg_local_type :
   4113              diag::ext_template_arg_local_type)
   4114       << S.Context.getTypeDeclType(Tag) << SR;
   4115     return true;
   4116   }
   4117 
   4118   if (!Tag->hasNameForLinkage()) {
   4119     S.Diag(SR.getBegin(),
   4120            S.getLangOpts().CPlusPlus11 ?
   4121              diag::warn_cxx98_compat_template_arg_unnamed_type :
   4122              diag::ext_template_arg_unnamed_type) << SR;
   4123     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
   4124     return true;
   4125   }
   4126 
   4127   return false;
   4128 }
   4129 
   4130 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
   4131                                                     NestedNameSpecifier *NNS) {
   4132   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
   4133     return true;
   4134 
   4135   switch (NNS->getKind()) {
   4136   case NestedNameSpecifier::Identifier:
   4137   case NestedNameSpecifier::Namespace:
   4138   case NestedNameSpecifier::NamespaceAlias:
   4139   case NestedNameSpecifier::Global:
   4140   case NestedNameSpecifier::Super:
   4141     return false;
   4142 
   4143   case NestedNameSpecifier::TypeSpec:
   4144   case NestedNameSpecifier::TypeSpecWithTemplate:
   4145     return Visit(QualType(NNS->getAsType(), 0));
   4146   }
   4147   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   4148 }
   4149 
   4150 
   4151 /// \brief Check a template argument against its corresponding
   4152 /// template type parameter.
   4153 ///
   4154 /// This routine implements the semantics of C++ [temp.arg.type]. It
   4155 /// returns true if an error occurred, and false otherwise.
   4156 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
   4157                                  TypeSourceInfo *ArgInfo) {
   4158   assert(ArgInfo && "invalid TypeSourceInfo");
   4159   QualType Arg = ArgInfo->getType();
   4160   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
   4161 
   4162   if (Arg->isVariablyModifiedType()) {
   4163     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
   4164   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
   4165     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
   4166   }
   4167 
   4168   // C++03 [temp.arg.type]p2:
   4169   //   A local type, a type with no linkage, an unnamed type or a type
   4170   //   compounded from any of these types shall not be used as a
   4171   //   template-argument for a template type-parameter.
   4172   //
   4173   // C++11 allows these, and even in C++03 we allow them as an extension with
   4174   // a warning.
   4175   bool NeedsCheck;
   4176   if (LangOpts.CPlusPlus11)
   4177     NeedsCheck =
   4178         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
   4179                          SR.getBegin()) ||
   4180         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
   4181                          SR.getBegin());
   4182   else
   4183     NeedsCheck = Arg->hasUnnamedOrLocalType();
   4184 
   4185   if (NeedsCheck) {
   4186     UnnamedLocalNoLinkageFinder Finder(*this, SR);
   4187     (void)Finder.Visit(Context.getCanonicalType(Arg));
   4188   }
   4189 
   4190   return false;
   4191 }
   4192 
   4193 enum NullPointerValueKind {
   4194   NPV_NotNullPointer,
   4195   NPV_NullPointer,
   4196   NPV_Error
   4197 };
   4198 
   4199 /// \brief Determine whether the given template argument is a null pointer
   4200 /// value of the appropriate type.
   4201 static NullPointerValueKind
   4202 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
   4203                                    QualType ParamType, Expr *Arg) {
   4204   if (Arg->isValueDependent() || Arg->isTypeDependent())
   4205     return NPV_NotNullPointer;
   4206 
   4207   if (!S.getLangOpts().CPlusPlus11)
   4208     return NPV_NotNullPointer;
   4209 
   4210   // Determine whether we have a constant expression.
   4211   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
   4212   if (ArgRV.isInvalid())
   4213     return NPV_Error;
   4214   Arg = ArgRV.get();
   4215 
   4216   Expr::EvalResult EvalResult;
   4217   SmallVector<PartialDiagnosticAt, 8> Notes;
   4218   EvalResult.Diag = &Notes;
   4219   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
   4220       EvalResult.HasSideEffects) {
   4221     SourceLocation DiagLoc = Arg->getExprLoc();
   4222 
   4223     // If our only note is the usual "invalid subexpression" note, just point
   4224     // the caret at its location rather than producing an essentially
   4225     // redundant note.
   4226     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   4227         diag::note_invalid_subexpr_in_const_expr) {
   4228       DiagLoc = Notes[0].first;
   4229       Notes.clear();
   4230     }
   4231 
   4232     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
   4233       << Arg->getType() << Arg->getSourceRange();
   4234     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   4235       S.Diag(Notes[I].first, Notes[I].second);
   4236 
   4237     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4238     return NPV_Error;
   4239   }
   4240 
   4241   // C++11 [temp.arg.nontype]p1:
   4242   //   - an address constant expression of type std::nullptr_t
   4243   if (Arg->getType()->isNullPtrType())
   4244     return NPV_NullPointer;
   4245 
   4246   //   - a constant expression that evaluates to a null pointer value (4.10); or
   4247   //   - a constant expression that evaluates to a null member pointer value
   4248   //     (4.11); or
   4249   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
   4250       (EvalResult.Val.isMemberPointer() &&
   4251        !EvalResult.Val.getMemberPointerDecl())) {
   4252     // If our expression has an appropriate type, we've succeeded.
   4253     bool ObjCLifetimeConversion;
   4254     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
   4255         S.IsQualificationConversion(Arg->getType(), ParamType, false,
   4256                                      ObjCLifetimeConversion))
   4257       return NPV_NullPointer;
   4258 
   4259     // The types didn't match, but we know we got a null pointer; complain,
   4260     // then recover as if the types were correct.
   4261     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
   4262       << Arg->getType() << ParamType << Arg->getSourceRange();
   4263     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4264     return NPV_NullPointer;
   4265   }
   4266 
   4267   // If we don't have a null pointer value, but we do have a NULL pointer
   4268   // constant, suggest a cast to the appropriate type.
   4269   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
   4270     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
   4271     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
   4272         << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
   4273         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
   4274                                       ")");
   4275     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4276     return NPV_NullPointer;
   4277   }
   4278 
   4279   // FIXME: If we ever want to support general, address-constant expressions
   4280   // as non-type template arguments, we should return the ExprResult here to
   4281   // be interpreted by the caller.
   4282   return NPV_NotNullPointer;
   4283 }
   4284 
   4285 /// \brief Checks whether the given template argument is compatible with its
   4286 /// template parameter.
   4287 static bool CheckTemplateArgumentIsCompatibleWithParameter(
   4288     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
   4289     Expr *Arg, QualType ArgType) {
   4290   bool ObjCLifetimeConversion;
   4291   if (ParamType->isPointerType() &&
   4292       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
   4293       S.IsQualificationConversion(ArgType, ParamType, false,
   4294                                   ObjCLifetimeConversion)) {
   4295     // For pointer-to-object types, qualification conversions are
   4296     // permitted.
   4297   } else {
   4298     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
   4299       if (!ParamRef->getPointeeType()->isFunctionType()) {
   4300         // C++ [temp.arg.nontype]p5b3:
   4301         //   For a non-type template-parameter of type reference to
   4302         //   object, no conversions apply. The type referred to by the
   4303         //   reference may be more cv-qualified than the (otherwise
   4304         //   identical) type of the template- argument. The
   4305         //   template-parameter is bound directly to the
   4306         //   template-argument, which shall be an lvalue.
   4307 
   4308         // FIXME: Other qualifiers?
   4309         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
   4310         unsigned ArgQuals = ArgType.getCVRQualifiers();
   4311 
   4312         if ((ParamQuals | ArgQuals) != ParamQuals) {
   4313           S.Diag(Arg->getLocStart(),
   4314                  diag::err_template_arg_ref_bind_ignores_quals)
   4315             << ParamType << Arg->getType() << Arg->getSourceRange();
   4316           S.Diag(Param->getLocation(), diag::note_template_param_here);
   4317           return true;
   4318         }
   4319       }
   4320     }
   4321 
   4322     // At this point, the template argument refers to an object or
   4323     // function with external linkage. We now need to check whether the
   4324     // argument and parameter types are compatible.
   4325     if (!S.Context.hasSameUnqualifiedType(ArgType,
   4326                                           ParamType.getNonReferenceType())) {
   4327       // We can't perform this conversion or binding.
   4328       if (ParamType->isReferenceType())
   4329         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
   4330           << ParamType << ArgIn->getType() << Arg->getSourceRange();
   4331       else
   4332         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
   4333           << ArgIn->getType() << ParamType << Arg->getSourceRange();
   4334       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4335       return true;
   4336     }
   4337   }
   4338 
   4339   return false;
   4340 }
   4341 
   4342 /// \brief Checks whether the given template argument is the address
   4343 /// of an object or function according to C++ [temp.arg.nontype]p1.
   4344 static bool
   4345 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
   4346                                                NonTypeTemplateParmDecl *Param,
   4347                                                QualType ParamType,
   4348                                                Expr *ArgIn,
   4349                                                TemplateArgument &Converted) {
   4350   bool Invalid = false;
   4351   Expr *Arg = ArgIn;
   4352   QualType ArgType = Arg->getType();
   4353 
   4354   bool AddressTaken = false;
   4355   SourceLocation AddrOpLoc;
   4356   if (S.getLangOpts().MicrosoftExt) {
   4357     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
   4358     // dereference and address-of operators.
   4359     Arg = Arg->IgnoreParenCasts();
   4360 
   4361     bool ExtWarnMSTemplateArg = false;
   4362     UnaryOperatorKind FirstOpKind;
   4363     SourceLocation FirstOpLoc;
   4364     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   4365       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
   4366       if (UnOpKind == UO_Deref)
   4367         ExtWarnMSTemplateArg = true;
   4368       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
   4369         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
   4370         if (!AddrOpLoc.isValid()) {
   4371           FirstOpKind = UnOpKind;
   4372           FirstOpLoc = UnOp->getOperatorLoc();
   4373         }
   4374       } else
   4375         break;
   4376     }
   4377     if (FirstOpLoc.isValid()) {
   4378       if (ExtWarnMSTemplateArg)
   4379         S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
   4380           << ArgIn->getSourceRange();
   4381 
   4382       if (FirstOpKind == UO_AddrOf)
   4383         AddressTaken = true;
   4384       else if (Arg->getType()->isPointerType()) {
   4385         // We cannot let pointers get dereferenced here, that is obviously not a
   4386         // constant expression.
   4387         assert(FirstOpKind == UO_Deref);
   4388         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   4389           << Arg->getSourceRange();
   4390       }
   4391     }
   4392   } else {
   4393     // See through any implicit casts we added to fix the type.
   4394     Arg = Arg->IgnoreImpCasts();
   4395 
   4396     // C++ [temp.arg.nontype]p1:
   4397     //
   4398     //   A template-argument for a non-type, non-template
   4399     //   template-parameter shall be one of: [...]
   4400     //
   4401     //     -- the address of an object or function with external
   4402     //        linkage, including function templates and function
   4403     //        template-ids but excluding non-static class members,
   4404     //        expressed as & id-expression where the & is optional if
   4405     //        the name refers to a function or array, or if the
   4406     //        corresponding template-parameter is a reference; or
   4407 
   4408     // In C++98/03 mode, give an extension warning on any extra parentheses.
   4409     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   4410     bool ExtraParens = false;
   4411     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   4412       if (!Invalid && !ExtraParens) {
   4413         S.Diag(Arg->getLocStart(),
   4414                S.getLangOpts().CPlusPlus11
   4415                    ? diag::warn_cxx98_compat_template_arg_extra_parens
   4416                    : diag::ext_template_arg_extra_parens)
   4417             << Arg->getSourceRange();
   4418         ExtraParens = true;
   4419       }
   4420 
   4421       Arg = Parens->getSubExpr();
   4422     }
   4423 
   4424     while (SubstNonTypeTemplateParmExpr *subst =
   4425                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   4426       Arg = subst->getReplacement()->IgnoreImpCasts();
   4427 
   4428     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   4429       if (UnOp->getOpcode() == UO_AddrOf) {
   4430         Arg = UnOp->getSubExpr();
   4431         AddressTaken = true;
   4432         AddrOpLoc = UnOp->getOperatorLoc();
   4433       }
   4434     }
   4435 
   4436     while (SubstNonTypeTemplateParmExpr *subst =
   4437                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   4438       Arg = subst->getReplacement()->IgnoreImpCasts();
   4439   }
   4440 
   4441   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
   4442   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
   4443 
   4444   // If our parameter has pointer type, check for a null template value.
   4445   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
   4446     NullPointerValueKind NPV;
   4447     // dllimport'd entities aren't constant but are available inside of template
   4448     // arguments.
   4449     if (Entity && Entity->hasAttr<DLLImportAttr>())
   4450       NPV = NPV_NotNullPointer;
   4451     else
   4452       NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
   4453     switch (NPV) {
   4454     case NPV_NullPointer:
   4455       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
   4456       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
   4457                                    /*isNullPtr=*/true);
   4458       return false;
   4459 
   4460     case NPV_Error:
   4461       return true;
   4462 
   4463     case NPV_NotNullPointer:
   4464       break;
   4465     }
   4466   }
   4467 
   4468   // Stop checking the precise nature of the argument if it is value dependent,
   4469   // it should be checked when instantiated.
   4470   if (Arg->isValueDependent()) {
   4471     Converted = TemplateArgument(ArgIn);
   4472     return false;
   4473   }
   4474 
   4475   if (isa<CXXUuidofExpr>(Arg)) {
   4476     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
   4477                                                        ArgIn, Arg, ArgType))
   4478       return true;
   4479 
   4480     Converted = TemplateArgument(ArgIn);
   4481     return false;
   4482   }
   4483 
   4484   if (!DRE) {
   4485     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   4486     << Arg->getSourceRange();
   4487     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4488     return true;
   4489   }
   4490 
   4491   // Cannot refer to non-static data members
   4492   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
   4493     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
   4494       << Entity << Arg->getSourceRange();
   4495     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4496     return true;
   4497   }
   4498 
   4499   // Cannot refer to non-static member functions
   4500   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
   4501     if (!Method->isStatic()) {
   4502       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
   4503         << Method << Arg->getSourceRange();
   4504       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4505       return true;
   4506     }
   4507   }
   4508 
   4509   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
   4510   VarDecl *Var = dyn_cast<VarDecl>(Entity);
   4511 
   4512   // A non-type template argument must refer to an object or function.
   4513   if (!Func && !Var) {
   4514     // We found something, but we don't know specifically what it is.
   4515     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
   4516       << Arg->getSourceRange();
   4517     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
   4518     return true;
   4519   }
   4520 
   4521   // Address / reference template args must have external linkage in C++98.
   4522   if (Entity->getFormalLinkage() == InternalLinkage) {
   4523     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
   4524              diag::warn_cxx98_compat_template_arg_object_internal :
   4525              diag::ext_template_arg_object_internal)
   4526       << !Func << Entity << Arg->getSourceRange();
   4527     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
   4528       << !Func;
   4529   } else if (!Entity->hasLinkage()) {
   4530     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
   4531       << !Func << Entity << Arg->getSourceRange();
   4532     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
   4533       << !Func;
   4534     return true;
   4535   }
   4536 
   4537   if (Func) {
   4538     // If the template parameter has pointer type, the function decays.
   4539     if (ParamType->isPointerType() && !AddressTaken)
   4540       ArgType = S.Context.getPointerType(Func->getType());
   4541     else if (AddressTaken && ParamType->isReferenceType()) {
   4542       // If we originally had an address-of operator, but the
   4543       // parameter has reference type, complain and (if things look
   4544       // like they will work) drop the address-of operator.
   4545       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
   4546                                             ParamType.getNonReferenceType())) {
   4547         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4548           << ParamType;
   4549         S.Diag(Param->getLocation(), diag::note_template_param_here);
   4550         return true;
   4551       }
   4552 
   4553       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4554         << ParamType
   4555         << FixItHint::CreateRemoval(AddrOpLoc);
   4556       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4557 
   4558       ArgType = Func->getType();
   4559     }
   4560   } else {
   4561     // A value of reference type is not an object.
   4562     if (Var->getType()->isReferenceType()) {
   4563       S.Diag(Arg->getLocStart(),
   4564              diag::err_template_arg_reference_var)
   4565         << Var->getType() << Arg->getSourceRange();
   4566       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4567       return true;
   4568     }
   4569 
   4570     // A template argument must have static storage duration.
   4571     if (Var->getTLSKind()) {
   4572       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
   4573         << Arg->getSourceRange();
   4574       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
   4575       return true;
   4576     }
   4577 
   4578     // If the template parameter has pointer type, we must have taken
   4579     // the address of this object.
   4580     if (ParamType->isReferenceType()) {
   4581       if (AddressTaken) {
   4582         // If we originally had an address-of operator, but the
   4583         // parameter has reference type, complain and (if things look
   4584         // like they will work) drop the address-of operator.
   4585         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
   4586                                             ParamType.getNonReferenceType())) {
   4587           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4588             << ParamType;
   4589           S.Diag(Param->getLocation(), diag::note_template_param_here);
   4590           return true;
   4591         }
   4592 
   4593         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4594           << ParamType
   4595           << FixItHint::CreateRemoval(AddrOpLoc);
   4596         S.Diag(Param->getLocation(), diag::note_template_param_here);
   4597 
   4598         ArgType = Var->getType();
   4599       }
   4600     } else if (!AddressTaken && ParamType->isPointerType()) {
   4601       if (Var->getType()->isArrayType()) {
   4602         // Array-to-pointer decay.
   4603         ArgType = S.Context.getArrayDecayedType(Var->getType());
   4604       } else {
   4605         // If the template parameter has pointer type but the address of
   4606         // this object was not taken, complain and (possibly) recover by
   4607         // taking the address of the entity.
   4608         ArgType = S.Context.getPointerType(Var->getType());
   4609         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
   4610           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   4611             << ParamType;
   4612           S.Diag(Param->getLocation(), diag::note_template_param_here);
   4613           return true;
   4614         }
   4615 
   4616         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   4617           << ParamType
   4618           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
   4619 
   4620         S.Diag(Param->getLocation(), diag::note_template_param_here);
   4621       }
   4622     }
   4623   }
   4624 
   4625   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
   4626                                                      Arg, ArgType))
   4627     return true;
   4628 
   4629   // Create the template argument.
   4630   Converted =
   4631       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
   4632   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
   4633   return false;
   4634 }
   4635 
   4636 /// \brief Checks whether the given template argument is a pointer to
   4637 /// member constant according to C++ [temp.arg.nontype]p1.
   4638 static bool CheckTemplateArgumentPointerToMember(Sema &S,
   4639                                                  NonTypeTemplateParmDecl *Param,
   4640                                                  QualType ParamType,
   4641                                                  Expr *&ResultArg,
   4642                                                  TemplateArgument &Converted) {
   4643   bool Invalid = false;
   4644 
   4645   // Check for a null pointer value.
   4646   Expr *Arg = ResultArg;
   4647   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
   4648   case NPV_Error:
   4649     return true;
   4650   case NPV_NullPointer:
   4651     S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
   4652     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
   4653                                  /*isNullPtr*/true);
   4654     if (S.Context.getTargetInfo().getCXXABI().isMicrosoft())
   4655       S.RequireCompleteType(Arg->getExprLoc(), ParamType, 0);
   4656     return false;
   4657   case NPV_NotNullPointer:
   4658     break;
   4659   }
   4660 
   4661   bool ObjCLifetimeConversion;
   4662   if (S.IsQualificationConversion(Arg->getType(),
   4663                                   ParamType.getNonReferenceType(),
   4664                                   false, ObjCLifetimeConversion)) {
   4665     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
   4666                               Arg->getValueKind()).get();
   4667     ResultArg = Arg;
   4668   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
   4669                 ParamType.getNonReferenceType())) {
   4670     // We can't perform this conversion.
   4671     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
   4672       << Arg->getType() << ParamType << Arg->getSourceRange();
   4673     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4674     return true;
   4675   }
   4676 
   4677   // See through any implicit casts we added to fix the type.
   4678   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
   4679     Arg = Cast->getSubExpr();
   4680 
   4681   // C++ [temp.arg.nontype]p1:
   4682   //
   4683   //   A template-argument for a non-type, non-template
   4684   //   template-parameter shall be one of: [...]
   4685   //
   4686   //     -- a pointer to member expressed as described in 5.3.1.
   4687   DeclRefExpr *DRE = nullptr;
   4688 
   4689   // In C++98/03 mode, give an extension warning on any extra parentheses.
   4690   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   4691   bool ExtraParens = false;
   4692   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   4693     if (!Invalid && !ExtraParens) {
   4694       S.Diag(Arg->getLocStart(),
   4695              S.getLangOpts().CPlusPlus11 ?
   4696                diag::warn_cxx98_compat_template_arg_extra_parens :
   4697                diag::ext_template_arg_extra_parens)
   4698         << Arg->getSourceRange();
   4699       ExtraParens = true;
   4700     }
   4701 
   4702     Arg = Parens->getSubExpr();
   4703   }
   4704 
   4705   while (SubstNonTypeTemplateParmExpr *subst =
   4706            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   4707     Arg = subst->getReplacement()->IgnoreImpCasts();
   4708 
   4709   // A pointer-to-member constant written &Class::member.
   4710   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   4711     if (UnOp->getOpcode() == UO_AddrOf) {
   4712       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
   4713       if (DRE && !DRE->getQualifier())
   4714         DRE = nullptr;
   4715     }
   4716   }
   4717   // A constant of pointer-to-member type.
   4718   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
   4719     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
   4720       if (VD->getType()->isMemberPointerType()) {
   4721         if (isa<NonTypeTemplateParmDecl>(VD)) {
   4722           if (Arg->isTypeDependent() || Arg->isValueDependent()) {
   4723             Converted = TemplateArgument(Arg);
   4724           } else {
   4725             VD = cast<ValueDecl>(VD->getCanonicalDecl());
   4726             Converted = TemplateArgument(VD, ParamType);
   4727           }
   4728           return Invalid;
   4729         }
   4730       }
   4731     }
   4732 
   4733     DRE = nullptr;
   4734   }
   4735 
   4736   if (!DRE)
   4737     return S.Diag(Arg->getLocStart(),
   4738                   diag::err_template_arg_not_pointer_to_member_form)
   4739       << Arg->getSourceRange();
   4740 
   4741   if (isa<FieldDecl>(DRE->getDecl()) ||
   4742       isa<IndirectFieldDecl>(DRE->getDecl()) ||
   4743       isa<CXXMethodDecl>(DRE->getDecl())) {
   4744     assert((isa<FieldDecl>(DRE->getDecl()) ||
   4745             isa<IndirectFieldDecl>(DRE->getDecl()) ||
   4746             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
   4747            "Only non-static member pointers can make it here");
   4748 
   4749     // Okay: this is the address of a non-static member, and therefore
   4750     // a member pointer constant.
   4751     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
   4752       Converted = TemplateArgument(Arg);
   4753     } else {
   4754       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
   4755       Converted = TemplateArgument(D, ParamType);
   4756     }
   4757     return Invalid;
   4758   }
   4759 
   4760   // We found something else, but we don't know specifically what it is.
   4761   S.Diag(Arg->getLocStart(),
   4762          diag::err_template_arg_not_pointer_to_member_form)
   4763     << Arg->getSourceRange();
   4764   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
   4765   return true;
   4766 }
   4767 
   4768 /// \brief Check a template argument against its corresponding
   4769 /// non-type template parameter.
   4770 ///
   4771 /// This routine implements the semantics of C++ [temp.arg.nontype].
   4772 /// If an error occurred, it returns ExprError(); otherwise, it
   4773 /// returns the converted template argument. \p ParamType is the
   4774 /// type of the non-type template parameter after it has been instantiated.
   4775 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
   4776                                        QualType ParamType, Expr *Arg,
   4777                                        TemplateArgument &Converted,
   4778                                        CheckTemplateArgumentKind CTAK) {
   4779   SourceLocation StartLoc = Arg->getLocStart();
   4780 
   4781   // If either the parameter has a dependent type or the argument is
   4782   // type-dependent, there's nothing we can check now.
   4783   if (ParamType->isDependentType() || Arg->isTypeDependent()) {
   4784     // FIXME: Produce a cloned, canonical expression?
   4785     Converted = TemplateArgument(Arg);
   4786     return Arg;
   4787   }
   4788 
   4789   // We should have already dropped all cv-qualifiers by now.
   4790   assert(!ParamType.hasQualifiers() &&
   4791          "non-type template parameter type cannot be qualified");
   4792 
   4793   if (CTAK == CTAK_Deduced &&
   4794       !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
   4795     // C++ [temp.deduct.type]p17:
   4796     //   If, in the declaration of a function template with a non-type
   4797     //   template-parameter, the non-type template-parameter is used
   4798     //   in an expression in the function parameter-list and, if the
   4799     //   corresponding template-argument is deduced, the
   4800     //   template-argument type shall match the type of the
   4801     //   template-parameter exactly, except that a template-argument
   4802     //   deduced from an array bound may be of any integral type.
   4803     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
   4804       << Arg->getType().getUnqualifiedType()
   4805       << ParamType.getUnqualifiedType();
   4806     Diag(Param->getLocation(), diag::note_template_param_here);
   4807     return ExprError();
   4808   }
   4809 
   4810   if (getLangOpts().CPlusPlus1z) {
   4811     // FIXME: We can do some limited checking for a value-dependent but not
   4812     // type-dependent argument.
   4813     if (Arg->isValueDependent()) {
   4814       Converted = TemplateArgument(Arg);
   4815       return Arg;
   4816     }
   4817 
   4818     // C++1z [temp.arg.nontype]p1:
   4819     //   A template-argument for a non-type template parameter shall be
   4820     //   a converted constant expression of the type of the template-parameter.
   4821     APValue Value;
   4822     ExprResult ArgResult = CheckConvertedConstantExpression(
   4823         Arg, ParamType, Value, CCEK_TemplateArg);
   4824     if (ArgResult.isInvalid())
   4825       return ExprError();
   4826 
   4827     QualType CanonParamType = Context.getCanonicalType(ParamType);
   4828 
   4829     // Convert the APValue to a TemplateArgument.
   4830     switch (Value.getKind()) {
   4831     case APValue::Uninitialized:
   4832       assert(ParamType->isNullPtrType());
   4833       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
   4834       break;
   4835     case APValue::Int:
   4836       assert(ParamType->isIntegralOrEnumerationType());
   4837       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
   4838       break;
   4839     case APValue::MemberPointer: {
   4840       assert(ParamType->isMemberPointerType());
   4841 
   4842       // FIXME: We need TemplateArgument representation and mangling for these.
   4843       if (!Value.getMemberPointerPath().empty()) {
   4844         Diag(Arg->getLocStart(),
   4845              diag::err_template_arg_member_ptr_base_derived_not_supported)
   4846             << Value.getMemberPointerDecl() << ParamType
   4847             << Arg->getSourceRange();
   4848         return ExprError();
   4849       }
   4850 
   4851       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
   4852       Converted = VD ? TemplateArgument(VD, CanonParamType)
   4853                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
   4854       break;
   4855     }
   4856     case APValue::LValue: {
   4857       //   For a non-type template-parameter of pointer or reference type,
   4858       //   the value of the constant expression shall not refer to
   4859       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
   4860              ParamType->isNullPtrType());
   4861       // -- a temporary object
   4862       // -- a string literal
   4863       // -- the result of a typeid expression, or
   4864       // -- a predefind __func__ variable
   4865       if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
   4866         if (isa<CXXUuidofExpr>(E)) {
   4867           Converted = TemplateArgument(const_cast<Expr*>(E));
   4868           break;
   4869         }
   4870         Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   4871           << Arg->getSourceRange();
   4872         return ExprError();
   4873       }
   4874       auto *VD = const_cast<ValueDecl *>(
   4875           Value.getLValueBase().dyn_cast<const ValueDecl *>());
   4876       // -- a subobject
   4877       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
   4878           VD && VD->getType()->isArrayType() &&
   4879           Value.getLValuePath()[0].ArrayIndex == 0 &&
   4880           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
   4881         // Per defect report (no number yet):
   4882         //   ... other than a pointer to the first element of a complete array
   4883         //       object.
   4884       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
   4885                  Value.isLValueOnePastTheEnd()) {
   4886         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
   4887           << Value.getAsString(Context, ParamType);
   4888         return ExprError();
   4889       }
   4890       assert((VD || !ParamType->isReferenceType()) &&
   4891              "null reference should not be a constant expression");
   4892       assert((!VD || !ParamType->isNullPtrType()) &&
   4893              "non-null value of type nullptr_t?");
   4894       Converted = VD ? TemplateArgument(VD, CanonParamType)
   4895                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
   4896       break;
   4897     }
   4898     case APValue::AddrLabelDiff:
   4899       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
   4900     case APValue::Float:
   4901     case APValue::ComplexInt:
   4902     case APValue::ComplexFloat:
   4903     case APValue::Vector:
   4904     case APValue::Array:
   4905     case APValue::Struct:
   4906     case APValue::Union:
   4907       llvm_unreachable("invalid kind for template argument");
   4908     }
   4909 
   4910     return ArgResult.get();
   4911   }
   4912 
   4913   // C++ [temp.arg.nontype]p5:
   4914   //   The following conversions are performed on each expression used
   4915   //   as a non-type template-argument. If a non-type
   4916   //   template-argument cannot be converted to the type of the
   4917   //   corresponding template-parameter then the program is
   4918   //   ill-formed.
   4919   if (ParamType->isIntegralOrEnumerationType()) {
   4920     // C++11:
   4921     //   -- for a non-type template-parameter of integral or
   4922     //      enumeration type, conversions permitted in a converted
   4923     //      constant expression are applied.
   4924     //
   4925     // C++98:
   4926     //   -- for a non-type template-parameter of integral or
   4927     //      enumeration type, integral promotions (4.5) and integral
   4928     //      conversions (4.7) are applied.
   4929 
   4930     if (getLangOpts().CPlusPlus11) {
   4931       // We can't check arbitrary value-dependent arguments.
   4932       // FIXME: If there's no viable conversion to the template parameter type,
   4933       // we should be able to diagnose that prior to instantiation.
   4934       if (Arg->isValueDependent()) {
   4935         Converted = TemplateArgument(Arg);
   4936         return Arg;
   4937       }
   4938 
   4939       // C++ [temp.arg.nontype]p1:
   4940       //   A template-argument for a non-type, non-template template-parameter
   4941       //   shall be one of:
   4942       //
   4943       //     -- for a non-type template-parameter of integral or enumeration
   4944       //        type, a converted constant expression of the type of the
   4945       //        template-parameter; or
   4946       llvm::APSInt Value;
   4947       ExprResult ArgResult =
   4948         CheckConvertedConstantExpression(Arg, ParamType, Value,
   4949                                          CCEK_TemplateArg);
   4950       if (ArgResult.isInvalid())
   4951         return ExprError();
   4952 
   4953       // Widen the argument value to sizeof(parameter type). This is almost
   4954       // always a no-op, except when the parameter type is bool. In
   4955       // that case, this may extend the argument from 1 bit to 8 bits.
   4956       QualType IntegerType = ParamType;
   4957       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
   4958         IntegerType = Enum->getDecl()->getIntegerType();
   4959       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
   4960 
   4961       Converted = TemplateArgument(Context, Value,
   4962                                    Context.getCanonicalType(ParamType));
   4963       return ArgResult;
   4964     }
   4965 
   4966     ExprResult ArgResult = DefaultLvalueConversion(Arg);
   4967     if (ArgResult.isInvalid())
   4968       return ExprError();
   4969     Arg = ArgResult.get();
   4970 
   4971     QualType ArgType = Arg->getType();
   4972 
   4973     // C++ [temp.arg.nontype]p1:
   4974     //   A template-argument for a non-type, non-template
   4975     //   template-parameter shall be one of:
   4976     //
   4977     //     -- an integral constant-expression of integral or enumeration
   4978     //        type; or
   4979     //     -- the name of a non-type template-parameter; or
   4980     SourceLocation NonConstantLoc;
   4981     llvm::APSInt Value;
   4982     if (!ArgType->isIntegralOrEnumerationType()) {
   4983       Diag(Arg->getLocStart(),
   4984            diag::err_template_arg_not_integral_or_enumeral)
   4985         << ArgType << Arg->getSourceRange();
   4986       Diag(Param->getLocation(), diag::note_template_param_here);
   4987       return ExprError();
   4988     } else if (!Arg->isValueDependent()) {
   4989       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
   4990         QualType T;
   4991 
   4992       public:
   4993         TmplArgICEDiagnoser(QualType T) : T(T) { }
   4994 
   4995         void diagnoseNotICE(Sema &S, SourceLocation Loc,
   4996                             SourceRange SR) override {
   4997           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
   4998         }
   4999       } Diagnoser(ArgType);
   5000 
   5001       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
   5002                                             false).get();
   5003       if (!Arg)
   5004         return ExprError();
   5005     }
   5006 
   5007     // From here on out, all we care about is the unqualified form
   5008     // of the argument type.
   5009     ArgType = ArgType.getUnqualifiedType();
   5010 
   5011     // Try to convert the argument to the parameter's type.
   5012     if (Context.hasSameType(ParamType, ArgType)) {
   5013       // Okay: no conversion necessary
   5014     } else if (ParamType->isBooleanType()) {
   5015       // This is an integral-to-boolean conversion.
   5016       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
   5017     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
   5018                !ParamType->isEnumeralType()) {
   5019       // This is an integral promotion or conversion.
   5020       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
   5021     } else {
   5022       // We can't perform this conversion.
   5023       Diag(Arg->getLocStart(),
   5024            diag::err_template_arg_not_convertible)
   5025         << Arg->getType() << ParamType << Arg->getSourceRange();
   5026       Diag(Param->getLocation(), diag::note_template_param_here);
   5027       return ExprError();
   5028     }
   5029 
   5030     // Add the value of this argument to the list of converted
   5031     // arguments. We use the bitwidth and signedness of the template
   5032     // parameter.
   5033     if (Arg->isValueDependent()) {
   5034       // The argument is value-dependent. Create a new
   5035       // TemplateArgument with the converted expression.
   5036       Converted = TemplateArgument(Arg);
   5037       return Arg;
   5038     }
   5039 
   5040     QualType IntegerType = Context.getCanonicalType(ParamType);
   5041     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
   5042       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
   5043 
   5044     if (ParamType->isBooleanType()) {
   5045       // Value must be zero or one.
   5046       Value = Value != 0;
   5047       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   5048       if (Value.getBitWidth() != AllowedBits)
   5049         Value = Value.extOrTrunc(AllowedBits);
   5050       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   5051     } else {
   5052       llvm::APSInt OldValue = Value;
   5053 
   5054       // Coerce the template argument's value to the value it will have
   5055       // based on the template parameter's type.
   5056       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   5057       if (Value.getBitWidth() != AllowedBits)
   5058         Value = Value.extOrTrunc(AllowedBits);
   5059       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   5060 
   5061       // Complain if an unsigned parameter received a negative value.
   5062       if (IntegerType->isUnsignedIntegerOrEnumerationType()
   5063                && (OldValue.isSigned() && OldValue.isNegative())) {
   5064         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
   5065           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   5066           << Arg->getSourceRange();
   5067         Diag(Param->getLocation(), diag::note_template_param_here);
   5068       }
   5069 
   5070       // Complain if we overflowed the template parameter's type.
   5071       unsigned RequiredBits;
   5072       if (IntegerType->isUnsignedIntegerOrEnumerationType())
   5073         RequiredBits = OldValue.getActiveBits();
   5074       else if (OldValue.isUnsigned())
   5075         RequiredBits = OldValue.getActiveBits() + 1;
   5076       else
   5077         RequiredBits = OldValue.getMinSignedBits();
   5078       if (RequiredBits > AllowedBits) {
   5079         Diag(Arg->getLocStart(),
   5080              diag::warn_template_arg_too_large)
   5081           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   5082           << Arg->getSourceRange();
   5083         Diag(Param->getLocation(), diag::note_template_param_here);
   5084       }
   5085     }
   5086 
   5087     Converted = TemplateArgument(Context, Value,
   5088                                  ParamType->isEnumeralType()
   5089                                    ? Context.getCanonicalType(ParamType)
   5090                                    : IntegerType);
   5091     return Arg;
   5092   }
   5093 
   5094   QualType ArgType = Arg->getType();
   5095   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
   5096 
   5097   // Handle pointer-to-function, reference-to-function, and
   5098   // pointer-to-member-function all in (roughly) the same way.
   5099   if (// -- For a non-type template-parameter of type pointer to
   5100       //    function, only the function-to-pointer conversion (4.3) is
   5101       //    applied. If the template-argument represents a set of
   5102       //    overloaded functions (or a pointer to such), the matching
   5103       //    function is selected from the set (13.4).
   5104       (ParamType->isPointerType() &&
   5105        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
   5106       // -- For a non-type template-parameter of type reference to
   5107       //    function, no conversions apply. If the template-argument
   5108       //    represents a set of overloaded functions, the matching
   5109       //    function is selected from the set (13.4).
   5110       (ParamType->isReferenceType() &&
   5111        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
   5112       // -- For a non-type template-parameter of type pointer to
   5113       //    member function, no conversions apply. If the
   5114       //    template-argument represents a set of overloaded member
   5115       //    functions, the matching member function is selected from
   5116       //    the set (13.4).
   5117       (ParamType->isMemberPointerType() &&
   5118        ParamType->getAs<MemberPointerType>()->getPointeeType()
   5119          ->isFunctionType())) {
   5120 
   5121     if (Arg->getType() == Context.OverloadTy) {
   5122       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
   5123                                                                 true,
   5124                                                                 FoundResult)) {
   5125         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
   5126           return ExprError();
   5127 
   5128         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   5129         ArgType = Arg->getType();
   5130       } else
   5131         return ExprError();
   5132     }
   5133 
   5134     if (!ParamType->isMemberPointerType()) {
   5135       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   5136                                                          ParamType,
   5137                                                          Arg, Converted))
   5138         return ExprError();
   5139       return Arg;
   5140     }
   5141 
   5142     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
   5143                                              Converted))
   5144       return ExprError();
   5145     return Arg;
   5146   }
   5147 
   5148   if (ParamType->isPointerType()) {
   5149     //   -- for a non-type template-parameter of type pointer to
   5150     //      object, qualification conversions (4.4) and the
   5151     //      array-to-pointer conversion (4.2) are applied.
   5152     // C++0x also allows a value of std::nullptr_t.
   5153     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
   5154            "Only object pointers allowed here");
   5155 
   5156     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   5157                                                        ParamType,
   5158                                                        Arg, Converted))
   5159       return ExprError();
   5160     return Arg;
   5161   }
   5162 
   5163   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
   5164     //   -- For a non-type template-parameter of type reference to
   5165     //      object, no conversions apply. The type referred to by the
   5166     //      reference may be more cv-qualified than the (otherwise
   5167     //      identical) type of the template-argument. The
   5168     //      template-parameter is bound directly to the
   5169     //      template-argument, which must be an lvalue.
   5170     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
   5171            "Only object references allowed here");
   5172 
   5173     if (Arg->getType() == Context.OverloadTy) {
   5174       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
   5175                                                  ParamRefType->getPointeeType(),
   5176                                                                 true,
   5177                                                                 FoundResult)) {
   5178         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
   5179           return ExprError();
   5180 
   5181         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   5182         ArgType = Arg->getType();
   5183       } else
   5184         return ExprError();
   5185     }
   5186 
   5187     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   5188                                                        ParamType,
   5189                                                        Arg, Converted))
   5190       return ExprError();
   5191     return Arg;
   5192   }
   5193 
   5194   // Deal with parameters of type std::nullptr_t.
   5195   if (ParamType->isNullPtrType()) {
   5196     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
   5197       Converted = TemplateArgument(Arg);
   5198       return Arg;
   5199     }
   5200 
   5201     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
   5202     case NPV_NotNullPointer:
   5203       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
   5204         << Arg->getType() << ParamType;
   5205       Diag(Param->getLocation(), diag::note_template_param_here);
   5206       return ExprError();
   5207 
   5208     case NPV_Error:
   5209       return ExprError();
   5210 
   5211     case NPV_NullPointer:
   5212       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
   5213       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
   5214                                    /*isNullPtr*/true);
   5215       return Arg;
   5216     }
   5217   }
   5218 
   5219   //     -- For a non-type template-parameter of type pointer to data
   5220   //        member, qualification conversions (4.4) are applied.
   5221   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
   5222 
   5223   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
   5224                                            Converted))
   5225     return ExprError();
   5226   return Arg;
   5227 }
   5228 
   5229 /// \brief Check a template argument against its corresponding
   5230 /// template template parameter.
   5231 ///
   5232 /// This routine implements the semantics of C++ [temp.arg.template].
   5233 /// It returns true if an error occurred, and false otherwise.
   5234 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
   5235                                  TemplateArgumentLoc &Arg,
   5236                                  unsigned ArgumentPackIndex) {
   5237   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
   5238   TemplateDecl *Template = Name.getAsTemplateDecl();
   5239   if (!Template) {
   5240     // Any dependent template name is fine.
   5241     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
   5242     return false;
   5243   }
   5244 
   5245   // C++0x [temp.arg.template]p1:
   5246   //   A template-argument for a template template-parameter shall be
   5247   //   the name of a class template or an alias template, expressed as an
   5248   //   id-expression. When the template-argument names a class template, only
   5249   //   primary class templates are considered when matching the
   5250   //   template template argument with the corresponding parameter;
   5251   //   partial specializations are not considered even if their
   5252   //   parameter lists match that of the template template parameter.
   5253   //
   5254   // Note that we also allow template template parameters here, which
   5255   // will happen when we are dealing with, e.g., class template
   5256   // partial specializations.
   5257   if (!isa<ClassTemplateDecl>(Template) &&
   5258       !isa<TemplateTemplateParmDecl>(Template) &&
   5259       !isa<TypeAliasTemplateDecl>(Template)) {
   5260     assert(isa<FunctionTemplateDecl>(Template) &&
   5261            "Only function templates are possible here");
   5262     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
   5263     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
   5264       << Template;
   5265   }
   5266 
   5267   TemplateParameterList *Params = Param->getTemplateParameters();
   5268   if (Param->isExpandedParameterPack())
   5269     Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
   5270 
   5271   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
   5272                                          Params,
   5273                                          true,
   5274                                          TPL_TemplateTemplateArgumentMatch,
   5275                                          Arg.getLocation());
   5276 }
   5277 
   5278 /// \brief Given a non-type template argument that refers to a
   5279 /// declaration and the type of its corresponding non-type template
   5280 /// parameter, produce an expression that properly refers to that
   5281 /// declaration.
   5282 ExprResult
   5283 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
   5284                                               QualType ParamType,
   5285                                               SourceLocation Loc) {
   5286   // C++ [temp.param]p8:
   5287   //
   5288   //   A non-type template-parameter of type "array of T" or
   5289   //   "function returning T" is adjusted to be of type "pointer to
   5290   //   T" or "pointer to function returning T", respectively.
   5291   if (ParamType->isArrayType())
   5292     ParamType = Context.getArrayDecayedType(ParamType);
   5293   else if (ParamType->isFunctionType())
   5294     ParamType = Context.getPointerType(ParamType);
   5295 
   5296   // For a NULL non-type template argument, return nullptr casted to the
   5297   // parameter's type.
   5298   if (Arg.getKind() == TemplateArgument::NullPtr) {
   5299     return ImpCastExprToType(
   5300              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
   5301                              ParamType,
   5302                              ParamType->getAs<MemberPointerType>()
   5303                                ? CK_NullToMemberPointer
   5304                                : CK_NullToPointer);
   5305   }
   5306   assert(Arg.getKind() == TemplateArgument::Declaration &&
   5307          "Only declaration template arguments permitted here");
   5308 
   5309   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
   5310 
   5311   if (VD->getDeclContext()->isRecord() &&
   5312       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
   5313        isa<IndirectFieldDecl>(VD))) {
   5314     // If the value is a class member, we might have a pointer-to-member.
   5315     // Determine whether the non-type template template parameter is of
   5316     // pointer-to-member type. If so, we need to build an appropriate
   5317     // expression for a pointer-to-member, since a "normal" DeclRefExpr
   5318     // would refer to the member itself.
   5319     if (ParamType->isMemberPointerType()) {
   5320       QualType ClassType
   5321         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
   5322       NestedNameSpecifier *Qualifier
   5323         = NestedNameSpecifier::Create(Context, nullptr, false,
   5324                                       ClassType.getTypePtr());
   5325       CXXScopeSpec SS;
   5326       SS.MakeTrivial(Context, Qualifier, Loc);
   5327 
   5328       // The actual value-ness of this is unimportant, but for
   5329       // internal consistency's sake, references to instance methods
   5330       // are r-values.
   5331       ExprValueKind VK = VK_LValue;
   5332       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
   5333         VK = VK_RValue;
   5334 
   5335       ExprResult RefExpr = BuildDeclRefExpr(VD,
   5336                                             VD->getType().getNonReferenceType(),
   5337                                             VK,
   5338                                             Loc,
   5339                                             &SS);
   5340       if (RefExpr.isInvalid())
   5341         return ExprError();
   5342 
   5343       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   5344 
   5345       // We might need to perform a trailing qualification conversion, since
   5346       // the element type on the parameter could be more qualified than the
   5347       // element type in the expression we constructed.
   5348       bool ObjCLifetimeConversion;
   5349       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
   5350                                     ParamType.getUnqualifiedType(), false,
   5351                                     ObjCLifetimeConversion))
   5352         RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
   5353 
   5354       assert(!RefExpr.isInvalid() &&
   5355              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
   5356                                  ParamType.getUnqualifiedType()));
   5357       return RefExpr;
   5358     }
   5359   }
   5360 
   5361   QualType T = VD->getType().getNonReferenceType();
   5362 
   5363   if (ParamType->isPointerType()) {
   5364     // When the non-type template parameter is a pointer, take the
   5365     // address of the declaration.
   5366     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
   5367     if (RefExpr.isInvalid())
   5368       return ExprError();
   5369 
   5370     if (T->isFunctionType() || T->isArrayType()) {
   5371       // Decay functions and arrays.
   5372       RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
   5373       if (RefExpr.isInvalid())
   5374         return ExprError();
   5375 
   5376       return RefExpr;
   5377     }
   5378 
   5379     // Take the address of everything else
   5380     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   5381   }
   5382 
   5383   ExprValueKind VK = VK_RValue;
   5384 
   5385   // If the non-type template parameter has reference type, qualify the
   5386   // resulting declaration reference with the extra qualifiers on the
   5387   // type that the reference refers to.
   5388   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
   5389     VK = VK_LValue;
   5390     T = Context.getQualifiedType(T,
   5391                               TargetRef->getPointeeType().getQualifiers());
   5392   } else if (isa<FunctionDecl>(VD)) {
   5393     // References to functions are always lvalues.
   5394     VK = VK_LValue;
   5395   }
   5396 
   5397   return BuildDeclRefExpr(VD, T, VK, Loc);
   5398 }
   5399 
   5400 /// \brief Construct a new expression that refers to the given
   5401 /// integral template argument with the given source-location
   5402 /// information.
   5403 ///
   5404 /// This routine takes care of the mapping from an integral template
   5405 /// argument (which may have any integral type) to the appropriate
   5406 /// literal value.
   5407 ExprResult
   5408 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
   5409                                                   SourceLocation Loc) {
   5410   assert(Arg.getKind() == TemplateArgument::Integral &&
   5411          "Operation is only valid for integral template arguments");
   5412   QualType OrigT = Arg.getIntegralType();
   5413 
   5414   // If this is an enum type that we're instantiating, we need to use an integer
   5415   // type the same size as the enumerator.  We don't want to build an
   5416   // IntegerLiteral with enum type.  The integer type of an enum type can be of
   5417   // any integral type with C++11 enum classes, make sure we create the right
   5418   // type of literal for it.
   5419   QualType T = OrigT;
   5420   if (const EnumType *ET = OrigT->getAs<EnumType>())
   5421     T = ET->getDecl()->getIntegerType();
   5422 
   5423   Expr *E;
   5424   if (T->isAnyCharacterType()) {
   5425     CharacterLiteral::CharacterKind Kind;
   5426     if (T->isWideCharType())
   5427       Kind = CharacterLiteral::Wide;
   5428     else if (T->isChar16Type())
   5429       Kind = CharacterLiteral::UTF16;
   5430     else if (T->isChar32Type())
   5431       Kind = CharacterLiteral::UTF32;
   5432     else
   5433       Kind = CharacterLiteral::Ascii;
   5434 
   5435     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
   5436                                        Kind, T, Loc);
   5437   } else if (T->isBooleanType()) {
   5438     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
   5439                                          T, Loc);
   5440   } else if (T->isNullPtrType()) {
   5441     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
   5442   } else {
   5443     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
   5444   }
   5445 
   5446   if (OrigT->isEnumeralType()) {
   5447     // FIXME: This is a hack. We need a better way to handle substituted
   5448     // non-type template parameters.
   5449     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
   5450                                nullptr,
   5451                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
   5452                                Loc, Loc);
   5453   }
   5454 
   5455   return E;
   5456 }
   5457 
   5458 /// \brief Match two template parameters within template parameter lists.
   5459 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
   5460                                        bool Complain,
   5461                                      Sema::TemplateParameterListEqualKind Kind,
   5462                                        SourceLocation TemplateArgLoc) {
   5463   // Check the actual kind (type, non-type, template).
   5464   if (Old->getKind() != New->getKind()) {
   5465     if (Complain) {
   5466       unsigned NextDiag = diag::err_template_param_different_kind;
   5467       if (TemplateArgLoc.isValid()) {
   5468         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   5469         NextDiag = diag::note_template_param_different_kind;
   5470       }
   5471       S.Diag(New->getLocation(), NextDiag)
   5472         << (Kind != Sema::TPL_TemplateMatch);
   5473       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
   5474         << (Kind != Sema::TPL_TemplateMatch);
   5475     }
   5476 
   5477     return false;
   5478   }
   5479 
   5480   // Check that both are parameter packs are neither are parameter packs.
   5481   // However, if we are matching a template template argument to a
   5482   // template template parameter, the template template parameter can have
   5483   // a parameter pack where the template template argument does not.
   5484   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
   5485       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   5486         Old->isTemplateParameterPack())) {
   5487     if (Complain) {
   5488       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
   5489       if (TemplateArgLoc.isValid()) {
   5490         S.Diag(TemplateArgLoc,
   5491              diag::err_template_arg_template_params_mismatch);
   5492         NextDiag = diag::note_template_parameter_pack_non_pack;
   5493       }
   5494 
   5495       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
   5496                       : isa<NonTypeTemplateParmDecl>(New)? 1
   5497                       : 2;
   5498       S.Diag(New->getLocation(), NextDiag)
   5499         << ParamKind << New->isParameterPack();
   5500       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
   5501         << ParamKind << Old->isParameterPack();
   5502     }
   5503 
   5504     return false;
   5505   }
   5506 
   5507   // For non-type template parameters, check the type of the parameter.
   5508   if (NonTypeTemplateParmDecl *OldNTTP
   5509                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
   5510     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
   5511 
   5512     // If we are matching a template template argument to a template
   5513     // template parameter and one of the non-type template parameter types
   5514     // is dependent, then we must wait until template instantiation time
   5515     // to actually compare the arguments.
   5516     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   5517         (OldNTTP->getType()->isDependentType() ||
   5518          NewNTTP->getType()->isDependentType()))
   5519       return true;
   5520 
   5521     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
   5522       if (Complain) {
   5523         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
   5524         if (TemplateArgLoc.isValid()) {
   5525           S.Diag(TemplateArgLoc,
   5526                  diag::err_template_arg_template_params_mismatch);
   5527           NextDiag = diag::note_template_nontype_parm_different_type;
   5528         }
   5529         S.Diag(NewNTTP->getLocation(), NextDiag)
   5530           << NewNTTP->getType()
   5531           << (Kind != Sema::TPL_TemplateMatch);
   5532         S.Diag(OldNTTP->getLocation(),
   5533                diag::note_template_nontype_parm_prev_declaration)
   5534           << OldNTTP->getType();
   5535       }
   5536 
   5537       return false;
   5538     }
   5539 
   5540     return true;
   5541   }
   5542 
   5543   // For template template parameters, check the template parameter types.
   5544   // The template parameter lists of template template
   5545   // parameters must agree.
   5546   if (TemplateTemplateParmDecl *OldTTP
   5547                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
   5548     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
   5549     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
   5550                                             OldTTP->getTemplateParameters(),
   5551                                             Complain,
   5552                                         (Kind == Sema::TPL_TemplateMatch
   5553                                            ? Sema::TPL_TemplateTemplateParmMatch
   5554                                            : Kind),
   5555                                             TemplateArgLoc);
   5556   }
   5557 
   5558   return true;
   5559 }
   5560 
   5561 /// \brief Diagnose a known arity mismatch when comparing template argument
   5562 /// lists.
   5563 static
   5564 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
   5565                                                 TemplateParameterList *New,
   5566                                                 TemplateParameterList *Old,
   5567                                       Sema::TemplateParameterListEqualKind Kind,
   5568                                                 SourceLocation TemplateArgLoc) {
   5569   unsigned NextDiag = diag::err_template_param_list_different_arity;
   5570   if (TemplateArgLoc.isValid()) {
   5571     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   5572     NextDiag = diag::note_template_param_list_different_arity;
   5573   }
   5574   S.Diag(New->getTemplateLoc(), NextDiag)
   5575     << (New->size() > Old->size())
   5576     << (Kind != Sema::TPL_TemplateMatch)
   5577     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
   5578   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
   5579     << (Kind != Sema::TPL_TemplateMatch)
   5580     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
   5581 }
   5582 
   5583 /// \brief Determine whether the given template parameter lists are
   5584 /// equivalent.
   5585 ///
   5586 /// \param New  The new template parameter list, typically written in the
   5587 /// source code as part of a new template declaration.
   5588 ///
   5589 /// \param Old  The old template parameter list, typically found via
   5590 /// name lookup of the template declared with this template parameter
   5591 /// list.
   5592 ///
   5593 /// \param Complain  If true, this routine will produce a diagnostic if
   5594 /// the template parameter lists are not equivalent.
   5595 ///
   5596 /// \param Kind describes how we are to match the template parameter lists.
   5597 ///
   5598 /// \param TemplateArgLoc If this source location is valid, then we
   5599 /// are actually checking the template parameter list of a template
   5600 /// argument (New) against the template parameter list of its
   5601 /// corresponding template template parameter (Old). We produce
   5602 /// slightly different diagnostics in this scenario.
   5603 ///
   5604 /// \returns True if the template parameter lists are equal, false
   5605 /// otherwise.
   5606 bool
   5607 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
   5608                                      TemplateParameterList *Old,
   5609                                      bool Complain,
   5610                                      TemplateParameterListEqualKind Kind,
   5611                                      SourceLocation TemplateArgLoc) {
   5612   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
   5613     if (Complain)
   5614       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   5615                                                  TemplateArgLoc);
   5616 
   5617     return false;
   5618   }
   5619 
   5620   // C++0x [temp.arg.template]p3:
   5621   //   A template-argument matches a template template-parameter (call it P)
   5622   //   when each of the template parameters in the template-parameter-list of
   5623   //   the template-argument's corresponding class template or alias template
   5624   //   (call it A) matches the corresponding template parameter in the
   5625   //   template-parameter-list of P. [...]
   5626   TemplateParameterList::iterator NewParm = New->begin();
   5627   TemplateParameterList::iterator NewParmEnd = New->end();
   5628   for (TemplateParameterList::iterator OldParm = Old->begin(),
   5629                                     OldParmEnd = Old->end();
   5630        OldParm != OldParmEnd; ++OldParm) {
   5631     if (Kind != TPL_TemplateTemplateArgumentMatch ||
   5632         !(*OldParm)->isTemplateParameterPack()) {
   5633       if (NewParm == NewParmEnd) {
   5634         if (Complain)
   5635           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   5636                                                      TemplateArgLoc);
   5637 
   5638         return false;
   5639       }
   5640 
   5641       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   5642                                       Kind, TemplateArgLoc))
   5643         return false;
   5644 
   5645       ++NewParm;
   5646       continue;
   5647     }
   5648 
   5649     // C++0x [temp.arg.template]p3:
   5650     //   [...] When P's template- parameter-list contains a template parameter
   5651     //   pack (14.5.3), the template parameter pack will match zero or more
   5652     //   template parameters or template parameter packs in the
   5653     //   template-parameter-list of A with the same type and form as the
   5654     //   template parameter pack in P (ignoring whether those template
   5655     //   parameters are template parameter packs).
   5656     for (; NewParm != NewParmEnd; ++NewParm) {
   5657       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   5658                                       Kind, TemplateArgLoc))
   5659         return false;
   5660     }
   5661   }
   5662 
   5663   // Make sure we exhausted all of the arguments.
   5664   if (NewParm != NewParmEnd) {
   5665     if (Complain)
   5666       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   5667                                                  TemplateArgLoc);
   5668 
   5669     return false;
   5670   }
   5671 
   5672   return true;
   5673 }
   5674 
   5675 /// \brief Check whether a template can be declared within this scope.
   5676 ///
   5677 /// If the template declaration is valid in this scope, returns
   5678 /// false. Otherwise, issues a diagnostic and returns true.
   5679 bool
   5680 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
   5681   if (!S)
   5682     return false;
   5683 
   5684   // Find the nearest enclosing declaration scope.
   5685   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   5686          (S->getFlags() & Scope::TemplateParamScope) != 0)
   5687     S = S->getParent();
   5688 
   5689   // C++ [temp]p4:
   5690   //   A template [...] shall not have C linkage.
   5691   DeclContext *Ctx = S->getEntity();
   5692   if (Ctx && Ctx->isExternCContext())
   5693     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
   5694              << TemplateParams->getSourceRange();
   5695 
   5696   while (Ctx && isa<LinkageSpecDecl>(Ctx))
   5697     Ctx = Ctx->getParent();
   5698 
   5699   // C++ [temp]p2:
   5700   //   A template-declaration can appear only as a namespace scope or
   5701   //   class scope declaration.
   5702   if (Ctx) {
   5703     if (Ctx->isFileContext())
   5704       return false;
   5705     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
   5706       // C++ [temp.mem]p2:
   5707       //   A local class shall not have member templates.
   5708       if (RD->isLocalClass())
   5709         return Diag(TemplateParams->getTemplateLoc(),
   5710                     diag::err_template_inside_local_class)
   5711           << TemplateParams->getSourceRange();
   5712       else
   5713         return false;
   5714     }
   5715   }
   5716 
   5717   return Diag(TemplateParams->getTemplateLoc(),
   5718               diag::err_template_outside_namespace_or_class_scope)
   5719     << TemplateParams->getSourceRange();
   5720 }
   5721 
   5722 /// \brief Determine what kind of template specialization the given declaration
   5723 /// is.
   5724 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
   5725   if (!D)
   5726     return TSK_Undeclared;
   5727 
   5728   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
   5729     return Record->getTemplateSpecializationKind();
   5730   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
   5731     return Function->getTemplateSpecializationKind();
   5732   if (VarDecl *Var = dyn_cast<VarDecl>(D))
   5733     return Var->getTemplateSpecializationKind();
   5734 
   5735   return TSK_Undeclared;
   5736 }
   5737 
   5738 /// \brief Check whether a specialization is well-formed in the current
   5739 /// context.
   5740 ///
   5741 /// This routine determines whether a template specialization can be declared
   5742 /// in the current context (C++ [temp.expl.spec]p2).
   5743 ///
   5744 /// \param S the semantic analysis object for which this check is being
   5745 /// performed.
   5746 ///
   5747 /// \param Specialized the entity being specialized or instantiated, which
   5748 /// may be a kind of template (class template, function template, etc.) or
   5749 /// a member of a class template (member function, static data member,
   5750 /// member class).
   5751 ///
   5752 /// \param PrevDecl the previous declaration of this entity, if any.
   5753 ///
   5754 /// \param Loc the location of the explicit specialization or instantiation of
   5755 /// this entity.
   5756 ///
   5757 /// \param IsPartialSpecialization whether this is a partial specialization of
   5758 /// a class template.
   5759 ///
   5760 /// \returns true if there was an error that we cannot recover from, false
   5761 /// otherwise.
   5762 static bool CheckTemplateSpecializationScope(Sema &S,
   5763                                              NamedDecl *Specialized,
   5764                                              NamedDecl *PrevDecl,
   5765                                              SourceLocation Loc,
   5766                                              bool IsPartialSpecialization) {
   5767   // Keep these "kind" numbers in sync with the %select statements in the
   5768   // various diagnostics emitted by this routine.
   5769   int EntityKind = 0;
   5770   if (isa<ClassTemplateDecl>(Specialized))
   5771     EntityKind = IsPartialSpecialization? 1 : 0;
   5772   else if (isa<VarTemplateDecl>(Specialized))
   5773     EntityKind = IsPartialSpecialization ? 3 : 2;
   5774   else if (isa<FunctionTemplateDecl>(Specialized))
   5775     EntityKind = 4;
   5776   else if (isa<CXXMethodDecl>(Specialized))
   5777     EntityKind = 5;
   5778   else if (isa<VarDecl>(Specialized))
   5779     EntityKind = 6;
   5780   else if (isa<RecordDecl>(Specialized))
   5781     EntityKind = 7;
   5782   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
   5783     EntityKind = 8;
   5784   else {
   5785     S.Diag(Loc, diag::err_template_spec_unknown_kind)
   5786       << S.getLangOpts().CPlusPlus11;
   5787     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   5788     return true;
   5789   }
   5790 
   5791   // C++ [temp.expl.spec]p2:
   5792   //   An explicit specialization shall be declared in the namespace
   5793   //   of which the template is a member, or, for member templates, in
   5794   //   the namespace of which the enclosing class or enclosing class
   5795   //   template is a member. An explicit specialization of a member
   5796   //   function, member class or static data member of a class
   5797   //   template shall be declared in the namespace of which the class
   5798   //   template is a member. Such a declaration may also be a
   5799   //   definition. If the declaration is not a definition, the
   5800   //   specialization may be defined later in the name- space in which
   5801   //   the explicit specialization was declared, or in a namespace
   5802   //   that encloses the one in which the explicit specialization was
   5803   //   declared.
   5804   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   5805     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
   5806       << Specialized;
   5807     return true;
   5808   }
   5809 
   5810   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
   5811     if (S.getLangOpts().MicrosoftExt) {
   5812       // Do not warn for class scope explicit specialization during
   5813       // instantiation, warning was already emitted during pattern
   5814       // semantic analysis.
   5815       if (!S.ActiveTemplateInstantiations.size())
   5816         S.Diag(Loc, diag::ext_function_specialization_in_class)
   5817           << Specialized;
   5818     } else {
   5819       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
   5820         << Specialized;
   5821       return true;
   5822     }
   5823   }
   5824 
   5825   if (S.CurContext->isRecord() &&
   5826       !S.CurContext->Equals(Specialized->getDeclContext())) {
   5827     // Make sure that we're specializing in the right record context.
   5828     // Otherwise, things can go horribly wrong.
   5829     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
   5830       << Specialized;
   5831     return true;
   5832   }
   5833 
   5834   // C++ [temp.class.spec]p6:
   5835   //   A class template partial specialization may be declared or redeclared
   5836   //   in any namespace scope in which its definition may be defined (14.5.1
   5837   //   and 14.5.2).
   5838   DeclContext *SpecializedContext
   5839     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
   5840   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
   5841 
   5842   // Make sure that this redeclaration (or definition) occurs in an enclosing
   5843   // namespace.
   5844   // Note that HandleDeclarator() performs this check for explicit
   5845   // specializations of function templates, static data members, and member
   5846   // functions, so we skip the check here for those kinds of entities.
   5847   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
   5848   // Should we refactor that check, so that it occurs later?
   5849   if (!DC->Encloses(SpecializedContext) &&
   5850       !(isa<FunctionTemplateDecl>(Specialized) ||
   5851         isa<FunctionDecl>(Specialized) ||
   5852         isa<VarTemplateDecl>(Specialized) ||
   5853         isa<VarDecl>(Specialized))) {
   5854     if (isa<TranslationUnitDecl>(SpecializedContext))
   5855       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
   5856         << EntityKind << Specialized;
   5857     else if (isa<NamespaceDecl>(SpecializedContext)) {
   5858       int Diag = diag::err_template_spec_redecl_out_of_scope;
   5859       if (S.getLangOpts().MicrosoftExt)
   5860         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
   5861       S.Diag(Loc, Diag) << EntityKind << Specialized
   5862                         << cast<NamedDecl>(SpecializedContext);
   5863     } else
   5864       llvm_unreachable("unexpected namespace context for specialization");
   5865 
   5866     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   5867   } else if ((!PrevDecl ||
   5868               getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
   5869               getTemplateSpecializationKind(PrevDecl) ==
   5870                   TSK_ImplicitInstantiation)) {
   5871     // C++ [temp.exp.spec]p2:
   5872     //   An explicit specialization shall be declared in the namespace of which
   5873     //   the template is a member, or, for member templates, in the namespace
   5874     //   of which the enclosing class or enclosing class template is a member.
   5875     //   An explicit specialization of a member function, member class or
   5876     //   static data member of a class template shall be declared in the
   5877     //   namespace of which the class template is a member.
   5878     //
   5879     // C++11 [temp.expl.spec]p2:
   5880     //   An explicit specialization shall be declared in a namespace enclosing
   5881     //   the specialized template.
   5882     // C++11 [temp.explicit]p3:
   5883     //   An explicit instantiation shall appear in an enclosing namespace of its
   5884     //   template.
   5885     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
   5886       bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
   5887       if (isa<TranslationUnitDecl>(SpecializedContext)) {
   5888         assert(!IsCPlusPlus11Extension &&
   5889                "DC encloses TU but isn't in enclosing namespace set");
   5890         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
   5891           << EntityKind << Specialized;
   5892       } else if (isa<NamespaceDecl>(SpecializedContext)) {
   5893         int Diag;
   5894         if (!IsCPlusPlus11Extension)
   5895           Diag = diag::err_template_spec_decl_out_of_scope;
   5896         else if (!S.getLangOpts().CPlusPlus11)
   5897           Diag = diag::ext_template_spec_decl_out_of_scope;
   5898         else
   5899           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
   5900         S.Diag(Loc, Diag)
   5901           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
   5902       }
   5903 
   5904       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   5905     }
   5906   }
   5907 
   5908   return false;
   5909 }
   5910 
   5911 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
   5912   if (!E->isInstantiationDependent())
   5913     return SourceLocation();
   5914   DependencyChecker Checker(Depth);
   5915   Checker.TraverseStmt(E);
   5916   if (Checker.Match && Checker.MatchLoc.isInvalid())
   5917     return E->getSourceRange();
   5918   return Checker.MatchLoc;
   5919 }
   5920 
   5921 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
   5922   if (!TL.getType()->isDependentType())
   5923     return SourceLocation();
   5924   DependencyChecker Checker(Depth);
   5925   Checker.TraverseTypeLoc(TL);
   5926   if (Checker.Match && Checker.MatchLoc.isInvalid())
   5927     return TL.getSourceRange();
   5928   return Checker.MatchLoc;
   5929 }
   5930 
   5931 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
   5932 /// that checks non-type template partial specialization arguments.
   5933 static bool CheckNonTypeTemplatePartialSpecializationArgs(
   5934     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
   5935     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
   5936   for (unsigned I = 0; I != NumArgs; ++I) {
   5937     if (Args[I].getKind() == TemplateArgument::Pack) {
   5938       if (CheckNonTypeTemplatePartialSpecializationArgs(
   5939               S, TemplateNameLoc, Param, Args[I].pack_begin(),
   5940               Args[I].pack_size(), IsDefaultArgument))
   5941         return true;
   5942 
   5943       continue;
   5944     }
   5945 
   5946     if (Args[I].getKind() != TemplateArgument::Expression)
   5947       continue;
   5948 
   5949     Expr *ArgExpr = Args[I].getAsExpr();
   5950 
   5951     // We can have a pack expansion of any of the bullets below.
   5952     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
   5953       ArgExpr = Expansion->getPattern();
   5954 
   5955     // Strip off any implicit casts we added as part of type checking.
   5956     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
   5957       ArgExpr = ICE->getSubExpr();
   5958 
   5959     // C++ [temp.class.spec]p8:
   5960     //   A non-type argument is non-specialized if it is the name of a
   5961     //   non-type parameter. All other non-type arguments are
   5962     //   specialized.
   5963     //
   5964     // Below, we check the two conditions that only apply to
   5965     // specialized non-type arguments, so skip any non-specialized
   5966     // arguments.
   5967     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
   5968       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
   5969         continue;
   5970 
   5971     // C++ [temp.class.spec]p9:
   5972     //   Within the argument list of a class template partial
   5973     //   specialization, the following restrictions apply:
   5974     //     -- A partially specialized non-type argument expression
   5975     //        shall not involve a template parameter of the partial
   5976     //        specialization except when the argument expression is a
   5977     //        simple identifier.
   5978     SourceRange ParamUseRange =
   5979         findTemplateParameter(Param->getDepth(), ArgExpr);
   5980     if (ParamUseRange.isValid()) {
   5981       if (IsDefaultArgument) {
   5982         S.Diag(TemplateNameLoc,
   5983                diag::err_dependent_non_type_arg_in_partial_spec);
   5984         S.Diag(ParamUseRange.getBegin(),
   5985                diag::note_dependent_non_type_default_arg_in_partial_spec)
   5986           << ParamUseRange;
   5987       } else {
   5988         S.Diag(ParamUseRange.getBegin(),
   5989                diag::err_dependent_non_type_arg_in_partial_spec)
   5990           << ParamUseRange;
   5991       }
   5992       return true;
   5993     }
   5994 
   5995     //     -- The type of a template parameter corresponding to a
   5996     //        specialized non-type argument shall not be dependent on a
   5997     //        parameter of the specialization.
   5998     //
   5999     // FIXME: We need to delay this check until instantiation in some cases:
   6000     //
   6001     //   template<template<typename> class X> struct A {
   6002     //     template<typename T, X<T> N> struct B;
   6003     //     template<typename T> struct B<T, 0>;
   6004     //   };
   6005     //   template<typename> using X = int;
   6006     //   A<X>::B<int, 0> b;
   6007     ParamUseRange = findTemplateParameter(
   6008             Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
   6009     if (ParamUseRange.isValid()) {
   6010       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
   6011              diag::err_dependent_typed_non_type_arg_in_partial_spec)
   6012         << Param->getType() << ParamUseRange;
   6013       S.Diag(Param->getLocation(), diag::note_template_param_here)
   6014         << (IsDefaultArgument ? ParamUseRange : SourceRange());
   6015       return true;
   6016     }
   6017   }
   6018 
   6019   return false;
   6020 }
   6021 
   6022 /// \brief Check the non-type template arguments of a class template
   6023 /// partial specialization according to C++ [temp.class.spec]p9.
   6024 ///
   6025 /// \param TemplateNameLoc the location of the template name.
   6026 /// \param TemplateParams the template parameters of the primary class
   6027 ///        template.
   6028 /// \param NumExplicit the number of explicitly-specified template arguments.
   6029 /// \param TemplateArgs the template arguments of the class template
   6030 ///        partial specialization.
   6031 ///
   6032 /// \returns \c true if there was an error, \c false otherwise.
   6033 static bool CheckTemplatePartialSpecializationArgs(
   6034     Sema &S, SourceLocation TemplateNameLoc,
   6035     TemplateParameterList *TemplateParams, unsigned NumExplicit,
   6036     SmallVectorImpl<TemplateArgument> &TemplateArgs) {
   6037   const TemplateArgument *ArgList = TemplateArgs.data();
   6038 
   6039   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   6040     NonTypeTemplateParmDecl *Param
   6041       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
   6042     if (!Param)
   6043       continue;
   6044 
   6045     if (CheckNonTypeTemplatePartialSpecializationArgs(
   6046             S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
   6047       return true;
   6048   }
   6049 
   6050   return false;
   6051 }
   6052 
   6053 DeclResult
   6054 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
   6055                                        TagUseKind TUK,
   6056                                        SourceLocation KWLoc,
   6057                                        SourceLocation ModulePrivateLoc,
   6058                                        TemplateIdAnnotation &TemplateId,
   6059                                        AttributeList *Attr,
   6060                                MultiTemplateParamsArg TemplateParameterLists) {
   6061   assert(TUK != TUK_Reference && "References are not specializations");
   6062 
   6063   CXXScopeSpec &SS = TemplateId.SS;
   6064 
   6065   // NOTE: KWLoc is the location of the tag keyword. This will instead
   6066   // store the location of the outermost template keyword in the declaration.
   6067   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
   6068     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
   6069   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
   6070   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
   6071   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
   6072 
   6073   // Find the class template we're specializing
   6074   TemplateName Name = TemplateId.Template.get();
   6075   ClassTemplateDecl *ClassTemplate
   6076     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
   6077 
   6078   if (!ClassTemplate) {
   6079     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
   6080       << (Name.getAsTemplateDecl() &&
   6081           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
   6082     return true;
   6083   }
   6084 
   6085   bool isExplicitSpecialization = false;
   6086   bool isPartialSpecialization = false;
   6087 
   6088   // Check the validity of the template headers that introduce this
   6089   // template.
   6090   // FIXME: We probably shouldn't complain about these headers for
   6091   // friend declarations.
   6092   bool Invalid = false;
   6093   TemplateParameterList *TemplateParams =
   6094       MatchTemplateParametersToScopeSpecifier(
   6095           KWLoc, TemplateNameLoc, SS, &TemplateId,
   6096           TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
   6097           Invalid);
   6098   if (Invalid)
   6099     return true;
   6100 
   6101   if (TemplateParams && TemplateParams->size() > 0) {
   6102     isPartialSpecialization = true;
   6103 
   6104     if (TUK == TUK_Friend) {
   6105       Diag(KWLoc, diag::err_partial_specialization_friend)
   6106         << SourceRange(LAngleLoc, RAngleLoc);
   6107       return true;
   6108     }
   6109 
   6110     // C++ [temp.class.spec]p10:
   6111     //   The template parameter list of a specialization shall not
   6112     //   contain default template argument values.
   6113     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   6114       Decl *Param = TemplateParams->getParam(I);
   6115       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
   6116         if (TTP->hasDefaultArgument()) {
   6117           Diag(TTP->getDefaultArgumentLoc(),
   6118                diag::err_default_arg_in_partial_spec);
   6119           TTP->removeDefaultArgument();
   6120         }
   6121       } else if (NonTypeTemplateParmDecl *NTTP
   6122                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   6123         if (Expr *DefArg = NTTP->getDefaultArgument()) {
   6124           Diag(NTTP->getDefaultArgumentLoc(),
   6125                diag::err_default_arg_in_partial_spec)
   6126             << DefArg->getSourceRange();
   6127           NTTP->removeDefaultArgument();
   6128         }
   6129       } else {
   6130         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
   6131         if (TTP->hasDefaultArgument()) {
   6132           Diag(TTP->getDefaultArgument().getLocation(),
   6133                diag::err_default_arg_in_partial_spec)
   6134             << TTP->getDefaultArgument().getSourceRange();
   6135           TTP->removeDefaultArgument();
   6136         }
   6137       }
   6138     }
   6139   } else if (TemplateParams) {
   6140     if (TUK == TUK_Friend)
   6141       Diag(KWLoc, diag::err_template_spec_friend)
   6142         << FixItHint::CreateRemoval(
   6143                                 SourceRange(TemplateParams->getTemplateLoc(),
   6144                                             TemplateParams->getRAngleLoc()))
   6145         << SourceRange(LAngleLoc, RAngleLoc);
   6146     else
   6147       isExplicitSpecialization = true;
   6148   } else {
   6149     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
   6150   }
   6151 
   6152   // Check that the specialization uses the same tag kind as the
   6153   // original template.
   6154   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   6155   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
   6156   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   6157                                     Kind, TUK == TUK_Definition, KWLoc,
   6158                                     *ClassTemplate->getIdentifier())) {
   6159     Diag(KWLoc, diag::err_use_with_wrong_tag)
   6160       << ClassTemplate
   6161       << FixItHint::CreateReplacement(KWLoc,
   6162                             ClassTemplate->getTemplatedDecl()->getKindName());
   6163     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   6164          diag::note_previous_use);
   6165     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   6166   }
   6167 
   6168   // Translate the parser's template argument list in our AST format.
   6169   TemplateArgumentListInfo TemplateArgs =
   6170       makeTemplateArgumentListInfo(*this, TemplateId);
   6171 
   6172   // Check for unexpanded parameter packs in any of the template arguments.
   6173   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   6174     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
   6175                                         UPPC_PartialSpecialization))
   6176       return true;
   6177 
   6178   // Check that the template argument list is well-formed for this
   6179   // template.
   6180   SmallVector<TemplateArgument, 4> Converted;
   6181   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   6182                                 TemplateArgs, false, Converted))
   6183     return true;
   6184 
   6185   // Find the class template (partial) specialization declaration that
   6186   // corresponds to these arguments.
   6187   if (isPartialSpecialization) {
   6188     if (CheckTemplatePartialSpecializationArgs(
   6189             *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
   6190             TemplateArgs.size(), Converted))
   6191       return true;
   6192 
   6193     bool InstantiationDependent;
   6194     if (!Name.isDependent() &&
   6195         !TemplateSpecializationType::anyDependentTemplateArguments(
   6196                                              TemplateArgs.getArgumentArray(),
   6197                                                          TemplateArgs.size(),
   6198                                                      InstantiationDependent)) {
   6199       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
   6200         << ClassTemplate->getDeclName();
   6201       isPartialSpecialization = false;
   6202     }
   6203   }
   6204 
   6205   void *InsertPos = nullptr;
   6206   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
   6207 
   6208   if (isPartialSpecialization)
   6209     // FIXME: Template parameter list matters, too
   6210     PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
   6211   else
   6212     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
   6213 
   6214   ClassTemplateSpecializationDecl *Specialization = nullptr;
   6215 
   6216   // Check whether we can declare a class template specialization in
   6217   // the current scope.
   6218   if (TUK != TUK_Friend &&
   6219       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
   6220                                        TemplateNameLoc,
   6221                                        isPartialSpecialization))
   6222     return true;
   6223 
   6224   // The canonical type
   6225   QualType CanonType;
   6226   if (isPartialSpecialization) {
   6227     // Build the canonical type that describes the converted template
   6228     // arguments of the class template partial specialization.
   6229     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   6230     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
   6231                                                       Converted.data(),
   6232                                                       Converted.size());
   6233 
   6234     if (Context.hasSameType(CanonType,
   6235                         ClassTemplate->getInjectedClassNameSpecialization())) {
   6236       // C++ [temp.class.spec]p9b3:
   6237       //
   6238       //   -- The argument list of the specialization shall not be identical
   6239       //      to the implicit argument list of the primary template.
   6240       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
   6241         << /*class template*/0 << (TUK == TUK_Definition)
   6242         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
   6243       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
   6244                                 ClassTemplate->getIdentifier(),
   6245                                 TemplateNameLoc,
   6246                                 Attr,
   6247                                 TemplateParams,
   6248                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
   6249                                 /*FriendLoc*/SourceLocation(),
   6250                                 TemplateParameterLists.size() - 1,
   6251                                 TemplateParameterLists.data());
   6252     }
   6253 
   6254     // Create a new class template partial specialization declaration node.
   6255     ClassTemplatePartialSpecializationDecl *PrevPartial
   6256       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
   6257     ClassTemplatePartialSpecializationDecl *Partial
   6258       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
   6259                                              ClassTemplate->getDeclContext(),
   6260                                                        KWLoc, TemplateNameLoc,
   6261                                                        TemplateParams,
   6262                                                        ClassTemplate,
   6263                                                        Converted.data(),
   6264                                                        Converted.size(),
   6265                                                        TemplateArgs,
   6266                                                        CanonType,
   6267                                                        PrevPartial);
   6268     SetNestedNameSpecifier(Partial, SS);
   6269     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
   6270       Partial->setTemplateParameterListsInfo(Context,
   6271                                              TemplateParameterLists.size() - 1,
   6272                                              TemplateParameterLists.data());
   6273     }
   6274 
   6275     if (!PrevPartial)
   6276       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
   6277     Specialization = Partial;
   6278 
   6279     // If we are providing an explicit specialization of a member class
   6280     // template specialization, make a note of that.
   6281     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
   6282       PrevPartial->setMemberSpecialization();
   6283 
   6284     // Check that all of the template parameters of the class template
   6285     // partial specialization are deducible from the template
   6286     // arguments. If not, this class template partial specialization
   6287     // will never be used.
   6288     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
   6289     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
   6290                                TemplateParams->getDepth(),
   6291                                DeducibleParams);
   6292 
   6293     if (!DeducibleParams.all()) {
   6294       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
   6295       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
   6296         << /*class template*/0 << (NumNonDeducible > 1)
   6297         << SourceRange(TemplateNameLoc, RAngleLoc);
   6298       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
   6299         if (!DeducibleParams[I]) {
   6300           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
   6301           if (Param->getDeclName())
   6302             Diag(Param->getLocation(),
   6303                  diag::note_partial_spec_unused_parameter)
   6304               << Param->getDeclName();
   6305           else
   6306             Diag(Param->getLocation(),
   6307                  diag::note_partial_spec_unused_parameter)
   6308               << "(anonymous)";
   6309         }
   6310       }
   6311     }
   6312   } else {
   6313     // Create a new class template specialization declaration node for
   6314     // this explicit specialization or friend declaration.
   6315     Specialization
   6316       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   6317                                              ClassTemplate->getDeclContext(),
   6318                                                 KWLoc, TemplateNameLoc,
   6319                                                 ClassTemplate,
   6320                                                 Converted.data(),
   6321                                                 Converted.size(),
   6322                                                 PrevDecl);
   6323     SetNestedNameSpecifier(Specialization, SS);
   6324     if (TemplateParameterLists.size() > 0) {
   6325       Specialization->setTemplateParameterListsInfo(Context,
   6326                                               TemplateParameterLists.size(),
   6327                                               TemplateParameterLists.data());
   6328     }
   6329 
   6330     if (!PrevDecl)
   6331       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   6332 
   6333     CanonType = Context.getTypeDeclType(Specialization);
   6334   }
   6335 
   6336   // C++ [temp.expl.spec]p6:
   6337   //   If a template, a member template or the member of a class template is
   6338   //   explicitly specialized then that specialization shall be declared
   6339   //   before the first use of that specialization that would cause an implicit
   6340   //   instantiation to take place, in every translation unit in which such a
   6341   //   use occurs; no diagnostic is required.
   6342   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
   6343     bool Okay = false;
   6344     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   6345       // Is there any previous explicit specialization declaration?
   6346       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   6347         Okay = true;
   6348         break;
   6349       }
   6350     }
   6351 
   6352     if (!Okay) {
   6353       SourceRange Range(TemplateNameLoc, RAngleLoc);
   6354       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
   6355         << Context.getTypeDeclType(Specialization) << Range;
   6356 
   6357       Diag(PrevDecl->getPointOfInstantiation(),
   6358            diag::note_instantiation_required_here)
   6359         << (PrevDecl->getTemplateSpecializationKind()
   6360                                                 != TSK_ImplicitInstantiation);
   6361       return true;
   6362     }
   6363   }
   6364 
   6365   // If this is not a friend, note that this is an explicit specialization.
   6366   if (TUK != TUK_Friend)
   6367     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
   6368 
   6369   // Check that this isn't a redefinition of this specialization.
   6370   if (TUK == TUK_Definition) {
   6371     if (RecordDecl *Def = Specialization->getDefinition()) {
   6372       SourceRange Range(TemplateNameLoc, RAngleLoc);
   6373       Diag(TemplateNameLoc, diag::err_redefinition)
   6374         << Context.getTypeDeclType(Specialization) << Range;
   6375       Diag(Def->getLocation(), diag::note_previous_definition);
   6376       Specialization->setInvalidDecl();
   6377       return true;
   6378     }
   6379   }
   6380 
   6381   if (Attr)
   6382     ProcessDeclAttributeList(S, Specialization, Attr);
   6383 
   6384   // Add alignment attributes if necessary; these attributes are checked when
   6385   // the ASTContext lays out the structure.
   6386   if (TUK == TUK_Definition) {
   6387     AddAlignmentAttributesForRecord(Specialization);
   6388     AddMsStructLayoutForRecord(Specialization);
   6389   }
   6390 
   6391   if (ModulePrivateLoc.isValid())
   6392     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
   6393       << (isPartialSpecialization? 1 : 0)
   6394       << FixItHint::CreateRemoval(ModulePrivateLoc);
   6395 
   6396   // Build the fully-sugared type for this class template
   6397   // specialization as the user wrote in the specialization
   6398   // itself. This means that we'll pretty-print the type retrieved
   6399   // from the specialization's declaration the way that the user
   6400   // actually wrote the specialization, rather than formatting the
   6401   // name based on the "canonical" representation used to store the
   6402   // template arguments in the specialization.
   6403   TypeSourceInfo *WrittenTy
   6404     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   6405                                                 TemplateArgs, CanonType);
   6406   if (TUK != TUK_Friend) {
   6407     Specialization->setTypeAsWritten(WrittenTy);
   6408     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
   6409   }
   6410 
   6411   // C++ [temp.expl.spec]p9:
   6412   //   A template explicit specialization is in the scope of the
   6413   //   namespace in which the template was defined.
   6414   //
   6415   // We actually implement this paragraph where we set the semantic
   6416   // context (in the creation of the ClassTemplateSpecializationDecl),
   6417   // but we also maintain the lexical context where the actual
   6418   // definition occurs.
   6419   Specialization->setLexicalDeclContext(CurContext);
   6420 
   6421   // We may be starting the definition of this specialization.
   6422   if (TUK == TUK_Definition)
   6423     Specialization->startDefinition();
   6424 
   6425   if (TUK == TUK_Friend) {
   6426     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
   6427                                             TemplateNameLoc,
   6428                                             WrittenTy,
   6429                                             /*FIXME:*/KWLoc);
   6430     Friend->setAccess(AS_public);
   6431     CurContext->addDecl(Friend);
   6432   } else {
   6433     // Add the specialization into its lexical context, so that it can
   6434     // be seen when iterating through the list of declarations in that
   6435     // context. However, specializations are not found by name lookup.
   6436     CurContext->addDecl(Specialization);
   6437   }
   6438   return Specialization;
   6439 }
   6440 
   6441 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
   6442                               MultiTemplateParamsArg TemplateParameterLists,
   6443                                     Declarator &D) {
   6444   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
   6445   ActOnDocumentableDecl(NewDecl);
   6446   return NewDecl;
   6447 }
   6448 
   6449 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
   6450                                MultiTemplateParamsArg TemplateParameterLists,
   6451                                             Declarator &D) {
   6452   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
   6453   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   6454 
   6455   if (FTI.hasPrototype) {
   6456     // FIXME: Diagnose arguments without names in C.
   6457   }
   6458 
   6459   Scope *ParentScope = FnBodyScope->getParent();
   6460 
   6461   D.setFunctionDefinitionKind(FDK_Definition);
   6462   Decl *DP = HandleDeclarator(ParentScope, D,
   6463                               TemplateParameterLists);
   6464   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   6465 }
   6466 
   6467 /// \brief Strips various properties off an implicit instantiation
   6468 /// that has just been explicitly specialized.
   6469 static void StripImplicitInstantiation(NamedDecl *D) {
   6470   D->dropAttr<DLLImportAttr>();
   6471   D->dropAttr<DLLExportAttr>();
   6472 
   6473   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   6474     FD->setInlineSpecified(false);
   6475 }
   6476 
   6477 /// \brief Compute the diagnostic location for an explicit instantiation
   6478 //  declaration or definition.
   6479 static SourceLocation DiagLocForExplicitInstantiation(
   6480     NamedDecl* D, SourceLocation PointOfInstantiation) {
   6481   // Explicit instantiations following a specialization have no effect and
   6482   // hence no PointOfInstantiation. In that case, walk decl backwards
   6483   // until a valid name loc is found.
   6484   SourceLocation PrevDiagLoc = PointOfInstantiation;
   6485   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
   6486        Prev = Prev->getPreviousDecl()) {
   6487     PrevDiagLoc = Prev->getLocation();
   6488   }
   6489   assert(PrevDiagLoc.isValid() &&
   6490          "Explicit instantiation without point of instantiation?");
   6491   return PrevDiagLoc;
   6492 }
   6493 
   6494 /// \brief Diagnose cases where we have an explicit template specialization
   6495 /// before/after an explicit template instantiation, producing diagnostics
   6496 /// for those cases where they are required and determining whether the
   6497 /// new specialization/instantiation will have any effect.
   6498 ///
   6499 /// \param NewLoc the location of the new explicit specialization or
   6500 /// instantiation.
   6501 ///
   6502 /// \param NewTSK the kind of the new explicit specialization or instantiation.
   6503 ///
   6504 /// \param PrevDecl the previous declaration of the entity.
   6505 ///
   6506 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
   6507 ///
   6508 /// \param PrevPointOfInstantiation if valid, indicates where the previus
   6509 /// declaration was instantiated (either implicitly or explicitly).
   6510 ///
   6511 /// \param HasNoEffect will be set to true to indicate that the new
   6512 /// specialization or instantiation has no effect and should be ignored.
   6513 ///
   6514 /// \returns true if there was an error that should prevent the introduction of
   6515 /// the new declaration into the AST, false otherwise.
   6516 bool
   6517 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
   6518                                              TemplateSpecializationKind NewTSK,
   6519                                              NamedDecl *PrevDecl,
   6520                                              TemplateSpecializationKind PrevTSK,
   6521                                         SourceLocation PrevPointOfInstantiation,
   6522                                              bool &HasNoEffect) {
   6523   HasNoEffect = false;
   6524 
   6525   switch (NewTSK) {
   6526   case TSK_Undeclared:
   6527   case TSK_ImplicitInstantiation:
   6528     assert(
   6529         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
   6530         "previous declaration must be implicit!");
   6531     return false;
   6532 
   6533   case TSK_ExplicitSpecialization:
   6534     switch (PrevTSK) {
   6535     case TSK_Undeclared:
   6536     case TSK_ExplicitSpecialization:
   6537       // Okay, we're just specializing something that is either already
   6538       // explicitly specialized or has merely been mentioned without any
   6539       // instantiation.
   6540       return false;
   6541 
   6542     case TSK_ImplicitInstantiation:
   6543       if (PrevPointOfInstantiation.isInvalid()) {
   6544         // The declaration itself has not actually been instantiated, so it is
   6545         // still okay to specialize it.
   6546         StripImplicitInstantiation(PrevDecl);
   6547         return false;
   6548       }
   6549       // Fall through
   6550 
   6551     case TSK_ExplicitInstantiationDeclaration:
   6552     case TSK_ExplicitInstantiationDefinition:
   6553       assert((PrevTSK == TSK_ImplicitInstantiation ||
   6554               PrevPointOfInstantiation.isValid()) &&
   6555              "Explicit instantiation without point of instantiation?");
   6556 
   6557       // C++ [temp.expl.spec]p6:
   6558       //   If a template, a member template or the member of a class template
   6559       //   is explicitly specialized then that specialization shall be declared
   6560       //   before the first use of that specialization that would cause an
   6561       //   implicit instantiation to take place, in every translation unit in
   6562       //   which such a use occurs; no diagnostic is required.
   6563       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   6564         // Is there any previous explicit specialization declaration?
   6565         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
   6566           return false;
   6567       }
   6568 
   6569       Diag(NewLoc, diag::err_specialization_after_instantiation)
   6570         << PrevDecl;
   6571       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
   6572         << (PrevTSK != TSK_ImplicitInstantiation);
   6573 
   6574       return true;
   6575     }
   6576 
   6577   case TSK_ExplicitInstantiationDeclaration:
   6578     switch (PrevTSK) {
   6579     case TSK_ExplicitInstantiationDeclaration:
   6580       // This explicit instantiation declaration is redundant (that's okay).
   6581       HasNoEffect = true;
   6582       return false;
   6583 
   6584     case TSK_Undeclared:
   6585     case TSK_ImplicitInstantiation:
   6586       // We're explicitly instantiating something that may have already been
   6587       // implicitly instantiated; that's fine.
   6588       return false;
   6589 
   6590     case TSK_ExplicitSpecialization:
   6591       // C++0x [temp.explicit]p4:
   6592       //   For a given set of template parameters, if an explicit instantiation
   6593       //   of a template appears after a declaration of an explicit
   6594       //   specialization for that template, the explicit instantiation has no
   6595       //   effect.
   6596       HasNoEffect = true;
   6597       return false;
   6598 
   6599     case TSK_ExplicitInstantiationDefinition:
   6600       // C++0x [temp.explicit]p10:
   6601       //   If an entity is the subject of both an explicit instantiation
   6602       //   declaration and an explicit instantiation definition in the same
   6603       //   translation unit, the definition shall follow the declaration.
   6604       Diag(NewLoc,
   6605            diag::err_explicit_instantiation_declaration_after_definition);
   6606 
   6607       // Explicit instantiations following a specialization have no effect and
   6608       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
   6609       // until a valid name loc is found.
   6610       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
   6611            diag::note_explicit_instantiation_definition_here);
   6612       HasNoEffect = true;
   6613       return false;
   6614     }
   6615 
   6616   case TSK_ExplicitInstantiationDefinition:
   6617     switch (PrevTSK) {
   6618     case TSK_Undeclared:
   6619     case TSK_ImplicitInstantiation:
   6620       // We're explicitly instantiating something that may have already been
   6621       // implicitly instantiated; that's fine.
   6622       return false;
   6623 
   6624     case TSK_ExplicitSpecialization:
   6625       // C++ DR 259, C++0x [temp.explicit]p4:
   6626       //   For a given set of template parameters, if an explicit
   6627       //   instantiation of a template appears after a declaration of
   6628       //   an explicit specialization for that template, the explicit
   6629       //   instantiation has no effect.
   6630       //
   6631       // In C++98/03 mode, we only give an extension warning here, because it
   6632       // is not harmful to try to explicitly instantiate something that
   6633       // has been explicitly specialized.
   6634       Diag(NewLoc, getLangOpts().CPlusPlus11 ?
   6635            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
   6636            diag::ext_explicit_instantiation_after_specialization)
   6637         << PrevDecl;
   6638       Diag(PrevDecl->getLocation(),
   6639            diag::note_previous_template_specialization);
   6640       HasNoEffect = true;
   6641       return false;
   6642 
   6643     case TSK_ExplicitInstantiationDeclaration:
   6644       // We're explicity instantiating a definition for something for which we
   6645       // were previously asked to suppress instantiations. That's fine.
   6646 
   6647       // C++0x [temp.explicit]p4:
   6648       //   For a given set of template parameters, if an explicit instantiation
   6649       //   of a template appears after a declaration of an explicit
   6650       //   specialization for that template, the explicit instantiation has no
   6651       //   effect.
   6652       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   6653         // Is there any previous explicit specialization declaration?
   6654         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   6655           HasNoEffect = true;
   6656           break;
   6657         }
   6658       }
   6659 
   6660       return false;
   6661 
   6662     case TSK_ExplicitInstantiationDefinition:
   6663       // C++0x [temp.spec]p5:
   6664       //   For a given template and a given set of template-arguments,
   6665       //     - an explicit instantiation definition shall appear at most once
   6666       //       in a program,
   6667 
   6668       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
   6669       Diag(NewLoc, (getLangOpts().MSVCCompat)
   6670                        ? diag::ext_explicit_instantiation_duplicate
   6671                        : diag::err_explicit_instantiation_duplicate)
   6672           << PrevDecl;
   6673       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
   6674            diag::note_previous_explicit_instantiation);
   6675       HasNoEffect = true;
   6676       return false;
   6677     }
   6678   }
   6679 
   6680   llvm_unreachable("Missing specialization/instantiation case?");
   6681 }
   6682 
   6683 /// \brief Perform semantic analysis for the given dependent function
   6684 /// template specialization.
   6685 ///
   6686 /// The only possible way to get a dependent function template specialization
   6687 /// is with a friend declaration, like so:
   6688 ///
   6689 /// \code
   6690 ///   template \<class T> void foo(T);
   6691 ///   template \<class T> class A {
   6692 ///     friend void foo<>(T);
   6693 ///   };
   6694 /// \endcode
   6695 ///
   6696 /// There really isn't any useful analysis we can do here, so we
   6697 /// just store the information.
   6698 bool
   6699 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
   6700                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
   6701                                                    LookupResult &Previous) {
   6702   // Remove anything from Previous that isn't a function template in
   6703   // the correct context.
   6704   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   6705   LookupResult::Filter F = Previous.makeFilter();
   6706   while (F.hasNext()) {
   6707     NamedDecl *D = F.next()->getUnderlyingDecl();
   6708     if (!isa<FunctionTemplateDecl>(D) ||
   6709         !FDLookupContext->InEnclosingNamespaceSetOf(
   6710                               D->getDeclContext()->getRedeclContext()))
   6711       F.erase();
   6712   }
   6713   F.done();
   6714 
   6715   // Should this be diagnosed here?
   6716   if (Previous.empty()) return true;
   6717 
   6718   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
   6719                                          ExplicitTemplateArgs);
   6720   return false;
   6721 }
   6722 
   6723 /// \brief Perform semantic analysis for the given function template
   6724 /// specialization.
   6725 ///
   6726 /// This routine performs all of the semantic analysis required for an
   6727 /// explicit function template specialization. On successful completion,
   6728 /// the function declaration \p FD will become a function template
   6729 /// specialization.
   6730 ///
   6731 /// \param FD the function declaration, which will be updated to become a
   6732 /// function template specialization.
   6733 ///
   6734 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
   6735 /// if any. Note that this may be valid info even when 0 arguments are
   6736 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
   6737 /// as it anyway contains info on the angle brackets locations.
   6738 ///
   6739 /// \param Previous the set of declarations that may be specialized by
   6740 /// this function specialization.
   6741 bool Sema::CheckFunctionTemplateSpecialization(
   6742     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
   6743     LookupResult &Previous) {
   6744   // The set of function template specializations that could match this
   6745   // explicit function template specialization.
   6746   UnresolvedSet<8> Candidates;
   6747   TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
   6748 
   6749   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   6750   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6751          I != E; ++I) {
   6752     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
   6753     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
   6754       // Only consider templates found within the same semantic lookup scope as
   6755       // FD.
   6756       if (!FDLookupContext->InEnclosingNamespaceSetOf(
   6757                                 Ovl->getDeclContext()->getRedeclContext()))
   6758         continue;
   6759 
   6760       // When matching a constexpr member function template specialization
   6761       // against the primary template, we don't yet know whether the
   6762       // specialization has an implicit 'const' (because we don't know whether
   6763       // it will be a static member function until we know which template it
   6764       // specializes), so adjust it now assuming it specializes this template.
   6765       QualType FT = FD->getType();
   6766       if (FD->isConstexpr()) {
   6767         CXXMethodDecl *OldMD =
   6768           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
   6769         if (OldMD && OldMD->isConst()) {
   6770           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
   6771           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   6772           EPI.TypeQuals |= Qualifiers::Const;
   6773           FT = Context.getFunctionType(FPT->getReturnType(),
   6774                                        FPT->getParamTypes(), EPI);
   6775         }
   6776       }
   6777 
   6778       // C++ [temp.expl.spec]p11:
   6779       //   A trailing template-argument can be left unspecified in the
   6780       //   template-id naming an explicit function template specialization
   6781       //   provided it can be deduced from the function argument type.
   6782       // Perform template argument deduction to determine whether we may be
   6783       // specializing this template.
   6784       // FIXME: It is somewhat wasteful to build
   6785       TemplateDeductionInfo Info(FailedCandidates.getLocation());
   6786       FunctionDecl *Specialization = nullptr;
   6787       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
   6788               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
   6789               ExplicitTemplateArgs, FT, Specialization, Info)) {
   6790         // Template argument deduction failed; record why it failed, so
   6791         // that we can provide nifty diagnostics.
   6792         FailedCandidates.addCandidate()
   6793             .set(FunTmpl->getTemplatedDecl(),
   6794                  MakeDeductionFailureInfo(Context, TDK, Info));
   6795         (void)TDK;
   6796         continue;
   6797       }
   6798 
   6799       // Record this candidate.
   6800       Candidates.addDecl(Specialization, I.getAccess());
   6801     }
   6802   }
   6803 
   6804   // Find the most specialized function template.
   6805   UnresolvedSetIterator Result = getMostSpecialized(
   6806       Candidates.begin(), Candidates.end(), FailedCandidates,
   6807       FD->getLocation(),
   6808       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
   6809       PDiag(diag::err_function_template_spec_ambiguous)
   6810           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
   6811       PDiag(diag::note_function_template_spec_matched));
   6812 
   6813   if (Result == Candidates.end())
   6814     return true;
   6815 
   6816   // Ignore access information;  it doesn't figure into redeclaration checking.
   6817   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   6818 
   6819   FunctionTemplateSpecializationInfo *SpecInfo
   6820     = Specialization->getTemplateSpecializationInfo();
   6821   assert(SpecInfo && "Function template specialization info missing?");
   6822 
   6823   // Note: do not overwrite location info if previous template
   6824   // specialization kind was explicit.
   6825   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
   6826   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
   6827     Specialization->setLocation(FD->getLocation());
   6828     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
   6829     // function can differ from the template declaration with respect to
   6830     // the constexpr specifier.
   6831     Specialization->setConstexpr(FD->isConstexpr());
   6832   }
   6833 
   6834   // FIXME: Check if the prior specialization has a point of instantiation.
   6835   // If so, we have run afoul of .
   6836 
   6837   // If this is a friend declaration, then we're not really declaring
   6838   // an explicit specialization.
   6839   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
   6840 
   6841   // Check the scope of this explicit specialization.
   6842   if (!isFriend &&
   6843       CheckTemplateSpecializationScope(*this,
   6844                                        Specialization->getPrimaryTemplate(),
   6845                                        Specialization, FD->getLocation(),
   6846                                        false))
   6847     return true;
   6848 
   6849   // C++ [temp.expl.spec]p6:
   6850   //   If a template, a member template or the member of a class template is
   6851   //   explicitly specialized then that specialization shall be declared
   6852   //   before the first use of that specialization that would cause an implicit
   6853   //   instantiation to take place, in every translation unit in which such a
   6854   //   use occurs; no diagnostic is required.
   6855   bool HasNoEffect = false;
   6856   if (!isFriend &&
   6857       CheckSpecializationInstantiationRedecl(FD->getLocation(),
   6858                                              TSK_ExplicitSpecialization,
   6859                                              Specialization,
   6860                                    SpecInfo->getTemplateSpecializationKind(),
   6861                                          SpecInfo->getPointOfInstantiation(),
   6862                                              HasNoEffect))
   6863     return true;
   6864 
   6865   // Mark the prior declaration as an explicit specialization, so that later
   6866   // clients know that this is an explicit specialization.
   6867   if (!isFriend) {
   6868     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
   6869     MarkUnusedFileScopedDecl(Specialization);
   6870   }
   6871 
   6872   // Turn the given function declaration into a function template
   6873   // specialization, with the template arguments from the previous
   6874   // specialization.
   6875   // Take copies of (semantic and syntactic) template argument lists.
   6876   const TemplateArgumentList* TemplArgs = new (Context)
   6877     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
   6878   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
   6879                                         TemplArgs, /*InsertPos=*/nullptr,
   6880                                     SpecInfo->getTemplateSpecializationKind(),
   6881                                         ExplicitTemplateArgs);
   6882 
   6883   // The "previous declaration" for this function template specialization is
   6884   // the prior function template specialization.
   6885   Previous.clear();
   6886   Previous.addDecl(Specialization);
   6887   return false;
   6888 }
   6889 
   6890 /// \brief Perform semantic analysis for the given non-template member
   6891 /// specialization.
   6892 ///
   6893 /// This routine performs all of the semantic analysis required for an
   6894 /// explicit member function specialization. On successful completion,
   6895 /// the function declaration \p FD will become a member function
   6896 /// specialization.
   6897 ///
   6898 /// \param Member the member declaration, which will be updated to become a
   6899 /// specialization.
   6900 ///
   6901 /// \param Previous the set of declarations, one of which may be specialized
   6902 /// by this function specialization;  the set will be modified to contain the
   6903 /// redeclared member.
   6904 bool
   6905 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
   6906   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
   6907 
   6908   // Try to find the member we are instantiating.
   6909   NamedDecl *Instantiation = nullptr;
   6910   NamedDecl *InstantiatedFrom = nullptr;
   6911   MemberSpecializationInfo *MSInfo = nullptr;
   6912 
   6913   if (Previous.empty()) {
   6914     // Nowhere to look anyway.
   6915   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
   6916     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6917            I != E; ++I) {
   6918       NamedDecl *D = (*I)->getUnderlyingDecl();
   6919       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   6920         QualType Adjusted = Function->getType();
   6921         if (!hasExplicitCallingConv(Adjusted))
   6922           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
   6923         if (Context.hasSameType(Adjusted, Method->getType())) {
   6924           Instantiation = Method;
   6925           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
   6926           MSInfo = Method->getMemberSpecializationInfo();
   6927           break;
   6928         }
   6929       }
   6930     }
   6931   } else if (isa<VarDecl>(Member)) {
   6932     VarDecl *PrevVar;
   6933     if (Previous.isSingleResult() &&
   6934         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
   6935       if (PrevVar->isStaticDataMember()) {
   6936         Instantiation = PrevVar;
   6937         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
   6938         MSInfo = PrevVar->getMemberSpecializationInfo();
   6939       }
   6940   } else if (isa<RecordDecl>(Member)) {
   6941     CXXRecordDecl *PrevRecord;
   6942     if (Previous.isSingleResult() &&
   6943         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
   6944       Instantiation = PrevRecord;
   6945       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
   6946       MSInfo = PrevRecord->getMemberSpecializationInfo();
   6947     }
   6948   } else if (isa<EnumDecl>(Member)) {
   6949     EnumDecl *PrevEnum;
   6950     if (Previous.isSingleResult() &&
   6951         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
   6952       Instantiation = PrevEnum;
   6953       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
   6954       MSInfo = PrevEnum->getMemberSpecializationInfo();
   6955     }
   6956   }
   6957 
   6958   if (!Instantiation) {
   6959     // There is no previous declaration that matches. Since member
   6960     // specializations are always out-of-line, the caller will complain about
   6961     // this mismatch later.
   6962     return false;
   6963   }
   6964 
   6965   // If this is a friend, just bail out here before we start turning
   6966   // things into explicit specializations.
   6967   if (Member->getFriendObjectKind() != Decl::FOK_None) {
   6968     // Preserve instantiation information.
   6969     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
   6970       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
   6971                                       cast<CXXMethodDecl>(InstantiatedFrom),
   6972         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
   6973     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
   6974       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   6975                                       cast<CXXRecordDecl>(InstantiatedFrom),
   6976         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
   6977     }
   6978 
   6979     Previous.clear();
   6980     Previous.addDecl(Instantiation);
   6981     return false;
   6982   }
   6983 
   6984   // Make sure that this is a specialization of a member.
   6985   if (!InstantiatedFrom) {
   6986     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
   6987       << Member;
   6988     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
   6989     return true;
   6990   }
   6991 
   6992   // C++ [temp.expl.spec]p6:
   6993   //   If a template, a member template or the member of a class template is
   6994   //   explicitly specialized then that specialization shall be declared
   6995   //   before the first use of that specialization that would cause an implicit
   6996   //   instantiation to take place, in every translation unit in which such a
   6997   //   use occurs; no diagnostic is required.
   6998   assert(MSInfo && "Member specialization info missing?");
   6999 
   7000   bool HasNoEffect = false;
   7001   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
   7002                                              TSK_ExplicitSpecialization,
   7003                                              Instantiation,
   7004                                      MSInfo->getTemplateSpecializationKind(),
   7005                                            MSInfo->getPointOfInstantiation(),
   7006                                              HasNoEffect))
   7007     return true;
   7008 
   7009   // Check the scope of this explicit specialization.
   7010   if (CheckTemplateSpecializationScope(*this,
   7011                                        InstantiatedFrom,
   7012                                        Instantiation, Member->getLocation(),
   7013                                        false))
   7014     return true;
   7015 
   7016   // Note that this is an explicit instantiation of a member.
   7017   // the original declaration to note that it is an explicit specialization
   7018   // (if it was previously an implicit instantiation). This latter step
   7019   // makes bookkeeping easier.
   7020   if (isa<FunctionDecl>(Member)) {
   7021     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
   7022     if (InstantiationFunction->getTemplateSpecializationKind() ==
   7023           TSK_ImplicitInstantiation) {
   7024       InstantiationFunction->setTemplateSpecializationKind(
   7025                                                   TSK_ExplicitSpecialization);
   7026       InstantiationFunction->setLocation(Member->getLocation());
   7027     }
   7028 
   7029     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
   7030                                         cast<CXXMethodDecl>(InstantiatedFrom),
   7031                                                   TSK_ExplicitSpecialization);
   7032     MarkUnusedFileScopedDecl(InstantiationFunction);
   7033   } else if (isa<VarDecl>(Member)) {
   7034     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
   7035     if (InstantiationVar->getTemplateSpecializationKind() ==
   7036           TSK_ImplicitInstantiation) {
   7037       InstantiationVar->setTemplateSpecializationKind(
   7038                                                   TSK_ExplicitSpecialization);
   7039       InstantiationVar->setLocation(Member->getLocation());
   7040     }
   7041 
   7042     cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
   7043         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
   7044     MarkUnusedFileScopedDecl(InstantiationVar);
   7045   } else if (isa<CXXRecordDecl>(Member)) {
   7046     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
   7047     if (InstantiationClass->getTemplateSpecializationKind() ==
   7048           TSK_ImplicitInstantiation) {
   7049       InstantiationClass->setTemplateSpecializationKind(
   7050                                                    TSK_ExplicitSpecialization);
   7051       InstantiationClass->setLocation(Member->getLocation());
   7052     }
   7053 
   7054     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   7055                                         cast<CXXRecordDecl>(InstantiatedFrom),
   7056                                                    TSK_ExplicitSpecialization);
   7057   } else {
   7058     assert(isa<EnumDecl>(Member) && "Only member enums remain");
   7059     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
   7060     if (InstantiationEnum->getTemplateSpecializationKind() ==
   7061           TSK_ImplicitInstantiation) {
   7062       InstantiationEnum->setTemplateSpecializationKind(
   7063                                                    TSK_ExplicitSpecialization);
   7064       InstantiationEnum->setLocation(Member->getLocation());
   7065     }
   7066 
   7067     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
   7068         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
   7069   }
   7070 
   7071   // Save the caller the trouble of having to figure out which declaration
   7072   // this specialization matches.
   7073   Previous.clear();
   7074   Previous.addDecl(Instantiation);
   7075   return false;
   7076 }
   7077 
   7078 /// \brief Check the scope of an explicit instantiation.
   7079 ///
   7080 /// \returns true if a serious error occurs, false otherwise.
   7081 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
   7082                                             SourceLocation InstLoc,
   7083                                             bool WasQualifiedName) {
   7084   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
   7085   DeclContext *CurContext = S.CurContext->getRedeclContext();
   7086 
   7087   if (CurContext->isRecord()) {
   7088     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
   7089       << D;
   7090     return true;
   7091   }
   7092 
   7093   // C++11 [temp.explicit]p3:
   7094   //   An explicit instantiation shall appear in an enclosing namespace of its
   7095   //   template. If the name declared in the explicit instantiation is an
   7096   //   unqualified name, the explicit instantiation shall appear in the
   7097   //   namespace where its template is declared or, if that namespace is inline
   7098   //   (7.3.1), any namespace from its enclosing namespace set.
   7099   //
   7100   // This is DR275, which we do not retroactively apply to C++98/03.
   7101   if (WasQualifiedName) {
   7102     if (CurContext->Encloses(OrigContext))
   7103       return false;
   7104   } else {
   7105     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
   7106       return false;
   7107   }
   7108 
   7109   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
   7110     if (WasQualifiedName)
   7111       S.Diag(InstLoc,
   7112              S.getLangOpts().CPlusPlus11?
   7113                diag::err_explicit_instantiation_out_of_scope :
   7114                diag::warn_explicit_instantiation_out_of_scope_0x)
   7115         << D << NS;
   7116     else
   7117       S.Diag(InstLoc,
   7118              S.getLangOpts().CPlusPlus11?
   7119                diag::err_explicit_instantiation_unqualified_wrong_namespace :
   7120                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
   7121         << D << NS;
   7122   } else
   7123     S.Diag(InstLoc,
   7124            S.getLangOpts().CPlusPlus11?
   7125              diag::err_explicit_instantiation_must_be_global :
   7126              diag::warn_explicit_instantiation_must_be_global_0x)
   7127       << D;
   7128   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
   7129   return false;
   7130 }
   7131 
   7132 /// \brief Determine whether the given scope specifier has a template-id in it.
   7133 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
   7134   if (!SS.isSet())
   7135     return false;
   7136 
   7137   // C++11 [temp.explicit]p3:
   7138   //   If the explicit instantiation is for a member function, a member class
   7139   //   or a static data member of a class template specialization, the name of
   7140   //   the class template specialization in the qualified-id for the member
   7141   //   name shall be a simple-template-id.
   7142   //
   7143   // C++98 has the same restriction, just worded differently.
   7144   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
   7145        NNS = NNS->getPrefix())
   7146     if (const Type *T = NNS->getAsType())
   7147       if (isa<TemplateSpecializationType>(T))
   7148         return true;
   7149 
   7150   return false;
   7151 }
   7152 
   7153 // Explicit instantiation of a class template specialization
   7154 DeclResult
   7155 Sema::ActOnExplicitInstantiation(Scope *S,
   7156                                  SourceLocation ExternLoc,
   7157                                  SourceLocation TemplateLoc,
   7158                                  unsigned TagSpec,
   7159                                  SourceLocation KWLoc,
   7160                                  const CXXScopeSpec &SS,
   7161                                  TemplateTy TemplateD,
   7162                                  SourceLocation TemplateNameLoc,
   7163                                  SourceLocation LAngleLoc,
   7164                                  ASTTemplateArgsPtr TemplateArgsIn,
   7165                                  SourceLocation RAngleLoc,
   7166                                  AttributeList *Attr) {
   7167   // Find the class template we're specializing
   7168   TemplateName Name = TemplateD.get();
   7169   TemplateDecl *TD = Name.getAsTemplateDecl();
   7170   // Check that the specialization uses the same tag kind as the
   7171   // original template.
   7172   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   7173   assert(Kind != TTK_Enum &&
   7174          "Invalid enum tag in class template explicit instantiation!");
   7175 
   7176   if (isa<TypeAliasTemplateDecl>(TD)) {
   7177       Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
   7178       Diag(TD->getTemplatedDecl()->getLocation(),
   7179            diag::note_previous_use);
   7180     return true;
   7181   }
   7182 
   7183   ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
   7184 
   7185   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   7186                                     Kind, /*isDefinition*/false, KWLoc,
   7187                                     *ClassTemplate->getIdentifier())) {
   7188     Diag(KWLoc, diag::err_use_with_wrong_tag)
   7189       << ClassTemplate
   7190       << FixItHint::CreateReplacement(KWLoc,
   7191                             ClassTemplate->getTemplatedDecl()->getKindName());
   7192     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   7193          diag::note_previous_use);
   7194     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   7195   }
   7196 
   7197   // C++0x [temp.explicit]p2:
   7198   //   There are two forms of explicit instantiation: an explicit instantiation
   7199   //   definition and an explicit instantiation declaration. An explicit
   7200   //   instantiation declaration begins with the extern keyword. [...]
   7201   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
   7202                                        ? TSK_ExplicitInstantiationDefinition
   7203                                        : TSK_ExplicitInstantiationDeclaration;
   7204 
   7205   if (TSK == TSK_ExplicitInstantiationDeclaration) {
   7206     // Check for dllexport class template instantiation declarations.
   7207     for (AttributeList *A = Attr; A; A = A->getNext()) {
   7208       if (A->getKind() == AttributeList::AT_DLLExport) {
   7209         Diag(ExternLoc,
   7210              diag::warn_attribute_dllexport_explicit_instantiation_decl);
   7211         Diag(A->getLoc(), diag::note_attribute);
   7212         break;
   7213       }
   7214     }
   7215 
   7216     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
   7217       Diag(ExternLoc,
   7218            diag::warn_attribute_dllexport_explicit_instantiation_decl);
   7219       Diag(A->getLocation(), diag::note_attribute);
   7220     }
   7221   }
   7222 
   7223   // Translate the parser's template argument list in our AST format.
   7224   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   7225   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   7226 
   7227   // Check that the template argument list is well-formed for this
   7228   // template.
   7229   SmallVector<TemplateArgument, 4> Converted;
   7230   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   7231                                 TemplateArgs, false, Converted))
   7232     return true;
   7233 
   7234   // Find the class template specialization declaration that
   7235   // corresponds to these arguments.
   7236   void *InsertPos = nullptr;
   7237   ClassTemplateSpecializationDecl *PrevDecl
   7238     = ClassTemplate->findSpecialization(Converted, InsertPos);
   7239 
   7240   TemplateSpecializationKind PrevDecl_TSK
   7241     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
   7242 
   7243   // C++0x [temp.explicit]p2:
   7244   //   [...] An explicit instantiation shall appear in an enclosing
   7245   //   namespace of its template. [...]
   7246   //
   7247   // This is C++ DR 275.
   7248   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
   7249                                       SS.isSet()))
   7250     return true;
   7251 
   7252   ClassTemplateSpecializationDecl *Specialization = nullptr;
   7253 
   7254   bool HasNoEffect = false;
   7255   if (PrevDecl) {
   7256     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
   7257                                                PrevDecl, PrevDecl_TSK,
   7258                                             PrevDecl->getPointOfInstantiation(),
   7259                                                HasNoEffect))
   7260       return PrevDecl;
   7261 
   7262     // Even though HasNoEffect == true means that this explicit instantiation
   7263     // has no effect on semantics, we go on to put its syntax in the AST.
   7264 
   7265     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
   7266         PrevDecl_TSK == TSK_Undeclared) {
   7267       // Since the only prior class template specialization with these
   7268       // arguments was referenced but not declared, reuse that
   7269       // declaration node as our own, updating the source location
   7270       // for the template name to reflect our new declaration.
   7271       // (Other source locations will be updated later.)
   7272       Specialization = PrevDecl;
   7273       Specialization->setLocation(TemplateNameLoc);
   7274       PrevDecl = nullptr;
   7275     }
   7276   }
   7277 
   7278   if (!Specialization) {
   7279     // Create a new class template specialization declaration node for
   7280     // this explicit specialization.
   7281     Specialization
   7282       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   7283                                              ClassTemplate->getDeclContext(),
   7284                                                 KWLoc, TemplateNameLoc,
   7285                                                 ClassTemplate,
   7286                                                 Converted.data(),
   7287                                                 Converted.size(),
   7288                                                 PrevDecl);
   7289     SetNestedNameSpecifier(Specialization, SS);
   7290 
   7291     if (!HasNoEffect && !PrevDecl) {
   7292       // Insert the new specialization.
   7293       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   7294     }
   7295   }
   7296 
   7297   // Build the fully-sugared type for this explicit instantiation as
   7298   // the user wrote in the explicit instantiation itself. This means
   7299   // that we'll pretty-print the type retrieved from the
   7300   // specialization's declaration the way that the user actually wrote
   7301   // the explicit instantiation, rather than formatting the name based
   7302   // on the "canonical" representation used to store the template
   7303   // arguments in the specialization.
   7304   TypeSourceInfo *WrittenTy
   7305     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   7306                                                 TemplateArgs,
   7307                                   Context.getTypeDeclType(Specialization));
   7308   Specialization->setTypeAsWritten(WrittenTy);
   7309 
   7310   // Set source locations for keywords.
   7311   Specialization->setExternLoc(ExternLoc);
   7312   Specialization->setTemplateKeywordLoc(TemplateLoc);
   7313   Specialization->setRBraceLoc(SourceLocation());
   7314 
   7315   if (Attr)
   7316     ProcessDeclAttributeList(S, Specialization, Attr);
   7317 
   7318   // Add the explicit instantiation into its lexical context. However,
   7319   // since explicit instantiations are never found by name lookup, we
   7320   // just put it into the declaration context directly.
   7321   Specialization->setLexicalDeclContext(CurContext);
   7322   CurContext->addDecl(Specialization);
   7323 
   7324   // Syntax is now OK, so return if it has no other effect on semantics.
   7325   if (HasNoEffect) {
   7326     // Set the template specialization kind.
   7327     Specialization->setTemplateSpecializationKind(TSK);
   7328     return Specialization;
   7329   }
   7330 
   7331   // C++ [temp.explicit]p3:
   7332   //   A definition of a class template or class member template
   7333   //   shall be in scope at the point of the explicit instantiation of
   7334   //   the class template or class member template.
   7335   //
   7336   // This check comes when we actually try to perform the
   7337   // instantiation.
   7338   ClassTemplateSpecializationDecl *Def
   7339     = cast_or_null<ClassTemplateSpecializationDecl>(
   7340                                               Specialization->getDefinition());
   7341   if (!Def)
   7342     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
   7343   else if (TSK == TSK_ExplicitInstantiationDefinition) {
   7344     MarkVTableUsed(TemplateNameLoc, Specialization, true);
   7345     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
   7346   }
   7347 
   7348   // Instantiate the members of this class template specialization.
   7349   Def = cast_or_null<ClassTemplateSpecializationDecl>(
   7350                                        Specialization->getDefinition());
   7351   if (Def) {
   7352     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
   7353 
   7354     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
   7355     // TSK_ExplicitInstantiationDefinition
   7356     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
   7357         TSK == TSK_ExplicitInstantiationDefinition)
   7358       // FIXME: Need to notify the ASTMutationListener that we did this.
   7359       Def->setTemplateSpecializationKind(TSK);
   7360 
   7361     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
   7362   }
   7363 
   7364   // Set the template specialization kind.
   7365   Specialization->setTemplateSpecializationKind(TSK);
   7366   return Specialization;
   7367 }
   7368 
   7369 // Explicit instantiation of a member class of a class template.
   7370 DeclResult
   7371 Sema::ActOnExplicitInstantiation(Scope *S,
   7372                                  SourceLocation ExternLoc,
   7373                                  SourceLocation TemplateLoc,
   7374                                  unsigned TagSpec,
   7375                                  SourceLocation KWLoc,
   7376                                  CXXScopeSpec &SS,
   7377                                  IdentifierInfo *Name,
   7378                                  SourceLocation NameLoc,
   7379                                  AttributeList *Attr) {
   7380 
   7381   bool Owned = false;
   7382   bool IsDependent = false;
   7383   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
   7384                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
   7385                         /*ModulePrivateLoc=*/SourceLocation(),
   7386                         MultiTemplateParamsArg(), Owned, IsDependent,
   7387                         SourceLocation(), false, TypeResult(),
   7388                         /*IsTypeSpecifier*/false);
   7389   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
   7390 
   7391   if (!TagD)
   7392     return true;
   7393 
   7394   TagDecl *Tag = cast<TagDecl>(TagD);
   7395   assert(!Tag->isEnum() && "shouldn't see enumerations here");
   7396 
   7397   if (Tag->isInvalidDecl())
   7398     return true;
   7399 
   7400   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
   7401   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
   7402   if (!Pattern) {
   7403     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
   7404       << Context.getTypeDeclType(Record);
   7405     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
   7406     return true;
   7407   }
   7408 
   7409   // C++0x [temp.explicit]p2:
   7410   //   If the explicit instantiation is for a class or member class, the
   7411   //   elaborated-type-specifier in the declaration shall include a
   7412   //   simple-template-id.
   7413   //
   7414   // C++98 has the same restriction, just worded differently.
   7415   if (!ScopeSpecifierHasTemplateId(SS))
   7416     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
   7417       << Record << SS.getRange();
   7418 
   7419   // C++0x [temp.explicit]p2:
   7420   //   There are two forms of explicit instantiation: an explicit instantiation
   7421   //   definition and an explicit instantiation declaration. An explicit
   7422   //   instantiation declaration begins with the extern keyword. [...]
   7423   TemplateSpecializationKind TSK
   7424     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   7425                            : TSK_ExplicitInstantiationDeclaration;
   7426 
   7427   // C++0x [temp.explicit]p2:
   7428   //   [...] An explicit instantiation shall appear in an enclosing
   7429   //   namespace of its template. [...]
   7430   //
   7431   // This is C++ DR 275.
   7432   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
   7433 
   7434   // Verify that it is okay to explicitly instantiate here.
   7435   CXXRecordDecl *PrevDecl
   7436     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
   7437   if (!PrevDecl && Record->getDefinition())
   7438     PrevDecl = Record;
   7439   if (PrevDecl) {
   7440     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
   7441     bool HasNoEffect = false;
   7442     assert(MSInfo && "No member specialization information?");
   7443     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
   7444                                                PrevDecl,
   7445                                         MSInfo->getTemplateSpecializationKind(),
   7446                                              MSInfo->getPointOfInstantiation(),
   7447                                                HasNoEffect))
   7448       return true;
   7449     if (HasNoEffect)
   7450       return TagD;
   7451   }
   7452 
   7453   CXXRecordDecl *RecordDef
   7454     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   7455   if (!RecordDef) {
   7456     // C++ [temp.explicit]p3:
   7457     //   A definition of a member class of a class template shall be in scope
   7458     //   at the point of an explicit instantiation of the member class.
   7459     CXXRecordDecl *Def
   7460       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
   7461     if (!Def) {
   7462       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
   7463         << 0 << Record->getDeclName() << Record->getDeclContext();
   7464       Diag(Pattern->getLocation(), diag::note_forward_declaration)
   7465         << Pattern;
   7466       return true;
   7467     } else {
   7468       if (InstantiateClass(NameLoc, Record, Def,
   7469                            getTemplateInstantiationArgs(Record),
   7470                            TSK))
   7471         return true;
   7472 
   7473       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   7474       if (!RecordDef)
   7475         return true;
   7476     }
   7477   }
   7478 
   7479   // Instantiate all of the members of the class.
   7480   InstantiateClassMembers(NameLoc, RecordDef,
   7481                           getTemplateInstantiationArgs(Record), TSK);
   7482 
   7483   if (TSK == TSK_ExplicitInstantiationDefinition)
   7484     MarkVTableUsed(NameLoc, RecordDef, true);
   7485 
   7486   // FIXME: We don't have any representation for explicit instantiations of
   7487   // member classes. Such a representation is not needed for compilation, but it
   7488   // should be available for clients that want to see all of the declarations in
   7489   // the source code.
   7490   return TagD;
   7491 }
   7492 
   7493 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
   7494                                             SourceLocation ExternLoc,
   7495                                             SourceLocation TemplateLoc,
   7496                                             Declarator &D) {
   7497   // Explicit instantiations always require a name.
   7498   // TODO: check if/when DNInfo should replace Name.
   7499   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   7500   DeclarationName Name = NameInfo.getName();
   7501   if (!Name) {
   7502     if (!D.isInvalidType())
   7503       Diag(D.getDeclSpec().getLocStart(),
   7504            diag::err_explicit_instantiation_requires_name)
   7505         << D.getDeclSpec().getSourceRange()
   7506         << D.getSourceRange();
   7507 
   7508     return true;
   7509   }
   7510 
   7511   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   7512   // we find one that is.
   7513   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   7514          (S->getFlags() & Scope::TemplateParamScope) != 0)
   7515     S = S->getParent();
   7516 
   7517   // Determine the type of the declaration.
   7518   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
   7519   QualType R = T->getType();
   7520   if (R.isNull())
   7521     return true;
   7522 
   7523   // C++ [dcl.stc]p1:
   7524   //   A storage-class-specifier shall not be specified in [...] an explicit
   7525   //   instantiation (14.7.2) directive.
   7526   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   7527     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
   7528       << Name;
   7529     return true;
   7530   } else if (D.getDeclSpec().getStorageClassSpec()
   7531                                                 != DeclSpec::SCS_unspecified) {
   7532     // Complain about then remove the storage class specifier.
   7533     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
   7534       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   7535 
   7536     D.getMutableDeclSpec().ClearStorageClassSpecs();
   7537   }
   7538 
   7539   // C++0x [temp.explicit]p1:
   7540   //   [...] An explicit instantiation of a function template shall not use the
   7541   //   inline or constexpr specifiers.
   7542   // Presumably, this also applies to member functions of class templates as
   7543   // well.
   7544   if (D.getDeclSpec().isInlineSpecified())
   7545     Diag(D.getDeclSpec().getInlineSpecLoc(),
   7546          getLangOpts().CPlusPlus11 ?
   7547            diag::err_explicit_instantiation_inline :
   7548            diag::warn_explicit_instantiation_inline_0x)
   7549       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   7550   if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
   7551     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
   7552     // not already specified.
   7553     Diag(D.getDeclSpec().getConstexprSpecLoc(),
   7554          diag::err_explicit_instantiation_constexpr);
   7555 
   7556   // C++0x [temp.explicit]p2:
   7557   //   There are two forms of explicit instantiation: an explicit instantiation
   7558   //   definition and an explicit instantiation declaration. An explicit
   7559   //   instantiation declaration begins with the extern keyword. [...]
   7560   TemplateSpecializationKind TSK
   7561     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   7562                            : TSK_ExplicitInstantiationDeclaration;
   7563 
   7564   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
   7565   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
   7566 
   7567   if (!R->isFunctionType()) {
   7568     // C++ [temp.explicit]p1:
   7569     //   A [...] static data member of a class template can be explicitly
   7570     //   instantiated from the member definition associated with its class
   7571     //   template.
   7572     // C++1y [temp.explicit]p1:
   7573     //   A [...] variable [...] template specialization can be explicitly
   7574     //   instantiated from its template.
   7575     if (Previous.isAmbiguous())
   7576       return true;
   7577 
   7578     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
   7579     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
   7580 
   7581     if (!PrevTemplate) {
   7582       if (!Prev || !Prev->isStaticDataMember()) {
   7583         // We expect to see a data data member here.
   7584         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
   7585             << Name;
   7586         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   7587              P != PEnd; ++P)
   7588           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
   7589         return true;
   7590       }
   7591 
   7592       if (!Prev->getInstantiatedFromStaticDataMember()) {
   7593         // FIXME: Check for explicit specialization?
   7594         Diag(D.getIdentifierLoc(),
   7595              diag::err_explicit_instantiation_data_member_not_instantiated)
   7596             << Prev;
   7597         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
   7598         // FIXME: Can we provide a note showing where this was declared?
   7599         return true;
   7600       }
   7601     } else {
   7602       // Explicitly instantiate a variable template.
   7603 
   7604       // C++1y [dcl.spec.auto]p6:
   7605       //   ... A program that uses auto or decltype(auto) in a context not
   7606       //   explicitly allowed in this section is ill-formed.
   7607       //
   7608       // This includes auto-typed variable template instantiations.
   7609       if (R->isUndeducedType()) {
   7610         Diag(T->getTypeLoc().getLocStart(),
   7611              diag::err_auto_not_allowed_var_inst);
   7612         return true;
   7613       }
   7614 
   7615       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   7616         // C++1y [temp.explicit]p3:
   7617         //   If the explicit instantiation is for a variable, the unqualified-id
   7618         //   in the declaration shall be a template-id.
   7619         Diag(D.getIdentifierLoc(),
   7620              diag::err_explicit_instantiation_without_template_id)
   7621           << PrevTemplate;
   7622         Diag(PrevTemplate->getLocation(),
   7623              diag::note_explicit_instantiation_here);
   7624         return true;
   7625       }
   7626 
   7627       // Translate the parser's template argument list into our AST format.
   7628       TemplateArgumentListInfo TemplateArgs =
   7629           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
   7630 
   7631       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
   7632                                           D.getIdentifierLoc(), TemplateArgs);
   7633       if (Res.isInvalid())
   7634         return true;
   7635 
   7636       // Ignore access control bits, we don't need them for redeclaration
   7637       // checking.
   7638       Prev = cast<VarDecl>(Res.get());
   7639     }
   7640 
   7641     // C++0x [temp.explicit]p2:
   7642     //   If the explicit instantiation is for a member function, a member class
   7643     //   or a static data member of a class template specialization, the name of
   7644     //   the class template specialization in the qualified-id for the member
   7645     //   name shall be a simple-template-id.
   7646     //
   7647     // C++98 has the same restriction, just worded differently.
   7648     //
   7649     // This does not apply to variable template specializations, where the
   7650     // template-id is in the unqualified-id instead.
   7651     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
   7652       Diag(D.getIdentifierLoc(),
   7653            diag::ext_explicit_instantiation_without_qualified_id)
   7654         << Prev << D.getCXXScopeSpec().getRange();
   7655 
   7656     // Check the scope of this explicit instantiation.
   7657     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
   7658 
   7659     // Verify that it is okay to explicitly instantiate here.
   7660     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
   7661     SourceLocation POI = Prev->getPointOfInstantiation();
   7662     bool HasNoEffect = false;
   7663     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
   7664                                                PrevTSK, POI, HasNoEffect))
   7665       return true;
   7666 
   7667     if (!HasNoEffect) {
   7668       // Instantiate static data member or variable template.
   7669 
   7670       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   7671       if (PrevTemplate) {
   7672         // Merge attributes.
   7673         if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
   7674           ProcessDeclAttributeList(S, Prev, Attr);
   7675       }
   7676       if (TSK == TSK_ExplicitInstantiationDefinition)
   7677         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
   7678     }
   7679 
   7680     // Check the new variable specialization against the parsed input.
   7681     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
   7682       Diag(T->getTypeLoc().getLocStart(),
   7683            diag::err_invalid_var_template_spec_type)
   7684           << 0 << PrevTemplate << R << Prev->getType();
   7685       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
   7686           << 2 << PrevTemplate->getDeclName();
   7687       return true;
   7688     }
   7689 
   7690     // FIXME: Create an ExplicitInstantiation node?
   7691     return (Decl*) nullptr;
   7692   }
   7693 
   7694   // If the declarator is a template-id, translate the parser's template
   7695   // argument list into our AST format.
   7696   bool HasExplicitTemplateArgs = false;
   7697   TemplateArgumentListInfo TemplateArgs;
   7698   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   7699     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
   7700     HasExplicitTemplateArgs = true;
   7701   }
   7702 
   7703   // C++ [temp.explicit]p1:
   7704   //   A [...] function [...] can be explicitly instantiated from its template.
   7705   //   A member function [...] of a class template can be explicitly
   7706   //  instantiated from the member definition associated with its class
   7707   //  template.
   7708   UnresolvedSet<8> Matches;
   7709   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
   7710   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   7711        P != PEnd; ++P) {
   7712     NamedDecl *Prev = *P;
   7713     if (!HasExplicitTemplateArgs) {
   7714       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
   7715         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
   7716         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
   7717           Matches.clear();
   7718 
   7719           Matches.addDecl(Method, P.getAccess());
   7720           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
   7721             break;
   7722         }
   7723       }
   7724     }
   7725 
   7726     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
   7727     if (!FunTmpl)
   7728       continue;
   7729 
   7730     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   7731     FunctionDecl *Specialization = nullptr;
   7732     if (TemplateDeductionResult TDK
   7733           = DeduceTemplateArguments(FunTmpl,
   7734                                (HasExplicitTemplateArgs ? &TemplateArgs
   7735                                                         : nullptr),
   7736                                     R, Specialization, Info)) {
   7737       // Keep track of almost-matches.
   7738       FailedCandidates.addCandidate()
   7739           .set(FunTmpl->getTemplatedDecl(),
   7740                MakeDeductionFailureInfo(Context, TDK, Info));
   7741       (void)TDK;
   7742       continue;
   7743     }
   7744 
   7745     Matches.addDecl(Specialization, P.getAccess());
   7746   }
   7747 
   7748   // Find the most specialized function template specialization.
   7749   UnresolvedSetIterator Result = getMostSpecialized(
   7750       Matches.begin(), Matches.end(), FailedCandidates,
   7751       D.getIdentifierLoc(),
   7752       PDiag(diag::err_explicit_instantiation_not_known) << Name,
   7753       PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
   7754       PDiag(diag::note_explicit_instantiation_candidate));
   7755 
   7756   if (Result == Matches.end())
   7757     return true;
   7758 
   7759   // Ignore access control bits, we don't need them for redeclaration checking.
   7760   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   7761 
   7762   // C++11 [except.spec]p4
   7763   // In an explicit instantiation an exception-specification may be specified,
   7764   // but is not required.
   7765   // If an exception-specification is specified in an explicit instantiation
   7766   // directive, it shall be compatible with the exception-specifications of
   7767   // other declarations of that function.
   7768   if (auto *FPT = R->getAs<FunctionProtoType>())
   7769     if (FPT->hasExceptionSpec()) {
   7770       unsigned DiagID =
   7771           diag::err_mismatched_exception_spec_explicit_instantiation;
   7772       if (getLangOpts().MicrosoftExt)
   7773         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
   7774       bool Result = CheckEquivalentExceptionSpec(
   7775           PDiag(DiagID) << Specialization->getType(),
   7776           PDiag(diag::note_explicit_instantiation_here),
   7777           Specialization->getType()->getAs<FunctionProtoType>(),
   7778           Specialization->getLocation(), FPT, D.getLocStart());
   7779       // In Microsoft mode, mismatching exception specifications just cause a
   7780       // warning.
   7781       if (!getLangOpts().MicrosoftExt && Result)
   7782         return true;
   7783     }
   7784 
   7785   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
   7786     Diag(D.getIdentifierLoc(),
   7787          diag::err_explicit_instantiation_member_function_not_instantiated)
   7788       << Specialization
   7789       << (Specialization->getTemplateSpecializationKind() ==
   7790           TSK_ExplicitSpecialization);
   7791     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
   7792     return true;
   7793   }
   7794 
   7795   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
   7796   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
   7797     PrevDecl = Specialization;
   7798 
   7799   if (PrevDecl) {
   7800     bool HasNoEffect = false;
   7801     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
   7802                                                PrevDecl,
   7803                                      PrevDecl->getTemplateSpecializationKind(),
   7804                                           PrevDecl->getPointOfInstantiation(),
   7805                                                HasNoEffect))
   7806       return true;
   7807 
   7808     // FIXME: We may still want to build some representation of this
   7809     // explicit specialization.
   7810     if (HasNoEffect)
   7811       return (Decl*) nullptr;
   7812   }
   7813 
   7814   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   7815   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
   7816   if (Attr)
   7817     ProcessDeclAttributeList(S, Specialization, Attr);
   7818 
   7819   if (Specialization->isDefined()) {
   7820     // Let the ASTConsumer know that this function has been explicitly
   7821     // instantiated now, and its linkage might have changed.
   7822     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
   7823   } else if (TSK == TSK_ExplicitInstantiationDefinition)
   7824     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
   7825 
   7826   // C++0x [temp.explicit]p2:
   7827   //   If the explicit instantiation is for a member function, a member class
   7828   //   or a static data member of a class template specialization, the name of
   7829   //   the class template specialization in the qualified-id for the member
   7830   //   name shall be a simple-template-id.
   7831   //
   7832   // C++98 has the same restriction, just worded differently.
   7833   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
   7834   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
   7835       D.getCXXScopeSpec().isSet() &&
   7836       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
   7837     Diag(D.getIdentifierLoc(),
   7838          diag::ext_explicit_instantiation_without_qualified_id)
   7839     << Specialization << D.getCXXScopeSpec().getRange();
   7840 
   7841   CheckExplicitInstantiationScope(*this,
   7842                    FunTmpl? (NamedDecl *)FunTmpl
   7843                           : Specialization->getInstantiatedFromMemberFunction(),
   7844                                   D.getIdentifierLoc(),
   7845                                   D.getCXXScopeSpec().isSet());
   7846 
   7847   // FIXME: Create some kind of ExplicitInstantiationDecl here.
   7848   return (Decl*) nullptr;
   7849 }
   7850 
   7851 TypeResult
   7852 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   7853                         const CXXScopeSpec &SS, IdentifierInfo *Name,
   7854                         SourceLocation TagLoc, SourceLocation NameLoc) {
   7855   // This has to hold, because SS is expected to be defined.
   7856   assert(Name && "Expected a name in a dependent tag");
   7857 
   7858   NestedNameSpecifier *NNS = SS.getScopeRep();
   7859   if (!NNS)
   7860     return true;
   7861 
   7862   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   7863 
   7864   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
   7865     Diag(NameLoc, diag::err_dependent_tag_decl)
   7866       << (TUK == TUK_Definition) << Kind << SS.getRange();
   7867     return true;
   7868   }
   7869 
   7870   // Create the resulting type.
   7871   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   7872   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
   7873 
   7874   // Create type-source location information for this type.
   7875   TypeLocBuilder TLB;
   7876   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
   7877   TL.setElaboratedKeywordLoc(TagLoc);
   7878   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   7879   TL.setNameLoc(NameLoc);
   7880   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   7881 }
   7882 
   7883 TypeResult
   7884 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
   7885                         const CXXScopeSpec &SS, const IdentifierInfo &II,
   7886                         SourceLocation IdLoc) {
   7887   if (SS.isInvalid())
   7888     return true;
   7889 
   7890   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
   7891     Diag(TypenameLoc,
   7892          getLangOpts().CPlusPlus11 ?
   7893            diag::warn_cxx98_compat_typename_outside_of_template :
   7894            diag::ext_typename_outside_of_template)
   7895       << FixItHint::CreateRemoval(TypenameLoc);
   7896 
   7897   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   7898   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
   7899                                  TypenameLoc, QualifierLoc, II, IdLoc);
   7900   if (T.isNull())
   7901     return true;
   7902 
   7903   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   7904   if (isa<DependentNameType>(T)) {
   7905     DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
   7906     TL.setElaboratedKeywordLoc(TypenameLoc);
   7907     TL.setQualifierLoc(QualifierLoc);
   7908     TL.setNameLoc(IdLoc);
   7909   } else {
   7910     ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
   7911     TL.setElaboratedKeywordLoc(TypenameLoc);
   7912     TL.setQualifierLoc(QualifierLoc);
   7913     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
   7914   }
   7915 
   7916   return CreateParsedType(T, TSI);
   7917 }
   7918 
   7919 TypeResult
   7920 Sema::ActOnTypenameType(Scope *S,
   7921                         SourceLocation TypenameLoc,
   7922                         const CXXScopeSpec &SS,
   7923                         SourceLocation TemplateKWLoc,
   7924                         TemplateTy TemplateIn,
   7925                         SourceLocation TemplateNameLoc,
   7926                         SourceLocation LAngleLoc,
   7927                         ASTTemplateArgsPtr TemplateArgsIn,
   7928                         SourceLocation RAngleLoc) {
   7929   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
   7930     Diag(TypenameLoc,
   7931          getLangOpts().CPlusPlus11 ?
   7932            diag::warn_cxx98_compat_typename_outside_of_template :
   7933            diag::ext_typename_outside_of_template)
   7934       << FixItHint::CreateRemoval(TypenameLoc);
   7935 
   7936   // Translate the parser's template argument list in our AST format.
   7937   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   7938   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   7939 
   7940   TemplateName Template = TemplateIn.get();
   7941   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   7942     // Construct a dependent template specialization type.
   7943     assert(DTN && "dependent template has non-dependent name?");
   7944     assert(DTN->getQualifier() == SS.getScopeRep());
   7945     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
   7946                                                           DTN->getQualifier(),
   7947                                                           DTN->getIdentifier(),
   7948                                                                 TemplateArgs);
   7949 
   7950     // Create source-location information for this type.
   7951     TypeLocBuilder Builder;
   7952     DependentTemplateSpecializationTypeLoc SpecTL
   7953     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
   7954     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
   7955     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   7956     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   7957     SpecTL.setTemplateNameLoc(TemplateNameLoc);
   7958     SpecTL.setLAngleLoc(LAngleLoc);
   7959     SpecTL.setRAngleLoc(RAngleLoc);
   7960     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   7961       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   7962     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
   7963   }
   7964 
   7965   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
   7966   if (T.isNull())
   7967     return true;
   7968 
   7969   // Provide source-location information for the template specialization type.
   7970   TypeLocBuilder Builder;
   7971   TemplateSpecializationTypeLoc SpecTL
   7972     = Builder.push<TemplateSpecializationTypeLoc>(T);
   7973   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   7974   SpecTL.setTemplateNameLoc(TemplateNameLoc);
   7975   SpecTL.setLAngleLoc(LAngleLoc);
   7976   SpecTL.setRAngleLoc(RAngleLoc);
   7977   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   7978     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   7979 
   7980   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
   7981   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
   7982   TL.setElaboratedKeywordLoc(TypenameLoc);
   7983   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   7984 
   7985   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
   7986   return CreateParsedType(T, TSI);
   7987 }
   7988 
   7989 
   7990 /// Determine whether this failed name lookup should be treated as being
   7991 /// disabled by a usage of std::enable_if.
   7992 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
   7993                        SourceRange &CondRange) {
   7994   // We must be looking for a ::type...
   7995   if (!II.isStr("type"))
   7996     return false;
   7997 
   7998   // ... within an explicitly-written template specialization...
   7999   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
   8000     return false;
   8001   TypeLoc EnableIfTy = NNS.getTypeLoc();
   8002   TemplateSpecializationTypeLoc EnableIfTSTLoc =
   8003       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
   8004   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
   8005     return false;
   8006   const TemplateSpecializationType *EnableIfTST =
   8007     cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
   8008 
   8009   // ... which names a complete class template declaration...
   8010   const TemplateDecl *EnableIfDecl =
   8011     EnableIfTST->getTemplateName().getAsTemplateDecl();
   8012   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
   8013     return false;
   8014 
   8015   // ... called "enable_if".
   8016   const IdentifierInfo *EnableIfII =
   8017     EnableIfDecl->getDeclName().getAsIdentifierInfo();
   8018   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
   8019     return false;
   8020 
   8021   // Assume the first template argument is the condition.
   8022   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
   8023   return true;
   8024 }
   8025 
   8026 /// \brief Build the type that describes a C++ typename specifier,
   8027 /// e.g., "typename T::type".
   8028 QualType
   8029 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
   8030                         SourceLocation KeywordLoc,
   8031                         NestedNameSpecifierLoc QualifierLoc,
   8032                         const IdentifierInfo &II,
   8033                         SourceLocation IILoc) {
   8034   CXXScopeSpec SS;
   8035   SS.Adopt(QualifierLoc);
   8036 
   8037   DeclContext *Ctx = computeDeclContext(SS);
   8038   if (!Ctx) {
   8039     // If the nested-name-specifier is dependent and couldn't be
   8040     // resolved to a type, build a typename type.
   8041     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
   8042     return Context.getDependentNameType(Keyword,
   8043                                         QualifierLoc.getNestedNameSpecifier(),
   8044                                         &II);
   8045   }
   8046 
   8047   // If the nested-name-specifier refers to the current instantiation,
   8048   // the "typename" keyword itself is superfluous. In C++03, the
   8049   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
   8050   // allows such extraneous "typename" keywords, and we retroactively
   8051   // apply this DR to C++03 code with only a warning. In any case we continue.
   8052 
   8053   if (RequireCompleteDeclContext(SS, Ctx))
   8054     return QualType();
   8055 
   8056   DeclarationName Name(&II);
   8057   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
   8058   LookupQualifiedName(Result, Ctx, SS);
   8059   unsigned DiagID = 0;
   8060   Decl *Referenced = nullptr;
   8061   switch (Result.getResultKind()) {
   8062   case LookupResult::NotFound: {
   8063     // If we're looking up 'type' within a template named 'enable_if', produce
   8064     // a more specific diagnostic.
   8065     SourceRange CondRange;
   8066     if (isEnableIf(QualifierLoc, II, CondRange)) {
   8067       Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
   8068         << Ctx << CondRange;
   8069       return QualType();
   8070     }
   8071 
   8072     DiagID = diag::err_typename_nested_not_found;
   8073     break;
   8074   }
   8075 
   8076   case LookupResult::FoundUnresolvedValue: {
   8077     // We found a using declaration that is a value. Most likely, the using
   8078     // declaration itself is meant to have the 'typename' keyword.
   8079     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   8080                           IILoc);
   8081     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
   8082       << Name << Ctx << FullRange;
   8083     if (UnresolvedUsingValueDecl *Using
   8084           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
   8085       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
   8086       Diag(Loc, diag::note_using_value_decl_missing_typename)
   8087         << FixItHint::CreateInsertion(Loc, "typename ");
   8088     }
   8089   }
   8090   // Fall through to create a dependent typename type, from which we can recover
   8091   // better.
   8092 
   8093   case LookupResult::NotFoundInCurrentInstantiation:
   8094     // Okay, it's a member of an unknown instantiation.
   8095     return Context.getDependentNameType(Keyword,
   8096                                         QualifierLoc.getNestedNameSpecifier(),
   8097                                         &II);
   8098 
   8099   case LookupResult::Found:
   8100     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
   8101       // We found a type. Build an ElaboratedType, since the
   8102       // typename-specifier was just sugar.
   8103       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
   8104       return Context.getElaboratedType(ETK_Typename,
   8105                                        QualifierLoc.getNestedNameSpecifier(),
   8106                                        Context.getTypeDeclType(Type));
   8107     }
   8108 
   8109     DiagID = diag::err_typename_nested_not_type;
   8110     Referenced = Result.getFoundDecl();
   8111     break;
   8112 
   8113   case LookupResult::FoundOverloaded:
   8114     DiagID = diag::err_typename_nested_not_type;
   8115     Referenced = *Result.begin();
   8116     break;
   8117 
   8118   case LookupResult::Ambiguous:
   8119     return QualType();
   8120   }
   8121 
   8122   // If we get here, it's because name lookup did not find a
   8123   // type. Emit an appropriate diagnostic and return an error.
   8124   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   8125                         IILoc);
   8126   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
   8127   if (Referenced)
   8128     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
   8129       << Name;
   8130   return QualType();
   8131 }
   8132 
   8133 namespace {
   8134   // See Sema::RebuildTypeInCurrentInstantiation
   8135   class CurrentInstantiationRebuilder
   8136     : public TreeTransform<CurrentInstantiationRebuilder> {
   8137     SourceLocation Loc;
   8138     DeclarationName Entity;
   8139 
   8140   public:
   8141     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
   8142 
   8143     CurrentInstantiationRebuilder(Sema &SemaRef,
   8144                                   SourceLocation Loc,
   8145                                   DeclarationName Entity)
   8146     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
   8147       Loc(Loc), Entity(Entity) { }
   8148 
   8149     /// \brief Determine whether the given type \p T has already been
   8150     /// transformed.
   8151     ///
   8152     /// For the purposes of type reconstruction, a type has already been
   8153     /// transformed if it is NULL or if it is not dependent.
   8154     bool AlreadyTransformed(QualType T) {
   8155       return T.isNull() || !T->isDependentType();
   8156     }
   8157 
   8158     /// \brief Returns the location of the entity whose type is being
   8159     /// rebuilt.
   8160     SourceLocation getBaseLocation() { return Loc; }
   8161 
   8162     /// \brief Returns the name of the entity whose type is being rebuilt.
   8163     DeclarationName getBaseEntity() { return Entity; }
   8164 
   8165     /// \brief Sets the "base" location and entity when that
   8166     /// information is known based on another transformation.
   8167     void setBase(SourceLocation Loc, DeclarationName Entity) {
   8168       this->Loc = Loc;
   8169       this->Entity = Entity;
   8170     }
   8171 
   8172     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   8173       // Lambdas never need to be transformed.
   8174       return E;
   8175     }
   8176   };
   8177 }
   8178 
   8179 /// \brief Rebuilds a type within the context of the current instantiation.
   8180 ///
   8181 /// The type \p T is part of the type of an out-of-line member definition of
   8182 /// a class template (or class template partial specialization) that was parsed
   8183 /// and constructed before we entered the scope of the class template (or
   8184 /// partial specialization thereof). This routine will rebuild that type now
   8185 /// that we have entered the declarator's scope, which may produce different
   8186 /// canonical types, e.g.,
   8187 ///
   8188 /// \code
   8189 /// template<typename T>
   8190 /// struct X {
   8191 ///   typedef T* pointer;
   8192 ///   pointer data();
   8193 /// };
   8194 ///
   8195 /// template<typename T>
   8196 /// typename X<T>::pointer X<T>::data() { ... }
   8197 /// \endcode
   8198 ///
   8199 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
   8200 /// since we do not know that we can look into X<T> when we parsed the type.
   8201 /// This function will rebuild the type, performing the lookup of "pointer"
   8202 /// in X<T> and returning an ElaboratedType whose canonical type is the same
   8203 /// as the canonical type of T*, allowing the return types of the out-of-line
   8204 /// definition and the declaration to match.
   8205 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
   8206                                                         SourceLocation Loc,
   8207                                                         DeclarationName Name) {
   8208   if (!T || !T->getType()->isDependentType())
   8209     return T;
   8210 
   8211   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
   8212   return Rebuilder.TransformType(T);
   8213 }
   8214 
   8215 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
   8216   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
   8217                                           DeclarationName());
   8218   return Rebuilder.TransformExpr(E);
   8219 }
   8220 
   8221 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
   8222   if (SS.isInvalid())
   8223     return true;
   8224 
   8225   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   8226   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
   8227                                           DeclarationName());
   8228   NestedNameSpecifierLoc Rebuilt
   8229     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
   8230   if (!Rebuilt)
   8231     return true;
   8232 
   8233   SS.Adopt(Rebuilt);
   8234   return false;
   8235 }
   8236 
   8237 /// \brief Rebuild the template parameters now that we know we're in a current
   8238 /// instantiation.
   8239 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
   8240                                                TemplateParameterList *Params) {
   8241   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   8242     Decl *Param = Params->getParam(I);
   8243 
   8244     // There is nothing to rebuild in a type parameter.
   8245     if (isa<TemplateTypeParmDecl>(Param))
   8246       continue;
   8247 
   8248     // Rebuild the template parameter list of a template template parameter.
   8249     if (TemplateTemplateParmDecl *TTP
   8250         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
   8251       if (RebuildTemplateParamsInCurrentInstantiation(
   8252             TTP->getTemplateParameters()))
   8253         return true;
   8254 
   8255       continue;
   8256     }
   8257 
   8258     // Rebuild the type of a non-type template parameter.
   8259     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
   8260     TypeSourceInfo *NewTSI
   8261       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
   8262                                           NTTP->getLocation(),
   8263                                           NTTP->getDeclName());
   8264     if (!NewTSI)
   8265       return true;
   8266 
   8267     if (NewTSI != NTTP->getTypeSourceInfo()) {
   8268       NTTP->setTypeSourceInfo(NewTSI);
   8269       NTTP->setType(NewTSI->getType());
   8270     }
   8271   }
   8272 
   8273   return false;
   8274 }
   8275 
   8276 /// \brief Produces a formatted string that describes the binding of
   8277 /// template parameters to template arguments.
   8278 std::string
   8279 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   8280                                       const TemplateArgumentList &Args) {
   8281   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
   8282 }
   8283 
   8284 std::string
   8285 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   8286                                       const TemplateArgument *Args,
   8287                                       unsigned NumArgs) {
   8288   SmallString<128> Str;
   8289   llvm::raw_svector_ostream Out(Str);
   8290 
   8291   if (!Params || Params->size() == 0 || NumArgs == 0)
   8292     return std::string();
   8293 
   8294   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   8295     if (I >= NumArgs)
   8296       break;
   8297 
   8298     if (I == 0)
   8299       Out << "[with ";
   8300     else
   8301       Out << ", ";
   8302 
   8303     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
   8304       Out << Id->getName();
   8305     } else {
   8306       Out << '$' << I;
   8307     }
   8308 
   8309     Out << " = ";
   8310     Args[I].print(getPrintingPolicy(), Out);
   8311   }
   8312 
   8313   Out << ']';
   8314   return Out.str();
   8315 }
   8316 
   8317 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
   8318                                     CachedTokens &Toks) {
   8319   if (!FD)
   8320     return;
   8321 
   8322   LateParsedTemplate *LPT = new LateParsedTemplate;
   8323 
   8324   // Take tokens to avoid allocations
   8325   LPT->Toks.swap(Toks);
   8326   LPT->D = FnD;
   8327   LateParsedTemplateMap.insert(std::make_pair(FD, LPT));
   8328 
   8329   FD->setLateTemplateParsed(true);
   8330 }
   8331 
   8332 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
   8333   if (!FD)
   8334     return;
   8335   FD->setLateTemplateParsed(false);
   8336 }
   8337 
   8338 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
   8339   DeclContext *DC = CurContext;
   8340 
   8341   while (DC) {
   8342     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
   8343       const FunctionDecl *FD = RD->isLocalClass();
   8344       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
   8345     } else if (DC->isTranslationUnit() || DC->isNamespace())
   8346       return false;
   8347 
   8348     DC = DC->getParent();
   8349   }
   8350   return false;
   8351 }
   8352