Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/CharUnits.h"
     22 #include "clang/AST/CommentDiagnostic.h"
     23 #include "clang/AST/DeclCXX.h"
     24 #include "clang/AST/DeclObjC.h"
     25 #include "clang/AST/DeclTemplate.h"
     26 #include "clang/AST/EvaluatedExprVisitor.h"
     27 #include "clang/AST/ExprCXX.h"
     28 #include "clang/AST/StmtCXX.h"
     29 #include "clang/Basic/Builtins.h"
     30 #include "clang/Basic/PartialDiagnostic.h"
     31 #include "clang/Basic/SourceManager.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
     34 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
     35 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
     36 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
     37 #include "clang/Parse/ParseDiagnostic.h"
     38 #include "clang/Sema/CXXFieldCollector.h"
     39 #include "clang/Sema/DeclSpec.h"
     40 #include "clang/Sema/DelayedDiagnostic.h"
     41 #include "clang/Sema/Initialization.h"
     42 #include "clang/Sema/Lookup.h"
     43 #include "clang/Sema/ParsedTemplate.h"
     44 #include "clang/Sema/Scope.h"
     45 #include "clang/Sema/ScopeInfo.h"
     46 #include "clang/Sema/Template.h"
     47 #include "llvm/ADT/SmallString.h"
     48 #include "llvm/ADT/Triple.h"
     49 #include <algorithm>
     50 #include <cstring>
     51 #include <functional>
     52 using namespace clang;
     53 using namespace sema;
     54 
     55 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     56   if (OwnedType) {
     57     Decl *Group[2] = { OwnedType, Ptr };
     58     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     59   }
     60 
     61   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     62 }
     63 
     64 namespace {
     65 
     66 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
     67  public:
     68   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
     69                        bool AllowTemplates=false)
     70       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
     71         AllowClassTemplates(AllowTemplates) {
     72     WantExpressionKeywords = false;
     73     WantCXXNamedCasts = false;
     74     WantRemainingKeywords = false;
     75   }
     76 
     77   bool ValidateCandidate(const TypoCorrection &candidate) override {
     78     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
     79       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
     80       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
     81       return (IsType || AllowedTemplate) &&
     82              (AllowInvalidDecl || !ND->isInvalidDecl());
     83     }
     84     return !WantClassName && candidate.isKeyword();
     85   }
     86 
     87  private:
     88   bool AllowInvalidDecl;
     89   bool WantClassName;
     90   bool AllowClassTemplates;
     91 };
     92 
     93 }
     94 
     95 /// \brief Determine whether the token kind starts a simple-type-specifier.
     96 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
     97   switch (Kind) {
     98   // FIXME: Take into account the current language when deciding whether a
     99   // token kind is a valid type specifier
    100   case tok::kw_short:
    101   case tok::kw_long:
    102   case tok::kw___int64:
    103   case tok::kw___int128:
    104   case tok::kw_signed:
    105   case tok::kw_unsigned:
    106   case tok::kw_void:
    107   case tok::kw_char:
    108   case tok::kw_int:
    109   case tok::kw_half:
    110   case tok::kw_float:
    111   case tok::kw_double:
    112   case tok::kw_wchar_t:
    113   case tok::kw_bool:
    114   case tok::kw___underlying_type:
    115     return true;
    116 
    117   case tok::annot_typename:
    118   case tok::kw_char16_t:
    119   case tok::kw_char32_t:
    120   case tok::kw_typeof:
    121   case tok::annot_decltype:
    122   case tok::kw_decltype:
    123     return getLangOpts().CPlusPlus;
    124 
    125   default:
    126     break;
    127   }
    128 
    129   return false;
    130 }
    131 
    132 namespace {
    133 enum class UnqualifiedTypeNameLookupResult {
    134   NotFound,
    135   FoundNonType,
    136   FoundType
    137 };
    138 } // namespace
    139 
    140 /// \brief Tries to perform unqualified lookup of the type decls in bases for
    141 /// dependent class.
    142 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
    143 /// type decl, \a FoundType if only type decls are found.
    144 static UnqualifiedTypeNameLookupResult
    145 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
    146                                 SourceLocation NameLoc,
    147                                 const CXXRecordDecl *RD) {
    148   if (!RD->hasDefinition())
    149     return UnqualifiedTypeNameLookupResult::NotFound;
    150   // Look for type decls in base classes.
    151   UnqualifiedTypeNameLookupResult FoundTypeDecl =
    152       UnqualifiedTypeNameLookupResult::NotFound;
    153   for (const auto &Base : RD->bases()) {
    154     const CXXRecordDecl *BaseRD = nullptr;
    155     if (auto *BaseTT = Base.getType()->getAs<TagType>())
    156       BaseRD = BaseTT->getAsCXXRecordDecl();
    157     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
    158       // Look for type decls in dependent base classes that have known primary
    159       // templates.
    160       if (!TST || !TST->isDependentType())
    161         continue;
    162       auto *TD = TST->getTemplateName().getAsTemplateDecl();
    163       if (!TD)
    164         continue;
    165       auto *BasePrimaryTemplate =
    166           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
    167       if (!BasePrimaryTemplate)
    168         continue;
    169       BaseRD = BasePrimaryTemplate;
    170     }
    171     if (BaseRD) {
    172       for (NamedDecl *ND : BaseRD->lookup(&II)) {
    173         if (!isa<TypeDecl>(ND))
    174           return UnqualifiedTypeNameLookupResult::FoundNonType;
    175         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
    176       }
    177       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
    178         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
    179         case UnqualifiedTypeNameLookupResult::FoundNonType:
    180           return UnqualifiedTypeNameLookupResult::FoundNonType;
    181         case UnqualifiedTypeNameLookupResult::FoundType:
    182           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
    183           break;
    184         case UnqualifiedTypeNameLookupResult::NotFound:
    185           break;
    186         }
    187       }
    188     }
    189   }
    190 
    191   return FoundTypeDecl;
    192 }
    193 
    194 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
    195                                                       const IdentifierInfo &II,
    196                                                       SourceLocation NameLoc) {
    197   // Lookup in the parent class template context, if any.
    198   const CXXRecordDecl *RD = nullptr;
    199   UnqualifiedTypeNameLookupResult FoundTypeDecl =
    200       UnqualifiedTypeNameLookupResult::NotFound;
    201   for (DeclContext *DC = S.CurContext;
    202        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
    203        DC = DC->getParent()) {
    204     // Look for type decls in dependent base classes that have known primary
    205     // templates.
    206     RD = dyn_cast<CXXRecordDecl>(DC);
    207     if (RD && RD->getDescribedClassTemplate())
    208       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
    209   }
    210   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
    211     return ParsedType();
    212 
    213   // We found some types in dependent base classes.  Recover as if the user
    214   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
    215   // lookup during template instantiation.
    216   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
    217 
    218   ASTContext &Context = S.Context;
    219   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
    220                                           cast<Type>(Context.getRecordType(RD)));
    221   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
    222 
    223   CXXScopeSpec SS;
    224   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    225 
    226   TypeLocBuilder Builder;
    227   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
    228   DepTL.setNameLoc(NameLoc);
    229   DepTL.setElaboratedKeywordLoc(SourceLocation());
    230   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
    231   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    232 }
    233 
    234 /// \brief If the identifier refers to a type name within this scope,
    235 /// return the declaration of that type.
    236 ///
    237 /// This routine performs ordinary name lookup of the identifier II
    238 /// within the given scope, with optional C++ scope specifier SS, to
    239 /// determine whether the name refers to a type. If so, returns an
    240 /// opaque pointer (actually a QualType) corresponding to that
    241 /// type. Otherwise, returns NULL.
    242 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
    243                              Scope *S, CXXScopeSpec *SS,
    244                              bool isClassName, bool HasTrailingDot,
    245                              ParsedType ObjectTypePtr,
    246                              bool IsCtorOrDtorName,
    247                              bool WantNontrivialTypeSourceInfo,
    248                              IdentifierInfo **CorrectedII) {
    249   // Determine where we will perform name lookup.
    250   DeclContext *LookupCtx = nullptr;
    251   if (ObjectTypePtr) {
    252     QualType ObjectType = ObjectTypePtr.get();
    253     if (ObjectType->isRecordType())
    254       LookupCtx = computeDeclContext(ObjectType);
    255   } else if (SS && SS->isNotEmpty()) {
    256     LookupCtx = computeDeclContext(*SS, false);
    257 
    258     if (!LookupCtx) {
    259       if (isDependentScopeSpecifier(*SS)) {
    260         // C++ [temp.res]p3:
    261         //   A qualified-id that refers to a type and in which the
    262         //   nested-name-specifier depends on a template-parameter (14.6.2)
    263         //   shall be prefixed by the keyword typename to indicate that the
    264         //   qualified-id denotes a type, forming an
    265         //   elaborated-type-specifier (7.1.5.3).
    266         //
    267         // We therefore do not perform any name lookup if the result would
    268         // refer to a member of an unknown specialization.
    269         if (!isClassName && !IsCtorOrDtorName)
    270           return ParsedType();
    271 
    272         // We know from the grammar that this name refers to a type,
    273         // so build a dependent node to describe the type.
    274         if (WantNontrivialTypeSourceInfo)
    275           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    276 
    277         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    278         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    279                                        II, NameLoc);
    280         return ParsedType::make(T);
    281       }
    282 
    283       return ParsedType();
    284     }
    285 
    286     if (!LookupCtx->isDependentContext() &&
    287         RequireCompleteDeclContext(*SS, LookupCtx))
    288       return ParsedType();
    289   }
    290 
    291   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    292   // lookup for class-names.
    293   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    294                                       LookupOrdinaryName;
    295   LookupResult Result(*this, &II, NameLoc, Kind);
    296   if (LookupCtx) {
    297     // Perform "qualified" name lookup into the declaration context we
    298     // computed, which is either the type of the base of a member access
    299     // expression or the declaration context associated with a prior
    300     // nested-name-specifier.
    301     LookupQualifiedName(Result, LookupCtx);
    302 
    303     if (ObjectTypePtr && Result.empty()) {
    304       // C++ [basic.lookup.classref]p3:
    305       //   If the unqualified-id is ~type-name, the type-name is looked up
    306       //   in the context of the entire postfix-expression. If the type T of
    307       //   the object expression is of a class type C, the type-name is also
    308       //   looked up in the scope of class C. At least one of the lookups shall
    309       //   find a name that refers to (possibly cv-qualified) T.
    310       LookupName(Result, S);
    311     }
    312   } else {
    313     // Perform unqualified name lookup.
    314     LookupName(Result, S);
    315 
    316     // For unqualified lookup in a class template in MSVC mode, look into
    317     // dependent base classes where the primary class template is known.
    318     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
    319       if (ParsedType TypeInBase =
    320               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
    321         return TypeInBase;
    322     }
    323   }
    324 
    325   NamedDecl *IIDecl = nullptr;
    326   switch (Result.getResultKind()) {
    327   case LookupResult::NotFound:
    328   case LookupResult::NotFoundInCurrentInstantiation:
    329     if (CorrectedII) {
    330       TypoCorrection Correction = CorrectTypo(
    331           Result.getLookupNameInfo(), Kind, S, SS,
    332           llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
    333           CTK_ErrorRecovery);
    334       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
    335       TemplateTy Template;
    336       bool MemberOfUnknownSpecialization;
    337       UnqualifiedId TemplateName;
    338       TemplateName.setIdentifier(NewII, NameLoc);
    339       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
    340       CXXScopeSpec NewSS, *NewSSPtr = SS;
    341       if (SS && NNS) {
    342         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    343         NewSSPtr = &NewSS;
    344       }
    345       if (Correction && (NNS || NewII != &II) &&
    346           // Ignore a correction to a template type as the to-be-corrected
    347           // identifier is not a template (typo correction for template names
    348           // is handled elsewhere).
    349           !(getLangOpts().CPlusPlus && NewSSPtr &&
    350             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
    351                            false, Template, MemberOfUnknownSpecialization))) {
    352         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
    353                                     isClassName, HasTrailingDot, ObjectTypePtr,
    354                                     IsCtorOrDtorName,
    355                                     WantNontrivialTypeSourceInfo);
    356         if (Ty) {
    357           diagnoseTypo(Correction,
    358                        PDiag(diag::err_unknown_type_or_class_name_suggest)
    359                          << Result.getLookupName() << isClassName);
    360           if (SS && NNS)
    361             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
    362           *CorrectedII = NewII;
    363           return Ty;
    364         }
    365       }
    366     }
    367     // If typo correction failed or was not performed, fall through
    368   case LookupResult::FoundOverloaded:
    369   case LookupResult::FoundUnresolvedValue:
    370     Result.suppressDiagnostics();
    371     return ParsedType();
    372 
    373   case LookupResult::Ambiguous:
    374     // Recover from type-hiding ambiguities by hiding the type.  We'll
    375     // do the lookup again when looking for an object, and we can
    376     // diagnose the error then.  If we don't do this, then the error
    377     // about hiding the type will be immediately followed by an error
    378     // that only makes sense if the identifier was treated like a type.
    379     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    380       Result.suppressDiagnostics();
    381       return ParsedType();
    382     }
    383 
    384     // Look to see if we have a type anywhere in the list of results.
    385     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    386          Res != ResEnd; ++Res) {
    387       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    388         if (!IIDecl ||
    389             (*Res)->getLocation().getRawEncoding() <
    390               IIDecl->getLocation().getRawEncoding())
    391           IIDecl = *Res;
    392       }
    393     }
    394 
    395     if (!IIDecl) {
    396       // None of the entities we found is a type, so there is no way
    397       // to even assume that the result is a type. In this case, don't
    398       // complain about the ambiguity. The parser will either try to
    399       // perform this lookup again (e.g., as an object name), which
    400       // will produce the ambiguity, or will complain that it expected
    401       // a type name.
    402       Result.suppressDiagnostics();
    403       return ParsedType();
    404     }
    405 
    406     // We found a type within the ambiguous lookup; diagnose the
    407     // ambiguity and then return that type. This might be the right
    408     // answer, or it might not be, but it suppresses any attempt to
    409     // perform the name lookup again.
    410     break;
    411 
    412   case LookupResult::Found:
    413     IIDecl = Result.getFoundDecl();
    414     break;
    415   }
    416 
    417   assert(IIDecl && "Didn't find decl");
    418 
    419   QualType T;
    420   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    421     DiagnoseUseOfDecl(IIDecl, NameLoc);
    422 
    423     T = Context.getTypeDeclType(TD);
    424     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
    425 
    426     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
    427     // constructor or destructor name (in such a case, the scope specifier
    428     // will be attached to the enclosing Expr or Decl node).
    429     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
    430       if (WantNontrivialTypeSourceInfo) {
    431         // Construct a type with type-source information.
    432         TypeLocBuilder Builder;
    433         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    434 
    435         T = getElaboratedType(ETK_None, *SS, T);
    436         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    437         ElabTL.setElaboratedKeywordLoc(SourceLocation());
    438         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    439         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    440       } else {
    441         T = getElaboratedType(ETK_None, *SS, T);
    442       }
    443     }
    444   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    445     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    446     if (!HasTrailingDot)
    447       T = Context.getObjCInterfaceType(IDecl);
    448   }
    449 
    450   if (T.isNull()) {
    451     // If it's not plausibly a type, suppress diagnostics.
    452     Result.suppressDiagnostics();
    453     return ParsedType();
    454   }
    455   return ParsedType::make(T);
    456 }
    457 
    458 // Builds a fake NNS for the given decl context.
    459 static NestedNameSpecifier *
    460 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
    461   for (;; DC = DC->getLookupParent()) {
    462     DC = DC->getPrimaryContext();
    463     auto *ND = dyn_cast<NamespaceDecl>(DC);
    464     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
    465       return NestedNameSpecifier::Create(Context, nullptr, ND);
    466     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
    467       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
    468                                          RD->getTypeForDecl());
    469     else if (isa<TranslationUnitDecl>(DC))
    470       return NestedNameSpecifier::GlobalSpecifier(Context);
    471   }
    472   llvm_unreachable("something isn't in TU scope?");
    473 }
    474 
    475 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
    476                                                 SourceLocation NameLoc) {
    477   // Accepting an undeclared identifier as a default argument for a template
    478   // type parameter is a Microsoft extension.
    479   Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
    480 
    481   // Build a fake DependentNameType that will perform lookup into CurContext at
    482   // instantiation time.  The name specifier isn't dependent, so template
    483   // instantiation won't transform it.  It will retry the lookup, however.
    484   NestedNameSpecifier *NNS =
    485       synthesizeCurrentNestedNameSpecifier(Context, CurContext);
    486   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
    487 
    488   // Build type location information.  We synthesized the qualifier, so we have
    489   // to build a fake NestedNameSpecifierLoc.
    490   NestedNameSpecifierLocBuilder NNSLocBuilder;
    491   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    492   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
    493 
    494   TypeLocBuilder Builder;
    495   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
    496   DepTL.setNameLoc(NameLoc);
    497   DepTL.setElaboratedKeywordLoc(SourceLocation());
    498   DepTL.setQualifierLoc(QualifierLoc);
    499   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    500 }
    501 
    502 /// isTagName() - This method is called *for error recovery purposes only*
    503 /// to determine if the specified name is a valid tag name ("struct foo").  If
    504 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    505 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
    506 /// cases in C where the user forgot to specify the tag.
    507 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    508   // Do a tag name lookup in this scope.
    509   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    510   LookupName(R, S, false);
    511   R.suppressDiagnostics();
    512   if (R.getResultKind() == LookupResult::Found)
    513     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    514       switch (TD->getTagKind()) {
    515       case TTK_Struct: return DeclSpec::TST_struct;
    516       case TTK_Interface: return DeclSpec::TST_interface;
    517       case TTK_Union:  return DeclSpec::TST_union;
    518       case TTK_Class:  return DeclSpec::TST_class;
    519       case TTK_Enum:   return DeclSpec::TST_enum;
    520       }
    521     }
    522 
    523   return DeclSpec::TST_unspecified;
    524 }
    525 
    526 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    527 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    528 /// then downgrade the missing typename error to a warning.
    529 /// This is needed for MSVC compatibility; Example:
    530 /// @code
    531 /// template<class T> class A {
    532 /// public:
    533 ///   typedef int TYPE;
    534 /// };
    535 /// template<class T> class B : public A<T> {
    536 /// public:
    537 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    538 /// };
    539 /// @endcode
    540 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
    541   if (CurContext->isRecord()) {
    542     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
    543       return true;
    544 
    545     const Type *Ty = SS->getScopeRep()->getAsType();
    546 
    547     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    548     for (const auto &Base : RD->bases())
    549       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
    550         return true;
    551     return S->isFunctionPrototypeScope();
    552   }
    553   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
    554 }
    555 
    556 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
    557                                    SourceLocation IILoc,
    558                                    Scope *S,
    559                                    CXXScopeSpec *SS,
    560                                    ParsedType &SuggestedType,
    561                                    bool AllowClassTemplates) {
    562   // We don't have anything to suggest (yet).
    563   SuggestedType = ParsedType();
    564 
    565   // There may have been a typo in the name of the type. Look up typo
    566   // results, in case we have something that we can suggest.
    567   if (TypoCorrection Corrected =
    568           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
    569                       llvm::make_unique<TypeNameValidatorCCC>(
    570                           false, false, AllowClassTemplates),
    571                       CTK_ErrorRecovery)) {
    572     if (Corrected.isKeyword()) {
    573       // We corrected to a keyword.
    574       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
    575       II = Corrected.getCorrectionAsIdentifierInfo();
    576     } else {
    577       // We found a similarly-named type or interface; suggest that.
    578       if (!SS || !SS->isSet()) {
    579         diagnoseTypo(Corrected,
    580                      PDiag(diag::err_unknown_typename_suggest) << II);
    581       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
    582         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    583         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    584                                 II->getName().equals(CorrectedStr);
    585         diagnoseTypo(Corrected,
    586                      PDiag(diag::err_unknown_nested_typename_suggest)
    587                        << II << DC << DroppedSpecifier << SS->getRange());
    588       } else {
    589         llvm_unreachable("could not have corrected a typo here");
    590       }
    591 
    592       CXXScopeSpec tmpSS;
    593       if (Corrected.getCorrectionSpecifier())
    594         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
    595                           SourceRange(IILoc));
    596       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
    597                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
    598                                   false, ParsedType(),
    599                                   /*IsCtorOrDtorName=*/false,
    600                                   /*NonTrivialTypeSourceInfo=*/true);
    601     }
    602     return;
    603   }
    604 
    605   if (getLangOpts().CPlusPlus) {
    606     // See if II is a class template that the user forgot to pass arguments to.
    607     UnqualifiedId Name;
    608     Name.setIdentifier(II, IILoc);
    609     CXXScopeSpec EmptySS;
    610     TemplateTy TemplateResult;
    611     bool MemberOfUnknownSpecialization;
    612     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    613                        Name, ParsedType(), true, TemplateResult,
    614                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    615       TemplateName TplName = TemplateResult.get();
    616       Diag(IILoc, diag::err_template_missing_args) << TplName;
    617       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    618         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    619           << TplDecl->getTemplateParameters()->getSourceRange();
    620       }
    621       return;
    622     }
    623   }
    624 
    625   // FIXME: Should we move the logic that tries to recover from a missing tag
    626   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    627 
    628   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    629     Diag(IILoc, diag::err_unknown_typename) << II;
    630   else if (DeclContext *DC = computeDeclContext(*SS, false))
    631     Diag(IILoc, diag::err_typename_nested_not_found)
    632       << II << DC << SS->getRange();
    633   else if (isDependentScopeSpecifier(*SS)) {
    634     unsigned DiagID = diag::err_typename_missing;
    635     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
    636       DiagID = diag::ext_typename_missing;
    637 
    638     Diag(SS->getRange().getBegin(), DiagID)
    639       << SS->getScopeRep() << II->getName()
    640       << SourceRange(SS->getRange().getBegin(), IILoc)
    641       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    642     SuggestedType = ActOnTypenameType(S, SourceLocation(),
    643                                       *SS, *II, IILoc).get();
    644   } else {
    645     assert(SS && SS->isInvalid() &&
    646            "Invalid scope specifier has already been diagnosed");
    647   }
    648 }
    649 
    650 /// \brief Determine whether the given result set contains either a type name
    651 /// or
    652 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    653   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
    654                        NextToken.is(tok::less);
    655 
    656   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    657     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    658       return true;
    659 
    660     if (CheckTemplate && isa<TemplateDecl>(*I))
    661       return true;
    662   }
    663 
    664   return false;
    665 }
    666 
    667 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
    668                                     Scope *S, CXXScopeSpec &SS,
    669                                     IdentifierInfo *&Name,
    670                                     SourceLocation NameLoc) {
    671   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
    672   SemaRef.LookupParsedName(R, S, &SS);
    673   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
    674     StringRef FixItTagName;
    675     switch (Tag->getTagKind()) {
    676       case TTK_Class:
    677         FixItTagName = "class ";
    678         break;
    679 
    680       case TTK_Enum:
    681         FixItTagName = "enum ";
    682         break;
    683 
    684       case TTK_Struct:
    685         FixItTagName = "struct ";
    686         break;
    687 
    688       case TTK_Interface:
    689         FixItTagName = "__interface ";
    690         break;
    691 
    692       case TTK_Union:
    693         FixItTagName = "union ";
    694         break;
    695     }
    696 
    697     StringRef TagName = FixItTagName.drop_back();
    698     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    699       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
    700       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    701 
    702     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
    703          I != IEnd; ++I)
    704       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
    705         << Name << TagName;
    706 
    707     // Replace lookup results with just the tag decl.
    708     Result.clear(Sema::LookupTagName);
    709     SemaRef.LookupParsedName(Result, S, &SS);
    710     return true;
    711   }
    712 
    713   return false;
    714 }
    715 
    716 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
    717 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
    718                                   QualType T, SourceLocation NameLoc) {
    719   ASTContext &Context = S.Context;
    720 
    721   TypeLocBuilder Builder;
    722   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    723 
    724   T = S.getElaboratedType(ETK_None, SS, T);
    725   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    726   ElabTL.setElaboratedKeywordLoc(SourceLocation());
    727   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
    728   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    729 }
    730 
    731 Sema::NameClassification
    732 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
    733                    SourceLocation NameLoc, const Token &NextToken,
    734                    bool IsAddressOfOperand,
    735                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
    736   DeclarationNameInfo NameInfo(Name, NameLoc);
    737   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    738 
    739   if (NextToken.is(tok::coloncolon)) {
    740     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    741                                 QualType(), false, SS, nullptr, false);
    742   }
    743 
    744   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    745   LookupParsedName(Result, S, &SS, !CurMethod);
    746 
    747   // For unqualified lookup in a class template in MSVC mode, look into
    748   // dependent base classes where the primary class template is known.
    749   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
    750     if (ParsedType TypeInBase =
    751             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
    752       return TypeInBase;
    753   }
    754 
    755   // Perform lookup for Objective-C instance variables (including automatically
    756   // synthesized instance variables), if we're in an Objective-C method.
    757   // FIXME: This lookup really, really needs to be folded in to the normal
    758   // unqualified lookup mechanism.
    759   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    760     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    761     if (E.get() || E.isInvalid())
    762       return E;
    763   }
    764 
    765   bool SecondTry = false;
    766   bool IsFilteredTemplateName = false;
    767 
    768 Corrected:
    769   switch (Result.getResultKind()) {
    770   case LookupResult::NotFound:
    771     // If an unqualified-id is followed by a '(', then we have a function
    772     // call.
    773     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    774       // In C++, this is an ADL-only call.
    775       // FIXME: Reference?
    776       if (getLangOpts().CPlusPlus)
    777         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    778 
    779       // C90 6.3.2.2:
    780       //   If the expression that precedes the parenthesized argument list in a
    781       //   function call consists solely of an identifier, and if no
    782       //   declaration is visible for this identifier, the identifier is
    783       //   implicitly declared exactly as if, in the innermost block containing
    784       //   the function call, the declaration
    785       //
    786       //     extern int identifier ();
    787       //
    788       //   appeared.
    789       //
    790       // We also allow this in C99 as an extension.
    791       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    792         Result.addDecl(D);
    793         Result.resolveKind();
    794         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    795       }
    796     }
    797 
    798     // In C, we first see whether there is a tag type by the same name, in
    799     // which case it's likely that the user just forget to write "enum",
    800     // "struct", or "union".
    801     if (!getLangOpts().CPlusPlus && !SecondTry &&
    802         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    803       break;
    804     }
    805 
    806     // Perform typo correction to determine if there is another name that is
    807     // close to this name.
    808     if (!SecondTry && CCC) {
    809       SecondTry = true;
    810       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    811                                                  Result.getLookupKind(), S,
    812                                                  &SS, std::move(CCC),
    813                                                  CTK_ErrorRecovery)) {
    814         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    815         unsigned QualifiedDiag = diag::err_no_member_suggest;
    816 
    817         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
    818         NamedDecl *UnderlyingFirstDecl
    819           = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
    820         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    821             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    822           UnqualifiedDiag = diag::err_no_template_suggest;
    823           QualifiedDiag = diag::err_no_member_template_suggest;
    824         } else if (UnderlyingFirstDecl &&
    825                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    826                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    827                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    828           UnqualifiedDiag = diag::err_unknown_typename_suggest;
    829           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    830         }
    831 
    832         if (SS.isEmpty()) {
    833           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
    834         } else {// FIXME: is this even reachable? Test it.
    835           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    836           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    837                                   Name->getName().equals(CorrectedStr);
    838           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
    839                                     << Name << computeDeclContext(SS, false)
    840                                     << DroppedSpecifier << SS.getRange());
    841         }
    842 
    843         // Update the name, so that the caller has the new name.
    844         Name = Corrected.getCorrectionAsIdentifierInfo();
    845 
    846         // Typo correction corrected to a keyword.
    847         if (Corrected.isKeyword())
    848           return Name;
    849 
    850         // Also update the LookupResult...
    851         // FIXME: This should probably go away at some point
    852         Result.clear();
    853         Result.setLookupName(Corrected.getCorrection());
    854         if (FirstDecl)
    855           Result.addDecl(FirstDecl);
    856 
    857         // If we found an Objective-C instance variable, let
    858         // LookupInObjCMethod build the appropriate expression to
    859         // reference the ivar.
    860         // FIXME: This is a gross hack.
    861         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    862           Result.clear();
    863           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    864           return E;
    865         }
    866 
    867         goto Corrected;
    868       }
    869     }
    870 
    871     // We failed to correct; just fall through and let the parser deal with it.
    872     Result.suppressDiagnostics();
    873     return NameClassification::Unknown();
    874 
    875   case LookupResult::NotFoundInCurrentInstantiation: {
    876     // We performed name lookup into the current instantiation, and there were
    877     // dependent bases, so we treat this result the same way as any other
    878     // dependent nested-name-specifier.
    879 
    880     // C++ [temp.res]p2:
    881     //   A name used in a template declaration or definition and that is
    882     //   dependent on a template-parameter is assumed not to name a type
    883     //   unless the applicable name lookup finds a type name or the name is
    884     //   qualified by the keyword typename.
    885     //
    886     // FIXME: If the next token is '<', we might want to ask the parser to
    887     // perform some heroics to see if we actually have a
    888     // template-argument-list, which would indicate a missing 'template'
    889     // keyword here.
    890     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
    891                                       NameInfo, IsAddressOfOperand,
    892                                       /*TemplateArgs=*/nullptr);
    893   }
    894 
    895   case LookupResult::Found:
    896   case LookupResult::FoundOverloaded:
    897   case LookupResult::FoundUnresolvedValue:
    898     break;
    899 
    900   case LookupResult::Ambiguous:
    901     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    902         hasAnyAcceptableTemplateNames(Result)) {
    903       // C++ [temp.local]p3:
    904       //   A lookup that finds an injected-class-name (10.2) can result in an
    905       //   ambiguity in certain cases (for example, if it is found in more than
    906       //   one base class). If all of the injected-class-names that are found
    907       //   refer to specializations of the same class template, and if the name
    908       //   is followed by a template-argument-list, the reference refers to the
    909       //   class template itself and not a specialization thereof, and is not
    910       //   ambiguous.
    911       //
    912       // This filtering can make an ambiguous result into an unambiguous one,
    913       // so try again after filtering out template names.
    914       FilterAcceptableTemplateNames(Result);
    915       if (!Result.isAmbiguous()) {
    916         IsFilteredTemplateName = true;
    917         break;
    918       }
    919     }
    920 
    921     // Diagnose the ambiguity and return an error.
    922     return NameClassification::Error();
    923   }
    924 
    925   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    926       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    927     // C++ [temp.names]p3:
    928     //   After name lookup (3.4) finds that a name is a template-name or that
    929     //   an operator-function-id or a literal- operator-id refers to a set of
    930     //   overloaded functions any member of which is a function template if
    931     //   this is followed by a <, the < is always taken as the delimiter of a
    932     //   template-argument-list and never as the less-than operator.
    933     if (!IsFilteredTemplateName)
    934       FilterAcceptableTemplateNames(Result);
    935 
    936     if (!Result.empty()) {
    937       bool IsFunctionTemplate;
    938       bool IsVarTemplate;
    939       TemplateName Template;
    940       if (Result.end() - Result.begin() > 1) {
    941         IsFunctionTemplate = true;
    942         Template = Context.getOverloadedTemplateName(Result.begin(),
    943                                                      Result.end());
    944       } else {
    945         TemplateDecl *TD
    946           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    947         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    948         IsVarTemplate = isa<VarTemplateDecl>(TD);
    949 
    950         if (SS.isSet() && !SS.isInvalid())
    951           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    952                                                     /*TemplateKeyword=*/false,
    953                                                       TD);
    954         else
    955           Template = TemplateName(TD);
    956       }
    957 
    958       if (IsFunctionTemplate) {
    959         // Function templates always go through overload resolution, at which
    960         // point we'll perform the various checks (e.g., accessibility) we need
    961         // to based on which function we selected.
    962         Result.suppressDiagnostics();
    963 
    964         return NameClassification::FunctionTemplate(Template);
    965       }
    966 
    967       return IsVarTemplate ? NameClassification::VarTemplate(Template)
    968                            : NameClassification::TypeTemplate(Template);
    969     }
    970   }
    971 
    972   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
    973   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    974     DiagnoseUseOfDecl(Type, NameLoc);
    975     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
    976     QualType T = Context.getTypeDeclType(Type);
    977     if (SS.isNotEmpty())
    978       return buildNestedType(*this, SS, T, NameLoc);
    979     return ParsedType::make(T);
    980   }
    981 
    982   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
    983   if (!Class) {
    984     // FIXME: It's unfortunate that we don't have a Type node for handling this.
    985     if (ObjCCompatibleAliasDecl *Alias =
    986             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
    987       Class = Alias->getClassInterface();
    988   }
    989 
    990   if (Class) {
    991     DiagnoseUseOfDecl(Class, NameLoc);
    992 
    993     if (NextToken.is(tok::period)) {
    994       // Interface. <something> is parsed as a property reference expression.
    995       // Just return "unknown" as a fall-through for now.
    996       Result.suppressDiagnostics();
    997       return NameClassification::Unknown();
    998     }
    999 
   1000     QualType T = Context.getObjCInterfaceType(Class);
   1001     return ParsedType::make(T);
   1002   }
   1003 
   1004   // We can have a type template here if we're classifying a template argument.
   1005   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
   1006     return NameClassification::TypeTemplate(
   1007         TemplateName(cast<TemplateDecl>(FirstDecl)));
   1008 
   1009   // Check for a tag type hidden by a non-type decl in a few cases where it
   1010   // seems likely a type is wanted instead of the non-type that was found.
   1011   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
   1012   if ((NextToken.is(tok::identifier) ||
   1013        (NextIsOp &&
   1014         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
   1015       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
   1016     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
   1017     DiagnoseUseOfDecl(Type, NameLoc);
   1018     QualType T = Context.getTypeDeclType(Type);
   1019     if (SS.isNotEmpty())
   1020       return buildNestedType(*this, SS, T, NameLoc);
   1021     return ParsedType::make(T);
   1022   }
   1023 
   1024   if (FirstDecl->isCXXClassMember())
   1025     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
   1026                                            nullptr);
   1027 
   1028   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
   1029   return BuildDeclarationNameExpr(SS, Result, ADL);
   1030 }
   1031 
   1032 // Determines the context to return to after temporarily entering a
   1033 // context.  This depends in an unnecessarily complicated way on the
   1034 // exact ordering of callbacks from the parser.
   1035 DeclContext *Sema::getContainingDC(DeclContext *DC) {
   1036 
   1037   // Functions defined inline within classes aren't parsed until we've
   1038   // finished parsing the top-level class, so the top-level class is
   1039   // the context we'll need to return to.
   1040   // A Lambda call operator whose parent is a class must not be treated
   1041   // as an inline member function.  A Lambda can be used legally
   1042   // either as an in-class member initializer or a default argument.  These
   1043   // are parsed once the class has been marked complete and so the containing
   1044   // context would be the nested class (when the lambda is defined in one);
   1045   // If the class is not complete, then the lambda is being used in an
   1046   // ill-formed fashion (such as to specify the width of a bit-field, or
   1047   // in an array-bound) - in which case we still want to return the
   1048   // lexically containing DC (which could be a nested class).
   1049   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
   1050     DC = DC->getLexicalParent();
   1051 
   1052     // A function not defined within a class will always return to its
   1053     // lexical context.
   1054     if (!isa<CXXRecordDecl>(DC))
   1055       return DC;
   1056 
   1057     // A C++ inline method/friend is parsed *after* the topmost class
   1058     // it was declared in is fully parsed ("complete");  the topmost
   1059     // class is the context we need to return to.
   1060     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
   1061       DC = RD;
   1062 
   1063     // Return the declaration context of the topmost class the inline method is
   1064     // declared in.
   1065     return DC;
   1066   }
   1067 
   1068   return DC->getLexicalParent();
   1069 }
   1070 
   1071 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
   1072   assert(getContainingDC(DC) == CurContext &&
   1073       "The next DeclContext should be lexically contained in the current one.");
   1074   CurContext = DC;
   1075   S->setEntity(DC);
   1076 }
   1077 
   1078 void Sema::PopDeclContext() {
   1079   assert(CurContext && "DeclContext imbalance!");
   1080 
   1081   CurContext = getContainingDC(CurContext);
   1082   assert(CurContext && "Popped translation unit!");
   1083 }
   1084 
   1085 /// EnterDeclaratorContext - Used when we must lookup names in the context
   1086 /// of a declarator's nested name specifier.
   1087 ///
   1088 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
   1089   // C++0x [basic.lookup.unqual]p13:
   1090   //   A name used in the definition of a static data member of class
   1091   //   X (after the qualified-id of the static member) is looked up as
   1092   //   if the name was used in a member function of X.
   1093   // C++0x [basic.lookup.unqual]p14:
   1094   //   If a variable member of a namespace is defined outside of the
   1095   //   scope of its namespace then any name used in the definition of
   1096   //   the variable member (after the declarator-id) is looked up as
   1097   //   if the definition of the variable member occurred in its
   1098   //   namespace.
   1099   // Both of these imply that we should push a scope whose context
   1100   // is the semantic context of the declaration.  We can't use
   1101   // PushDeclContext here because that context is not necessarily
   1102   // lexically contained in the current context.  Fortunately,
   1103   // the containing scope should have the appropriate information.
   1104 
   1105   assert(!S->getEntity() && "scope already has entity");
   1106 
   1107 #ifndef NDEBUG
   1108   Scope *Ancestor = S->getParent();
   1109   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
   1110   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
   1111 #endif
   1112 
   1113   CurContext = DC;
   1114   S->setEntity(DC);
   1115 }
   1116 
   1117 void Sema::ExitDeclaratorContext(Scope *S) {
   1118   assert(S->getEntity() == CurContext && "Context imbalance!");
   1119 
   1120   // Switch back to the lexical context.  The safety of this is
   1121   // enforced by an assert in EnterDeclaratorContext.
   1122   Scope *Ancestor = S->getParent();
   1123   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
   1124   CurContext = Ancestor->getEntity();
   1125 
   1126   // We don't need to do anything with the scope, which is going to
   1127   // disappear.
   1128 }
   1129 
   1130 
   1131 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
   1132   // We assume that the caller has already called
   1133   // ActOnReenterTemplateScope so getTemplatedDecl() works.
   1134   FunctionDecl *FD = D->getAsFunction();
   1135   if (!FD)
   1136     return;
   1137 
   1138   // Same implementation as PushDeclContext, but enters the context
   1139   // from the lexical parent, rather than the top-level class.
   1140   assert(CurContext == FD->getLexicalParent() &&
   1141     "The next DeclContext should be lexically contained in the current one.");
   1142   CurContext = FD;
   1143   S->setEntity(CurContext);
   1144 
   1145   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
   1146     ParmVarDecl *Param = FD->getParamDecl(P);
   1147     // If the parameter has an identifier, then add it to the scope
   1148     if (Param->getIdentifier()) {
   1149       S->AddDecl(Param);
   1150       IdResolver.AddDecl(Param);
   1151     }
   1152   }
   1153 }
   1154 
   1155 
   1156 void Sema::ActOnExitFunctionContext() {
   1157   // Same implementation as PopDeclContext, but returns to the lexical parent,
   1158   // rather than the top-level class.
   1159   assert(CurContext && "DeclContext imbalance!");
   1160   CurContext = CurContext->getLexicalParent();
   1161   assert(CurContext && "Popped translation unit!");
   1162 }
   1163 
   1164 
   1165 /// \brief Determine whether we allow overloading of the function
   1166 /// PrevDecl with another declaration.
   1167 ///
   1168 /// This routine determines whether overloading is possible, not
   1169 /// whether some new function is actually an overload. It will return
   1170 /// true in C++ (where we can always provide overloads) or, as an
   1171 /// extension, in C when the previous function is already an
   1172 /// overloaded function declaration or has the "overloadable"
   1173 /// attribute.
   1174 static bool AllowOverloadingOfFunction(LookupResult &Previous,
   1175                                        ASTContext &Context) {
   1176   if (Context.getLangOpts().CPlusPlus)
   1177     return true;
   1178 
   1179   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
   1180     return true;
   1181 
   1182   return (Previous.getResultKind() == LookupResult::Found
   1183           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
   1184 }
   1185 
   1186 /// Add this decl to the scope shadowed decl chains.
   1187 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
   1188   // Move up the scope chain until we find the nearest enclosing
   1189   // non-transparent context. The declaration will be introduced into this
   1190   // scope.
   1191   while (S->getEntity() && S->getEntity()->isTransparentContext())
   1192     S = S->getParent();
   1193 
   1194   // Add scoped declarations into their context, so that they can be
   1195   // found later. Declarations without a context won't be inserted
   1196   // into any context.
   1197   if (AddToContext)
   1198     CurContext->addDecl(D);
   1199 
   1200   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
   1201   // are function-local declarations.
   1202   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
   1203       !D->getDeclContext()->getRedeclContext()->Equals(
   1204         D->getLexicalDeclContext()->getRedeclContext()) &&
   1205       !D->getLexicalDeclContext()->isFunctionOrMethod())
   1206     return;
   1207 
   1208   // Template instantiations should also not be pushed into scope.
   1209   if (isa<FunctionDecl>(D) &&
   1210       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
   1211     return;
   1212 
   1213   // If this replaces anything in the current scope,
   1214   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
   1215                                IEnd = IdResolver.end();
   1216   for (; I != IEnd; ++I) {
   1217     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
   1218       S->RemoveDecl(*I);
   1219       IdResolver.RemoveDecl(*I);
   1220 
   1221       // Should only need to replace one decl.
   1222       break;
   1223     }
   1224   }
   1225 
   1226   S->AddDecl(D);
   1227 
   1228   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
   1229     // Implicitly-generated labels may end up getting generated in an order that
   1230     // isn't strictly lexical, which breaks name lookup. Be careful to insert
   1231     // the label at the appropriate place in the identifier chain.
   1232     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
   1233       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
   1234       if (IDC == CurContext) {
   1235         if (!S->isDeclScope(*I))
   1236           continue;
   1237       } else if (IDC->Encloses(CurContext))
   1238         break;
   1239     }
   1240 
   1241     IdResolver.InsertDeclAfter(I, D);
   1242   } else {
   1243     IdResolver.AddDecl(D);
   1244   }
   1245 }
   1246 
   1247 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
   1248   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
   1249     TUScope->AddDecl(D);
   1250 }
   1251 
   1252 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
   1253                          bool AllowInlineNamespace) {
   1254   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
   1255 }
   1256 
   1257 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
   1258   DeclContext *TargetDC = DC->getPrimaryContext();
   1259   do {
   1260     if (DeclContext *ScopeDC = S->getEntity())
   1261       if (ScopeDC->getPrimaryContext() == TargetDC)
   1262         return S;
   1263   } while ((S = S->getParent()));
   1264 
   1265   return nullptr;
   1266 }
   1267 
   1268 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
   1269                                             DeclContext*,
   1270                                             ASTContext&);
   1271 
   1272 /// Filters out lookup results that don't fall within the given scope
   1273 /// as determined by isDeclInScope.
   1274 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
   1275                                 bool ConsiderLinkage,
   1276                                 bool AllowInlineNamespace) {
   1277   LookupResult::Filter F = R.makeFilter();
   1278   while (F.hasNext()) {
   1279     NamedDecl *D = F.next();
   1280 
   1281     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
   1282       continue;
   1283 
   1284     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
   1285       continue;
   1286 
   1287     F.erase();
   1288   }
   1289 
   1290   F.done();
   1291 }
   1292 
   1293 static bool isUsingDecl(NamedDecl *D) {
   1294   return isa<UsingShadowDecl>(D) ||
   1295          isa<UnresolvedUsingTypenameDecl>(D) ||
   1296          isa<UnresolvedUsingValueDecl>(D);
   1297 }
   1298 
   1299 /// Removes using shadow declarations from the lookup results.
   1300 static void RemoveUsingDecls(LookupResult &R) {
   1301   LookupResult::Filter F = R.makeFilter();
   1302   while (F.hasNext())
   1303     if (isUsingDecl(F.next()))
   1304       F.erase();
   1305 
   1306   F.done();
   1307 }
   1308 
   1309 /// \brief Check for this common pattern:
   1310 /// @code
   1311 /// class S {
   1312 ///   S(const S&); // DO NOT IMPLEMENT
   1313 ///   void operator=(const S&); // DO NOT IMPLEMENT
   1314 /// };
   1315 /// @endcode
   1316 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
   1317   // FIXME: Should check for private access too but access is set after we get
   1318   // the decl here.
   1319   if (D->doesThisDeclarationHaveABody())
   1320     return false;
   1321 
   1322   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
   1323     return CD->isCopyConstructor();
   1324   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   1325     return Method->isCopyAssignmentOperator();
   1326   return false;
   1327 }
   1328 
   1329 // We need this to handle
   1330 //
   1331 // typedef struct {
   1332 //   void *foo() { return 0; }
   1333 // } A;
   1334 //
   1335 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
   1336 // for example. If 'A', foo will have external linkage. If we have '*A',
   1337 // foo will have no linkage. Since we can't know until we get to the end
   1338 // of the typedef, this function finds out if D might have non-external linkage.
   1339 // Callers should verify at the end of the TU if it D has external linkage or
   1340 // not.
   1341 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
   1342   const DeclContext *DC = D->getDeclContext();
   1343   while (!DC->isTranslationUnit()) {
   1344     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
   1345       if (!RD->hasNameForLinkage())
   1346         return true;
   1347     }
   1348     DC = DC->getParent();
   1349   }
   1350 
   1351   return !D->isExternallyVisible();
   1352 }
   1353 
   1354 // FIXME: This needs to be refactored; some other isInMainFile users want
   1355 // these semantics.
   1356 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
   1357   if (S.TUKind != TU_Complete)
   1358     return false;
   1359   return S.SourceMgr.isInMainFile(Loc);
   1360 }
   1361 
   1362 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
   1363   assert(D);
   1364 
   1365   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1366     return false;
   1367 
   1368   // Ignore all entities declared within templates, and out-of-line definitions
   1369   // of members of class templates.
   1370   if (D->getDeclContext()->isDependentContext() ||
   1371       D->getLexicalDeclContext()->isDependentContext())
   1372     return false;
   1373 
   1374   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1375     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1376       return false;
   1377 
   1378     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1379       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
   1380         return false;
   1381     } else {
   1382       // 'static inline' functions are defined in headers; don't warn.
   1383       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
   1384         return false;
   1385     }
   1386 
   1387     if (FD->doesThisDeclarationHaveABody() &&
   1388         Context.DeclMustBeEmitted(FD))
   1389       return false;
   1390   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1391     // Constants and utility variables are defined in headers with internal
   1392     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
   1393     // like "inline".)
   1394     if (!isMainFileLoc(*this, VD->getLocation()))
   1395       return false;
   1396 
   1397     if (Context.DeclMustBeEmitted(VD))
   1398       return false;
   1399 
   1400     if (VD->isStaticDataMember() &&
   1401         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1402       return false;
   1403   } else {
   1404     return false;
   1405   }
   1406 
   1407   // Only warn for unused decls internal to the translation unit.
   1408   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
   1409   // for inline functions defined in the main source file, for instance.
   1410   return mightHaveNonExternalLinkage(D);
   1411 }
   1412 
   1413 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1414   if (!D)
   1415     return;
   1416 
   1417   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1418     const FunctionDecl *First = FD->getFirstDecl();
   1419     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1420       return; // First should already be in the vector.
   1421   }
   1422 
   1423   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1424     const VarDecl *First = VD->getFirstDecl();
   1425     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1426       return; // First should already be in the vector.
   1427   }
   1428 
   1429   if (ShouldWarnIfUnusedFileScopedDecl(D))
   1430     UnusedFileScopedDecls.push_back(D);
   1431 }
   1432 
   1433 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1434   if (D->isInvalidDecl())
   1435     return false;
   1436 
   1437   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
   1438       D->hasAttr<ObjCPreciseLifetimeAttr>())
   1439     return false;
   1440 
   1441   if (isa<LabelDecl>(D))
   1442     return true;
   1443 
   1444   // Except for labels, we only care about unused decls that are local to
   1445   // functions.
   1446   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
   1447   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
   1448     // For dependent types, the diagnostic is deferred.
   1449     WithinFunction =
   1450         WithinFunction || (R->isLocalClass() && !R->isDependentType());
   1451   if (!WithinFunction)
   1452     return false;
   1453 
   1454   if (isa<TypedefNameDecl>(D))
   1455     return true;
   1456 
   1457   // White-list anything that isn't a local variable.
   1458   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
   1459     return false;
   1460 
   1461   // Types of valid local variables should be complete, so this should succeed.
   1462   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1463 
   1464     // White-list anything with an __attribute__((unused)) type.
   1465     QualType Ty = VD->getType();
   1466 
   1467     // Only look at the outermost level of typedef.
   1468     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
   1469       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1470         return false;
   1471     }
   1472 
   1473     // If we failed to complete the type for some reason, or if the type is
   1474     // dependent, don't diagnose the variable.
   1475     if (Ty->isIncompleteType() || Ty->isDependentType())
   1476       return false;
   1477 
   1478     if (const TagType *TT = Ty->getAs<TagType>()) {
   1479       const TagDecl *Tag = TT->getDecl();
   1480       if (Tag->hasAttr<UnusedAttr>())
   1481         return false;
   1482 
   1483       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1484         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
   1485           return false;
   1486 
   1487         if (const Expr *Init = VD->getInit()) {
   1488           if (const ExprWithCleanups *Cleanups =
   1489                   dyn_cast<ExprWithCleanups>(Init))
   1490             Init = Cleanups->getSubExpr();
   1491           const CXXConstructExpr *Construct =
   1492             dyn_cast<CXXConstructExpr>(Init);
   1493           if (Construct && !Construct->isElidable()) {
   1494             CXXConstructorDecl *CD = Construct->getConstructor();
   1495             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
   1496               return false;
   1497           }
   1498         }
   1499       }
   1500     }
   1501 
   1502     // TODO: __attribute__((unused)) templates?
   1503   }
   1504 
   1505   return true;
   1506 }
   1507 
   1508 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
   1509                                      FixItHint &Hint) {
   1510   if (isa<LabelDecl>(D)) {
   1511     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
   1512                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
   1513     if (AfterColon.isInvalid())
   1514       return;
   1515     Hint = FixItHint::CreateRemoval(CharSourceRange::
   1516                                     getCharRange(D->getLocStart(), AfterColon));
   1517   }
   1518   return;
   1519 }
   1520 
   1521 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
   1522   if (D->getTypeForDecl()->isDependentType())
   1523     return;
   1524 
   1525   for (auto *TmpD : D->decls()) {
   1526     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
   1527       DiagnoseUnusedDecl(T);
   1528     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
   1529       DiagnoseUnusedNestedTypedefs(R);
   1530   }
   1531 }
   1532 
   1533 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1534 /// unless they are marked attr(unused).
   1535 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1536   if (!ShouldDiagnoseUnusedDecl(D))
   1537     return;
   1538 
   1539   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
   1540     // typedefs can be referenced later on, so the diagnostics are emitted
   1541     // at end-of-translation-unit.
   1542     UnusedLocalTypedefNameCandidates.insert(TD);
   1543     return;
   1544   }
   1545 
   1546   FixItHint Hint;
   1547   GenerateFixForUnusedDecl(D, Context, Hint);
   1548 
   1549   unsigned DiagID;
   1550   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1551     DiagID = diag::warn_unused_exception_param;
   1552   else if (isa<LabelDecl>(D))
   1553     DiagID = diag::warn_unused_label;
   1554   else
   1555     DiagID = diag::warn_unused_variable;
   1556 
   1557   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
   1558 }
   1559 
   1560 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1561   // Verify that we have no forward references left.  If so, there was a goto
   1562   // or address of a label taken, but no definition of it.  Label fwd
   1563   // definitions are indicated with a null substmt which is also not a resolved
   1564   // MS inline assembly label name.
   1565   bool Diagnose = false;
   1566   if (L->isMSAsmLabel())
   1567     Diagnose = !L->isResolvedMSAsmLabel();
   1568   else
   1569     Diagnose = L->getStmt() == nullptr;
   1570   if (Diagnose)
   1571     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1572 }
   1573 
   1574 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1575   S->mergeNRVOIntoParent();
   1576 
   1577   if (S->decl_empty()) return;
   1578   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1579          "Scope shouldn't contain decls!");
   1580 
   1581   for (auto *TmpD : S->decls()) {
   1582     assert(TmpD && "This decl didn't get pushed??");
   1583 
   1584     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1585     NamedDecl *D = cast<NamedDecl>(TmpD);
   1586 
   1587     if (!D->getDeclName()) continue;
   1588 
   1589     // Diagnose unused variables in this scope.
   1590     if (!S->hasUnrecoverableErrorOccurred()) {
   1591       DiagnoseUnusedDecl(D);
   1592       if (const auto *RD = dyn_cast<RecordDecl>(D))
   1593         DiagnoseUnusedNestedTypedefs(RD);
   1594     }
   1595 
   1596     // If this was a forward reference to a label, verify it was defined.
   1597     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1598       CheckPoppedLabel(LD, *this);
   1599 
   1600     // Remove this name from our lexical scope.
   1601     IdResolver.RemoveDecl(D);
   1602   }
   1603 }
   1604 
   1605 /// \brief Look for an Objective-C class in the translation unit.
   1606 ///
   1607 /// \param Id The name of the Objective-C class we're looking for. If
   1608 /// typo-correction fixes this name, the Id will be updated
   1609 /// to the fixed name.
   1610 ///
   1611 /// \param IdLoc The location of the name in the translation unit.
   1612 ///
   1613 /// \param DoTypoCorrection If true, this routine will attempt typo correction
   1614 /// if there is no class with the given name.
   1615 ///
   1616 /// \returns The declaration of the named Objective-C class, or NULL if the
   1617 /// class could not be found.
   1618 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1619                                               SourceLocation IdLoc,
   1620                                               bool DoTypoCorrection) {
   1621   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1622   // creation from this context.
   1623   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1624 
   1625   if (!IDecl && DoTypoCorrection) {
   1626     // Perform typo correction at the given location, but only if we
   1627     // find an Objective-C class name.
   1628     if (TypoCorrection C = CorrectTypo(
   1629             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
   1630             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
   1631             CTK_ErrorRecovery)) {
   1632       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
   1633       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
   1634       Id = IDecl->getIdentifier();
   1635     }
   1636   }
   1637   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1638   // This routine must always return a class definition, if any.
   1639   if (Def && Def->getDefinition())
   1640       Def = Def->getDefinition();
   1641   return Def;
   1642 }
   1643 
   1644 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1645 /// from S, where a non-field would be declared. This routine copes
   1646 /// with the difference between C and C++ scoping rules in structs and
   1647 /// unions. For example, the following code is well-formed in C but
   1648 /// ill-formed in C++:
   1649 /// @code
   1650 /// struct S6 {
   1651 ///   enum { BAR } e;
   1652 /// };
   1653 ///
   1654 /// void test_S6() {
   1655 ///   struct S6 a;
   1656 ///   a.e = BAR;
   1657 /// }
   1658 /// @endcode
   1659 /// For the declaration of BAR, this routine will return a different
   1660 /// scope. The scope S will be the scope of the unnamed enumeration
   1661 /// within S6. In C++, this routine will return the scope associated
   1662 /// with S6, because the enumeration's scope is a transparent
   1663 /// context but structures can contain non-field names. In C, this
   1664 /// routine will return the translation unit scope, since the
   1665 /// enumeration's scope is a transparent context and structures cannot
   1666 /// contain non-field names.
   1667 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1668   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1669          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
   1670          (S->isClassScope() && !getLangOpts().CPlusPlus))
   1671     S = S->getParent();
   1672   return S;
   1673 }
   1674 
   1675 /// \brief Looks up the declaration of "struct objc_super" and
   1676 /// saves it for later use in building builtin declaration of
   1677 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
   1678 /// pre-existing declaration exists no action takes place.
   1679 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
   1680                                         IdentifierInfo *II) {
   1681   if (!II->isStr("objc_msgSendSuper"))
   1682     return;
   1683   ASTContext &Context = ThisSema.Context;
   1684 
   1685   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
   1686                       SourceLocation(), Sema::LookupTagName);
   1687   ThisSema.LookupName(Result, S);
   1688   if (Result.getResultKind() == LookupResult::Found)
   1689     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
   1690       Context.setObjCSuperType(Context.getTagDeclType(TD));
   1691 }
   1692 
   1693 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
   1694   switch (Error) {
   1695   case ASTContext::GE_None:
   1696     return "";
   1697   case ASTContext::GE_Missing_stdio:
   1698     return "stdio.h";
   1699   case ASTContext::GE_Missing_setjmp:
   1700     return "setjmp.h";
   1701   case ASTContext::GE_Missing_ucontext:
   1702     return "ucontext.h";
   1703   }
   1704   llvm_unreachable("unhandled error kind");
   1705 }
   1706 
   1707 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1708 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1709 /// if we're creating this built-in in anticipation of redeclaring the
   1710 /// built-in.
   1711 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
   1712                                      Scope *S, bool ForRedeclaration,
   1713                                      SourceLocation Loc) {
   1714   LookupPredefedObjCSuperType(*this, S, II);
   1715 
   1716   ASTContext::GetBuiltinTypeError Error;
   1717   QualType R = Context.GetBuiltinType(ID, Error);
   1718   if (Error) {
   1719     if (ForRedeclaration)
   1720       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
   1721           << getHeaderName(Error)
   1722           << Context.BuiltinInfo.GetName(ID);
   1723     return nullptr;
   1724   }
   1725 
   1726   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
   1727     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1728       << Context.BuiltinInfo.GetName(ID)
   1729       << R;
   1730     if (Context.BuiltinInfo.getHeaderName(ID) &&
   1731         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
   1732       Diag(Loc, diag::note_include_header_or_declare)
   1733           << Context.BuiltinInfo.getHeaderName(ID)
   1734           << Context.BuiltinInfo.GetName(ID);
   1735   }
   1736 
   1737   DeclContext *Parent = Context.getTranslationUnitDecl();
   1738   if (getLangOpts().CPlusPlus) {
   1739     LinkageSpecDecl *CLinkageDecl =
   1740         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
   1741                                 LinkageSpecDecl::lang_c, false);
   1742     CLinkageDecl->setImplicit();
   1743     Parent->addDecl(CLinkageDecl);
   1744     Parent = CLinkageDecl;
   1745   }
   1746 
   1747   FunctionDecl *New = FunctionDecl::Create(Context,
   1748                                            Parent,
   1749                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
   1750                                            SC_Extern,
   1751                                            false,
   1752                                            /*hasPrototype=*/true);
   1753   New->setImplicit();
   1754 
   1755   // Create Decl objects for each parameter, adding them to the
   1756   // FunctionDecl.
   1757   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1758     SmallVector<ParmVarDecl*, 16> Params;
   1759     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   1760       ParmVarDecl *parm =
   1761           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
   1762                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
   1763                               SC_None, nullptr);
   1764       parm->setScopeInfo(0, i);
   1765       Params.push_back(parm);
   1766     }
   1767     New->setParams(Params);
   1768   }
   1769 
   1770   AddKnownFunctionAttributes(New);
   1771   RegisterLocallyScopedExternCDecl(New, S);
   1772 
   1773   // TUScope is the translation-unit scope to insert this function into.
   1774   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1775   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1776   // entirely, but we're not there yet.
   1777   DeclContext *SavedContext = CurContext;
   1778   CurContext = Parent;
   1779   PushOnScopeChains(New, TUScope);
   1780   CurContext = SavedContext;
   1781   return New;
   1782 }
   1783 
   1784 /// \brief Filter out any previous declarations that the given declaration
   1785 /// should not consider because they are not permitted to conflict, e.g.,
   1786 /// because they come from hidden sub-modules and do not refer to the same
   1787 /// entity.
   1788 static void filterNonConflictingPreviousDecls(ASTContext &context,
   1789                                               NamedDecl *decl,
   1790                                               LookupResult &previous){
   1791   // This is only interesting when modules are enabled.
   1792   if (!context.getLangOpts().Modules)
   1793     return;
   1794 
   1795   // Empty sets are uninteresting.
   1796   if (previous.empty())
   1797     return;
   1798 
   1799   LookupResult::Filter filter = previous.makeFilter();
   1800   while (filter.hasNext()) {
   1801     NamedDecl *old = filter.next();
   1802 
   1803     // Non-hidden declarations are never ignored.
   1804     if (!old->isHidden())
   1805       continue;
   1806 
   1807     if (!old->isExternallyVisible())
   1808       filter.erase();
   1809   }
   1810 
   1811   filter.done();
   1812 }
   1813 
   1814 /// Typedef declarations don't have linkage, but they still denote the same
   1815 /// entity if their types are the same.
   1816 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
   1817 /// isSameEntity.
   1818 static void filterNonConflictingPreviousTypedefDecls(ASTContext &Context,
   1819                                                      TypedefNameDecl *Decl,
   1820                                                      LookupResult &Previous) {
   1821   // This is only interesting when modules are enabled.
   1822   if (!Context.getLangOpts().Modules)
   1823     return;
   1824 
   1825   // Empty sets are uninteresting.
   1826   if (Previous.empty())
   1827     return;
   1828 
   1829   LookupResult::Filter Filter = Previous.makeFilter();
   1830   while (Filter.hasNext()) {
   1831     NamedDecl *Old = Filter.next();
   1832 
   1833     // Non-hidden declarations are never ignored.
   1834     if (!Old->isHidden())
   1835       continue;
   1836 
   1837     // Declarations of the same entity are not ignored, even if they have
   1838     // different linkages.
   1839     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
   1840       if (Context.hasSameType(OldTD->getUnderlyingType(),
   1841                               Decl->getUnderlyingType()))
   1842         continue;
   1843 
   1844       // If both declarations give a tag declaration a typedef name for linkage
   1845       // purposes, then they declare the same entity.
   1846       if (OldTD->getAnonDeclWithTypedefName() &&
   1847           Decl->getAnonDeclWithTypedefName())
   1848         continue;
   1849     }
   1850 
   1851     if (!Old->isExternallyVisible())
   1852       Filter.erase();
   1853   }
   1854 
   1855   Filter.done();
   1856 }
   1857 
   1858 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
   1859   QualType OldType;
   1860   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1861     OldType = OldTypedef->getUnderlyingType();
   1862   else
   1863     OldType = Context.getTypeDeclType(Old);
   1864   QualType NewType = New->getUnderlyingType();
   1865 
   1866   if (NewType->isVariablyModifiedType()) {
   1867     // Must not redefine a typedef with a variably-modified type.
   1868     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1869     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
   1870       << Kind << NewType;
   1871     if (Old->getLocation().isValid())
   1872       Diag(Old->getLocation(), diag::note_previous_definition);
   1873     New->setInvalidDecl();
   1874     return true;
   1875   }
   1876 
   1877   if (OldType != NewType &&
   1878       !OldType->isDependentType() &&
   1879       !NewType->isDependentType() &&
   1880       !Context.hasSameType(OldType, NewType)) {
   1881     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1882     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1883       << Kind << NewType << OldType;
   1884     if (Old->getLocation().isValid())
   1885       Diag(Old->getLocation(), diag::note_previous_definition);
   1886     New->setInvalidDecl();
   1887     return true;
   1888   }
   1889   return false;
   1890 }
   1891 
   1892 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1893 /// same name and scope as a previous declaration 'Old'.  Figure out
   1894 /// how to resolve this situation, merging decls or emitting
   1895 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1896 ///
   1897 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
   1898   // If the new decl is known invalid already, don't bother doing any
   1899   // merging checks.
   1900   if (New->isInvalidDecl()) return;
   1901 
   1902   // Allow multiple definitions for ObjC built-in typedefs.
   1903   // FIXME: Verify the underlying types are equivalent!
   1904   if (getLangOpts().ObjC1) {
   1905     const IdentifierInfo *TypeID = New->getIdentifier();
   1906     switch (TypeID->getLength()) {
   1907     default: break;
   1908     case 2:
   1909       {
   1910         if (!TypeID->isStr("id"))
   1911           break;
   1912         QualType T = New->getUnderlyingType();
   1913         if (!T->isPointerType())
   1914           break;
   1915         if (!T->isVoidPointerType()) {
   1916           QualType PT = T->getAs<PointerType>()->getPointeeType();
   1917           if (!PT->isStructureType())
   1918             break;
   1919         }
   1920         Context.setObjCIdRedefinitionType(T);
   1921         // Install the built-in type for 'id', ignoring the current definition.
   1922         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1923         return;
   1924       }
   1925     case 5:
   1926       if (!TypeID->isStr("Class"))
   1927         break;
   1928       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
   1929       // Install the built-in type for 'Class', ignoring the current definition.
   1930       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1931       return;
   1932     case 3:
   1933       if (!TypeID->isStr("SEL"))
   1934         break;
   1935       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
   1936       // Install the built-in type for 'SEL', ignoring the current definition.
   1937       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1938       return;
   1939     }
   1940     // Fall through - the typedef name was not a builtin type.
   1941   }
   1942 
   1943   // Verify the old decl was also a type.
   1944   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1945   if (!Old) {
   1946     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1947       << New->getDeclName();
   1948 
   1949     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1950     if (OldD->getLocation().isValid())
   1951       Diag(OldD->getLocation(), diag::note_previous_definition);
   1952 
   1953     return New->setInvalidDecl();
   1954   }
   1955 
   1956   // If the old declaration is invalid, just give up here.
   1957   if (Old->isInvalidDecl())
   1958     return New->setInvalidDecl();
   1959 
   1960   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
   1961     auto *OldTag = OldTD->getAnonDeclWithTypedefName();
   1962     auto *NewTag = New->getAnonDeclWithTypedefName();
   1963     NamedDecl *Hidden = nullptr;
   1964     if (getLangOpts().CPlusPlus && OldTag && NewTag &&
   1965         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
   1966         !hasVisibleDefinition(OldTag, &Hidden)) {
   1967       // There is a definition of this tag, but it is not visible. Use it
   1968       // instead of our tag.
   1969       New->setTypeForDecl(OldTD->getTypeForDecl());
   1970       if (OldTD->isModed())
   1971         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
   1972                                     OldTD->getUnderlyingType());
   1973       else
   1974         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
   1975 
   1976       // Make the old tag definition visible.
   1977       if (auto *Listener = getASTMutationListener())
   1978         Listener->RedefinedHiddenDefinition(Hidden, NewTag->getLocation());
   1979       Hidden->setHidden(false);
   1980     }
   1981   }
   1982 
   1983   // If the typedef types are not identical, reject them in all languages and
   1984   // with any extensions enabled.
   1985   if (isIncompatibleTypedef(Old, New))
   1986     return;
   1987 
   1988   // The types match.  Link up the redeclaration chain and merge attributes if
   1989   // the old declaration was a typedef.
   1990   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
   1991     New->setPreviousDecl(Typedef);
   1992     mergeDeclAttributes(New, Old);
   1993   }
   1994 
   1995   if (getLangOpts().MicrosoftExt)
   1996     return;
   1997 
   1998   if (getLangOpts().CPlusPlus) {
   1999     // C++ [dcl.typedef]p2:
   2000     //   In a given non-class scope, a typedef specifier can be used to
   2001     //   redefine the name of any type declared in that scope to refer
   2002     //   to the type to which it already refers.
   2003     if (!isa<CXXRecordDecl>(CurContext))
   2004       return;
   2005 
   2006     // C++0x [dcl.typedef]p4:
   2007     //   In a given class scope, a typedef specifier can be used to redefine
   2008     //   any class-name declared in that scope that is not also a typedef-name
   2009     //   to refer to the type to which it already refers.
   2010     //
   2011     // This wording came in via DR424, which was a correction to the
   2012     // wording in DR56, which accidentally banned code like:
   2013     //
   2014     //   struct S {
   2015     //     typedef struct A { } A;
   2016     //   };
   2017     //
   2018     // in the C++03 standard. We implement the C++0x semantics, which
   2019     // allow the above but disallow
   2020     //
   2021     //   struct S {
   2022     //     typedef int I;
   2023     //     typedef int I;
   2024     //   };
   2025     //
   2026     // since that was the intent of DR56.
   2027     if (!isa<TypedefNameDecl>(Old))
   2028       return;
   2029 
   2030     Diag(New->getLocation(), diag::err_redefinition)
   2031       << New->getDeclName();
   2032     Diag(Old->getLocation(), diag::note_previous_definition);
   2033     return New->setInvalidDecl();
   2034   }
   2035 
   2036   // Modules always permit redefinition of typedefs, as does C11.
   2037   if (getLangOpts().Modules || getLangOpts().C11)
   2038     return;
   2039 
   2040   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   2041   // is normally mapped to an error, but can be controlled with
   2042   // -Wtypedef-redefinition.  If either the original or the redefinition is
   2043   // in a system header, don't emit this for compatibility with GCC.
   2044   if (getDiagnostics().getSuppressSystemWarnings() &&
   2045       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   2046        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   2047     return;
   2048 
   2049   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
   2050     << New->getDeclName();
   2051   Diag(Old->getLocation(), diag::note_previous_definition);
   2052 }
   2053 
   2054 /// DeclhasAttr - returns true if decl Declaration already has the target
   2055 /// attribute.
   2056 static bool DeclHasAttr(const Decl *D, const Attr *A) {
   2057   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   2058   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
   2059   for (const auto *i : D->attrs())
   2060     if (i->getKind() == A->getKind()) {
   2061       if (Ann) {
   2062         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
   2063           return true;
   2064         continue;
   2065       }
   2066       // FIXME: Don't hardcode this check
   2067       if (OA && isa<OwnershipAttr>(i))
   2068         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
   2069       return true;
   2070     }
   2071 
   2072   return false;
   2073 }
   2074 
   2075 static bool isAttributeTargetADefinition(Decl *D) {
   2076   if (VarDecl *VD = dyn_cast<VarDecl>(D))
   2077     return VD->isThisDeclarationADefinition();
   2078   if (TagDecl *TD = dyn_cast<TagDecl>(D))
   2079     return TD->isCompleteDefinition() || TD->isBeingDefined();
   2080   return true;
   2081 }
   2082 
   2083 /// Merge alignment attributes from \p Old to \p New, taking into account the
   2084 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
   2085 ///
   2086 /// \return \c true if any attributes were added to \p New.
   2087 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
   2088   // Look for alignas attributes on Old, and pick out whichever attribute
   2089   // specifies the strictest alignment requirement.
   2090   AlignedAttr *OldAlignasAttr = nullptr;
   2091   AlignedAttr *OldStrictestAlignAttr = nullptr;
   2092   unsigned OldAlign = 0;
   2093   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
   2094     // FIXME: We have no way of representing inherited dependent alignments
   2095     // in a case like:
   2096     //   template<int A, int B> struct alignas(A) X;
   2097     //   template<int A, int B> struct alignas(B) X {};
   2098     // For now, we just ignore any alignas attributes which are not on the
   2099     // definition in such a case.
   2100     if (I->isAlignmentDependent())
   2101       return false;
   2102 
   2103     if (I->isAlignas())
   2104       OldAlignasAttr = I;
   2105 
   2106     unsigned Align = I->getAlignment(S.Context);
   2107     if (Align > OldAlign) {
   2108       OldAlign = Align;
   2109       OldStrictestAlignAttr = I;
   2110     }
   2111   }
   2112 
   2113   // Look for alignas attributes on New.
   2114   AlignedAttr *NewAlignasAttr = nullptr;
   2115   unsigned NewAlign = 0;
   2116   for (auto *I : New->specific_attrs<AlignedAttr>()) {
   2117     if (I->isAlignmentDependent())
   2118       return false;
   2119 
   2120     if (I->isAlignas())
   2121       NewAlignasAttr = I;
   2122 
   2123     unsigned Align = I->getAlignment(S.Context);
   2124     if (Align > NewAlign)
   2125       NewAlign = Align;
   2126   }
   2127 
   2128   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
   2129     // Both declarations have 'alignas' attributes. We require them to match.
   2130     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
   2131     // fall short. (If two declarations both have alignas, they must both match
   2132     // every definition, and so must match each other if there is a definition.)
   2133 
   2134     // If either declaration only contains 'alignas(0)' specifiers, then it
   2135     // specifies the natural alignment for the type.
   2136     if (OldAlign == 0 || NewAlign == 0) {
   2137       QualType Ty;
   2138       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
   2139         Ty = VD->getType();
   2140       else
   2141         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
   2142 
   2143       if (OldAlign == 0)
   2144         OldAlign = S.Context.getTypeAlign(Ty);
   2145       if (NewAlign == 0)
   2146         NewAlign = S.Context.getTypeAlign(Ty);
   2147     }
   2148 
   2149     if (OldAlign != NewAlign) {
   2150       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
   2151         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
   2152         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
   2153       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
   2154     }
   2155   }
   2156 
   2157   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
   2158     // C++11 [dcl.align]p6:
   2159     //   if any declaration of an entity has an alignment-specifier,
   2160     //   every defining declaration of that entity shall specify an
   2161     //   equivalent alignment.
   2162     // C11 6.7.5/7:
   2163     //   If the definition of an object does not have an alignment
   2164     //   specifier, any other declaration of that object shall also
   2165     //   have no alignment specifier.
   2166     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
   2167       << OldAlignasAttr;
   2168     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
   2169       << OldAlignasAttr;
   2170   }
   2171 
   2172   bool AnyAdded = false;
   2173 
   2174   // Ensure we have an attribute representing the strictest alignment.
   2175   if (OldAlign > NewAlign) {
   2176     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
   2177     Clone->setInherited(true);
   2178     New->addAttr(Clone);
   2179     AnyAdded = true;
   2180   }
   2181 
   2182   // Ensure we have an alignas attribute if the old declaration had one.
   2183   if (OldAlignasAttr && !NewAlignasAttr &&
   2184       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
   2185     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
   2186     Clone->setInherited(true);
   2187     New->addAttr(Clone);
   2188     AnyAdded = true;
   2189   }
   2190 
   2191   return AnyAdded;
   2192 }
   2193 
   2194 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
   2195                                const InheritableAttr *Attr, bool Override) {
   2196   InheritableAttr *NewAttr = nullptr;
   2197   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
   2198   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
   2199     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
   2200                                       AA->getIntroduced(), AA->getDeprecated(),
   2201                                       AA->getObsoleted(), AA->getUnavailable(),
   2202                                       AA->getMessage(), Override,
   2203                                       AttrSpellingListIndex);
   2204   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
   2205     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   2206                                     AttrSpellingListIndex);
   2207   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
   2208     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   2209                                         AttrSpellingListIndex);
   2210   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
   2211     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
   2212                                    AttrSpellingListIndex);
   2213   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
   2214     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
   2215                                    AttrSpellingListIndex);
   2216   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
   2217     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
   2218                                 FA->getFormatIdx(), FA->getFirstArg(),
   2219                                 AttrSpellingListIndex);
   2220   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
   2221     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
   2222                                  AttrSpellingListIndex);
   2223   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
   2224     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
   2225                                        AttrSpellingListIndex,
   2226                                        IA->getSemanticSpelling());
   2227   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
   2228     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
   2229                                       &S.Context.Idents.get(AA->getSpelling()),
   2230                                       AttrSpellingListIndex);
   2231   else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
   2232     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
   2233   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
   2234     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
   2235   else if (isa<AlignedAttr>(Attr))
   2236     // AlignedAttrs are handled separately, because we need to handle all
   2237     // such attributes on a declaration at the same time.
   2238     NewAttr = nullptr;
   2239   else if (isa<DeprecatedAttr>(Attr) && Override)
   2240     NewAttr = nullptr;
   2241   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
   2242     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
   2243 
   2244   if (NewAttr) {
   2245     NewAttr->setInherited(true);
   2246     D->addAttr(NewAttr);
   2247     return true;
   2248   }
   2249 
   2250   return false;
   2251 }
   2252 
   2253 static const Decl *getDefinition(const Decl *D) {
   2254   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
   2255     return TD->getDefinition();
   2256   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2257     const VarDecl *Def = VD->getDefinition();
   2258     if (Def)
   2259       return Def;
   2260     return VD->getActingDefinition();
   2261   }
   2262   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2263     const FunctionDecl* Def;
   2264     if (FD->isDefined(Def))
   2265       return Def;
   2266   }
   2267   return nullptr;
   2268 }
   2269 
   2270 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
   2271   for (const auto *Attribute : D->attrs())
   2272     if (Attribute->getKind() == Kind)
   2273       return true;
   2274   return false;
   2275 }
   2276 
   2277 /// checkNewAttributesAfterDef - If we already have a definition, check that
   2278 /// there are no new attributes in this declaration.
   2279 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
   2280   if (!New->hasAttrs())
   2281     return;
   2282 
   2283   const Decl *Def = getDefinition(Old);
   2284   if (!Def || Def == New)
   2285     return;
   2286 
   2287   AttrVec &NewAttributes = New->getAttrs();
   2288   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
   2289     const Attr *NewAttribute = NewAttributes[I];
   2290 
   2291     if (isa<AliasAttr>(NewAttribute)) {
   2292       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
   2293         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
   2294       else {
   2295         VarDecl *VD = cast<VarDecl>(New);
   2296         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
   2297                                 VarDecl::TentativeDefinition
   2298                             ? diag::err_alias_after_tentative
   2299                             : diag::err_redefinition;
   2300         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
   2301         S.Diag(Def->getLocation(), diag::note_previous_definition);
   2302         VD->setInvalidDecl();
   2303       }
   2304       ++I;
   2305       continue;
   2306     }
   2307 
   2308     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
   2309       // Tentative definitions are only interesting for the alias check above.
   2310       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
   2311         ++I;
   2312         continue;
   2313       }
   2314     }
   2315 
   2316     if (hasAttribute(Def, NewAttribute->getKind())) {
   2317       ++I;
   2318       continue; // regular attr merging will take care of validating this.
   2319     }
   2320 
   2321     if (isa<C11NoReturnAttr>(NewAttribute)) {
   2322       // C's _Noreturn is allowed to be added to a function after it is defined.
   2323       ++I;
   2324       continue;
   2325     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
   2326       if (AA->isAlignas()) {
   2327         // C++11 [dcl.align]p6:
   2328         //   if any declaration of an entity has an alignment-specifier,
   2329         //   every defining declaration of that entity shall specify an
   2330         //   equivalent alignment.
   2331         // C11 6.7.5/7:
   2332         //   If the definition of an object does not have an alignment
   2333         //   specifier, any other declaration of that object shall also
   2334         //   have no alignment specifier.
   2335         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
   2336           << AA;
   2337         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
   2338           << AA;
   2339         NewAttributes.erase(NewAttributes.begin() + I);
   2340         --E;
   2341         continue;
   2342       }
   2343     }
   2344 
   2345     S.Diag(NewAttribute->getLocation(),
   2346            diag::warn_attribute_precede_definition);
   2347     S.Diag(Def->getLocation(), diag::note_previous_definition);
   2348     NewAttributes.erase(NewAttributes.begin() + I);
   2349     --E;
   2350   }
   2351 }
   2352 
   2353 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   2354 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
   2355                                AvailabilityMergeKind AMK) {
   2356   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
   2357     UsedAttr *NewAttr = OldAttr->clone(Context);
   2358     NewAttr->setInherited(true);
   2359     New->addAttr(NewAttr);
   2360   }
   2361 
   2362   if (!Old->hasAttrs() && !New->hasAttrs())
   2363     return;
   2364 
   2365   // attributes declared post-definition are currently ignored
   2366   checkNewAttributesAfterDef(*this, New, Old);
   2367 
   2368   if (!Old->hasAttrs())
   2369     return;
   2370 
   2371   bool foundAny = New->hasAttrs();
   2372 
   2373   // Ensure that any moving of objects within the allocated map is done before
   2374   // we process them.
   2375   if (!foundAny) New->setAttrs(AttrVec());
   2376 
   2377   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
   2378     bool Override = false;
   2379     // Ignore deprecated/unavailable/availability attributes if requested.
   2380     if (isa<DeprecatedAttr>(I) ||
   2381         isa<UnavailableAttr>(I) ||
   2382         isa<AvailabilityAttr>(I)) {
   2383       switch (AMK) {
   2384       case AMK_None:
   2385         continue;
   2386 
   2387       case AMK_Redeclaration:
   2388         break;
   2389 
   2390       case AMK_Override:
   2391         Override = true;
   2392         break;
   2393       }
   2394     }
   2395 
   2396     // Already handled.
   2397     if (isa<UsedAttr>(I))
   2398       continue;
   2399 
   2400     if (mergeDeclAttribute(*this, New, I, Override))
   2401       foundAny = true;
   2402   }
   2403 
   2404   if (mergeAlignedAttrs(*this, New, Old))
   2405     foundAny = true;
   2406 
   2407   if (!foundAny) New->dropAttrs();
   2408 }
   2409 
   2410 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   2411 /// to the new one.
   2412 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   2413                                      const ParmVarDecl *oldDecl,
   2414                                      Sema &S) {
   2415   // C++11 [dcl.attr.depend]p2:
   2416   //   The first declaration of a function shall specify the
   2417   //   carries_dependency attribute for its declarator-id if any declaration
   2418   //   of the function specifies the carries_dependency attribute.
   2419   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
   2420   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
   2421     S.Diag(CDA->getLocation(),
   2422            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
   2423     // Find the first declaration of the parameter.
   2424     // FIXME: Should we build redeclaration chains for function parameters?
   2425     const FunctionDecl *FirstFD =
   2426       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
   2427     const ParmVarDecl *FirstVD =
   2428       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
   2429     S.Diag(FirstVD->getLocation(),
   2430            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
   2431   }
   2432 
   2433   if (!oldDecl->hasAttrs())
   2434     return;
   2435 
   2436   bool foundAny = newDecl->hasAttrs();
   2437 
   2438   // Ensure that any moving of objects within the allocated map is
   2439   // done before we process them.
   2440   if (!foundAny) newDecl->setAttrs(AttrVec());
   2441 
   2442   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
   2443     if (!DeclHasAttr(newDecl, I)) {
   2444       InheritableAttr *newAttr =
   2445         cast<InheritableParamAttr>(I->clone(S.Context));
   2446       newAttr->setInherited(true);
   2447       newDecl->addAttr(newAttr);
   2448       foundAny = true;
   2449     }
   2450   }
   2451 
   2452   if (!foundAny) newDecl->dropAttrs();
   2453 }
   2454 
   2455 namespace {
   2456 
   2457 /// Used in MergeFunctionDecl to keep track of function parameters in
   2458 /// C.
   2459 struct GNUCompatibleParamWarning {
   2460   ParmVarDecl *OldParm;
   2461   ParmVarDecl *NewParm;
   2462   QualType PromotedType;
   2463 };
   2464 
   2465 }
   2466 
   2467 /// getSpecialMember - get the special member enum for a method.
   2468 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   2469   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   2470     if (Ctor->isDefaultConstructor())
   2471       return Sema::CXXDefaultConstructor;
   2472 
   2473     if (Ctor->isCopyConstructor())
   2474       return Sema::CXXCopyConstructor;
   2475 
   2476     if (Ctor->isMoveConstructor())
   2477       return Sema::CXXMoveConstructor;
   2478   } else if (isa<CXXDestructorDecl>(MD)) {
   2479     return Sema::CXXDestructor;
   2480   } else if (MD->isCopyAssignmentOperator()) {
   2481     return Sema::CXXCopyAssignment;
   2482   } else if (MD->isMoveAssignmentOperator()) {
   2483     return Sema::CXXMoveAssignment;
   2484   }
   2485 
   2486   return Sema::CXXInvalid;
   2487 }
   2488 
   2489 // Determine whether the previous declaration was a definition, implicit
   2490 // declaration, or a declaration.
   2491 template <typename T>
   2492 static std::pair<diag::kind, SourceLocation>
   2493 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
   2494   diag::kind PrevDiag;
   2495   SourceLocation OldLocation = Old->getLocation();
   2496   if (Old->isThisDeclarationADefinition())
   2497     PrevDiag = diag::note_previous_definition;
   2498   else if (Old->isImplicit()) {
   2499     PrevDiag = diag::note_previous_implicit_declaration;
   2500     if (OldLocation.isInvalid())
   2501       OldLocation = New->getLocation();
   2502   } else
   2503     PrevDiag = diag::note_previous_declaration;
   2504   return std::make_pair(PrevDiag, OldLocation);
   2505 }
   2506 
   2507 /// canRedefineFunction - checks if a function can be redefined. Currently,
   2508 /// only extern inline functions can be redefined, and even then only in
   2509 /// GNU89 mode.
   2510 static bool canRedefineFunction(const FunctionDecl *FD,
   2511                                 const LangOptions& LangOpts) {
   2512   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   2513           !LangOpts.CPlusPlus &&
   2514           FD->isInlineSpecified() &&
   2515           FD->getStorageClass() == SC_Extern);
   2516 }
   2517 
   2518 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
   2519   const AttributedType *AT = T->getAs<AttributedType>();
   2520   while (AT && !AT->isCallingConv())
   2521     AT = AT->getModifiedType()->getAs<AttributedType>();
   2522   return AT;
   2523 }
   2524 
   2525 template <typename T>
   2526 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
   2527   const DeclContext *DC = Old->getDeclContext();
   2528   if (DC->isRecord())
   2529     return false;
   2530 
   2531   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
   2532   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
   2533     return true;
   2534   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
   2535     return true;
   2536   return false;
   2537 }
   2538 
   2539 /// MergeFunctionDecl - We just parsed a function 'New' from
   2540 /// declarator D which has the same name and scope as a previous
   2541 /// declaration 'Old'.  Figure out how to resolve this situation,
   2542 /// merging decls or emitting diagnostics as appropriate.
   2543 ///
   2544 /// In C++, New and Old must be declarations that are not
   2545 /// overloaded. Use IsOverload to determine whether New and Old are
   2546 /// overloaded, and to select the Old declaration that New should be
   2547 /// merged with.
   2548 ///
   2549 /// Returns true if there was an error, false otherwise.
   2550 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
   2551                              Scope *S, bool MergeTypeWithOld) {
   2552   // Verify the old decl was also a function.
   2553   FunctionDecl *Old = OldD->getAsFunction();
   2554   if (!Old) {
   2555     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   2556       if (New->getFriendObjectKind()) {
   2557         Diag(New->getLocation(), diag::err_using_decl_friend);
   2558         Diag(Shadow->getTargetDecl()->getLocation(),
   2559              diag::note_using_decl_target);
   2560         Diag(Shadow->getUsingDecl()->getLocation(),
   2561              diag::note_using_decl) << 0;
   2562         return true;
   2563       }
   2564 
   2565       // C++11 [namespace.udecl]p14:
   2566       //   If a function declaration in namespace scope or block scope has the
   2567       //   same name and the same parameter-type-list as a function introduced
   2568       //   by a using-declaration, and the declarations do not declare the same
   2569       //   function, the program is ill-formed.
   2570 
   2571       // Check whether the two declarations might declare the same function.
   2572       Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
   2573       if (Old &&
   2574           !Old->getDeclContext()->getRedeclContext()->Equals(
   2575               New->getDeclContext()->getRedeclContext()) &&
   2576           !(Old->isExternC() && New->isExternC()))
   2577         Old = nullptr;
   2578 
   2579       if (!Old) {
   2580         Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   2581         Diag(Shadow->getTargetDecl()->getLocation(),
   2582              diag::note_using_decl_target);
   2583         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
   2584         return true;
   2585       }
   2586       OldD = Old;
   2587     } else {
   2588       Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2589         << New->getDeclName();
   2590       Diag(OldD->getLocation(), diag::note_previous_definition);
   2591       return true;
   2592     }
   2593   }
   2594 
   2595   // If the old declaration is invalid, just give up here.
   2596   if (Old->isInvalidDecl())
   2597     return true;
   2598 
   2599   diag::kind PrevDiag;
   2600   SourceLocation OldLocation;
   2601   std::tie(PrevDiag, OldLocation) =
   2602       getNoteDiagForInvalidRedeclaration(Old, New);
   2603 
   2604   // Don't complain about this if we're in GNU89 mode and the old function
   2605   // is an extern inline function.
   2606   // Don't complain about specializations. They are not supposed to have
   2607   // storage classes.
   2608   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   2609       New->getStorageClass() == SC_Static &&
   2610       Old->hasExternalFormalLinkage() &&
   2611       !New->getTemplateSpecializationInfo() &&
   2612       !canRedefineFunction(Old, getLangOpts())) {
   2613     if (getLangOpts().MicrosoftExt) {
   2614       Diag(New->getLocation(), diag::ext_static_non_static) << New;
   2615       Diag(OldLocation, PrevDiag);
   2616     } else {
   2617       Diag(New->getLocation(), diag::err_static_non_static) << New;
   2618       Diag(OldLocation, PrevDiag);
   2619       return true;
   2620     }
   2621   }
   2622 
   2623 
   2624   // If a function is first declared with a calling convention, but is later
   2625   // declared or defined without one, all following decls assume the calling
   2626   // convention of the first.
   2627   //
   2628   // It's OK if a function is first declared without a calling convention,
   2629   // but is later declared or defined with the default calling convention.
   2630   //
   2631   // To test if either decl has an explicit calling convention, we look for
   2632   // AttributedType sugar nodes on the type as written.  If they are missing or
   2633   // were canonicalized away, we assume the calling convention was implicit.
   2634   //
   2635   // Note also that we DO NOT return at this point, because we still have
   2636   // other tests to run.
   2637   QualType OldQType = Context.getCanonicalType(Old->getType());
   2638   QualType NewQType = Context.getCanonicalType(New->getType());
   2639   const FunctionType *OldType = cast<FunctionType>(OldQType);
   2640   const FunctionType *NewType = cast<FunctionType>(NewQType);
   2641   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   2642   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   2643   bool RequiresAdjustment = false;
   2644 
   2645   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
   2646     FunctionDecl *First = Old->getFirstDecl();
   2647     const FunctionType *FT =
   2648         First->getType().getCanonicalType()->castAs<FunctionType>();
   2649     FunctionType::ExtInfo FI = FT->getExtInfo();
   2650     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
   2651     if (!NewCCExplicit) {
   2652       // Inherit the CC from the previous declaration if it was specified
   2653       // there but not here.
   2654       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   2655       RequiresAdjustment = true;
   2656     } else {
   2657       // Calling conventions aren't compatible, so complain.
   2658       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
   2659       Diag(New->getLocation(), diag::err_cconv_change)
   2660         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   2661         << !FirstCCExplicit
   2662         << (!FirstCCExplicit ? "" :
   2663             FunctionType::getNameForCallConv(FI.getCC()));
   2664 
   2665       // Put the note on the first decl, since it is the one that matters.
   2666       Diag(First->getLocation(), diag::note_previous_declaration);
   2667       return true;
   2668     }
   2669   }
   2670 
   2671   // FIXME: diagnose the other way around?
   2672   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   2673     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   2674     RequiresAdjustment = true;
   2675   }
   2676 
   2677   // Merge regparm attribute.
   2678   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   2679       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   2680     if (NewTypeInfo.getHasRegParm()) {
   2681       Diag(New->getLocation(), diag::err_regparm_mismatch)
   2682         << NewType->getRegParmType()
   2683         << OldType->getRegParmType();
   2684       Diag(OldLocation, diag::note_previous_declaration);
   2685       return true;
   2686     }
   2687 
   2688     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   2689     RequiresAdjustment = true;
   2690   }
   2691 
   2692   // Merge ns_returns_retained attribute.
   2693   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
   2694     if (NewTypeInfo.getProducesResult()) {
   2695       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
   2696       Diag(OldLocation, diag::note_previous_declaration);
   2697       return true;
   2698     }
   2699 
   2700     NewTypeInfo = NewTypeInfo.withProducesResult(true);
   2701     RequiresAdjustment = true;
   2702   }
   2703 
   2704   if (RequiresAdjustment) {
   2705     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
   2706     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
   2707     New->setType(QualType(AdjustedType, 0));
   2708     NewQType = Context.getCanonicalType(New->getType());
   2709     NewType = cast<FunctionType>(NewQType);
   2710   }
   2711 
   2712   // If this redeclaration makes the function inline, we may need to add it to
   2713   // UndefinedButUsed.
   2714   if (!Old->isInlined() && New->isInlined() &&
   2715       !New->hasAttr<GNUInlineAttr>() &&
   2716       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
   2717       Old->isUsed(false) &&
   2718       !Old->isDefined() && !New->isThisDeclarationADefinition())
   2719     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
   2720                                            SourceLocation()));
   2721 
   2722   // If this redeclaration makes it newly gnu_inline, we don't want to warn
   2723   // about it.
   2724   if (New->hasAttr<GNUInlineAttr>() &&
   2725       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
   2726     UndefinedButUsed.erase(Old->getCanonicalDecl());
   2727   }
   2728 
   2729   if (getLangOpts().CPlusPlus) {
   2730     // (C++98 13.1p2):
   2731     //   Certain function declarations cannot be overloaded:
   2732     //     -- Function declarations that differ only in the return type
   2733     //        cannot be overloaded.
   2734 
   2735     // Go back to the type source info to compare the declared return types,
   2736     // per C++1y [dcl.type.auto]p13:
   2737     //   Redeclarations or specializations of a function or function template
   2738     //   with a declared return type that uses a placeholder type shall also
   2739     //   use that placeholder, not a deduced type.
   2740     QualType OldDeclaredReturnType =
   2741         (Old->getTypeSourceInfo()
   2742              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2743              : OldType)->getReturnType();
   2744     QualType NewDeclaredReturnType =
   2745         (New->getTypeSourceInfo()
   2746              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2747              : NewType)->getReturnType();
   2748     QualType ResQT;
   2749     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
   2750         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
   2751           New->isLocalExternDecl())) {
   2752       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
   2753           OldDeclaredReturnType->isObjCObjectPointerType())
   2754         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   2755       if (ResQT.isNull()) {
   2756         if (New->isCXXClassMember() && New->isOutOfLine())
   2757           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
   2758               << New << New->getReturnTypeSourceRange();
   2759         else
   2760           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
   2761               << New->getReturnTypeSourceRange();
   2762         Diag(OldLocation, PrevDiag) << Old << Old->getType()
   2763                                     << Old->getReturnTypeSourceRange();
   2764         return true;
   2765       }
   2766       else
   2767         NewQType = ResQT;
   2768     }
   2769 
   2770     QualType OldReturnType = OldType->getReturnType();
   2771     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
   2772     if (OldReturnType != NewReturnType) {
   2773       // If this function has a deduced return type and has already been
   2774       // defined, copy the deduced value from the old declaration.
   2775       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
   2776       if (OldAT && OldAT->isDeduced()) {
   2777         New->setType(
   2778             SubstAutoType(New->getType(),
   2779                           OldAT->isDependentType() ? Context.DependentTy
   2780                                                    : OldAT->getDeducedType()));
   2781         NewQType = Context.getCanonicalType(
   2782             SubstAutoType(NewQType,
   2783                           OldAT->isDependentType() ? Context.DependentTy
   2784                                                    : OldAT->getDeducedType()));
   2785       }
   2786     }
   2787 
   2788     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   2789     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   2790     if (OldMethod && NewMethod) {
   2791       // Preserve triviality.
   2792       NewMethod->setTrivial(OldMethod->isTrivial());
   2793 
   2794       // MSVC allows explicit template specialization at class scope:
   2795       // 2 CXXMethodDecls referring to the same function will be injected.
   2796       // We don't want a redeclaration error.
   2797       bool IsClassScopeExplicitSpecialization =
   2798                               OldMethod->isFunctionTemplateSpecialization() &&
   2799                               NewMethod->isFunctionTemplateSpecialization();
   2800       bool isFriend = NewMethod->getFriendObjectKind();
   2801 
   2802       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
   2803           !IsClassScopeExplicitSpecialization) {
   2804         //    -- Member function declarations with the same name and the
   2805         //       same parameter types cannot be overloaded if any of them
   2806         //       is a static member function declaration.
   2807         if (OldMethod->isStatic() != NewMethod->isStatic()) {
   2808           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   2809           Diag(OldLocation, PrevDiag) << Old << Old->getType();
   2810           return true;
   2811         }
   2812 
   2813         // C++ [class.mem]p1:
   2814         //   [...] A member shall not be declared twice in the
   2815         //   member-specification, except that a nested class or member
   2816         //   class template can be declared and then later defined.
   2817         if (ActiveTemplateInstantiations.empty()) {
   2818           unsigned NewDiag;
   2819           if (isa<CXXConstructorDecl>(OldMethod))
   2820             NewDiag = diag::err_constructor_redeclared;
   2821           else if (isa<CXXDestructorDecl>(NewMethod))
   2822             NewDiag = diag::err_destructor_redeclared;
   2823           else if (isa<CXXConversionDecl>(NewMethod))
   2824             NewDiag = diag::err_conv_function_redeclared;
   2825           else
   2826             NewDiag = diag::err_member_redeclared;
   2827 
   2828           Diag(New->getLocation(), NewDiag);
   2829         } else {
   2830           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
   2831             << New << New->getType();
   2832         }
   2833         Diag(OldLocation, PrevDiag) << Old << Old->getType();
   2834         return true;
   2835 
   2836       // Complain if this is an explicit declaration of a special
   2837       // member that was initially declared implicitly.
   2838       //
   2839       // As an exception, it's okay to befriend such methods in order
   2840       // to permit the implicit constructor/destructor/operator calls.
   2841       } else if (OldMethod->isImplicit()) {
   2842         if (isFriend) {
   2843           NewMethod->setImplicit();
   2844         } else {
   2845           Diag(NewMethod->getLocation(),
   2846                diag::err_definition_of_implicitly_declared_member)
   2847             << New << getSpecialMember(OldMethod);
   2848           return true;
   2849         }
   2850       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
   2851         Diag(NewMethod->getLocation(),
   2852              diag::err_definition_of_explicitly_defaulted_member)
   2853           << getSpecialMember(OldMethod);
   2854         return true;
   2855       }
   2856     }
   2857 
   2858     // C++11 [dcl.attr.noreturn]p1:
   2859     //   The first declaration of a function shall specify the noreturn
   2860     //   attribute if any declaration of that function specifies the noreturn
   2861     //   attribute.
   2862     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
   2863     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
   2864       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
   2865       Diag(Old->getFirstDecl()->getLocation(),
   2866            diag::note_noreturn_missing_first_decl);
   2867     }
   2868 
   2869     // C++11 [dcl.attr.depend]p2:
   2870     //   The first declaration of a function shall specify the
   2871     //   carries_dependency attribute for its declarator-id if any declaration
   2872     //   of the function specifies the carries_dependency attribute.
   2873     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
   2874     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
   2875       Diag(CDA->getLocation(),
   2876            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
   2877       Diag(Old->getFirstDecl()->getLocation(),
   2878            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
   2879     }
   2880 
   2881     // (C++98 8.3.5p3):
   2882     //   All declarations for a function shall agree exactly in both the
   2883     //   return type and the parameter-type-list.
   2884     // We also want to respect all the extended bits except noreturn.
   2885 
   2886     // noreturn should now match unless the old type info didn't have it.
   2887     QualType OldQTypeForComparison = OldQType;
   2888     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   2889       assert(OldQType == QualType(OldType, 0));
   2890       const FunctionType *OldTypeForComparison
   2891         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   2892       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   2893       assert(OldQTypeForComparison.isCanonical());
   2894     }
   2895 
   2896     if (haveIncompatibleLanguageLinkages(Old, New)) {
   2897       // As a special case, retain the language linkage from previous
   2898       // declarations of a friend function as an extension.
   2899       //
   2900       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
   2901       // and is useful because there's otherwise no way to specify language
   2902       // linkage within class scope.
   2903       //
   2904       // Check cautiously as the friend object kind isn't yet complete.
   2905       if (New->getFriendObjectKind() != Decl::FOK_None) {
   2906         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
   2907         Diag(OldLocation, PrevDiag);
   2908       } else {
   2909         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   2910         Diag(OldLocation, PrevDiag);
   2911         return true;
   2912       }
   2913     }
   2914 
   2915     if (OldQTypeForComparison == NewQType)
   2916       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   2917 
   2918     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
   2919         New->isLocalExternDecl()) {
   2920       // It's OK if we couldn't merge types for a local function declaraton
   2921       // if either the old or new type is dependent. We'll merge the types
   2922       // when we instantiate the function.
   2923       return false;
   2924     }
   2925 
   2926     // Fall through for conflicting redeclarations and redefinitions.
   2927   }
   2928 
   2929   // C: Function types need to be compatible, not identical. This handles
   2930   // duplicate function decls like "void f(int); void f(enum X);" properly.
   2931   if (!getLangOpts().CPlusPlus &&
   2932       Context.typesAreCompatible(OldQType, NewQType)) {
   2933     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   2934     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   2935     const FunctionProtoType *OldProto = nullptr;
   2936     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
   2937         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   2938       // The old declaration provided a function prototype, but the
   2939       // new declaration does not. Merge in the prototype.
   2940       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   2941       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
   2942       NewQType =
   2943           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
   2944                                   OldProto->getExtProtoInfo());
   2945       New->setType(NewQType);
   2946       New->setHasInheritedPrototype();
   2947 
   2948       // Synthesize parameters with the same types.
   2949       SmallVector<ParmVarDecl*, 16> Params;
   2950       for (const auto &ParamType : OldProto->param_types()) {
   2951         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
   2952                                                  SourceLocation(), nullptr,
   2953                                                  ParamType, /*TInfo=*/nullptr,
   2954                                                  SC_None, nullptr);
   2955         Param->setScopeInfo(0, Params.size());
   2956         Param->setImplicit();
   2957         Params.push_back(Param);
   2958       }
   2959 
   2960       New->setParams(Params);
   2961     }
   2962 
   2963     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   2964   }
   2965 
   2966   // GNU C permits a K&R definition to follow a prototype declaration
   2967   // if the declared types of the parameters in the K&R definition
   2968   // match the types in the prototype declaration, even when the
   2969   // promoted types of the parameters from the K&R definition differ
   2970   // from the types in the prototype. GCC then keeps the types from
   2971   // the prototype.
   2972   //
   2973   // If a variadic prototype is followed by a non-variadic K&R definition,
   2974   // the K&R definition becomes variadic.  This is sort of an edge case, but
   2975   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   2976   // C99 6.9.1p8.
   2977   if (!getLangOpts().CPlusPlus &&
   2978       Old->hasPrototype() && !New->hasPrototype() &&
   2979       New->getType()->getAs<FunctionProtoType>() &&
   2980       Old->getNumParams() == New->getNumParams()) {
   2981     SmallVector<QualType, 16> ArgTypes;
   2982     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   2983     const FunctionProtoType *OldProto
   2984       = Old->getType()->getAs<FunctionProtoType>();
   2985     const FunctionProtoType *NewProto
   2986       = New->getType()->getAs<FunctionProtoType>();
   2987 
   2988     // Determine whether this is the GNU C extension.
   2989     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
   2990                                                NewProto->getReturnType());
   2991     bool LooseCompatible = !MergedReturn.isNull();
   2992     for (unsigned Idx = 0, End = Old->getNumParams();
   2993          LooseCompatible && Idx != End; ++Idx) {
   2994       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   2995       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   2996       if (Context.typesAreCompatible(OldParm->getType(),
   2997                                      NewProto->getParamType(Idx))) {
   2998         ArgTypes.push_back(NewParm->getType());
   2999       } else if (Context.typesAreCompatible(OldParm->getType(),
   3000                                             NewParm->getType(),
   3001                                             /*CompareUnqualified=*/true)) {
   3002         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
   3003                                            NewProto->getParamType(Idx) };
   3004         Warnings.push_back(Warn);
   3005         ArgTypes.push_back(NewParm->getType());
   3006       } else
   3007         LooseCompatible = false;
   3008     }
   3009 
   3010     if (LooseCompatible) {
   3011       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   3012         Diag(Warnings[Warn].NewParm->getLocation(),
   3013              diag::ext_param_promoted_not_compatible_with_prototype)
   3014           << Warnings[Warn].PromotedType
   3015           << Warnings[Warn].OldParm->getType();
   3016         if (Warnings[Warn].OldParm->getLocation().isValid())
   3017           Diag(Warnings[Warn].OldParm->getLocation(),
   3018                diag::note_previous_declaration);
   3019       }
   3020 
   3021       if (MergeTypeWithOld)
   3022         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
   3023                                              OldProto->getExtProtoInfo()));
   3024       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   3025     }
   3026 
   3027     // Fall through to diagnose conflicting types.
   3028   }
   3029 
   3030   // A function that has already been declared has been redeclared or
   3031   // defined with a different type; show an appropriate diagnostic.
   3032 
   3033   // If the previous declaration was an implicitly-generated builtin
   3034   // declaration, then at the very least we should use a specialized note.
   3035   unsigned BuiltinID;
   3036   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
   3037     // If it's actually a library-defined builtin function like 'malloc'
   3038     // or 'printf', just warn about the incompatible redeclaration.
   3039     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   3040       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   3041       Diag(OldLocation, diag::note_previous_builtin_declaration)
   3042         << Old << Old->getType();
   3043 
   3044       // If this is a global redeclaration, just forget hereafter
   3045       // about the "builtin-ness" of the function.
   3046       //
   3047       // Doing this for local extern declarations is problematic.  If
   3048       // the builtin declaration remains visible, a second invalid
   3049       // local declaration will produce a hard error; if it doesn't
   3050       // remain visible, a single bogus local redeclaration (which is
   3051       // actually only a warning) could break all the downstream code.
   3052       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
   3053         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
   3054 
   3055       return false;
   3056     }
   3057 
   3058     PrevDiag = diag::note_previous_builtin_declaration;
   3059   }
   3060 
   3061   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   3062   Diag(OldLocation, PrevDiag) << Old << Old->getType();
   3063   return true;
   3064 }
   3065 
   3066 /// \brief Completes the merge of two function declarations that are
   3067 /// known to be compatible.
   3068 ///
   3069 /// This routine handles the merging of attributes and other
   3070 /// properties of function declarations from the old declaration to
   3071 /// the new declaration, once we know that New is in fact a
   3072 /// redeclaration of Old.
   3073 ///
   3074 /// \returns false
   3075 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
   3076                                         Scope *S, bool MergeTypeWithOld) {
   3077   // Merge the attributes
   3078   mergeDeclAttributes(New, Old);
   3079 
   3080   // Merge "pure" flag.
   3081   if (Old->isPure())
   3082     New->setPure();
   3083 
   3084   // Merge "used" flag.
   3085   if (Old->getMostRecentDecl()->isUsed(false))
   3086     New->setIsUsed();
   3087 
   3088   // Merge attributes from the parameters.  These can mismatch with K&R
   3089   // declarations.
   3090   if (New->getNumParams() == Old->getNumParams())
   3091     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
   3092       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
   3093                                *this);
   3094 
   3095   if (getLangOpts().CPlusPlus)
   3096     return MergeCXXFunctionDecl(New, Old, S);
   3097 
   3098   // Merge the function types so the we get the composite types for the return
   3099   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
   3100   // was visible.
   3101   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
   3102   if (!Merged.isNull() && MergeTypeWithOld)
   3103     New->setType(Merged);
   3104 
   3105   return false;
   3106 }
   3107 
   3108 
   3109 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   3110                                 ObjCMethodDecl *oldMethod) {
   3111 
   3112   // Merge the attributes, including deprecated/unavailable
   3113   AvailabilityMergeKind MergeKind =
   3114     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
   3115                                                    : AMK_Override;
   3116   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
   3117 
   3118   // Merge attributes from the parameters.
   3119   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
   3120                                        oe = oldMethod->param_end();
   3121   for (ObjCMethodDecl::param_iterator
   3122          ni = newMethod->param_begin(), ne = newMethod->param_end();
   3123        ni != ne && oi != oe; ++ni, ++oi)
   3124     mergeParamDeclAttributes(*ni, *oi, *this);
   3125 
   3126   CheckObjCMethodOverride(newMethod, oldMethod);
   3127 }
   3128 
   3129 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   3130 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   3131 /// emitting diagnostics as appropriate.
   3132 ///
   3133 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   3134 /// to here in AddInitializerToDecl. We can't check them before the initializer
   3135 /// is attached.
   3136 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
   3137                              bool MergeTypeWithOld) {
   3138   if (New->isInvalidDecl() || Old->isInvalidDecl())
   3139     return;
   3140 
   3141   QualType MergedT;
   3142   if (getLangOpts().CPlusPlus) {
   3143     if (New->getType()->isUndeducedType()) {
   3144       // We don't know what the new type is until the initializer is attached.
   3145       return;
   3146     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   3147       // These could still be something that needs exception specs checked.
   3148       return MergeVarDeclExceptionSpecs(New, Old);
   3149     }
   3150     // C++ [basic.link]p10:
   3151     //   [...] the types specified by all declarations referring to a given
   3152     //   object or function shall be identical, except that declarations for an
   3153     //   array object can specify array types that differ by the presence or
   3154     //   absence of a major array bound (8.3.4).
   3155     else if (Old->getType()->isIncompleteArrayType() &&
   3156              New->getType()->isArrayType()) {
   3157       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
   3158       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
   3159       if (Context.hasSameType(OldArray->getElementType(),
   3160                               NewArray->getElementType()))
   3161         MergedT = New->getType();
   3162     } else if (Old->getType()->isArrayType() &&
   3163                New->getType()->isIncompleteArrayType()) {
   3164       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
   3165       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
   3166       if (Context.hasSameType(OldArray->getElementType(),
   3167                               NewArray->getElementType()))
   3168         MergedT = Old->getType();
   3169     } else if (New->getType()->isObjCObjectPointerType() &&
   3170                Old->getType()->isObjCObjectPointerType()) {
   3171       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   3172                                               Old->getType());
   3173     }
   3174   } else {
   3175     // C 6.2.7p2:
   3176     //   All declarations that refer to the same object or function shall have
   3177     //   compatible type.
   3178     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   3179   }
   3180   if (MergedT.isNull()) {
   3181     // It's OK if we couldn't merge types if either type is dependent, for a
   3182     // block-scope variable. In other cases (static data members of class
   3183     // templates, variable templates, ...), we require the types to be
   3184     // equivalent.
   3185     // FIXME: The C++ standard doesn't say anything about this.
   3186     if ((New->getType()->isDependentType() ||
   3187          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
   3188       // If the old type was dependent, we can't merge with it, so the new type
   3189       // becomes dependent for now. We'll reproduce the original type when we
   3190       // instantiate the TypeSourceInfo for the variable.
   3191       if (!New->getType()->isDependentType() && MergeTypeWithOld)
   3192         New->setType(Context.DependentTy);
   3193       return;
   3194     }
   3195 
   3196     // FIXME: Even if this merging succeeds, some other non-visible declaration
   3197     // of this variable might have an incompatible type. For instance:
   3198     //
   3199     //   extern int arr[];
   3200     //   void f() { extern int arr[2]; }
   3201     //   void g() { extern int arr[3]; }
   3202     //
   3203     // Neither C nor C++ requires a diagnostic for this, but we should still try
   3204     // to diagnose it.
   3205     Diag(New->getLocation(), diag::err_redefinition_different_type)
   3206       << New->getDeclName() << New->getType() << Old->getType();
   3207     Diag(Old->getLocation(), diag::note_previous_definition);
   3208     return New->setInvalidDecl();
   3209   }
   3210 
   3211   // Don't actually update the type on the new declaration if the old
   3212   // declaration was an extern declaration in a different scope.
   3213   if (MergeTypeWithOld)
   3214     New->setType(MergedT);
   3215 }
   3216 
   3217 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
   3218                                   LookupResult &Previous) {
   3219   // C11 6.2.7p4:
   3220   //   For an identifier with internal or external linkage declared
   3221   //   in a scope in which a prior declaration of that identifier is
   3222   //   visible, if the prior declaration specifies internal or
   3223   //   external linkage, the type of the identifier at the later
   3224   //   declaration becomes the composite type.
   3225   //
   3226   // If the variable isn't visible, we do not merge with its type.
   3227   if (Previous.isShadowed())
   3228     return false;
   3229 
   3230   if (S.getLangOpts().CPlusPlus) {
   3231     // C++11 [dcl.array]p3:
   3232     //   If there is a preceding declaration of the entity in the same
   3233     //   scope in which the bound was specified, an omitted array bound
   3234     //   is taken to be the same as in that earlier declaration.
   3235     return NewVD->isPreviousDeclInSameBlockScope() ||
   3236            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
   3237             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
   3238   } else {
   3239     // If the old declaration was function-local, don't merge with its
   3240     // type unless we're in the same function.
   3241     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
   3242            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
   3243   }
   3244 }
   3245 
   3246 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   3247 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   3248 /// situation, merging decls or emitting diagnostics as appropriate.
   3249 ///
   3250 /// Tentative definition rules (C99 6.9.2p2) are checked by
   3251 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   3252 /// definitions here, since the initializer hasn't been attached.
   3253 ///
   3254 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
   3255   // If the new decl is already invalid, don't do any other checking.
   3256   if (New->isInvalidDecl())
   3257     return;
   3258 
   3259   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
   3260 
   3261   // Verify the old decl was also a variable or variable template.
   3262   VarDecl *Old = nullptr;
   3263   VarTemplateDecl *OldTemplate = nullptr;
   3264   if (Previous.isSingleResult()) {
   3265     if (NewTemplate) {
   3266       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
   3267       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
   3268     } else
   3269       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
   3270   }
   3271   if (!Old) {
   3272     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   3273       << New->getDeclName();
   3274     Diag(Previous.getRepresentativeDecl()->getLocation(),
   3275          diag::note_previous_definition);
   3276     return New->setInvalidDecl();
   3277   }
   3278 
   3279   if (!shouldLinkPossiblyHiddenDecl(Old, New))
   3280     return;
   3281 
   3282   // Ensure the template parameters are compatible.
   3283   if (NewTemplate &&
   3284       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
   3285                                       OldTemplate->getTemplateParameters(),
   3286                                       /*Complain=*/true, TPL_TemplateMatch))
   3287     return;
   3288 
   3289   // C++ [class.mem]p1:
   3290   //   A member shall not be declared twice in the member-specification [...]
   3291   //
   3292   // Here, we need only consider static data members.
   3293   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   3294     Diag(New->getLocation(), diag::err_duplicate_member)
   3295       << New->getIdentifier();
   3296     Diag(Old->getLocation(), diag::note_previous_declaration);
   3297     New->setInvalidDecl();
   3298   }
   3299 
   3300   mergeDeclAttributes(New, Old);
   3301   // Warn if an already-declared variable is made a weak_import in a subsequent
   3302   // declaration
   3303   if (New->hasAttr<WeakImportAttr>() &&
   3304       Old->getStorageClass() == SC_None &&
   3305       !Old->hasAttr<WeakImportAttr>()) {
   3306     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   3307     Diag(Old->getLocation(), diag::note_previous_definition);
   3308     // Remove weak_import attribute on new declaration.
   3309     New->dropAttr<WeakImportAttr>();
   3310   }
   3311 
   3312   // Merge the types.
   3313   VarDecl *MostRecent = Old->getMostRecentDecl();
   3314   if (MostRecent != Old) {
   3315     MergeVarDeclTypes(New, MostRecent,
   3316                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
   3317     if (New->isInvalidDecl())
   3318       return;
   3319   }
   3320 
   3321   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
   3322   if (New->isInvalidDecl())
   3323     return;
   3324 
   3325   diag::kind PrevDiag;
   3326   SourceLocation OldLocation;
   3327   std::tie(PrevDiag, OldLocation) =
   3328       getNoteDiagForInvalidRedeclaration(Old, New);
   3329 
   3330   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
   3331   if (New->getStorageClass() == SC_Static &&
   3332       !New->isStaticDataMember() &&
   3333       Old->hasExternalFormalLinkage()) {
   3334     if (getLangOpts().MicrosoftExt) {
   3335       Diag(New->getLocation(), diag::ext_static_non_static)
   3336           << New->getDeclName();
   3337       Diag(OldLocation, PrevDiag);
   3338     } else {
   3339       Diag(New->getLocation(), diag::err_static_non_static)
   3340           << New->getDeclName();
   3341       Diag(OldLocation, PrevDiag);
   3342       return New->setInvalidDecl();
   3343     }
   3344   }
   3345   // C99 6.2.2p4:
   3346   //   For an identifier declared with the storage-class specifier
   3347   //   extern in a scope in which a prior declaration of that
   3348   //   identifier is visible,23) if the prior declaration specifies
   3349   //   internal or external linkage, the linkage of the identifier at
   3350   //   the later declaration is the same as the linkage specified at
   3351   //   the prior declaration. If no prior declaration is visible, or
   3352   //   if the prior declaration specifies no linkage, then the
   3353   //   identifier has external linkage.
   3354   if (New->hasExternalStorage() && Old->hasLinkage())
   3355     /* Okay */;
   3356   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
   3357            !New->isStaticDataMember() &&
   3358            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
   3359     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   3360     Diag(OldLocation, PrevDiag);
   3361     return New->setInvalidDecl();
   3362   }
   3363 
   3364   // Check if extern is followed by non-extern and vice-versa.
   3365   if (New->hasExternalStorage() &&
   3366       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
   3367     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   3368     Diag(OldLocation, PrevDiag);
   3369     return New->setInvalidDecl();
   3370   }
   3371   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
   3372       !New->hasExternalStorage()) {
   3373     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   3374     Diag(OldLocation, PrevDiag);
   3375     return New->setInvalidDecl();
   3376   }
   3377 
   3378   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   3379 
   3380   // FIXME: The test for external storage here seems wrong? We still
   3381   // need to check for mismatches.
   3382   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   3383       // Don't complain about out-of-line definitions of static members.
   3384       !(Old->getLexicalDeclContext()->isRecord() &&
   3385         !New->getLexicalDeclContext()->isRecord())) {
   3386     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   3387     Diag(OldLocation, PrevDiag);
   3388     return New->setInvalidDecl();
   3389   }
   3390 
   3391   if (New->getTLSKind() != Old->getTLSKind()) {
   3392     if (!Old->getTLSKind()) {
   3393       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   3394       Diag(OldLocation, PrevDiag);
   3395     } else if (!New->getTLSKind()) {
   3396       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   3397       Diag(OldLocation, PrevDiag);
   3398     } else {
   3399       // Do not allow redeclaration to change the variable between requiring
   3400       // static and dynamic initialization.
   3401       // FIXME: GCC allows this, but uses the TLS keyword on the first
   3402       // declaration to determine the kind. Do we need to be compatible here?
   3403       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
   3404         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
   3405       Diag(OldLocation, PrevDiag);
   3406     }
   3407   }
   3408 
   3409   // C++ doesn't have tentative definitions, so go right ahead and check here.
   3410   const VarDecl *Def;
   3411   if (getLangOpts().CPlusPlus &&
   3412       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   3413       (Def = Old->getDefinition())) {
   3414     Diag(New->getLocation(), diag::err_redefinition) << New;
   3415     Diag(Def->getLocation(), diag::note_previous_definition);
   3416     New->setInvalidDecl();
   3417     return;
   3418   }
   3419 
   3420   if (haveIncompatibleLanguageLinkages(Old, New)) {
   3421     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   3422     Diag(OldLocation, PrevDiag);
   3423     New->setInvalidDecl();
   3424     return;
   3425   }
   3426 
   3427   // Merge "used" flag.
   3428   if (Old->getMostRecentDecl()->isUsed(false))
   3429     New->setIsUsed();
   3430 
   3431   // Keep a chain of previous declarations.
   3432   New->setPreviousDecl(Old);
   3433   if (NewTemplate)
   3434     NewTemplate->setPreviousDecl(OldTemplate);
   3435 
   3436   // Inherit access appropriately.
   3437   New->setAccess(Old->getAccess());
   3438   if (NewTemplate)
   3439     NewTemplate->setAccess(New->getAccess());
   3440 }
   3441 
   3442 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3443 /// no declarator (e.g. "struct foo;") is parsed.
   3444 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   3445                                        DeclSpec &DS) {
   3446   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
   3447 }
   3448 
   3449 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
   3450 // disambiguate entities defined in different scopes.
   3451 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
   3452 // compatibility.
   3453 // We will pick our mangling number depending on which version of MSVC is being
   3454 // targeted.
   3455 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
   3456   return LO.isCompatibleWithMSVC(19) ? S->getMSCurManglingNumber()
   3457                                      : S->getMSLastManglingNumber();
   3458 }
   3459 
   3460 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
   3461   if (!Context.getLangOpts().CPlusPlus)
   3462     return;
   3463 
   3464   if (isa<CXXRecordDecl>(Tag->getParent())) {
   3465     // If this tag is the direct child of a class, number it if
   3466     // it is anonymous.
   3467     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
   3468       return;
   3469     MangleNumberingContext &MCtx =
   3470         Context.getManglingNumberContext(Tag->getParent());
   3471     Context.setManglingNumber(
   3472         Tag, MCtx.getManglingNumber(
   3473                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
   3474     return;
   3475   }
   3476 
   3477   // If this tag isn't a direct child of a class, number it if it is local.
   3478   Decl *ManglingContextDecl;
   3479   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
   3480           Tag->getDeclContext(), ManglingContextDecl)) {
   3481     Context.setManglingNumber(
   3482         Tag, MCtx->getManglingNumber(
   3483                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
   3484   }
   3485 }
   3486 
   3487 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
   3488                                         TypedefNameDecl *NewTD) {
   3489   // Do nothing if the tag is not anonymous or already has an
   3490   // associated typedef (from an earlier typedef in this decl group).
   3491   if (TagFromDeclSpec->getIdentifier())
   3492     return;
   3493   if (TagFromDeclSpec->getTypedefNameForAnonDecl())
   3494     return;
   3495 
   3496   // A well-formed anonymous tag must always be a TUK_Definition.
   3497   assert(TagFromDeclSpec->isThisDeclarationADefinition());
   3498 
   3499   // The type must match the tag exactly;  no qualifiers allowed.
   3500   if (!Context.hasSameType(NewTD->getUnderlyingType(),
   3501                            Context.getTagDeclType(TagFromDeclSpec)))
   3502     return;
   3503 
   3504   // If we've already computed linkage for the anonymous tag, then
   3505   // adding a typedef name for the anonymous decl can change that
   3506   // linkage, which might be a serious problem.  Diagnose this as
   3507   // unsupported and ignore the typedef name.  TODO: we should
   3508   // pursue this as a language defect and establish a formal rule
   3509   // for how to handle it.
   3510   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
   3511     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
   3512 
   3513     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
   3514     tagLoc = getLocForEndOfToken(tagLoc);
   3515 
   3516     llvm::SmallString<40> textToInsert;
   3517     textToInsert += ' ';
   3518     textToInsert += NewTD->getIdentifier()->getName();
   3519     Diag(tagLoc, diag::note_typedef_changes_linkage)
   3520         << FixItHint::CreateInsertion(tagLoc, textToInsert);
   3521     return;
   3522   }
   3523 
   3524   // Otherwise, set this is the anon-decl typedef for the tag.
   3525   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   3526 }
   3527 
   3528 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3529 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
   3530 /// parameters to cope with template friend declarations.
   3531 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   3532                                        DeclSpec &DS,
   3533                                        MultiTemplateParamsArg TemplateParams,
   3534                                        bool IsExplicitInstantiation) {
   3535   Decl *TagD = nullptr;
   3536   TagDecl *Tag = nullptr;
   3537   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   3538       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   3539       DS.getTypeSpecType() == DeclSpec::TST_interface ||
   3540       DS.getTypeSpecType() == DeclSpec::TST_union ||
   3541       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   3542     TagD = DS.getRepAsDecl();
   3543 
   3544     if (!TagD) // We probably had an error
   3545       return nullptr;
   3546 
   3547     // Note that the above type specs guarantee that the
   3548     // type rep is a Decl, whereas in many of the others
   3549     // it's a Type.
   3550     if (isa<TagDecl>(TagD))
   3551       Tag = cast<TagDecl>(TagD);
   3552     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
   3553       Tag = CTD->getTemplatedDecl();
   3554   }
   3555 
   3556   if (Tag) {
   3557     handleTagNumbering(Tag, S);
   3558     Tag->setFreeStanding();
   3559     if (Tag->isInvalidDecl())
   3560       return Tag;
   3561   }
   3562 
   3563   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   3564     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   3565     // or incomplete types shall not be restrict-qualified."
   3566     if (TypeQuals & DeclSpec::TQ_restrict)
   3567       Diag(DS.getRestrictSpecLoc(),
   3568            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   3569            << DS.getSourceRange();
   3570   }
   3571 
   3572   if (DS.isConstexprSpecified()) {
   3573     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
   3574     // and definitions of functions and variables.
   3575     if (Tag)
   3576       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
   3577         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   3578             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   3579             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
   3580             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
   3581     else
   3582       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
   3583     // Don't emit warnings after this error.
   3584     return TagD;
   3585   }
   3586 
   3587   DiagnoseFunctionSpecifiers(DS);
   3588 
   3589   if (DS.isFriendSpecified()) {
   3590     // If we're dealing with a decl but not a TagDecl, assume that
   3591     // whatever routines created it handled the friendship aspect.
   3592     if (TagD && !Tag)
   3593       return nullptr;
   3594     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   3595   }
   3596 
   3597   const CXXScopeSpec &SS = DS.getTypeSpecScope();
   3598   bool IsExplicitSpecialization =
   3599     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
   3600   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
   3601       !IsExplicitInstantiation && !IsExplicitSpecialization) {
   3602     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
   3603     // nested-name-specifier unless it is an explicit instantiation
   3604     // or an explicit specialization.
   3605     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
   3606     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
   3607       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   3608           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   3609           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
   3610           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
   3611       << SS.getRange();
   3612     return nullptr;
   3613   }
   3614 
   3615   // Track whether this decl-specifier declares anything.
   3616   bool DeclaresAnything = true;
   3617 
   3618   // Handle anonymous struct definitions.
   3619   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   3620     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
   3621         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   3622       if (getLangOpts().CPlusPlus ||
   3623           Record->getDeclContext()->isRecord())
   3624         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
   3625                                            Context.getPrintingPolicy());
   3626 
   3627       DeclaresAnything = false;
   3628     }
   3629   }
   3630 
   3631   // C11 6.7.2.1p2:
   3632   //   A struct-declaration that does not declare an anonymous structure or
   3633   //   anonymous union shall contain a struct-declarator-list.
   3634   //
   3635   // This rule also existed in C89 and C99; the grammar for struct-declaration
   3636   // did not permit a struct-declaration without a struct-declarator-list.
   3637   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
   3638       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   3639     // Check for Microsoft C extension: anonymous struct/union member.
   3640     // Handle 2 kinds of anonymous struct/union:
   3641     //   struct STRUCT;
   3642     //   union UNION;
   3643     // and
   3644     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   3645     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
   3646     if ((Tag && Tag->getDeclName()) ||
   3647         DS.getTypeSpecType() == DeclSpec::TST_typename) {
   3648       RecordDecl *Record = nullptr;
   3649       if (Tag)
   3650         Record = dyn_cast<RecordDecl>(Tag);
   3651       else if (const RecordType *RT =
   3652                    DS.getRepAsType().get()->getAsStructureType())
   3653         Record = RT->getDecl();
   3654       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
   3655         Record = UT->getDecl();
   3656 
   3657       if (Record && getLangOpts().MicrosoftExt) {
   3658         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
   3659           << Record->isUnion() << DS.getSourceRange();
   3660         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   3661       }
   3662 
   3663       DeclaresAnything = false;
   3664     }
   3665   }
   3666 
   3667   // Skip all the checks below if we have a type error.
   3668   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
   3669       (TagD && TagD->isInvalidDecl()))
   3670     return TagD;
   3671 
   3672   if (getLangOpts().CPlusPlus &&
   3673       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   3674     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   3675       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   3676           !Enum->getIdentifier() && !Enum->isInvalidDecl())
   3677         DeclaresAnything = false;
   3678 
   3679   if (!DS.isMissingDeclaratorOk()) {
   3680     // Customize diagnostic for a typedef missing a name.
   3681     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
   3682       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
   3683         << DS.getSourceRange();
   3684     else
   3685       DeclaresAnything = false;
   3686   }
   3687 
   3688   if (DS.isModulePrivateSpecified() &&
   3689       Tag && Tag->getDeclContext()->isFunctionOrMethod())
   3690     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
   3691       << Tag->getTagKind()
   3692       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
   3693 
   3694   ActOnDocumentableDecl(TagD);
   3695 
   3696   // C 6.7/2:
   3697   //   A declaration [...] shall declare at least a declarator [...], a tag,
   3698   //   or the members of an enumeration.
   3699   // C++ [dcl.dcl]p3:
   3700   //   [If there are no declarators], and except for the declaration of an
   3701   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
   3702   //   names into the program, or shall redeclare a name introduced by a
   3703   //   previous declaration.
   3704   if (!DeclaresAnything) {
   3705     // In C, we allow this as a (popular) extension / bug. Don't bother
   3706     // producing further diagnostics for redundant qualifiers after this.
   3707     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
   3708     return TagD;
   3709   }
   3710 
   3711   // C++ [dcl.stc]p1:
   3712   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
   3713   //   init-declarator-list of the declaration shall not be empty.
   3714   // C++ [dcl.fct.spec]p1:
   3715   //   If a cv-qualifier appears in a decl-specifier-seq, the
   3716   //   init-declarator-list of the declaration shall not be empty.
   3717   //
   3718   // Spurious qualifiers here appear to be valid in C.
   3719   unsigned DiagID = diag::warn_standalone_specifier;
   3720   if (getLangOpts().CPlusPlus)
   3721     DiagID = diag::ext_standalone_specifier;
   3722 
   3723   // Note that a linkage-specification sets a storage class, but
   3724   // 'extern "C" struct foo;' is actually valid and not theoretically
   3725   // useless.
   3726   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
   3727     if (SCS == DeclSpec::SCS_mutable)
   3728       // Since mutable is not a viable storage class specifier in C, there is
   3729       // no reason to treat it as an extension. Instead, diagnose as an error.
   3730       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
   3731     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
   3732       Diag(DS.getStorageClassSpecLoc(), DiagID)
   3733         << DeclSpec::getSpecifierName(SCS);
   3734   }
   3735 
   3736   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   3737     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
   3738       << DeclSpec::getSpecifierName(TSCS);
   3739   if (DS.getTypeQualifiers()) {
   3740     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3741       Diag(DS.getConstSpecLoc(), DiagID) << "const";
   3742     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   3743       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
   3744     // Restrict is covered above.
   3745     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   3746       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
   3747   }
   3748 
   3749   // Warn about ignored type attributes, for example:
   3750   // __attribute__((aligned)) struct A;
   3751   // Attributes should be placed after tag to apply to type declaration.
   3752   if (!DS.getAttributes().empty()) {
   3753     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
   3754     if (TypeSpecType == DeclSpec::TST_class ||
   3755         TypeSpecType == DeclSpec::TST_struct ||
   3756         TypeSpecType == DeclSpec::TST_interface ||
   3757         TypeSpecType == DeclSpec::TST_union ||
   3758         TypeSpecType == DeclSpec::TST_enum) {
   3759       AttributeList* attrs = DS.getAttributes().getList();
   3760       while (attrs) {
   3761         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
   3762         << attrs->getName()
   3763         << (TypeSpecType == DeclSpec::TST_class ? 0 :
   3764             TypeSpecType == DeclSpec::TST_struct ? 1 :
   3765             TypeSpecType == DeclSpec::TST_union ? 2 :
   3766             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
   3767         attrs = attrs->getNext();
   3768       }
   3769     }
   3770   }
   3771 
   3772   return TagD;
   3773 }
   3774 
   3775 /// We are trying to inject an anonymous member into the given scope;
   3776 /// check if there's an existing declaration that can't be overloaded.
   3777 ///
   3778 /// \return true if this is a forbidden redeclaration
   3779 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   3780                                          Scope *S,
   3781                                          DeclContext *Owner,
   3782                                          DeclarationName Name,
   3783                                          SourceLocation NameLoc,
   3784                                          unsigned diagnostic) {
   3785   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   3786                  Sema::ForRedeclaration);
   3787   if (!SemaRef.LookupName(R, S)) return false;
   3788 
   3789   if (R.getAsSingle<TagDecl>())
   3790     return false;
   3791 
   3792   // Pick a representative declaration.
   3793   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   3794   assert(PrevDecl && "Expected a non-null Decl");
   3795 
   3796   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   3797     return false;
   3798 
   3799   SemaRef.Diag(NameLoc, diagnostic) << Name;
   3800   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   3801 
   3802   return true;
   3803 }
   3804 
   3805 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   3806 /// anonymous struct or union AnonRecord into the owning context Owner
   3807 /// and scope S. This routine will be invoked just after we realize
   3808 /// that an unnamed union or struct is actually an anonymous union or
   3809 /// struct, e.g.,
   3810 ///
   3811 /// @code
   3812 /// union {
   3813 ///   int i;
   3814 ///   float f;
   3815 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   3816 ///    // f into the surrounding scope.x
   3817 /// @endcode
   3818 ///
   3819 /// This routine is recursive, injecting the names of nested anonymous
   3820 /// structs/unions into the owning context and scope as well.
   3821 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
   3822                                          DeclContext *Owner,
   3823                                          RecordDecl *AnonRecord,
   3824                                          AccessSpecifier AS,
   3825                                          SmallVectorImpl<NamedDecl *> &Chaining,
   3826                                          bool MSAnonStruct) {
   3827   unsigned diagKind
   3828     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
   3829                             : diag::err_anonymous_struct_member_redecl;
   3830 
   3831   bool Invalid = false;
   3832 
   3833   // Look every FieldDecl and IndirectFieldDecl with a name.
   3834   for (auto *D : AnonRecord->decls()) {
   3835     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
   3836         cast<NamedDecl>(D)->getDeclName()) {
   3837       ValueDecl *VD = cast<ValueDecl>(D);
   3838       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   3839                                        VD->getLocation(), diagKind)) {
   3840         // C++ [class.union]p2:
   3841         //   The names of the members of an anonymous union shall be
   3842         //   distinct from the names of any other entity in the
   3843         //   scope in which the anonymous union is declared.
   3844         Invalid = true;
   3845       } else {
   3846         // C++ [class.union]p2:
   3847         //   For the purpose of name lookup, after the anonymous union
   3848         //   definition, the members of the anonymous union are
   3849         //   considered to have been defined in the scope in which the
   3850         //   anonymous union is declared.
   3851         unsigned OldChainingSize = Chaining.size();
   3852         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   3853           Chaining.append(IF->chain_begin(), IF->chain_end());
   3854         else
   3855           Chaining.push_back(VD);
   3856 
   3857         assert(Chaining.size() >= 2);
   3858         NamedDecl **NamedChain =
   3859           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   3860         for (unsigned i = 0; i < Chaining.size(); i++)
   3861           NamedChain[i] = Chaining[i];
   3862 
   3863         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
   3864             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
   3865             VD->getType(), NamedChain, Chaining.size());
   3866 
   3867         for (const auto *Attr : VD->attrs())
   3868           IndirectField->addAttr(Attr->clone(SemaRef.Context));
   3869 
   3870         IndirectField->setAccess(AS);
   3871         IndirectField->setImplicit();
   3872         SemaRef.PushOnScopeChains(IndirectField, S);
   3873 
   3874         // That includes picking up the appropriate access specifier.
   3875         if (AS != AS_none) IndirectField->setAccess(AS);
   3876 
   3877         Chaining.resize(OldChainingSize);
   3878       }
   3879     }
   3880   }
   3881 
   3882   return Invalid;
   3883 }
   3884 
   3885 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   3886 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   3887 /// illegal input values are mapped to SC_None.
   3888 static StorageClass
   3889 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
   3890   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
   3891   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
   3892          "Parser allowed 'typedef' as storage class VarDecl.");
   3893   switch (StorageClassSpec) {
   3894   case DeclSpec::SCS_unspecified:    return SC_None;
   3895   case DeclSpec::SCS_extern:
   3896     if (DS.isExternInLinkageSpec())
   3897       return SC_None;
   3898     return SC_Extern;
   3899   case DeclSpec::SCS_static:         return SC_Static;
   3900   case DeclSpec::SCS_auto:           return SC_Auto;
   3901   case DeclSpec::SCS_register:       return SC_Register;
   3902   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   3903     // Illegal SCSs map to None: error reporting is up to the caller.
   3904   case DeclSpec::SCS_mutable:        // Fall through.
   3905   case DeclSpec::SCS_typedef:        return SC_None;
   3906   }
   3907   llvm_unreachable("unknown storage class specifier");
   3908 }
   3909 
   3910 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
   3911   assert(Record->hasInClassInitializer());
   3912 
   3913   for (const auto *I : Record->decls()) {
   3914     const auto *FD = dyn_cast<FieldDecl>(I);
   3915     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
   3916       FD = IFD->getAnonField();
   3917     if (FD && FD->hasInClassInitializer())
   3918       return FD->getLocation();
   3919   }
   3920 
   3921   llvm_unreachable("couldn't find in-class initializer");
   3922 }
   3923 
   3924 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
   3925                                       SourceLocation DefaultInitLoc) {
   3926   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
   3927     return;
   3928 
   3929   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
   3930   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
   3931 }
   3932 
   3933 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
   3934                                       CXXRecordDecl *AnonUnion) {
   3935   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
   3936     return;
   3937 
   3938   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
   3939 }
   3940 
   3941 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   3942 /// anonymous structure or union. Anonymous unions are a C++ feature
   3943 /// (C++ [class.union]) and a C11 feature; anonymous structures
   3944 /// are a C11 feature and GNU C++ extension.
   3945 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   3946                                         AccessSpecifier AS,
   3947                                         RecordDecl *Record,
   3948                                         const PrintingPolicy &Policy) {
   3949   DeclContext *Owner = Record->getDeclContext();
   3950 
   3951   // Diagnose whether this anonymous struct/union is an extension.
   3952   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
   3953     Diag(Record->getLocation(), diag::ext_anonymous_union);
   3954   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
   3955     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
   3956   else if (!Record->isUnion() && !getLangOpts().C11)
   3957     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
   3958 
   3959   // C and C++ require different kinds of checks for anonymous
   3960   // structs/unions.
   3961   bool Invalid = false;
   3962   if (getLangOpts().CPlusPlus) {
   3963     const char *PrevSpec = nullptr;
   3964     unsigned DiagID;
   3965     if (Record->isUnion()) {
   3966       // C++ [class.union]p6:
   3967       //   Anonymous unions declared in a named namespace or in the
   3968       //   global namespace shall be declared static.
   3969       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   3970           (isa<TranslationUnitDecl>(Owner) ||
   3971            (isa<NamespaceDecl>(Owner) &&
   3972             cast<NamespaceDecl>(Owner)->getDeclName()))) {
   3973         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
   3974           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
   3975 
   3976         // Recover by adding 'static'.
   3977         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
   3978                                PrevSpec, DiagID, Policy);
   3979       }
   3980       // C++ [class.union]p6:
   3981       //   A storage class is not allowed in a declaration of an
   3982       //   anonymous union in a class scope.
   3983       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   3984                isa<RecordDecl>(Owner)) {
   3985         Diag(DS.getStorageClassSpecLoc(),
   3986              diag::err_anonymous_union_with_storage_spec)
   3987           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   3988 
   3989         // Recover by removing the storage specifier.
   3990         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
   3991                                SourceLocation(),
   3992                                PrevSpec, DiagID, Context.getPrintingPolicy());
   3993       }
   3994     }
   3995 
   3996     // Ignore const/volatile/restrict qualifiers.
   3997     if (DS.getTypeQualifiers()) {
   3998       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3999         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   4000           << Record->isUnion() << "const"
   4001           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   4002       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   4003         Diag(DS.getVolatileSpecLoc(),
   4004              diag::ext_anonymous_struct_union_qualified)
   4005           << Record->isUnion() << "volatile"
   4006           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   4007       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   4008         Diag(DS.getRestrictSpecLoc(),
   4009              diag::ext_anonymous_struct_union_qualified)
   4010           << Record->isUnion() << "restrict"
   4011           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   4012       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   4013         Diag(DS.getAtomicSpecLoc(),
   4014              diag::ext_anonymous_struct_union_qualified)
   4015           << Record->isUnion() << "_Atomic"
   4016           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
   4017 
   4018       DS.ClearTypeQualifiers();
   4019     }
   4020 
   4021     // C++ [class.union]p2:
   4022     //   The member-specification of an anonymous union shall only
   4023     //   define non-static data members. [Note: nested types and
   4024     //   functions cannot be declared within an anonymous union. ]
   4025     for (auto *Mem : Record->decls()) {
   4026       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
   4027         // C++ [class.union]p3:
   4028         //   An anonymous union shall not have private or protected
   4029         //   members (clause 11).
   4030         assert(FD->getAccess() != AS_none);
   4031         if (FD->getAccess() != AS_public) {
   4032           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   4033             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
   4034           Invalid = true;
   4035         }
   4036 
   4037         // C++ [class.union]p1
   4038         //   An object of a class with a non-trivial constructor, a non-trivial
   4039         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   4040         //   assignment operator cannot be a member of a union, nor can an
   4041         //   array of such objects.
   4042         if (CheckNontrivialField(FD))
   4043           Invalid = true;
   4044       } else if (Mem->isImplicit()) {
   4045         // Any implicit members are fine.
   4046       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
   4047         // This is a type that showed up in an
   4048         // elaborated-type-specifier inside the anonymous struct or
   4049         // union, but which actually declares a type outside of the
   4050         // anonymous struct or union. It's okay.
   4051       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
   4052         if (!MemRecord->isAnonymousStructOrUnion() &&
   4053             MemRecord->getDeclName()) {
   4054           // Visual C++ allows type definition in anonymous struct or union.
   4055           if (getLangOpts().MicrosoftExt)
   4056             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   4057               << (int)Record->isUnion();
   4058           else {
   4059             // This is a nested type declaration.
   4060             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   4061               << (int)Record->isUnion();
   4062             Invalid = true;
   4063           }
   4064         } else {
   4065           // This is an anonymous type definition within another anonymous type.
   4066           // This is a popular extension, provided by Plan9, MSVC and GCC, but
   4067           // not part of standard C++.
   4068           Diag(MemRecord->getLocation(),
   4069                diag::ext_anonymous_record_with_anonymous_type)
   4070             << (int)Record->isUnion();
   4071         }
   4072       } else if (isa<AccessSpecDecl>(Mem)) {
   4073         // Any access specifier is fine.
   4074       } else if (isa<StaticAssertDecl>(Mem)) {
   4075         // In C++1z, static_assert declarations are also fine.
   4076       } else {
   4077         // We have something that isn't a non-static data
   4078         // member. Complain about it.
   4079         unsigned DK = diag::err_anonymous_record_bad_member;
   4080         if (isa<TypeDecl>(Mem))
   4081           DK = diag::err_anonymous_record_with_type;
   4082         else if (isa<FunctionDecl>(Mem))
   4083           DK = diag::err_anonymous_record_with_function;
   4084         else if (isa<VarDecl>(Mem))
   4085           DK = diag::err_anonymous_record_with_static;
   4086 
   4087         // Visual C++ allows type definition in anonymous struct or union.
   4088         if (getLangOpts().MicrosoftExt &&
   4089             DK == diag::err_anonymous_record_with_type)
   4090           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
   4091             << (int)Record->isUnion();
   4092         else {
   4093           Diag(Mem->getLocation(), DK)
   4094               << (int)Record->isUnion();
   4095           Invalid = true;
   4096         }
   4097       }
   4098     }
   4099 
   4100     // C++11 [class.union]p8 (DR1460):
   4101     //   At most one variant member of a union may have a
   4102     //   brace-or-equal-initializer.
   4103     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
   4104         Owner->isRecord())
   4105       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
   4106                                 cast<CXXRecordDecl>(Record));
   4107   }
   4108 
   4109   if (!Record->isUnion() && !Owner->isRecord()) {
   4110     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   4111       << (int)getLangOpts().CPlusPlus;
   4112     Invalid = true;
   4113   }
   4114 
   4115   // Mock up a declarator.
   4116   Declarator Dc(DS, Declarator::MemberContext);
   4117   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   4118   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   4119 
   4120   // Create a declaration for this anonymous struct/union.
   4121   NamedDecl *Anon = nullptr;
   4122   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   4123     Anon = FieldDecl::Create(Context, OwningClass,
   4124                              DS.getLocStart(),
   4125                              Record->getLocation(),
   4126                              /*IdentifierInfo=*/nullptr,
   4127                              Context.getTypeDeclType(Record),
   4128                              TInfo,
   4129                              /*BitWidth=*/nullptr, /*Mutable=*/false,
   4130                              /*InitStyle=*/ICIS_NoInit);
   4131     Anon->setAccess(AS);
   4132     if (getLangOpts().CPlusPlus)
   4133       FieldCollector->Add(cast<FieldDecl>(Anon));
   4134   } else {
   4135     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   4136     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
   4137     if (SCSpec == DeclSpec::SCS_mutable) {
   4138       // mutable can only appear on non-static class members, so it's always
   4139       // an error here
   4140       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   4141       Invalid = true;
   4142       SC = SC_None;
   4143     }
   4144 
   4145     Anon = VarDecl::Create(Context, Owner,
   4146                            DS.getLocStart(),
   4147                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
   4148                            Context.getTypeDeclType(Record),
   4149                            TInfo, SC);
   4150 
   4151     // Default-initialize the implicit variable. This initialization will be
   4152     // trivial in almost all cases, except if a union member has an in-class
   4153     // initializer:
   4154     //   union { int n = 0; };
   4155     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
   4156   }
   4157   Anon->setImplicit();
   4158 
   4159   // Mark this as an anonymous struct/union type.
   4160   Record->setAnonymousStructOrUnion(true);
   4161 
   4162   // Add the anonymous struct/union object to the current
   4163   // context. We'll be referencing this object when we refer to one of
   4164   // its members.
   4165   Owner->addDecl(Anon);
   4166 
   4167   // Inject the members of the anonymous struct/union into the owning
   4168   // context and into the identifier resolver chain for name lookup
   4169   // purposes.
   4170   SmallVector<NamedDecl*, 2> Chain;
   4171   Chain.push_back(Anon);
   4172 
   4173   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
   4174                                           Chain, false))
   4175     Invalid = true;
   4176 
   4177   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
   4178     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
   4179       Decl *ManglingContextDecl;
   4180       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
   4181               NewVD->getDeclContext(), ManglingContextDecl)) {
   4182         Context.setManglingNumber(
   4183             NewVD, MCtx->getManglingNumber(
   4184                        NewVD, getMSManglingNumber(getLangOpts(), S)));
   4185         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
   4186       }
   4187     }
   4188   }
   4189 
   4190   if (Invalid)
   4191     Anon->setInvalidDecl();
   4192 
   4193   return Anon;
   4194 }
   4195 
   4196 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   4197 /// Microsoft C anonymous structure.
   4198 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   4199 /// Example:
   4200 ///
   4201 /// struct A { int a; };
   4202 /// struct B { struct A; int b; };
   4203 ///
   4204 /// void foo() {
   4205 ///   B var;
   4206 ///   var.a = 3;
   4207 /// }
   4208 ///
   4209 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   4210                                            RecordDecl *Record) {
   4211   assert(Record && "expected a record!");
   4212 
   4213   // Mock up a declarator.
   4214   Declarator Dc(DS, Declarator::TypeNameContext);
   4215   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   4216   assert(TInfo && "couldn't build declarator info for anonymous struct");
   4217 
   4218   auto *ParentDecl = cast<RecordDecl>(CurContext);
   4219   QualType RecTy = Context.getTypeDeclType(Record);
   4220 
   4221   // Create a declaration for this anonymous struct.
   4222   NamedDecl *Anon = FieldDecl::Create(Context,
   4223                              ParentDecl,
   4224                              DS.getLocStart(),
   4225                              DS.getLocStart(),
   4226                              /*IdentifierInfo=*/nullptr,
   4227                              RecTy,
   4228                              TInfo,
   4229                              /*BitWidth=*/nullptr, /*Mutable=*/false,
   4230                              /*InitStyle=*/ICIS_NoInit);
   4231   Anon->setImplicit();
   4232 
   4233   // Add the anonymous struct object to the current context.
   4234   CurContext->addDecl(Anon);
   4235 
   4236   // Inject the members of the anonymous struct into the current
   4237   // context and into the identifier resolver chain for name lookup
   4238   // purposes.
   4239   SmallVector<NamedDecl*, 2> Chain;
   4240   Chain.push_back(Anon);
   4241 
   4242   RecordDecl *RecordDef = Record->getDefinition();
   4243   if (RequireCompleteType(Anon->getLocation(), RecTy,
   4244                           diag::err_field_incomplete) ||
   4245       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
   4246                                           AS_none, Chain, true)) {
   4247     Anon->setInvalidDecl();
   4248     ParentDecl->setInvalidDecl();
   4249   }
   4250 
   4251   return Anon;
   4252 }
   4253 
   4254 /// GetNameForDeclarator - Determine the full declaration name for the
   4255 /// given Declarator.
   4256 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   4257   return GetNameFromUnqualifiedId(D.getName());
   4258 }
   4259 
   4260 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   4261 DeclarationNameInfo
   4262 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   4263   DeclarationNameInfo NameInfo;
   4264   NameInfo.setLoc(Name.StartLocation);
   4265 
   4266   switch (Name.getKind()) {
   4267 
   4268   case UnqualifiedId::IK_ImplicitSelfParam:
   4269   case UnqualifiedId::IK_Identifier:
   4270     NameInfo.setName(Name.Identifier);
   4271     NameInfo.setLoc(Name.StartLocation);
   4272     return NameInfo;
   4273 
   4274   case UnqualifiedId::IK_OperatorFunctionId:
   4275     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   4276                                            Name.OperatorFunctionId.Operator));
   4277     NameInfo.setLoc(Name.StartLocation);
   4278     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   4279       = Name.OperatorFunctionId.SymbolLocations[0];
   4280     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   4281       = Name.EndLocation.getRawEncoding();
   4282     return NameInfo;
   4283 
   4284   case UnqualifiedId::IK_LiteralOperatorId:
   4285     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   4286                                                            Name.Identifier));
   4287     NameInfo.setLoc(Name.StartLocation);
   4288     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   4289     return NameInfo;
   4290 
   4291   case UnqualifiedId::IK_ConversionFunctionId: {
   4292     TypeSourceInfo *TInfo;
   4293     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   4294     if (Ty.isNull())
   4295       return DeclarationNameInfo();
   4296     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   4297                                                Context.getCanonicalType(Ty)));
   4298     NameInfo.setLoc(Name.StartLocation);
   4299     NameInfo.setNamedTypeInfo(TInfo);
   4300     return NameInfo;
   4301   }
   4302 
   4303   case UnqualifiedId::IK_ConstructorName: {
   4304     TypeSourceInfo *TInfo;
   4305     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   4306     if (Ty.isNull())
   4307       return DeclarationNameInfo();
   4308     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   4309                                               Context.getCanonicalType(Ty)));
   4310     NameInfo.setLoc(Name.StartLocation);
   4311     NameInfo.setNamedTypeInfo(TInfo);
   4312     return NameInfo;
   4313   }
   4314 
   4315   case UnqualifiedId::IK_ConstructorTemplateId: {
   4316     // In well-formed code, we can only have a constructor
   4317     // template-id that refers to the current context, so go there
   4318     // to find the actual type being constructed.
   4319     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   4320     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   4321       return DeclarationNameInfo();
   4322 
   4323     // Determine the type of the class being constructed.
   4324     QualType CurClassType = Context.getTypeDeclType(CurClass);
   4325 
   4326     // FIXME: Check two things: that the template-id names the same type as
   4327     // CurClassType, and that the template-id does not occur when the name
   4328     // was qualified.
   4329 
   4330     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   4331                                     Context.getCanonicalType(CurClassType)));
   4332     NameInfo.setLoc(Name.StartLocation);
   4333     // FIXME: should we retrieve TypeSourceInfo?
   4334     NameInfo.setNamedTypeInfo(nullptr);
   4335     return NameInfo;
   4336   }
   4337 
   4338   case UnqualifiedId::IK_DestructorName: {
   4339     TypeSourceInfo *TInfo;
   4340     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   4341     if (Ty.isNull())
   4342       return DeclarationNameInfo();
   4343     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   4344                                               Context.getCanonicalType(Ty)));
   4345     NameInfo.setLoc(Name.StartLocation);
   4346     NameInfo.setNamedTypeInfo(TInfo);
   4347     return NameInfo;
   4348   }
   4349 
   4350   case UnqualifiedId::IK_TemplateId: {
   4351     TemplateName TName = Name.TemplateId->Template.get();
   4352     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   4353     return Context.getNameForTemplate(TName, TNameLoc);
   4354   }
   4355 
   4356   } // switch (Name.getKind())
   4357 
   4358   llvm_unreachable("Unknown name kind");
   4359 }
   4360 
   4361 static QualType getCoreType(QualType Ty) {
   4362   do {
   4363     if (Ty->isPointerType() || Ty->isReferenceType())
   4364       Ty = Ty->getPointeeType();
   4365     else if (Ty->isArrayType())
   4366       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
   4367     else
   4368       return Ty.withoutLocalFastQualifiers();
   4369   } while (true);
   4370 }
   4371 
   4372 /// hasSimilarParameters - Determine whether the C++ functions Declaration
   4373 /// and Definition have "nearly" matching parameters. This heuristic is
   4374 /// used to improve diagnostics in the case where an out-of-line function
   4375 /// definition doesn't match any declaration within the class or namespace.
   4376 /// Also sets Params to the list of indices to the parameters that differ
   4377 /// between the declaration and the definition. If hasSimilarParameters
   4378 /// returns true and Params is empty, then all of the parameters match.
   4379 static bool hasSimilarParameters(ASTContext &Context,
   4380                                      FunctionDecl *Declaration,
   4381                                      FunctionDecl *Definition,
   4382                                      SmallVectorImpl<unsigned> &Params) {
   4383   Params.clear();
   4384   if (Declaration->param_size() != Definition->param_size())
   4385     return false;
   4386   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   4387     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   4388     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   4389 
   4390     // The parameter types are identical
   4391     if (Context.hasSameType(DefParamTy, DeclParamTy))
   4392       continue;
   4393 
   4394     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
   4395     QualType DefParamBaseTy = getCoreType(DefParamTy);
   4396     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
   4397     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
   4398 
   4399     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
   4400         (DeclTyName && DeclTyName == DefTyName))
   4401       Params.push_back(Idx);
   4402     else  // The two parameters aren't even close
   4403       return false;
   4404   }
   4405 
   4406   return true;
   4407 }
   4408 
   4409 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   4410 /// declarator needs to be rebuilt in the current instantiation.
   4411 /// Any bits of declarator which appear before the name are valid for
   4412 /// consideration here.  That's specifically the type in the decl spec
   4413 /// and the base type in any member-pointer chunks.
   4414 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   4415                                                     DeclarationName Name) {
   4416   // The types we specifically need to rebuild are:
   4417   //   - typenames, typeofs, and decltypes
   4418   //   - types which will become injected class names
   4419   // Of course, we also need to rebuild any type referencing such a
   4420   // type.  It's safest to just say "dependent", but we call out a
   4421   // few cases here.
   4422 
   4423   DeclSpec &DS = D.getMutableDeclSpec();
   4424   switch (DS.getTypeSpecType()) {
   4425   case DeclSpec::TST_typename:
   4426   case DeclSpec::TST_typeofType:
   4427   case DeclSpec::TST_underlyingType:
   4428   case DeclSpec::TST_atomic: {
   4429     // Grab the type from the parser.
   4430     TypeSourceInfo *TSI = nullptr;
   4431     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   4432     if (T.isNull() || !T->isDependentType()) break;
   4433 
   4434     // Make sure there's a type source info.  This isn't really much
   4435     // of a waste; most dependent types should have type source info
   4436     // attached already.
   4437     if (!TSI)
   4438       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   4439 
   4440     // Rebuild the type in the current instantiation.
   4441     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   4442     if (!TSI) return true;
   4443 
   4444     // Store the new type back in the decl spec.
   4445     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   4446     DS.UpdateTypeRep(LocType);
   4447     break;
   4448   }
   4449 
   4450   case DeclSpec::TST_decltype:
   4451   case DeclSpec::TST_typeofExpr: {
   4452     Expr *E = DS.getRepAsExpr();
   4453     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   4454     if (Result.isInvalid()) return true;
   4455     DS.UpdateExprRep(Result.get());
   4456     break;
   4457   }
   4458 
   4459   default:
   4460     // Nothing to do for these decl specs.
   4461     break;
   4462   }
   4463 
   4464   // It doesn't matter what order we do this in.
   4465   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   4466     DeclaratorChunk &Chunk = D.getTypeObject(I);
   4467 
   4468     // The only type information in the declarator which can come
   4469     // before the declaration name is the base type of a member
   4470     // pointer.
   4471     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   4472       continue;
   4473 
   4474     // Rebuild the scope specifier in-place.
   4475     CXXScopeSpec &SS = Chunk.Mem.Scope();
   4476     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   4477       return true;
   4478   }
   4479 
   4480   return false;
   4481 }
   4482 
   4483 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   4484   D.setFunctionDefinitionKind(FDK_Declaration);
   4485   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
   4486 
   4487   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
   4488       Dcl && Dcl->getDeclContext()->isFileContext())
   4489     Dcl->setTopLevelDeclInObjCContainer();
   4490 
   4491   return Dcl;
   4492 }
   4493 
   4494 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   4495 ///   If T is the name of a class, then each of the following shall have a
   4496 ///   name different from T:
   4497 ///     - every static data member of class T;
   4498 ///     - every member function of class T
   4499 ///     - every member of class T that is itself a type;
   4500 /// \returns true if the declaration name violates these rules.
   4501 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   4502                                    DeclarationNameInfo NameInfo) {
   4503   DeclarationName Name = NameInfo.getName();
   4504 
   4505   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
   4506     if (Record->getIdentifier() && Record->getDeclName() == Name) {
   4507       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   4508       return true;
   4509     }
   4510 
   4511   return false;
   4512 }
   4513 
   4514 /// \brief Diagnose a declaration whose declarator-id has the given
   4515 /// nested-name-specifier.
   4516 ///
   4517 /// \param SS The nested-name-specifier of the declarator-id.
   4518 ///
   4519 /// \param DC The declaration context to which the nested-name-specifier
   4520 /// resolves.
   4521 ///
   4522 /// \param Name The name of the entity being declared.
   4523 ///
   4524 /// \param Loc The location of the name of the entity being declared.
   4525 ///
   4526 /// \returns true if we cannot safely recover from this error, false otherwise.
   4527 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
   4528                                         DeclarationName Name,
   4529                                         SourceLocation Loc) {
   4530   DeclContext *Cur = CurContext;
   4531   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
   4532     Cur = Cur->getParent();
   4533 
   4534   // If the user provided a superfluous scope specifier that refers back to the
   4535   // class in which the entity is already declared, diagnose and ignore it.
   4536   //
   4537   // class X {
   4538   //   void X::f();
   4539   // };
   4540   //
   4541   // Note, it was once ill-formed to give redundant qualification in all
   4542   // contexts, but that rule was removed by DR482.
   4543   if (Cur->Equals(DC)) {
   4544     if (Cur->isRecord()) {
   4545       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
   4546                                       : diag::err_member_extra_qualification)
   4547         << Name << FixItHint::CreateRemoval(SS.getRange());
   4548       SS.clear();
   4549     } else {
   4550       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
   4551     }
   4552     return false;
   4553   }
   4554 
   4555   // Check whether the qualifying scope encloses the scope of the original
   4556   // declaration.
   4557   if (!Cur->Encloses(DC)) {
   4558     if (Cur->isRecord())
   4559       Diag(Loc, diag::err_member_qualification)
   4560         << Name << SS.getRange();
   4561     else if (isa<TranslationUnitDecl>(DC))
   4562       Diag(Loc, diag::err_invalid_declarator_global_scope)
   4563         << Name << SS.getRange();
   4564     else if (isa<FunctionDecl>(Cur))
   4565       Diag(Loc, diag::err_invalid_declarator_in_function)
   4566         << Name << SS.getRange();
   4567     else if (isa<BlockDecl>(Cur))
   4568       Diag(Loc, diag::err_invalid_declarator_in_block)
   4569         << Name << SS.getRange();
   4570     else
   4571       Diag(Loc, diag::err_invalid_declarator_scope)
   4572       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
   4573 
   4574     return true;
   4575   }
   4576 
   4577   if (Cur->isRecord()) {
   4578     // Cannot qualify members within a class.
   4579     Diag(Loc, diag::err_member_qualification)
   4580       << Name << SS.getRange();
   4581     SS.clear();
   4582 
   4583     // C++ constructors and destructors with incorrect scopes can break
   4584     // our AST invariants by having the wrong underlying types. If
   4585     // that's the case, then drop this declaration entirely.
   4586     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
   4587          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
   4588         !Context.hasSameType(Name.getCXXNameType(),
   4589                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
   4590       return true;
   4591 
   4592     return false;
   4593   }
   4594 
   4595   // C++11 [dcl.meaning]p1:
   4596   //   [...] "The nested-name-specifier of the qualified declarator-id shall
   4597   //   not begin with a decltype-specifer"
   4598   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
   4599   while (SpecLoc.getPrefix())
   4600     SpecLoc = SpecLoc.getPrefix();
   4601   if (dyn_cast_or_null<DecltypeType>(
   4602         SpecLoc.getNestedNameSpecifier()->getAsType()))
   4603     Diag(Loc, diag::err_decltype_in_declarator)
   4604       << SpecLoc.getTypeLoc().getSourceRange();
   4605 
   4606   return false;
   4607 }
   4608 
   4609 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   4610                                   MultiTemplateParamsArg TemplateParamLists) {
   4611   // TODO: consider using NameInfo for diagnostic.
   4612   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   4613   DeclarationName Name = NameInfo.getName();
   4614 
   4615   // All of these full declarators require an identifier.  If it doesn't have
   4616   // one, the ParsedFreeStandingDeclSpec action should be used.
   4617   if (!Name) {
   4618     if (!D.isInvalidType())  // Reject this if we think it is valid.
   4619       Diag(D.getDeclSpec().getLocStart(),
   4620            diag::err_declarator_need_ident)
   4621         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   4622     return nullptr;
   4623   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   4624     return nullptr;
   4625 
   4626   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   4627   // we find one that is.
   4628   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   4629          (S->getFlags() & Scope::TemplateParamScope) != 0)
   4630     S = S->getParent();
   4631 
   4632   DeclContext *DC = CurContext;
   4633   if (D.getCXXScopeSpec().isInvalid())
   4634     D.setInvalidType();
   4635   else if (D.getCXXScopeSpec().isSet()) {
   4636     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   4637                                         UPPC_DeclarationQualifier))
   4638       return nullptr;
   4639 
   4640     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   4641     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   4642     if (!DC || isa<EnumDecl>(DC)) {
   4643       // If we could not compute the declaration context, it's because the
   4644       // declaration context is dependent but does not refer to a class,
   4645       // class template, or class template partial specialization. Complain
   4646       // and return early, to avoid the coming semantic disaster.
   4647       Diag(D.getIdentifierLoc(),
   4648            diag::err_template_qualified_declarator_no_match)
   4649         << D.getCXXScopeSpec().getScopeRep()
   4650         << D.getCXXScopeSpec().getRange();
   4651       return nullptr;
   4652     }
   4653     bool IsDependentContext = DC->isDependentContext();
   4654 
   4655     if (!IsDependentContext &&
   4656         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   4657       return nullptr;
   4658 
   4659     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
   4660       Diag(D.getIdentifierLoc(),
   4661            diag::err_member_def_undefined_record)
   4662         << Name << DC << D.getCXXScopeSpec().getRange();
   4663       D.setInvalidType();
   4664     } else if (!D.getDeclSpec().isFriendSpecified()) {
   4665       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
   4666                                       Name, D.getIdentifierLoc())) {
   4667         if (DC->isRecord())
   4668           return nullptr;
   4669 
   4670         D.setInvalidType();
   4671       }
   4672     }
   4673 
   4674     // Check whether we need to rebuild the type of the given
   4675     // declaration in the current instantiation.
   4676     if (EnteringContext && IsDependentContext &&
   4677         TemplateParamLists.size() != 0) {
   4678       ContextRAII SavedContext(*this, DC);
   4679       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   4680         D.setInvalidType();
   4681     }
   4682   }
   4683 
   4684   if (DiagnoseClassNameShadow(DC, NameInfo))
   4685     // If this is a typedef, we'll end up spewing multiple diagnostics.
   4686     // Just return early; it's safer.
   4687     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   4688       return nullptr;
   4689 
   4690   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   4691   QualType R = TInfo->getType();
   4692 
   4693   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   4694                                       UPPC_DeclarationType))
   4695     D.setInvalidType();
   4696 
   4697   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   4698                         ForRedeclaration);
   4699 
   4700   // See if this is a redefinition of a variable in the same scope.
   4701   if (!D.getCXXScopeSpec().isSet()) {
   4702     bool IsLinkageLookup = false;
   4703     bool CreateBuiltins = false;
   4704 
   4705     // If the declaration we're planning to build will be a function
   4706     // or object with linkage, then look for another declaration with
   4707     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   4708     //
   4709     // If the declaration we're planning to build will be declared with
   4710     // external linkage in the translation unit, create any builtin with
   4711     // the same name.
   4712     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   4713       /* Do nothing*/;
   4714     else if (CurContext->isFunctionOrMethod() &&
   4715              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
   4716               R->isFunctionType())) {
   4717       IsLinkageLookup = true;
   4718       CreateBuiltins =
   4719           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
   4720     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   4721                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   4722       CreateBuiltins = true;
   4723 
   4724     if (IsLinkageLookup)
   4725       Previous.clear(LookupRedeclarationWithLinkage);
   4726 
   4727     LookupName(Previous, S, CreateBuiltins);
   4728   } else { // Something like "int foo::x;"
   4729     LookupQualifiedName(Previous, DC);
   4730 
   4731     // C++ [dcl.meaning]p1:
   4732     //   When the declarator-id is qualified, the declaration shall refer to a
   4733     //  previously declared member of the class or namespace to which the
   4734     //  qualifier refers (or, in the case of a namespace, of an element of the
   4735     //  inline namespace set of that namespace (7.3.1)) or to a specialization
   4736     //  thereof; [...]
   4737     //
   4738     // Note that we already checked the context above, and that we do not have
   4739     // enough information to make sure that Previous contains the declaration
   4740     // we want to match. For example, given:
   4741     //
   4742     //   class X {
   4743     //     void f();
   4744     //     void f(float);
   4745     //   };
   4746     //
   4747     //   void X::f(int) { } // ill-formed
   4748     //
   4749     // In this case, Previous will point to the overload set
   4750     // containing the two f's declared in X, but neither of them
   4751     // matches.
   4752 
   4753     // C++ [dcl.meaning]p1:
   4754     //   [...] the member shall not merely have been introduced by a
   4755     //   using-declaration in the scope of the class or namespace nominated by
   4756     //   the nested-name-specifier of the declarator-id.
   4757     RemoveUsingDecls(Previous);
   4758   }
   4759 
   4760   if (Previous.isSingleResult() &&
   4761       Previous.getFoundDecl()->isTemplateParameter()) {
   4762     // Maybe we will complain about the shadowed template parameter.
   4763     if (!D.isInvalidType())
   4764       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   4765                                       Previous.getFoundDecl());
   4766 
   4767     // Just pretend that we didn't see the previous declaration.
   4768     Previous.clear();
   4769   }
   4770 
   4771   // In C++, the previous declaration we find might be a tag type
   4772   // (class or enum). In this case, the new declaration will hide the
   4773   // tag type. Note that this does does not apply if we're declaring a
   4774   // typedef (C++ [dcl.typedef]p4).
   4775   if (Previous.isSingleTagDecl() &&
   4776       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   4777     Previous.clear();
   4778 
   4779   // Check that there are no default arguments other than in the parameters
   4780   // of a function declaration (C++ only).
   4781   if (getLangOpts().CPlusPlus)
   4782     CheckExtraCXXDefaultArguments(D);
   4783 
   4784   NamedDecl *New;
   4785 
   4786   bool AddToScope = true;
   4787   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   4788     if (TemplateParamLists.size()) {
   4789       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   4790       return nullptr;
   4791     }
   4792 
   4793     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
   4794   } else if (R->isFunctionType()) {
   4795     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
   4796                                   TemplateParamLists,
   4797                                   AddToScope);
   4798   } else {
   4799     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
   4800                                   AddToScope);
   4801   }
   4802 
   4803   if (!New)
   4804     return nullptr;
   4805 
   4806   // If this has an identifier and is not an invalid redeclaration or
   4807   // function template specialization, add it to the scope stack.
   4808   if (New->getDeclName() && AddToScope &&
   4809        !(D.isRedeclaration() && New->isInvalidDecl())) {
   4810     // Only make a locally-scoped extern declaration visible if it is the first
   4811     // declaration of this entity. Qualified lookup for such an entity should
   4812     // only find this declaration if there is no visible declaration of it.
   4813     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
   4814     PushOnScopeChains(New, S, AddToContext);
   4815     if (!AddToContext)
   4816       CurContext->addHiddenDecl(New);
   4817   }
   4818 
   4819   return New;
   4820 }
   4821 
   4822 /// Helper method to turn variable array types into constant array
   4823 /// types in certain situations which would otherwise be errors (for
   4824 /// GCC compatibility).
   4825 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   4826                                                     ASTContext &Context,
   4827                                                     bool &SizeIsNegative,
   4828                                                     llvm::APSInt &Oversized) {
   4829   // This method tries to turn a variable array into a constant
   4830   // array even when the size isn't an ICE.  This is necessary
   4831   // for compatibility with code that depends on gcc's buggy
   4832   // constant expression folding, like struct {char x[(int)(char*)2];}
   4833   SizeIsNegative = false;
   4834   Oversized = 0;
   4835 
   4836   if (T->isDependentType())
   4837     return QualType();
   4838 
   4839   QualifierCollector Qs;
   4840   const Type *Ty = Qs.strip(T);
   4841 
   4842   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   4843     QualType Pointee = PTy->getPointeeType();
   4844     QualType FixedType =
   4845         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   4846                                             Oversized);
   4847     if (FixedType.isNull()) return FixedType;
   4848     FixedType = Context.getPointerType(FixedType);
   4849     return Qs.apply(Context, FixedType);
   4850   }
   4851   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   4852     QualType Inner = PTy->getInnerType();
   4853     QualType FixedType =
   4854         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   4855                                             Oversized);
   4856     if (FixedType.isNull()) return FixedType;
   4857     FixedType = Context.getParenType(FixedType);
   4858     return Qs.apply(Context, FixedType);
   4859   }
   4860 
   4861   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   4862   if (!VLATy)
   4863     return QualType();
   4864   // FIXME: We should probably handle this case
   4865   if (VLATy->getElementType()->isVariablyModifiedType())
   4866     return QualType();
   4867 
   4868   llvm::APSInt Res;
   4869   if (!VLATy->getSizeExpr() ||
   4870       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
   4871     return QualType();
   4872 
   4873   // Check whether the array size is negative.
   4874   if (Res.isSigned() && Res.isNegative()) {
   4875     SizeIsNegative = true;
   4876     return QualType();
   4877   }
   4878 
   4879   // Check whether the array is too large to be addressed.
   4880   unsigned ActiveSizeBits
   4881     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   4882                                               Res);
   4883   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   4884     Oversized = Res;
   4885     return QualType();
   4886   }
   4887 
   4888   return Context.getConstantArrayType(VLATy->getElementType(),
   4889                                       Res, ArrayType::Normal, 0);
   4890 }
   4891 
   4892 static void
   4893 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
   4894   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
   4895     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
   4896     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
   4897                                       DstPTL.getPointeeLoc());
   4898     DstPTL.setStarLoc(SrcPTL.getStarLoc());
   4899     return;
   4900   }
   4901   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
   4902     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
   4903     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
   4904                                       DstPTL.getInnerLoc());
   4905     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
   4906     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
   4907     return;
   4908   }
   4909   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
   4910   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
   4911   TypeLoc SrcElemTL = SrcATL.getElementLoc();
   4912   TypeLoc DstElemTL = DstATL.getElementLoc();
   4913   DstElemTL.initializeFullCopy(SrcElemTL);
   4914   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
   4915   DstATL.setSizeExpr(SrcATL.getSizeExpr());
   4916   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
   4917 }
   4918 
   4919 /// Helper method to turn variable array types into constant array
   4920 /// types in certain situations which would otherwise be errors (for
   4921 /// GCC compatibility).
   4922 static TypeSourceInfo*
   4923 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
   4924                                               ASTContext &Context,
   4925                                               bool &SizeIsNegative,
   4926                                               llvm::APSInt &Oversized) {
   4927   QualType FixedTy
   4928     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
   4929                                           SizeIsNegative, Oversized);
   4930   if (FixedTy.isNull())
   4931     return nullptr;
   4932   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
   4933   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
   4934                                     FixedTInfo->getTypeLoc());
   4935   return FixedTInfo;
   4936 }
   4937 
   4938 /// \brief Register the given locally-scoped extern "C" declaration so
   4939 /// that it can be found later for redeclarations. We include any extern "C"
   4940 /// declaration that is not visible in the translation unit here, not just
   4941 /// function-scope declarations.
   4942 void
   4943 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
   4944   if (!getLangOpts().CPlusPlus &&
   4945       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
   4946     // Don't need to track declarations in the TU in C.
   4947     return;
   4948 
   4949   // Note that we have a locally-scoped external with this name.
   4950   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
   4951 }
   4952 
   4953 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
   4954   // FIXME: We can have multiple results via __attribute__((overloadable)).
   4955   auto Result = Context.getExternCContextDecl()->lookup(Name);
   4956   return Result.empty() ? nullptr : *Result.begin();
   4957 }
   4958 
   4959 /// \brief Diagnose function specifiers on a declaration of an identifier that
   4960 /// does not identify a function.
   4961 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
   4962   // FIXME: We should probably indicate the identifier in question to avoid
   4963   // confusion for constructs like "inline int a(), b;"
   4964   if (DS.isInlineSpecified())
   4965     Diag(DS.getInlineSpecLoc(),
   4966          diag::err_inline_non_function);
   4967 
   4968   if (DS.isVirtualSpecified())
   4969     Diag(DS.getVirtualSpecLoc(),
   4970          diag::err_virtual_non_function);
   4971 
   4972   if (DS.isExplicitSpecified())
   4973     Diag(DS.getExplicitSpecLoc(),
   4974          diag::err_explicit_non_function);
   4975 
   4976   if (DS.isNoreturnSpecified())
   4977     Diag(DS.getNoreturnSpecLoc(),
   4978          diag::err_noreturn_non_function);
   4979 }
   4980 
   4981 NamedDecl*
   4982 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   4983                              TypeSourceInfo *TInfo, LookupResult &Previous) {
   4984   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   4985   if (D.getCXXScopeSpec().isSet()) {
   4986     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   4987       << D.getCXXScopeSpec().getRange();
   4988     D.setInvalidType();
   4989     // Pretend we didn't see the scope specifier.
   4990     DC = CurContext;
   4991     Previous.clear();
   4992   }
   4993 
   4994   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   4995 
   4996   if (D.getDeclSpec().isConstexprSpecified())
   4997     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   4998       << 1;
   4999 
   5000   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   5001     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   5002       << D.getName().getSourceRange();
   5003     return nullptr;
   5004   }
   5005 
   5006   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
   5007   if (!NewTD) return nullptr;
   5008 
   5009   // Handle attributes prior to checking for duplicates in MergeVarDecl
   5010   ProcessDeclAttributes(S, NewTD, D);
   5011 
   5012   CheckTypedefForVariablyModifiedType(S, NewTD);
   5013 
   5014   bool Redeclaration = D.isRedeclaration();
   5015   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   5016   D.setRedeclaration(Redeclaration);
   5017   return ND;
   5018 }
   5019 
   5020 void
   5021 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   5022   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   5023   // then it shall have block scope.
   5024   // Note that variably modified types must be fixed before merging the decl so
   5025   // that redeclarations will match.
   5026   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
   5027   QualType T = TInfo->getType();
   5028   if (T->isVariablyModifiedType()) {
   5029     getCurFunction()->setHasBranchProtectedScope();
   5030 
   5031     if (S->getFnParent() == nullptr) {
   5032       bool SizeIsNegative;
   5033       llvm::APSInt Oversized;
   5034       TypeSourceInfo *FixedTInfo =
   5035         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   5036                                                       SizeIsNegative,
   5037                                                       Oversized);
   5038       if (FixedTInfo) {
   5039         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   5040         NewTD->setTypeSourceInfo(FixedTInfo);
   5041       } else {
   5042         if (SizeIsNegative)
   5043           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   5044         else if (T->isVariableArrayType())
   5045           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   5046         else if (Oversized.getBoolValue())
   5047           Diag(NewTD->getLocation(), diag::err_array_too_large)
   5048             << Oversized.toString(10);
   5049         else
   5050           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   5051         NewTD->setInvalidDecl();
   5052       }
   5053     }
   5054   }
   5055 }
   5056 
   5057 
   5058 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   5059 /// declares a typedef-name, either using the 'typedef' type specifier or via
   5060 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   5061 NamedDecl*
   5062 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   5063                            LookupResult &Previous, bool &Redeclaration) {
   5064   // Merge the decl with the existing one if appropriate. If the decl is
   5065   // in an outer scope, it isn't the same thing.
   5066   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
   5067                        /*AllowInlineNamespace*/false);
   5068   filterNonConflictingPreviousTypedefDecls(Context, NewTD, Previous);
   5069   if (!Previous.empty()) {
   5070     Redeclaration = true;
   5071     MergeTypedefNameDecl(NewTD, Previous);
   5072   }
   5073 
   5074   // If this is the C FILE type, notify the AST context.
   5075   if (IdentifierInfo *II = NewTD->getIdentifier())
   5076     if (!NewTD->isInvalidDecl() &&
   5077         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   5078       if (II->isStr("FILE"))
   5079         Context.setFILEDecl(NewTD);
   5080       else if (II->isStr("jmp_buf"))
   5081         Context.setjmp_bufDecl(NewTD);
   5082       else if (II->isStr("sigjmp_buf"))
   5083         Context.setsigjmp_bufDecl(NewTD);
   5084       else if (II->isStr("ucontext_t"))
   5085         Context.setucontext_tDecl(NewTD);
   5086     }
   5087 
   5088   return NewTD;
   5089 }
   5090 
   5091 /// \brief Determines whether the given declaration is an out-of-scope
   5092 /// previous declaration.
   5093 ///
   5094 /// This routine should be invoked when name lookup has found a
   5095 /// previous declaration (PrevDecl) that is not in the scope where a
   5096 /// new declaration by the same name is being introduced. If the new
   5097 /// declaration occurs in a local scope, previous declarations with
   5098 /// linkage may still be considered previous declarations (C99
   5099 /// 6.2.2p4-5, C++ [basic.link]p6).
   5100 ///
   5101 /// \param PrevDecl the previous declaration found by name
   5102 /// lookup
   5103 ///
   5104 /// \param DC the context in which the new declaration is being
   5105 /// declared.
   5106 ///
   5107 /// \returns true if PrevDecl is an out-of-scope previous declaration
   5108 /// for a new delcaration with the same name.
   5109 static bool
   5110 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   5111                                 ASTContext &Context) {
   5112   if (!PrevDecl)
   5113     return false;
   5114 
   5115   if (!PrevDecl->hasLinkage())
   5116     return false;
   5117 
   5118   if (Context.getLangOpts().CPlusPlus) {
   5119     // C++ [basic.link]p6:
   5120     //   If there is a visible declaration of an entity with linkage
   5121     //   having the same name and type, ignoring entities declared
   5122     //   outside the innermost enclosing namespace scope, the block
   5123     //   scope declaration declares that same entity and receives the
   5124     //   linkage of the previous declaration.
   5125     DeclContext *OuterContext = DC->getRedeclContext();
   5126     if (!OuterContext->isFunctionOrMethod())
   5127       // This rule only applies to block-scope declarations.
   5128       return false;
   5129 
   5130     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   5131     if (PrevOuterContext->isRecord())
   5132       // We found a member function: ignore it.
   5133       return false;
   5134 
   5135     // Find the innermost enclosing namespace for the new and
   5136     // previous declarations.
   5137     OuterContext = OuterContext->getEnclosingNamespaceContext();
   5138     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   5139 
   5140     // The previous declaration is in a different namespace, so it
   5141     // isn't the same function.
   5142     if (!OuterContext->Equals(PrevOuterContext))
   5143       return false;
   5144   }
   5145 
   5146   return true;
   5147 }
   5148 
   5149 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   5150   CXXScopeSpec &SS = D.getCXXScopeSpec();
   5151   if (!SS.isSet()) return;
   5152   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   5153 }
   5154 
   5155 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   5156   QualType type = decl->getType();
   5157   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   5158   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   5159     // Various kinds of declaration aren't allowed to be __autoreleasing.
   5160     unsigned kind = -1U;
   5161     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   5162       if (var->hasAttr<BlocksAttr>())
   5163         kind = 0; // __block
   5164       else if (!var->hasLocalStorage())
   5165         kind = 1; // global
   5166     } else if (isa<ObjCIvarDecl>(decl)) {
   5167       kind = 3; // ivar
   5168     } else if (isa<FieldDecl>(decl)) {
   5169       kind = 2; // field
   5170     }
   5171 
   5172     if (kind != -1U) {
   5173       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   5174         << kind;
   5175     }
   5176   } else if (lifetime == Qualifiers::OCL_None) {
   5177     // Try to infer lifetime.
   5178     if (!type->isObjCLifetimeType())
   5179       return false;
   5180 
   5181     lifetime = type->getObjCARCImplicitLifetime();
   5182     type = Context.getLifetimeQualifiedType(type, lifetime);
   5183     decl->setType(type);
   5184   }
   5185 
   5186   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   5187     // Thread-local variables cannot have lifetime.
   5188     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   5189         var->getTLSKind()) {
   5190       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   5191         << var->getType();
   5192       return true;
   5193     }
   5194   }
   5195 
   5196   return false;
   5197 }
   5198 
   5199 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
   5200   // Ensure that an auto decl is deduced otherwise the checks below might cache
   5201   // the wrong linkage.
   5202   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
   5203 
   5204   // 'weak' only applies to declarations with external linkage.
   5205   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
   5206     if (!ND.isExternallyVisible()) {
   5207       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
   5208       ND.dropAttr<WeakAttr>();
   5209     }
   5210   }
   5211   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
   5212     if (ND.isExternallyVisible()) {
   5213       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
   5214       ND.dropAttr<WeakRefAttr>();
   5215       ND.dropAttr<AliasAttr>();
   5216     }
   5217   }
   5218 
   5219   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
   5220     if (VD->hasInit()) {
   5221       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
   5222         assert(VD->isThisDeclarationADefinition() &&
   5223                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
   5224         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
   5225         VD->dropAttr<AliasAttr>();
   5226       }
   5227     }
   5228   }
   5229 
   5230   // 'selectany' only applies to externally visible varable declarations.
   5231   // It does not apply to functions.
   5232   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
   5233     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
   5234       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
   5235       ND.dropAttr<SelectAnyAttr>();
   5236     }
   5237   }
   5238 
   5239   // dll attributes require external linkage.
   5240   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
   5241     if (!ND.isExternallyVisible()) {
   5242       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
   5243         << &ND << Attr;
   5244       ND.setInvalidDecl();
   5245     }
   5246   }
   5247 }
   5248 
   5249 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
   5250                                            NamedDecl *NewDecl,
   5251                                            bool IsSpecialization) {
   5252   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
   5253     OldDecl = OldTD->getTemplatedDecl();
   5254   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
   5255     NewDecl = NewTD->getTemplatedDecl();
   5256 
   5257   if (!OldDecl || !NewDecl)
   5258     return;
   5259 
   5260   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
   5261   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
   5262   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
   5263   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
   5264 
   5265   // dllimport and dllexport are inheritable attributes so we have to exclude
   5266   // inherited attribute instances.
   5267   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
   5268                     (NewExportAttr && !NewExportAttr->isInherited());
   5269 
   5270   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
   5271   // the only exception being explicit specializations.
   5272   // Implicitly generated declarations are also excluded for now because there
   5273   // is no other way to switch these to use dllimport or dllexport.
   5274   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
   5275 
   5276   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
   5277     // If the declaration hasn't been used yet, allow with a warning for
   5278     // free functions and global variables.
   5279     bool JustWarn = false;
   5280     if (!OldDecl->isUsed() && !OldDecl->isCXXClassMember()) {
   5281       auto *VD = dyn_cast<VarDecl>(OldDecl);
   5282       if (VD && !VD->getDescribedVarTemplate())
   5283         JustWarn = true;
   5284       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
   5285       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
   5286         JustWarn = true;
   5287     }
   5288 
   5289     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
   5290                                : diag::err_attribute_dll_redeclaration;
   5291     S.Diag(NewDecl->getLocation(), DiagID)
   5292         << NewDecl
   5293         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
   5294     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
   5295     if (!JustWarn) {
   5296       NewDecl->setInvalidDecl();
   5297       return;
   5298     }
   5299   }
   5300 
   5301   // A redeclaration is not allowed to drop a dllimport attribute, the only
   5302   // exceptions being inline function definitions, local extern declarations,
   5303   // and qualified friend declarations.
   5304   // NB: MSVC converts such a declaration to dllexport.
   5305   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
   5306   if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
   5307     // Ignore static data because out-of-line definitions are diagnosed
   5308     // separately.
   5309     IsStaticDataMember = VD->isStaticDataMember();
   5310   else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
   5311     IsInline = FD->isInlined();
   5312     IsQualifiedFriend = FD->getQualifier() &&
   5313                         FD->getFriendObjectKind() == Decl::FOK_Declared;
   5314   }
   5315 
   5316   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
   5317       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
   5318     S.Diag(NewDecl->getLocation(),
   5319            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   5320       << NewDecl << OldImportAttr;
   5321     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
   5322     S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
   5323     OldDecl->dropAttr<DLLImportAttr>();
   5324     NewDecl->dropAttr<DLLImportAttr>();
   5325   } else if (IsInline && OldImportAttr &&
   5326              !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   5327     // In MinGW, seeing a function declared inline drops the dllimport attribute.
   5328     OldDecl->dropAttr<DLLImportAttr>();
   5329     NewDecl->dropAttr<DLLImportAttr>();
   5330     S.Diag(NewDecl->getLocation(),
   5331            diag::warn_dllimport_dropped_from_inline_function)
   5332         << NewDecl << OldImportAttr;
   5333   }
   5334 }
   5335 
   5336 /// Given that we are within the definition of the given function,
   5337 /// will that definition behave like C99's 'inline', where the
   5338 /// definition is discarded except for optimization purposes?
   5339 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
   5340   // Try to avoid calling GetGVALinkageForFunction.
   5341 
   5342   // All cases of this require the 'inline' keyword.
   5343   if (!FD->isInlined()) return false;
   5344 
   5345   // This is only possible in C++ with the gnu_inline attribute.
   5346   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
   5347     return false;
   5348 
   5349   // Okay, go ahead and call the relatively-more-expensive function.
   5350 
   5351 #ifndef NDEBUG
   5352   // AST quite reasonably asserts that it's working on a function
   5353   // definition.  We don't really have a way to tell it that we're
   5354   // currently defining the function, so just lie to it in +Asserts
   5355   // builds.  This is an awful hack.
   5356   FD->setLazyBody(1);
   5357 #endif
   5358 
   5359   bool isC99Inline =
   5360       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
   5361 
   5362 #ifndef NDEBUG
   5363   FD->setLazyBody(0);
   5364 #endif
   5365 
   5366   return isC99Inline;
   5367 }
   5368 
   5369 /// Determine whether a variable is extern "C" prior to attaching
   5370 /// an initializer. We can't just call isExternC() here, because that
   5371 /// will also compute and cache whether the declaration is externally
   5372 /// visible, which might change when we attach the initializer.
   5373 ///
   5374 /// This can only be used if the declaration is known to not be a
   5375 /// redeclaration of an internal linkage declaration.
   5376 ///
   5377 /// For instance:
   5378 ///
   5379 ///   auto x = []{};
   5380 ///
   5381 /// Attaching the initializer here makes this declaration not externally
   5382 /// visible, because its type has internal linkage.
   5383 ///
   5384 /// FIXME: This is a hack.
   5385 template<typename T>
   5386 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
   5387   if (S.getLangOpts().CPlusPlus) {
   5388     // In C++, the overloadable attribute negates the effects of extern "C".
   5389     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
   5390       return false;
   5391   }
   5392   return D->isExternC();
   5393 }
   5394 
   5395 static bool shouldConsiderLinkage(const VarDecl *VD) {
   5396   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
   5397   if (DC->isFunctionOrMethod())
   5398     return VD->hasExternalStorage();
   5399   if (DC->isFileContext())
   5400     return true;
   5401   if (DC->isRecord())
   5402     return false;
   5403   llvm_unreachable("Unexpected context");
   5404 }
   5405 
   5406 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
   5407   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
   5408   if (DC->isFileContext() || DC->isFunctionOrMethod())
   5409     return true;
   5410   if (DC->isRecord())
   5411     return false;
   5412   llvm_unreachable("Unexpected context");
   5413 }
   5414 
   5415 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
   5416                           AttributeList::Kind Kind) {
   5417   for (const AttributeList *L = AttrList; L; L = L->getNext())
   5418     if (L->getKind() == Kind)
   5419       return true;
   5420   return false;
   5421 }
   5422 
   5423 static bool hasParsedAttr(Scope *S, const Declarator &PD,
   5424                           AttributeList::Kind Kind) {
   5425   // Check decl attributes on the DeclSpec.
   5426   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
   5427     return true;
   5428 
   5429   // Walk the declarator structure, checking decl attributes that were in a type
   5430   // position to the decl itself.
   5431   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
   5432     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
   5433       return true;
   5434   }
   5435 
   5436   // Finally, check attributes on the decl itself.
   5437   return hasParsedAttr(S, PD.getAttributes(), Kind);
   5438 }
   5439 
   5440 /// Adjust the \c DeclContext for a function or variable that might be a
   5441 /// function-local external declaration.
   5442 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
   5443   if (!DC->isFunctionOrMethod())
   5444     return false;
   5445 
   5446   // If this is a local extern function or variable declared within a function
   5447   // template, don't add it into the enclosing namespace scope until it is
   5448   // instantiated; it might have a dependent type right now.
   5449   if (DC->isDependentContext())
   5450     return true;
   5451 
   5452   // C++11 [basic.link]p7:
   5453   //   When a block scope declaration of an entity with linkage is not found to
   5454   //   refer to some other declaration, then that entity is a member of the
   5455   //   innermost enclosing namespace.
   5456   //
   5457   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
   5458   // semantically-enclosing namespace, not a lexically-enclosing one.
   5459   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
   5460     DC = DC->getParent();
   5461   return true;
   5462 }
   5463 
   5464 NamedDecl *
   5465 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   5466                               TypeSourceInfo *TInfo, LookupResult &Previous,
   5467                               MultiTemplateParamsArg TemplateParamLists,
   5468                               bool &AddToScope) {
   5469   QualType R = TInfo->getType();
   5470   DeclarationName Name = GetNameForDeclarator(D).getName();
   5471 
   5472   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   5473   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
   5474 
   5475   // dllimport globals without explicit storage class are treated as extern. We
   5476   // have to change the storage class this early to get the right DeclContext.
   5477   if (SC == SC_None && !DC->isRecord() &&
   5478       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
   5479       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
   5480     SC = SC_Extern;
   5481 
   5482   DeclContext *OriginalDC = DC;
   5483   bool IsLocalExternDecl = SC == SC_Extern &&
   5484                            adjustContextForLocalExternDecl(DC);
   5485 
   5486   if (getLangOpts().OpenCL) {
   5487     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
   5488     QualType NR = R;
   5489     while (NR->isPointerType()) {
   5490       if (NR->isFunctionPointerType()) {
   5491         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
   5492         D.setInvalidType();
   5493         break;
   5494       }
   5495       NR = NR->getPointeeType();
   5496     }
   5497 
   5498     if (!getOpenCLOptions().cl_khr_fp16) {
   5499       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
   5500       // half array type (unless the cl_khr_fp16 extension is enabled).
   5501       if (Context.getBaseElementType(R)->isHalfType()) {
   5502         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
   5503         D.setInvalidType();
   5504       }
   5505     }
   5506   }
   5507 
   5508   if (SCSpec == DeclSpec::SCS_mutable) {
   5509     // mutable can only appear on non-static class members, so it's always
   5510     // an error here
   5511     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   5512     D.setInvalidType();
   5513     SC = SC_None;
   5514   }
   5515 
   5516   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
   5517       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
   5518                               D.getDeclSpec().getStorageClassSpecLoc())) {
   5519     // In C++11, the 'register' storage class specifier is deprecated.
   5520     // Suppress the warning in system macros, it's used in macros in some
   5521     // popular C system headers, such as in glibc's htonl() macro.
   5522     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5523          diag::warn_deprecated_register)
   5524       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5525   }
   5526 
   5527   IdentifierInfo *II = Name.getAsIdentifierInfo();
   5528   if (!II) {
   5529     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   5530       << Name;
   5531     return nullptr;
   5532   }
   5533 
   5534   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   5535 
   5536   if (!DC->isRecord() && S->getFnParent() == nullptr) {
   5537     // C99 6.9p2: The storage-class specifiers auto and register shall not
   5538     // appear in the declaration specifiers in an external declaration.
   5539     // Global Register+Asm is a GNU extension we support.
   5540     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
   5541       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   5542       D.setInvalidType();
   5543     }
   5544   }
   5545 
   5546   if (getLangOpts().OpenCL) {
   5547     // Set up the special work-group-local storage class for variables in the
   5548     // OpenCL __local address space.
   5549     if (R.getAddressSpace() == LangAS::opencl_local) {
   5550       SC = SC_OpenCLWorkGroupLocal;
   5551     }
   5552 
   5553     // OpenCL v1.2 s6.9.b p4:
   5554     // The sampler type cannot be used with the __local and __global address
   5555     // space qualifiers.
   5556     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
   5557       R.getAddressSpace() == LangAS::opencl_global)) {
   5558       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
   5559     }
   5560 
   5561     // OpenCL 1.2 spec, p6.9 r:
   5562     // The event type cannot be used to declare a program scope variable.
   5563     // The event type cannot be used with the __local, __constant and __global
   5564     // address space qualifiers.
   5565     if (R->isEventT()) {
   5566       if (S->getParent() == nullptr) {
   5567         Diag(D.getLocStart(), diag::err_event_t_global_var);
   5568         D.setInvalidType();
   5569       }
   5570 
   5571       if (R.getAddressSpace()) {
   5572         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
   5573         D.setInvalidType();
   5574       }
   5575     }
   5576   }
   5577 
   5578   bool IsExplicitSpecialization = false;
   5579   bool IsVariableTemplateSpecialization = false;
   5580   bool IsPartialSpecialization = false;
   5581   bool IsVariableTemplate = false;
   5582   VarDecl *NewVD = nullptr;
   5583   VarTemplateDecl *NewTemplate = nullptr;
   5584   TemplateParameterList *TemplateParams = nullptr;
   5585   if (!getLangOpts().CPlusPlus) {
   5586     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   5587                             D.getIdentifierLoc(), II,
   5588                             R, TInfo, SC);
   5589 
   5590     if (D.isInvalidType())
   5591       NewVD->setInvalidDecl();
   5592   } else {
   5593     bool Invalid = false;
   5594 
   5595     if (DC->isRecord() && !CurContext->isRecord()) {
   5596       // This is an out-of-line definition of a static data member.
   5597       switch (SC) {
   5598       case SC_None:
   5599         break;
   5600       case SC_Static:
   5601         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5602              diag::err_static_out_of_line)
   5603           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5604         break;
   5605       case SC_Auto:
   5606       case SC_Register:
   5607       case SC_Extern:
   5608         // [dcl.stc] p2: The auto or register specifiers shall be applied only
   5609         // to names of variables declared in a block or to function parameters.
   5610         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
   5611         // of class members
   5612 
   5613         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5614              diag::err_storage_class_for_static_member)
   5615           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5616         break;
   5617       case SC_PrivateExtern:
   5618         llvm_unreachable("C storage class in c++!");
   5619       case SC_OpenCLWorkGroupLocal:
   5620         llvm_unreachable("OpenCL storage class in c++!");
   5621       }
   5622     }
   5623 
   5624     if (SC == SC_Static && CurContext->isRecord()) {
   5625       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   5626         if (RD->isLocalClass())
   5627           Diag(D.getIdentifierLoc(),
   5628                diag::err_static_data_member_not_allowed_in_local_class)
   5629             << Name << RD->getDeclName();
   5630 
   5631         // C++98 [class.union]p1: If a union contains a static data member,
   5632         // the program is ill-formed. C++11 drops this restriction.
   5633         if (RD->isUnion())
   5634           Diag(D.getIdentifierLoc(),
   5635                getLangOpts().CPlusPlus11
   5636                  ? diag::warn_cxx98_compat_static_data_member_in_union
   5637                  : diag::ext_static_data_member_in_union) << Name;
   5638         // We conservatively disallow static data members in anonymous structs.
   5639         else if (!RD->getDeclName())
   5640           Diag(D.getIdentifierLoc(),
   5641                diag::err_static_data_member_not_allowed_in_anon_struct)
   5642             << Name << RD->isUnion();
   5643       }
   5644     }
   5645 
   5646     // Match up the template parameter lists with the scope specifier, then
   5647     // determine whether we have a template or a template specialization.
   5648     TemplateParams = MatchTemplateParametersToScopeSpecifier(
   5649         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   5650         D.getCXXScopeSpec(),
   5651         D.getName().getKind() == UnqualifiedId::IK_TemplateId
   5652             ? D.getName().TemplateId
   5653             : nullptr,
   5654         TemplateParamLists,
   5655         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
   5656 
   5657     if (TemplateParams) {
   5658       if (!TemplateParams->size() &&
   5659           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   5660         // There is an extraneous 'template<>' for this variable. Complain
   5661         // about it, but allow the declaration of the variable.
   5662         Diag(TemplateParams->getTemplateLoc(),
   5663              diag::err_template_variable_noparams)
   5664           << II
   5665           << SourceRange(TemplateParams->getTemplateLoc(),
   5666                          TemplateParams->getRAngleLoc());
   5667         TemplateParams = nullptr;
   5668       } else {
   5669         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   5670           // This is an explicit specialization or a partial specialization.
   5671           // FIXME: Check that we can declare a specialization here.
   5672           IsVariableTemplateSpecialization = true;
   5673           IsPartialSpecialization = TemplateParams->size() > 0;
   5674         } else { // if (TemplateParams->size() > 0)
   5675           // This is a template declaration.
   5676           IsVariableTemplate = true;
   5677 
   5678           // Check that we can declare a template here.
   5679           if (CheckTemplateDeclScope(S, TemplateParams))
   5680             return nullptr;
   5681 
   5682           // Only C++1y supports variable templates (N3651).
   5683           Diag(D.getIdentifierLoc(),
   5684                getLangOpts().CPlusPlus14
   5685                    ? diag::warn_cxx11_compat_variable_template
   5686                    : diag::ext_variable_template);
   5687         }
   5688       }
   5689     } else {
   5690       assert(
   5691           (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
   5692           "should have a 'template<>' for this decl");
   5693     }
   5694 
   5695     if (IsVariableTemplateSpecialization) {
   5696       SourceLocation TemplateKWLoc =
   5697           TemplateParamLists.size() > 0
   5698               ? TemplateParamLists[0]->getTemplateLoc()
   5699               : SourceLocation();
   5700       DeclResult Res = ActOnVarTemplateSpecialization(
   5701           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
   5702           IsPartialSpecialization);
   5703       if (Res.isInvalid())
   5704         return nullptr;
   5705       NewVD = cast<VarDecl>(Res.get());
   5706       AddToScope = false;
   5707     } else
   5708       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   5709                               D.getIdentifierLoc(), II, R, TInfo, SC);
   5710 
   5711     // If this is supposed to be a variable template, create it as such.
   5712     if (IsVariableTemplate) {
   5713       NewTemplate =
   5714           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
   5715                                   TemplateParams, NewVD);
   5716       NewVD->setDescribedVarTemplate(NewTemplate);
   5717     }
   5718 
   5719     // If this decl has an auto type in need of deduction, make a note of the
   5720     // Decl so we can diagnose uses of it in its own initializer.
   5721     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
   5722       ParsingInitForAutoVars.insert(NewVD);
   5723 
   5724     if (D.isInvalidType() || Invalid) {
   5725       NewVD->setInvalidDecl();
   5726       if (NewTemplate)
   5727         NewTemplate->setInvalidDecl();
   5728     }
   5729 
   5730     SetNestedNameSpecifier(NewVD, D);
   5731 
   5732     // If we have any template parameter lists that don't directly belong to
   5733     // the variable (matching the scope specifier), store them.
   5734     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
   5735     if (TemplateParamLists.size() > VDTemplateParamLists)
   5736       NewVD->setTemplateParameterListsInfo(
   5737           Context, TemplateParamLists.size() - VDTemplateParamLists,
   5738           TemplateParamLists.data());
   5739 
   5740     if (D.getDeclSpec().isConstexprSpecified())
   5741       NewVD->setConstexpr(true);
   5742   }
   5743 
   5744   // Set the lexical context. If the declarator has a C++ scope specifier, the
   5745   // lexical context will be different from the semantic context.
   5746   NewVD->setLexicalDeclContext(CurContext);
   5747   if (NewTemplate)
   5748     NewTemplate->setLexicalDeclContext(CurContext);
   5749 
   5750   if (IsLocalExternDecl)
   5751     NewVD->setLocalExternDecl();
   5752 
   5753   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
   5754     // C++11 [dcl.stc]p4:
   5755     //   When thread_local is applied to a variable of block scope the
   5756     //   storage-class-specifier static is implied if it does not appear
   5757     //   explicitly.
   5758     // Core issue: 'static' is not implied if the variable is declared
   5759     //   'extern'.
   5760     if (NewVD->hasLocalStorage() &&
   5761         (SCSpec != DeclSpec::SCS_unspecified ||
   5762          TSCS != DeclSpec::TSCS_thread_local ||
   5763          !DC->isFunctionOrMethod()))
   5764       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   5765            diag::err_thread_non_global)
   5766         << DeclSpec::getSpecifierName(TSCS);
   5767     else if (!Context.getTargetInfo().isTLSSupported())
   5768       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   5769            diag::err_thread_unsupported);
   5770     else
   5771       NewVD->setTSCSpec(TSCS);
   5772   }
   5773 
   5774   // C99 6.7.4p3
   5775   //   An inline definition of a function with external linkage shall
   5776   //   not contain a definition of a modifiable object with static or
   5777   //   thread storage duration...
   5778   // We only apply this when the function is required to be defined
   5779   // elsewhere, i.e. when the function is not 'extern inline'.  Note
   5780   // that a local variable with thread storage duration still has to
   5781   // be marked 'static'.  Also note that it's possible to get these
   5782   // semantics in C++ using __attribute__((gnu_inline)).
   5783   if (SC == SC_Static && S->getFnParent() != nullptr &&
   5784       !NewVD->getType().isConstQualified()) {
   5785     FunctionDecl *CurFD = getCurFunctionDecl();
   5786     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
   5787       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5788            diag::warn_static_local_in_extern_inline);
   5789       MaybeSuggestAddingStaticToDecl(CurFD);
   5790     }
   5791   }
   5792 
   5793   if (D.getDeclSpec().isModulePrivateSpecified()) {
   5794     if (IsVariableTemplateSpecialization)
   5795       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   5796           << (IsPartialSpecialization ? 1 : 0)
   5797           << FixItHint::CreateRemoval(
   5798                  D.getDeclSpec().getModulePrivateSpecLoc());
   5799     else if (IsExplicitSpecialization)
   5800       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   5801         << 2
   5802         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   5803     else if (NewVD->hasLocalStorage())
   5804       Diag(NewVD->getLocation(), diag::err_module_private_local)
   5805         << 0 << NewVD->getDeclName()
   5806         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   5807         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   5808     else {
   5809       NewVD->setModulePrivate();
   5810       if (NewTemplate)
   5811         NewTemplate->setModulePrivate();
   5812     }
   5813   }
   5814 
   5815   // Handle attributes prior to checking for duplicates in MergeVarDecl
   5816   ProcessDeclAttributes(S, NewVD, D);
   5817 
   5818   if (getLangOpts().CUDA) {
   5819     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
   5820     // storage [duration]."
   5821     if (SC == SC_None && S->getFnParent() != nullptr &&
   5822         (NewVD->hasAttr<CUDASharedAttr>() ||
   5823          NewVD->hasAttr<CUDAConstantAttr>())) {
   5824       NewVD->setStorageClass(SC_Static);
   5825     }
   5826   }
   5827 
   5828   // Ensure that dllimport globals without explicit storage class are treated as
   5829   // extern. The storage class is set above using parsed attributes. Now we can
   5830   // check the VarDecl itself.
   5831   assert(!NewVD->hasAttr<DLLImportAttr>() ||
   5832          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
   5833          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
   5834 
   5835   // In auto-retain/release, infer strong retension for variables of
   5836   // retainable type.
   5837   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   5838     NewVD->setInvalidDecl();
   5839 
   5840   // Handle GNU asm-label extension (encoded as an attribute).
   5841   if (Expr *E = (Expr*)D.getAsmLabel()) {
   5842     // The parser guarantees this is a string.
   5843     StringLiteral *SE = cast<StringLiteral>(E);
   5844     StringRef Label = SE->getString();
   5845     if (S->getFnParent() != nullptr) {
   5846       switch (SC) {
   5847       case SC_None:
   5848       case SC_Auto:
   5849         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   5850         break;
   5851       case SC_Register:
   5852         // Local Named register
   5853         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   5854           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   5855         break;
   5856       case SC_Static:
   5857       case SC_Extern:
   5858       case SC_PrivateExtern:
   5859       case SC_OpenCLWorkGroupLocal:
   5860         break;
   5861       }
   5862     } else if (SC == SC_Register) {
   5863       // Global Named register
   5864       if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   5865         Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   5866       if (!R->isIntegralType(Context) && !R->isPointerType()) {
   5867         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
   5868         NewVD->setInvalidDecl(true);
   5869       }
   5870     }
   5871 
   5872     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   5873                                                 Context, Label, 0));
   5874   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   5875     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   5876       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
   5877     if (I != ExtnameUndeclaredIdentifiers.end()) {
   5878       NewVD->addAttr(I->second);
   5879       ExtnameUndeclaredIdentifiers.erase(I);
   5880     }
   5881   }
   5882 
   5883   // Diagnose shadowed variables before filtering for scope.
   5884   if (D.getCXXScopeSpec().isEmpty())
   5885     CheckShadow(S, NewVD, Previous);
   5886 
   5887   // Don't consider existing declarations that are in a different
   5888   // scope and are out-of-semantic-context declarations (if the new
   5889   // declaration has linkage).
   5890   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
   5891                        D.getCXXScopeSpec().isNotEmpty() ||
   5892                        IsExplicitSpecialization ||
   5893                        IsVariableTemplateSpecialization);
   5894 
   5895   // Check whether the previous declaration is in the same block scope. This
   5896   // affects whether we merge types with it, per C++11 [dcl.array]p3.
   5897   if (getLangOpts().CPlusPlus &&
   5898       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
   5899     NewVD->setPreviousDeclInSameBlockScope(
   5900         Previous.isSingleResult() && !Previous.isShadowed() &&
   5901         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
   5902 
   5903   if (!getLangOpts().CPlusPlus) {
   5904     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   5905   } else {
   5906     // If this is an explicit specialization of a static data member, check it.
   5907     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
   5908         CheckMemberSpecialization(NewVD, Previous))
   5909       NewVD->setInvalidDecl();
   5910 
   5911     // Merge the decl with the existing one if appropriate.
   5912     if (!Previous.empty()) {
   5913       if (Previous.isSingleResult() &&
   5914           isa<FieldDecl>(Previous.getFoundDecl()) &&
   5915           D.getCXXScopeSpec().isSet()) {
   5916         // The user tried to define a non-static data member
   5917         // out-of-line (C++ [dcl.meaning]p1).
   5918         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   5919           << D.getCXXScopeSpec().getRange();
   5920         Previous.clear();
   5921         NewVD->setInvalidDecl();
   5922       }
   5923     } else if (D.getCXXScopeSpec().isSet()) {
   5924       // No previous declaration in the qualifying scope.
   5925       Diag(D.getIdentifierLoc(), diag::err_no_member)
   5926         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   5927         << D.getCXXScopeSpec().getRange();
   5928       NewVD->setInvalidDecl();
   5929     }
   5930 
   5931     if (!IsVariableTemplateSpecialization)
   5932       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   5933 
   5934     if (NewTemplate) {
   5935       VarTemplateDecl *PrevVarTemplate =
   5936           NewVD->getPreviousDecl()
   5937               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
   5938               : nullptr;
   5939 
   5940       // Check the template parameter list of this declaration, possibly
   5941       // merging in the template parameter list from the previous variable
   5942       // template declaration.
   5943       if (CheckTemplateParameterList(
   5944               TemplateParams,
   5945               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
   5946                               : nullptr,
   5947               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
   5948                DC->isDependentContext())
   5949                   ? TPC_ClassTemplateMember
   5950                   : TPC_VarTemplate))
   5951         NewVD->setInvalidDecl();
   5952 
   5953       // If we are providing an explicit specialization of a static variable
   5954       // template, make a note of that.
   5955       if (PrevVarTemplate &&
   5956           PrevVarTemplate->getInstantiatedFromMemberTemplate())
   5957         PrevVarTemplate->setMemberSpecialization();
   5958     }
   5959   }
   5960 
   5961   ProcessPragmaWeak(S, NewVD);
   5962 
   5963   // If this is the first declaration of an extern C variable, update
   5964   // the map of such variables.
   5965   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
   5966       isIncompleteDeclExternC(*this, NewVD))
   5967     RegisterLocallyScopedExternCDecl(NewVD, S);
   5968 
   5969   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
   5970     Decl *ManglingContextDecl;
   5971     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
   5972             NewVD->getDeclContext(), ManglingContextDecl)) {
   5973       Context.setManglingNumber(
   5974           NewVD, MCtx->getManglingNumber(
   5975                      NewVD, getMSManglingNumber(getLangOpts(), S)));
   5976       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
   5977     }
   5978   }
   5979 
   5980   if (D.isRedeclaration() && !Previous.empty()) {
   5981     checkDLLAttributeRedeclaration(
   5982         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
   5983         IsExplicitSpecialization);
   5984   }
   5985 
   5986   if (NewTemplate) {
   5987     if (NewVD->isInvalidDecl())
   5988       NewTemplate->setInvalidDecl();
   5989     ActOnDocumentableDecl(NewTemplate);
   5990     return NewTemplate;
   5991   }
   5992 
   5993   return NewVD;
   5994 }
   5995 
   5996 /// \brief Diagnose variable or built-in function shadowing.  Implements
   5997 /// -Wshadow.
   5998 ///
   5999 /// This method is called whenever a VarDecl is added to a "useful"
   6000 /// scope.
   6001 ///
   6002 /// \param S the scope in which the shadowing name is being declared
   6003 /// \param R the lookup of the name
   6004 ///
   6005 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   6006   // Return if warning is ignored.
   6007   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
   6008     return;
   6009 
   6010   // Don't diagnose declarations at file scope.
   6011   if (D->hasGlobalStorage())
   6012     return;
   6013 
   6014   DeclContext *NewDC = D->getDeclContext();
   6015 
   6016   // Only diagnose if we're shadowing an unambiguous field or variable.
   6017   if (R.getResultKind() != LookupResult::Found)
   6018     return;
   6019 
   6020   NamedDecl* ShadowedDecl = R.getFoundDecl();
   6021   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   6022     return;
   6023 
   6024   // Fields are not shadowed by variables in C++ static methods.
   6025   if (isa<FieldDecl>(ShadowedDecl))
   6026     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   6027       if (MD->isStatic())
   6028         return;
   6029 
   6030   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   6031     if (shadowedVar->isExternC()) {
   6032       // For shadowing external vars, make sure that we point to the global
   6033       // declaration, not a locally scoped extern declaration.
   6034       for (auto I : shadowedVar->redecls())
   6035         if (I->isFileVarDecl()) {
   6036           ShadowedDecl = I;
   6037           break;
   6038         }
   6039     }
   6040 
   6041   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   6042 
   6043   // Only warn about certain kinds of shadowing for class members.
   6044   if (NewDC && NewDC->isRecord()) {
   6045     // In particular, don't warn about shadowing non-class members.
   6046     if (!OldDC->isRecord())
   6047       return;
   6048 
   6049     // TODO: should we warn about static data members shadowing
   6050     // static data members from base classes?
   6051 
   6052     // TODO: don't diagnose for inaccessible shadowed members.
   6053     // This is hard to do perfectly because we might friend the
   6054     // shadowing context, but that's just a false negative.
   6055   }
   6056 
   6057   // Determine what kind of declaration we're shadowing.
   6058   unsigned Kind;
   6059   if (isa<RecordDecl>(OldDC)) {
   6060     if (isa<FieldDecl>(ShadowedDecl))
   6061       Kind = 3; // field
   6062     else
   6063       Kind = 2; // static data member
   6064   } else if (OldDC->isFileContext())
   6065     Kind = 1; // global
   6066   else
   6067     Kind = 0; // local
   6068 
   6069   DeclarationName Name = R.getLookupName();
   6070 
   6071   // Emit warning and note.
   6072   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
   6073     return;
   6074   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   6075   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   6076 }
   6077 
   6078 /// \brief Check -Wshadow without the advantage of a previous lookup.
   6079 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   6080   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
   6081     return;
   6082 
   6083   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   6084                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   6085   LookupName(R, S);
   6086   CheckShadow(S, D, R);
   6087 }
   6088 
   6089 /// Check for conflict between this global or extern "C" declaration and
   6090 /// previous global or extern "C" declarations. This is only used in C++.
   6091 template<typename T>
   6092 static bool checkGlobalOrExternCConflict(
   6093     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
   6094   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
   6095   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
   6096 
   6097   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
   6098     // The common case: this global doesn't conflict with any extern "C"
   6099     // declaration.
   6100     return false;
   6101   }
   6102 
   6103   if (Prev) {
   6104     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
   6105       // Both the old and new declarations have C language linkage. This is a
   6106       // redeclaration.
   6107       Previous.clear();
   6108       Previous.addDecl(Prev);
   6109       return true;
   6110     }
   6111 
   6112     // This is a global, non-extern "C" declaration, and there is a previous
   6113     // non-global extern "C" declaration. Diagnose if this is a variable
   6114     // declaration.
   6115     if (!isa<VarDecl>(ND))
   6116       return false;
   6117   } else {
   6118     // The declaration is extern "C". Check for any declaration in the
   6119     // translation unit which might conflict.
   6120     if (IsGlobal) {
   6121       // We have already performed the lookup into the translation unit.
   6122       IsGlobal = false;
   6123       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6124            I != E; ++I) {
   6125         if (isa<VarDecl>(*I)) {
   6126           Prev = *I;
   6127           break;
   6128         }
   6129       }
   6130     } else {
   6131       DeclContext::lookup_result R =
   6132           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
   6133       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
   6134            I != E; ++I) {
   6135         if (isa<VarDecl>(*I)) {
   6136           Prev = *I;
   6137           break;
   6138         }
   6139         // FIXME: If we have any other entity with this name in global scope,
   6140         // the declaration is ill-formed, but that is a defect: it breaks the
   6141         // 'stat' hack, for instance. Only variables can have mangled name
   6142         // clashes with extern "C" declarations, so only they deserve a
   6143         // diagnostic.
   6144       }
   6145     }
   6146 
   6147     if (!Prev)
   6148       return false;
   6149   }
   6150 
   6151   // Use the first declaration's location to ensure we point at something which
   6152   // is lexically inside an extern "C" linkage-spec.
   6153   assert(Prev && "should have found a previous declaration to diagnose");
   6154   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
   6155     Prev = FD->getFirstDecl();
   6156   else
   6157     Prev = cast<VarDecl>(Prev)->getFirstDecl();
   6158 
   6159   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
   6160     << IsGlobal << ND;
   6161   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
   6162     << IsGlobal;
   6163   return false;
   6164 }
   6165 
   6166 /// Apply special rules for handling extern "C" declarations. Returns \c true
   6167 /// if we have found that this is a redeclaration of some prior entity.
   6168 ///
   6169 /// Per C++ [dcl.link]p6:
   6170 ///   Two declarations [for a function or variable] with C language linkage
   6171 ///   with the same name that appear in different scopes refer to the same
   6172 ///   [entity]. An entity with C language linkage shall not be declared with
   6173 ///   the same name as an entity in global scope.
   6174 template<typename T>
   6175 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
   6176                                                   LookupResult &Previous) {
   6177   if (!S.getLangOpts().CPlusPlus) {
   6178     // In C, when declaring a global variable, look for a corresponding 'extern'
   6179     // variable declared in function scope. We don't need this in C++, because
   6180     // we find local extern decls in the surrounding file-scope DeclContext.
   6181     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   6182       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
   6183         Previous.clear();
   6184         Previous.addDecl(Prev);
   6185         return true;
   6186       }
   6187     }
   6188     return false;
   6189   }
   6190 
   6191   // A declaration in the translation unit can conflict with an extern "C"
   6192   // declaration.
   6193   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
   6194     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
   6195 
   6196   // An extern "C" declaration can conflict with a declaration in the
   6197   // translation unit or can be a redeclaration of an extern "C" declaration
   6198   // in another scope.
   6199   if (isIncompleteDeclExternC(S,ND))
   6200     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
   6201 
   6202   // Neither global nor extern "C": nothing to do.
   6203   return false;
   6204 }
   6205 
   6206 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
   6207   // If the decl is already known invalid, don't check it.
   6208   if (NewVD->isInvalidDecl())
   6209     return;
   6210 
   6211   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
   6212   QualType T = TInfo->getType();
   6213 
   6214   // Defer checking an 'auto' type until its initializer is attached.
   6215   if (T->isUndeducedType())
   6216     return;
   6217 
   6218   if (NewVD->hasAttrs())
   6219     CheckAlignasUnderalignment(NewVD);
   6220 
   6221   if (T->isObjCObjectType()) {
   6222     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
   6223       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
   6224     T = Context.getObjCObjectPointerType(T);
   6225     NewVD->setType(T);
   6226   }
   6227 
   6228   // Emit an error if an address space was applied to decl with local storage.
   6229   // This includes arrays of objects with address space qualifiers, but not
   6230   // automatic variables that point to other address spaces.
   6231   // ISO/IEC TR 18037 S5.1.2
   6232   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   6233     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   6234     NewVD->setInvalidDecl();
   6235     return;
   6236   }
   6237 
   6238   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
   6239   // __constant address space.
   6240   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
   6241       && T.getAddressSpace() != LangAS::opencl_constant
   6242       && !T->isSamplerT()){
   6243     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
   6244     NewVD->setInvalidDecl();
   6245     return;
   6246   }
   6247 
   6248   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
   6249   // scope.
   6250   if ((getLangOpts().OpenCLVersion >= 120)
   6251       && NewVD->isStaticLocal()) {
   6252     Diag(NewVD->getLocation(), diag::err_static_function_scope);
   6253     NewVD->setInvalidDecl();
   6254     return;
   6255   }
   6256 
   6257   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   6258       && !NewVD->hasAttr<BlocksAttr>()) {
   6259     if (getLangOpts().getGC() != LangOptions::NonGC)
   6260       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   6261     else {
   6262       assert(!getLangOpts().ObjCAutoRefCount);
   6263       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   6264     }
   6265   }
   6266 
   6267   bool isVM = T->isVariablyModifiedType();
   6268   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   6269       NewVD->hasAttr<BlocksAttr>())
   6270     getCurFunction()->setHasBranchProtectedScope();
   6271 
   6272   if ((isVM && NewVD->hasLinkage()) ||
   6273       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   6274     bool SizeIsNegative;
   6275     llvm::APSInt Oversized;
   6276     TypeSourceInfo *FixedTInfo =
   6277       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   6278                                                     SizeIsNegative, Oversized);
   6279     if (!FixedTInfo && T->isVariableArrayType()) {
   6280       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   6281       // FIXME: This won't give the correct result for
   6282       // int a[10][n];
   6283       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   6284 
   6285       if (NewVD->isFileVarDecl())
   6286         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   6287         << SizeRange;
   6288       else if (NewVD->isStaticLocal())
   6289         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   6290         << SizeRange;
   6291       else
   6292         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   6293         << SizeRange;
   6294       NewVD->setInvalidDecl();
   6295       return;
   6296     }
   6297 
   6298     if (!FixedTInfo) {
   6299       if (NewVD->isFileVarDecl())
   6300         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   6301       else
   6302         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   6303       NewVD->setInvalidDecl();
   6304       return;
   6305     }
   6306 
   6307     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   6308     NewVD->setType(FixedTInfo->getType());
   6309     NewVD->setTypeSourceInfo(FixedTInfo);
   6310   }
   6311 
   6312   if (T->isVoidType()) {
   6313     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
   6314     //                    of objects and functions.
   6315     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
   6316       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   6317         << T;
   6318       NewVD->setInvalidDecl();
   6319       return;
   6320     }
   6321   }
   6322 
   6323   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   6324     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   6325     NewVD->setInvalidDecl();
   6326     return;
   6327   }
   6328 
   6329   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   6330     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   6331     NewVD->setInvalidDecl();
   6332     return;
   6333   }
   6334 
   6335   if (NewVD->isConstexpr() && !T->isDependentType() &&
   6336       RequireLiteralType(NewVD->getLocation(), T,
   6337                          diag::err_constexpr_var_non_literal)) {
   6338     NewVD->setInvalidDecl();
   6339     return;
   6340   }
   6341 }
   6342 
   6343 /// \brief Perform semantic checking on a newly-created variable
   6344 /// declaration.
   6345 ///
   6346 /// This routine performs all of the type-checking required for a
   6347 /// variable declaration once it has been built. It is used both to
   6348 /// check variables after they have been parsed and their declarators
   6349 /// have been translated into a declaration, and to check variables
   6350 /// that have been instantiated from a template.
   6351 ///
   6352 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   6353 ///
   6354 /// Returns true if the variable declaration is a redeclaration.
   6355 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
   6356   CheckVariableDeclarationType(NewVD);
   6357 
   6358   // If the decl is already known invalid, don't check it.
   6359   if (NewVD->isInvalidDecl())
   6360     return false;
   6361 
   6362   // If we did not find anything by this name, look for a non-visible
   6363   // extern "C" declaration with the same name.
   6364   if (Previous.empty() &&
   6365       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
   6366     Previous.setShadowed();
   6367 
   6368   // Filter out any non-conflicting previous declarations.
   6369   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
   6370 
   6371   if (!Previous.empty()) {
   6372     MergeVarDecl(NewVD, Previous);
   6373     return true;
   6374   }
   6375   return false;
   6376 }
   6377 
   6378 /// \brief Data used with FindOverriddenMethod
   6379 struct FindOverriddenMethodData {
   6380   Sema *S;
   6381   CXXMethodDecl *Method;
   6382 };
   6383 
   6384 /// \brief Member lookup function that determines whether a given C++
   6385 /// method overrides a method in a base class, to be used with
   6386 /// CXXRecordDecl::lookupInBases().
   6387 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
   6388                                  CXXBasePath &Path,
   6389                                  void *UserData) {
   6390   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   6391 
   6392   FindOverriddenMethodData *Data
   6393     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
   6394 
   6395   DeclarationName Name = Data->Method->getDeclName();
   6396 
   6397   // FIXME: Do we care about other names here too?
   6398   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   6399     // We really want to find the base class destructor here.
   6400     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
   6401     CanQualType CT = Data->S->Context.getCanonicalType(T);
   6402 
   6403     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
   6404   }
   6405 
   6406   for (Path.Decls = BaseRecord->lookup(Name);
   6407        !Path.Decls.empty();
   6408        Path.Decls = Path.Decls.slice(1)) {
   6409     NamedDecl *D = Path.Decls.front();
   6410     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   6411       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
   6412         return true;
   6413     }
   6414   }
   6415 
   6416   return false;
   6417 }
   6418 
   6419 namespace {
   6420   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
   6421 }
   6422 /// \brief Report an error regarding overriding, along with any relevant
   6423 /// overriden methods.
   6424 ///
   6425 /// \param DiagID the primary error to report.
   6426 /// \param MD the overriding method.
   6427 /// \param OEK which overrides to include as notes.
   6428 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
   6429                             OverrideErrorKind OEK = OEK_All) {
   6430   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
   6431   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   6432                                       E = MD->end_overridden_methods();
   6433        I != E; ++I) {
   6434     // This check (& the OEK parameter) could be replaced by a predicate, but
   6435     // without lambdas that would be overkill. This is still nicer than writing
   6436     // out the diag loop 3 times.
   6437     if ((OEK == OEK_All) ||
   6438         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
   6439         (OEK == OEK_Deleted && (*I)->isDeleted()))
   6440       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
   6441   }
   6442 }
   6443 
   6444 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   6445 /// and if so, check that it's a valid override and remember it.
   6446 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   6447   // Look for methods in base classes that this method might override.
   6448   CXXBasePaths Paths;
   6449   FindOverriddenMethodData Data;
   6450   Data.Method = MD;
   6451   Data.S = this;
   6452   bool hasDeletedOverridenMethods = false;
   6453   bool hasNonDeletedOverridenMethods = false;
   6454   bool AddedAny = false;
   6455   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
   6456     for (auto *I : Paths.found_decls()) {
   6457       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
   6458         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   6459         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   6460             !CheckOverridingFunctionAttributes(MD, OldMD) &&
   6461             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
   6462             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   6463           hasDeletedOverridenMethods |= OldMD->isDeleted();
   6464           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
   6465           AddedAny = true;
   6466         }
   6467       }
   6468     }
   6469   }
   6470 
   6471   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
   6472     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
   6473   }
   6474   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
   6475     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
   6476   }
   6477 
   6478   return AddedAny;
   6479 }
   6480 
   6481 namespace {
   6482   // Struct for holding all of the extra arguments needed by
   6483   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
   6484   struct ActOnFDArgs {
   6485     Scope *S;
   6486     Declarator &D;
   6487     MultiTemplateParamsArg TemplateParamLists;
   6488     bool AddToScope;
   6489   };
   6490 }
   6491 
   6492 namespace {
   6493 
   6494 // Callback to only accept typo corrections that have a non-zero edit distance.
   6495 // Also only accept corrections that have the same parent decl.
   6496 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
   6497  public:
   6498   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
   6499                             CXXRecordDecl *Parent)
   6500       : Context(Context), OriginalFD(TypoFD),
   6501         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
   6502 
   6503   bool ValidateCandidate(const TypoCorrection &candidate) override {
   6504     if (candidate.getEditDistance() == 0)
   6505       return false;
   6506 
   6507     SmallVector<unsigned, 1> MismatchedParams;
   6508     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
   6509                                           CDeclEnd = candidate.end();
   6510          CDecl != CDeclEnd; ++CDecl) {
   6511       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   6512 
   6513       if (FD && !FD->hasBody() &&
   6514           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
   6515         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   6516           CXXRecordDecl *Parent = MD->getParent();
   6517           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
   6518             return true;
   6519         } else if (!ExpectedParent) {
   6520           return true;
   6521         }
   6522       }
   6523     }
   6524 
   6525     return false;
   6526   }
   6527 
   6528  private:
   6529   ASTContext &Context;
   6530   FunctionDecl *OriginalFD;
   6531   CXXRecordDecl *ExpectedParent;
   6532 };
   6533 
   6534 }
   6535 
   6536 /// \brief Generate diagnostics for an invalid function redeclaration.
   6537 ///
   6538 /// This routine handles generating the diagnostic messages for an invalid
   6539 /// function redeclaration, including finding possible similar declarations
   6540 /// or performing typo correction if there are no previous declarations with
   6541 /// the same name.
   6542 ///
   6543 /// Returns a NamedDecl iff typo correction was performed and substituting in
   6544 /// the new declaration name does not cause new errors.
   6545 static NamedDecl *DiagnoseInvalidRedeclaration(
   6546     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
   6547     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
   6548   DeclarationName Name = NewFD->getDeclName();
   6549   DeclContext *NewDC = NewFD->getDeclContext();
   6550   SmallVector<unsigned, 1> MismatchedParams;
   6551   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
   6552   TypoCorrection Correction;
   6553   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
   6554   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
   6555                                    : diag::err_member_decl_does_not_match;
   6556   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
   6557                     IsLocalFriend ? Sema::LookupLocalFriendName
   6558                                   : Sema::LookupOrdinaryName,
   6559                     Sema::ForRedeclaration);
   6560 
   6561   NewFD->setInvalidDecl();
   6562   if (IsLocalFriend)
   6563     SemaRef.LookupName(Prev, S);
   6564   else
   6565     SemaRef.LookupQualifiedName(Prev, NewDC);
   6566   assert(!Prev.isAmbiguous() &&
   6567          "Cannot have an ambiguity in previous-declaration lookup");
   6568   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   6569   if (!Prev.empty()) {
   6570     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   6571          Func != FuncEnd; ++Func) {
   6572       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
   6573       if (FD &&
   6574           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   6575         // Add 1 to the index so that 0 can mean the mismatch didn't
   6576         // involve a parameter
   6577         unsigned ParamNum =
   6578             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
   6579         NearMatches.push_back(std::make_pair(FD, ParamNum));
   6580       }
   6581     }
   6582   // If the qualified name lookup yielded nothing, try typo correction
   6583   } else if ((Correction = SemaRef.CorrectTypo(
   6584                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
   6585                   &ExtraArgs.D.getCXXScopeSpec(),
   6586                   llvm::make_unique<DifferentNameValidatorCCC>(
   6587                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
   6588                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
   6589     // Set up everything for the call to ActOnFunctionDeclarator
   6590     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
   6591                               ExtraArgs.D.getIdentifierLoc());
   6592     Previous.clear();
   6593     Previous.setLookupName(Correction.getCorrection());
   6594     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
   6595                                     CDeclEnd = Correction.end();
   6596          CDecl != CDeclEnd; ++CDecl) {
   6597       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   6598       if (FD && !FD->hasBody() &&
   6599           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   6600         Previous.addDecl(FD);
   6601       }
   6602     }
   6603     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
   6604 
   6605     NamedDecl *Result;
   6606     // Retry building the function declaration with the new previous
   6607     // declarations, and with errors suppressed.
   6608     {
   6609       // Trap errors.
   6610       Sema::SFINAETrap Trap(SemaRef);
   6611 
   6612       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
   6613       // pieces need to verify the typo-corrected C++ declaration and hopefully
   6614       // eliminate the need for the parameter pack ExtraArgs.
   6615       Result = SemaRef.ActOnFunctionDeclarator(
   6616           ExtraArgs.S, ExtraArgs.D,
   6617           Correction.getCorrectionDecl()->getDeclContext(),
   6618           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
   6619           ExtraArgs.AddToScope);
   6620 
   6621       if (Trap.hasErrorOccurred())
   6622         Result = nullptr;
   6623     }
   6624 
   6625     if (Result) {
   6626       // Determine which correction we picked.
   6627       Decl *Canonical = Result->getCanonicalDecl();
   6628       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6629            I != E; ++I)
   6630         if ((*I)->getCanonicalDecl() == Canonical)
   6631           Correction.setCorrectionDecl(*I);
   6632 
   6633       SemaRef.diagnoseTypo(
   6634           Correction,
   6635           SemaRef.PDiag(IsLocalFriend
   6636                           ? diag::err_no_matching_local_friend_suggest
   6637                           : diag::err_member_decl_does_not_match_suggest)
   6638             << Name << NewDC << IsDefinition);
   6639       return Result;
   6640     }
   6641 
   6642     // Pretend the typo correction never occurred
   6643     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
   6644                               ExtraArgs.D.getIdentifierLoc());
   6645     ExtraArgs.D.setRedeclaration(wasRedeclaration);
   6646     Previous.clear();
   6647     Previous.setLookupName(Name);
   6648   }
   6649 
   6650   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   6651       << Name << NewDC << IsDefinition << NewFD->getLocation();
   6652 
   6653   bool NewFDisConst = false;
   6654   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
   6655     NewFDisConst = NewMD->isConst();
   6656 
   6657   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
   6658        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
   6659        NearMatch != NearMatchEnd; ++NearMatch) {
   6660     FunctionDecl *FD = NearMatch->first;
   6661     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   6662     bool FDisConst = MD && MD->isConst();
   6663     bool IsMember = MD || !IsLocalFriend;
   6664 
   6665     // FIXME: These notes are poorly worded for the local friend case.
   6666     if (unsigned Idx = NearMatch->second) {
   6667       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
   6668       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
   6669       if (Loc.isInvalid()) Loc = FD->getLocation();
   6670       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
   6671                                  : diag::note_local_decl_close_param_match)
   6672         << Idx << FDParam->getType()
   6673         << NewFD->getParamDecl(Idx - 1)->getType();
   6674     } else if (FDisConst != NewFDisConst) {
   6675       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
   6676           << NewFDisConst << FD->getSourceRange().getEnd();
   6677     } else
   6678       SemaRef.Diag(FD->getLocation(),
   6679                    IsMember ? diag::note_member_def_close_match
   6680                             : diag::note_local_decl_close_match);
   6681   }
   6682   return nullptr;
   6683 }
   6684 
   6685 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
   6686   switch (D.getDeclSpec().getStorageClassSpec()) {
   6687   default: llvm_unreachable("Unknown storage class!");
   6688   case DeclSpec::SCS_auto:
   6689   case DeclSpec::SCS_register:
   6690   case DeclSpec::SCS_mutable:
   6691     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6692                  diag::err_typecheck_sclass_func);
   6693     D.setInvalidType();
   6694     break;
   6695   case DeclSpec::SCS_unspecified: break;
   6696   case DeclSpec::SCS_extern:
   6697     if (D.getDeclSpec().isExternInLinkageSpec())
   6698       return SC_None;
   6699     return SC_Extern;
   6700   case DeclSpec::SCS_static: {
   6701     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   6702       // C99 6.7.1p5:
   6703       //   The declaration of an identifier for a function that has
   6704       //   block scope shall have no explicit storage-class specifier
   6705       //   other than extern
   6706       // See also (C++ [dcl.stc]p4).
   6707       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6708                    diag::err_static_block_func);
   6709       break;
   6710     } else
   6711       return SC_Static;
   6712   }
   6713   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   6714   }
   6715 
   6716   // No explicit storage class has already been returned
   6717   return SC_None;
   6718 }
   6719 
   6720 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
   6721                                            DeclContext *DC, QualType &R,
   6722                                            TypeSourceInfo *TInfo,
   6723                                            StorageClass SC,
   6724                                            bool &IsVirtualOkay) {
   6725   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
   6726   DeclarationName Name = NameInfo.getName();
   6727 
   6728   FunctionDecl *NewFD = nullptr;
   6729   bool isInline = D.getDeclSpec().isInlineSpecified();
   6730 
   6731   if (!SemaRef.getLangOpts().CPlusPlus) {
   6732     // Determine whether the function was written with a
   6733     // prototype. This true when:
   6734     //   - there is a prototype in the declarator, or
   6735     //   - the type R of the function is some kind of typedef or other reference
   6736     //     to a type name (which eventually refers to a function type).
   6737     bool HasPrototype =
   6738       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   6739       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   6740 
   6741     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
   6742                                  D.getLocStart(), NameInfo, R,
   6743                                  TInfo, SC, isInline,
   6744                                  HasPrototype, false);
   6745     if (D.isInvalidType())
   6746       NewFD->setInvalidDecl();
   6747 
   6748     return NewFD;
   6749   }
   6750 
   6751   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   6752   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   6753 
   6754   // Check that the return type is not an abstract class type.
   6755   // For record types, this is done by the AbstractClassUsageDiagnoser once
   6756   // the class has been completely parsed.
   6757   if (!DC->isRecord() &&
   6758       SemaRef.RequireNonAbstractType(
   6759           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
   6760           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
   6761     D.setInvalidType();
   6762 
   6763   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   6764     // This is a C++ constructor declaration.
   6765     assert(DC->isRecord() &&
   6766            "Constructors can only be declared in a member context");
   6767 
   6768     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
   6769     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   6770                                       D.getLocStart(), NameInfo,
   6771                                       R, TInfo, isExplicit, isInline,
   6772                                       /*isImplicitlyDeclared=*/false,
   6773                                       isConstexpr);
   6774 
   6775   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   6776     // This is a C++ destructor declaration.
   6777     if (DC->isRecord()) {
   6778       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
   6779       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   6780       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
   6781                                         SemaRef.Context, Record,
   6782                                         D.getLocStart(),
   6783                                         NameInfo, R, TInfo, isInline,
   6784                                         /*isImplicitlyDeclared=*/false);
   6785 
   6786       // If the class is complete, then we now create the implicit exception
   6787       // specification. If the class is incomplete or dependent, we can't do
   6788       // it yet.
   6789       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
   6790           Record->getDefinition() && !Record->isBeingDefined() &&
   6791           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   6792         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
   6793       }
   6794 
   6795       IsVirtualOkay = true;
   6796       return NewDD;
   6797 
   6798     } else {
   6799       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   6800       D.setInvalidType();
   6801 
   6802       // Create a FunctionDecl to satisfy the function definition parsing
   6803       // code path.
   6804       return FunctionDecl::Create(SemaRef.Context, DC,
   6805                                   D.getLocStart(),
   6806                                   D.getIdentifierLoc(), Name, R, TInfo,
   6807                                   SC, isInline,
   6808                                   /*hasPrototype=*/true, isConstexpr);
   6809     }
   6810 
   6811   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   6812     if (!DC->isRecord()) {
   6813       SemaRef.Diag(D.getIdentifierLoc(),
   6814            diag::err_conv_function_not_member);
   6815       return nullptr;
   6816     }
   6817 
   6818     SemaRef.CheckConversionDeclarator(D, R, SC);
   6819     IsVirtualOkay = true;
   6820     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   6821                                      D.getLocStart(), NameInfo,
   6822                                      R, TInfo, isInline, isExplicit,
   6823                                      isConstexpr, SourceLocation());
   6824 
   6825   } else if (DC->isRecord()) {
   6826     // If the name of the function is the same as the name of the record,
   6827     // then this must be an invalid constructor that has a return type.
   6828     // (The parser checks for a return type and makes the declarator a
   6829     // constructor if it has no return type).
   6830     if (Name.getAsIdentifierInfo() &&
   6831         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   6832       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   6833         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   6834         << SourceRange(D.getIdentifierLoc());
   6835       return nullptr;
   6836     }
   6837 
   6838     // This is a C++ method declaration.
   6839     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
   6840                                                cast<CXXRecordDecl>(DC),
   6841                                                D.getLocStart(), NameInfo, R,
   6842                                                TInfo, SC, isInline,
   6843                                                isConstexpr, SourceLocation());
   6844     IsVirtualOkay = !Ret->isStatic();
   6845     return Ret;
   6846   } else {
   6847     bool isFriend =
   6848         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
   6849     if (!isFriend && SemaRef.CurContext->isRecord())
   6850       return nullptr;
   6851 
   6852     // Determine whether the function was written with a
   6853     // prototype. This true when:
   6854     //   - we're in C++ (where every function has a prototype),
   6855     return FunctionDecl::Create(SemaRef.Context, DC,
   6856                                 D.getLocStart(),
   6857                                 NameInfo, R, TInfo, SC, isInline,
   6858                                 true/*HasPrototype*/, isConstexpr);
   6859   }
   6860 }
   6861 
   6862 enum OpenCLParamType {
   6863   ValidKernelParam,
   6864   PtrPtrKernelParam,
   6865   PtrKernelParam,
   6866   PrivatePtrKernelParam,
   6867   InvalidKernelParam,
   6868   RecordKernelParam
   6869 };
   6870 
   6871 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
   6872   if (PT->isPointerType()) {
   6873     QualType PointeeType = PT->getPointeeType();
   6874     if (PointeeType->isPointerType())
   6875       return PtrPtrKernelParam;
   6876     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
   6877                                               : PtrKernelParam;
   6878   }
   6879 
   6880   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
   6881   // be used as builtin types.
   6882 
   6883   if (PT->isImageType())
   6884     return PtrKernelParam;
   6885 
   6886   if (PT->isBooleanType())
   6887     return InvalidKernelParam;
   6888 
   6889   if (PT->isEventT())
   6890     return InvalidKernelParam;
   6891 
   6892   if (PT->isHalfType())
   6893     return InvalidKernelParam;
   6894 
   6895   if (PT->isRecordType())
   6896     return RecordKernelParam;
   6897 
   6898   return ValidKernelParam;
   6899 }
   6900 
   6901 static void checkIsValidOpenCLKernelParameter(
   6902   Sema &S,
   6903   Declarator &D,
   6904   ParmVarDecl *Param,
   6905   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
   6906   QualType PT = Param->getType();
   6907 
   6908   // Cache the valid types we encounter to avoid rechecking structs that are
   6909   // used again
   6910   if (ValidTypes.count(PT.getTypePtr()))
   6911     return;
   6912 
   6913   switch (getOpenCLKernelParameterType(PT)) {
   6914   case PtrPtrKernelParam:
   6915     // OpenCL v1.2 s6.9.a:
   6916     // A kernel function argument cannot be declared as a
   6917     // pointer to a pointer type.
   6918     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
   6919     D.setInvalidType();
   6920     return;
   6921 
   6922   case PrivatePtrKernelParam:
   6923     // OpenCL v1.2 s6.9.a:
   6924     // A kernel function argument cannot be declared as a
   6925     // pointer to the private address space.
   6926     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
   6927     D.setInvalidType();
   6928     return;
   6929 
   6930     // OpenCL v1.2 s6.9.k:
   6931     // Arguments to kernel functions in a program cannot be declared with the
   6932     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
   6933     // uintptr_t or a struct and/or union that contain fields declared to be
   6934     // one of these built-in scalar types.
   6935 
   6936   case InvalidKernelParam:
   6937     // OpenCL v1.2 s6.8 n:
   6938     // A kernel function argument cannot be declared
   6939     // of event_t type.
   6940     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   6941     D.setInvalidType();
   6942     return;
   6943 
   6944   case PtrKernelParam:
   6945   case ValidKernelParam:
   6946     ValidTypes.insert(PT.getTypePtr());
   6947     return;
   6948 
   6949   case RecordKernelParam:
   6950     break;
   6951   }
   6952 
   6953   // Track nested structs we will inspect
   6954   SmallVector<const Decl *, 4> VisitStack;
   6955 
   6956   // Track where we are in the nested structs. Items will migrate from
   6957   // VisitStack to HistoryStack as we do the DFS for bad field.
   6958   SmallVector<const FieldDecl *, 4> HistoryStack;
   6959   HistoryStack.push_back(nullptr);
   6960 
   6961   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
   6962   VisitStack.push_back(PD);
   6963 
   6964   assert(VisitStack.back() && "First decl null?");
   6965 
   6966   do {
   6967     const Decl *Next = VisitStack.pop_back_val();
   6968     if (!Next) {
   6969       assert(!HistoryStack.empty());
   6970       // Found a marker, we have gone up a level
   6971       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
   6972         ValidTypes.insert(Hist->getType().getTypePtr());
   6973 
   6974       continue;
   6975     }
   6976 
   6977     // Adds everything except the original parameter declaration (which is not a
   6978     // field itself) to the history stack.
   6979     const RecordDecl *RD;
   6980     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
   6981       HistoryStack.push_back(Field);
   6982       RD = Field->getType()->castAs<RecordType>()->getDecl();
   6983     } else {
   6984       RD = cast<RecordDecl>(Next);
   6985     }
   6986 
   6987     // Add a null marker so we know when we've gone back up a level
   6988     VisitStack.push_back(nullptr);
   6989 
   6990     for (const auto *FD : RD->fields()) {
   6991       QualType QT = FD->getType();
   6992 
   6993       if (ValidTypes.count(QT.getTypePtr()))
   6994         continue;
   6995 
   6996       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
   6997       if (ParamType == ValidKernelParam)
   6998         continue;
   6999 
   7000       if (ParamType == RecordKernelParam) {
   7001         VisitStack.push_back(FD);
   7002         continue;
   7003       }
   7004 
   7005       // OpenCL v1.2 s6.9.p:
   7006       // Arguments to kernel functions that are declared to be a struct or union
   7007       // do not allow OpenCL objects to be passed as elements of the struct or
   7008       // union.
   7009       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
   7010           ParamType == PrivatePtrKernelParam) {
   7011         S.Diag(Param->getLocation(),
   7012                diag::err_record_with_pointers_kernel_param)
   7013           << PT->isUnionType()
   7014           << PT;
   7015       } else {
   7016         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   7017       }
   7018 
   7019       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
   7020         << PD->getDeclName();
   7021 
   7022       // We have an error, now let's go back up through history and show where
   7023       // the offending field came from
   7024       for (ArrayRef<const FieldDecl *>::const_iterator
   7025                I = HistoryStack.begin() + 1,
   7026                E = HistoryStack.end();
   7027            I != E; ++I) {
   7028         const FieldDecl *OuterField = *I;
   7029         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
   7030           << OuterField->getType();
   7031       }
   7032 
   7033       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
   7034         << QT->isPointerType()
   7035         << QT;
   7036       D.setInvalidType();
   7037       return;
   7038     }
   7039   } while (!VisitStack.empty());
   7040 }
   7041 
   7042 NamedDecl*
   7043 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   7044                               TypeSourceInfo *TInfo, LookupResult &Previous,
   7045                               MultiTemplateParamsArg TemplateParamLists,
   7046                               bool &AddToScope) {
   7047   QualType R = TInfo->getType();
   7048 
   7049   assert(R.getTypePtr()->isFunctionType());
   7050 
   7051   // TODO: consider using NameInfo for diagnostic.
   7052   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   7053   DeclarationName Name = NameInfo.getName();
   7054   StorageClass SC = getFunctionStorageClass(*this, D);
   7055 
   7056   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   7057     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   7058          diag::err_invalid_thread)
   7059       << DeclSpec::getSpecifierName(TSCS);
   7060 
   7061   if (D.isFirstDeclarationOfMember())
   7062     adjustMemberFunctionCC(R, D.isStaticMember());
   7063 
   7064   bool isFriend = false;
   7065   FunctionTemplateDecl *FunctionTemplate = nullptr;
   7066   bool isExplicitSpecialization = false;
   7067   bool isFunctionTemplateSpecialization = false;
   7068 
   7069   bool isDependentClassScopeExplicitSpecialization = false;
   7070   bool HasExplicitTemplateArgs = false;
   7071   TemplateArgumentListInfo TemplateArgs;
   7072 
   7073   bool isVirtualOkay = false;
   7074 
   7075   DeclContext *OriginalDC = DC;
   7076   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
   7077 
   7078   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
   7079                                               isVirtualOkay);
   7080   if (!NewFD) return nullptr;
   7081 
   7082   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
   7083     NewFD->setTopLevelDeclInObjCContainer();
   7084 
   7085   // Set the lexical context. If this is a function-scope declaration, or has a
   7086   // C++ scope specifier, or is the object of a friend declaration, the lexical
   7087   // context will be different from the semantic context.
   7088   NewFD->setLexicalDeclContext(CurContext);
   7089 
   7090   if (IsLocalExternDecl)
   7091     NewFD->setLocalExternDecl();
   7092 
   7093   if (getLangOpts().CPlusPlus) {
   7094     bool isInline = D.getDeclSpec().isInlineSpecified();
   7095     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   7096     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   7097     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   7098     isFriend = D.getDeclSpec().isFriendSpecified();
   7099     if (isFriend && !isInline && D.isFunctionDefinition()) {
   7100       // C++ [class.friend]p5
   7101       //   A function can be defined in a friend declaration of a
   7102       //   class . . . . Such a function is implicitly inline.
   7103       NewFD->setImplicitlyInline();
   7104     }
   7105 
   7106     // If this is a method defined in an __interface, and is not a constructor
   7107     // or an overloaded operator, then set the pure flag (isVirtual will already
   7108     // return true).
   7109     if (const CXXRecordDecl *Parent =
   7110           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
   7111       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
   7112         NewFD->setPure(true);
   7113     }
   7114 
   7115     SetNestedNameSpecifier(NewFD, D);
   7116     isExplicitSpecialization = false;
   7117     isFunctionTemplateSpecialization = false;
   7118     if (D.isInvalidType())
   7119       NewFD->setInvalidDecl();
   7120 
   7121     // Match up the template parameter lists with the scope specifier, then
   7122     // determine whether we have a template or a template specialization.
   7123     bool Invalid = false;
   7124     if (TemplateParameterList *TemplateParams =
   7125             MatchTemplateParametersToScopeSpecifier(
   7126                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   7127                 D.getCXXScopeSpec(),
   7128                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
   7129                     ? D.getName().TemplateId
   7130                     : nullptr,
   7131                 TemplateParamLists, isFriend, isExplicitSpecialization,
   7132                 Invalid)) {
   7133       if (TemplateParams->size() > 0) {
   7134         // This is a function template
   7135 
   7136         // Check that we can declare a template here.
   7137         if (CheckTemplateDeclScope(S, TemplateParams))
   7138           NewFD->setInvalidDecl();
   7139 
   7140         // A destructor cannot be a template.
   7141         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   7142           Diag(NewFD->getLocation(), diag::err_destructor_template);
   7143           NewFD->setInvalidDecl();
   7144         }
   7145 
   7146         // If we're adding a template to a dependent context, we may need to
   7147         // rebuilding some of the types used within the template parameter list,
   7148         // now that we know what the current instantiation is.
   7149         if (DC->isDependentContext()) {
   7150           ContextRAII SavedContext(*this, DC);
   7151           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
   7152             Invalid = true;
   7153         }
   7154 
   7155 
   7156         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   7157                                                         NewFD->getLocation(),
   7158                                                         Name, TemplateParams,
   7159                                                         NewFD);
   7160         FunctionTemplate->setLexicalDeclContext(CurContext);
   7161         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   7162 
   7163         // For source fidelity, store the other template param lists.
   7164         if (TemplateParamLists.size() > 1) {
   7165           NewFD->setTemplateParameterListsInfo(Context,
   7166                                                TemplateParamLists.size() - 1,
   7167                                                TemplateParamLists.data());
   7168         }
   7169       } else {
   7170         // This is a function template specialization.
   7171         isFunctionTemplateSpecialization = true;
   7172         // For source fidelity, store all the template param lists.
   7173         if (TemplateParamLists.size() > 0)
   7174           NewFD->setTemplateParameterListsInfo(Context,
   7175                                                TemplateParamLists.size(),
   7176                                                TemplateParamLists.data());
   7177 
   7178         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   7179         if (isFriend) {
   7180           // We want to remove the "template<>", found here.
   7181           SourceRange RemoveRange = TemplateParams->getSourceRange();
   7182 
   7183           // If we remove the template<> and the name is not a
   7184           // template-id, we're actually silently creating a problem:
   7185           // the friend declaration will refer to an untemplated decl,
   7186           // and clearly the user wants a template specialization.  So
   7187           // we need to insert '<>' after the name.
   7188           SourceLocation InsertLoc;
   7189           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   7190             InsertLoc = D.getName().getSourceRange().getEnd();
   7191             InsertLoc = getLocForEndOfToken(InsertLoc);
   7192           }
   7193 
   7194           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   7195             << Name << RemoveRange
   7196             << FixItHint::CreateRemoval(RemoveRange)
   7197             << FixItHint::CreateInsertion(InsertLoc, "<>");
   7198         }
   7199       }
   7200     }
   7201     else {
   7202       // All template param lists were matched against the scope specifier:
   7203       // this is NOT (an explicit specialization of) a template.
   7204       if (TemplateParamLists.size() > 0)
   7205         // For source fidelity, store all the template param lists.
   7206         NewFD->setTemplateParameterListsInfo(Context,
   7207                                              TemplateParamLists.size(),
   7208                                              TemplateParamLists.data());
   7209     }
   7210 
   7211     if (Invalid) {
   7212       NewFD->setInvalidDecl();
   7213       if (FunctionTemplate)
   7214         FunctionTemplate->setInvalidDecl();
   7215     }
   7216 
   7217     // C++ [dcl.fct.spec]p5:
   7218     //   The virtual specifier shall only be used in declarations of
   7219     //   nonstatic class member functions that appear within a
   7220     //   member-specification of a class declaration; see 10.3.
   7221     //
   7222     if (isVirtual && !NewFD->isInvalidDecl()) {
   7223       if (!isVirtualOkay) {
   7224         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   7225              diag::err_virtual_non_function);
   7226       } else if (!CurContext->isRecord()) {
   7227         // 'virtual' was specified outside of the class.
   7228         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   7229              diag::err_virtual_out_of_class)
   7230           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   7231       } else if (NewFD->getDescribedFunctionTemplate()) {
   7232         // C++ [temp.mem]p3:
   7233         //  A member function template shall not be virtual.
   7234         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   7235              diag::err_virtual_member_function_template)
   7236           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   7237       } else {
   7238         // Okay: Add virtual to the method.
   7239         NewFD->setVirtualAsWritten(true);
   7240       }
   7241 
   7242       if (getLangOpts().CPlusPlus14 &&
   7243           NewFD->getReturnType()->isUndeducedType())
   7244         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
   7245     }
   7246 
   7247     if (getLangOpts().CPlusPlus14 &&
   7248         (NewFD->isDependentContext() ||
   7249          (isFriend && CurContext->isDependentContext())) &&
   7250         NewFD->getReturnType()->isUndeducedType()) {
   7251       // If the function template is referenced directly (for instance, as a
   7252       // member of the current instantiation), pretend it has a dependent type.
   7253       // This is not really justified by the standard, but is the only sane
   7254       // thing to do.
   7255       // FIXME: For a friend function, we have not marked the function as being
   7256       // a friend yet, so 'isDependentContext' on the FD doesn't work.
   7257       const FunctionProtoType *FPT =
   7258           NewFD->getType()->castAs<FunctionProtoType>();
   7259       QualType Result =
   7260           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
   7261       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
   7262                                              FPT->getExtProtoInfo()));
   7263     }
   7264 
   7265     // C++ [dcl.fct.spec]p3:
   7266     //  The inline specifier shall not appear on a block scope function
   7267     //  declaration.
   7268     if (isInline && !NewFD->isInvalidDecl()) {
   7269       if (CurContext->isFunctionOrMethod()) {
   7270         // 'inline' is not allowed on block scope function declaration.
   7271         Diag(D.getDeclSpec().getInlineSpecLoc(),
   7272              diag::err_inline_declaration_block_scope) << Name
   7273           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   7274       }
   7275     }
   7276 
   7277     // C++ [dcl.fct.spec]p6:
   7278     //  The explicit specifier shall be used only in the declaration of a
   7279     //  constructor or conversion function within its class definition;
   7280     //  see 12.3.1 and 12.3.2.
   7281     if (isExplicit && !NewFD->isInvalidDecl()) {
   7282       if (!CurContext->isRecord()) {
   7283         // 'explicit' was specified outside of the class.
   7284         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   7285              diag::err_explicit_out_of_class)
   7286           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   7287       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   7288                  !isa<CXXConversionDecl>(NewFD)) {
   7289         // 'explicit' was specified on a function that wasn't a constructor
   7290         // or conversion function.
   7291         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   7292              diag::err_explicit_non_ctor_or_conv_function)
   7293           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   7294       }
   7295     }
   7296 
   7297     if (isConstexpr) {
   7298       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
   7299       // are implicitly inline.
   7300       NewFD->setImplicitlyInline();
   7301 
   7302       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
   7303       // be either constructors or to return a literal type. Therefore,
   7304       // destructors cannot be declared constexpr.
   7305       if (isa<CXXDestructorDecl>(NewFD))
   7306         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
   7307     }
   7308 
   7309     // If __module_private__ was specified, mark the function accordingly.
   7310     if (D.getDeclSpec().isModulePrivateSpecified()) {
   7311       if (isFunctionTemplateSpecialization) {
   7312         SourceLocation ModulePrivateLoc
   7313           = D.getDeclSpec().getModulePrivateSpecLoc();
   7314         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
   7315           << 0
   7316           << FixItHint::CreateRemoval(ModulePrivateLoc);
   7317       } else {
   7318         NewFD->setModulePrivate();
   7319         if (FunctionTemplate)
   7320           FunctionTemplate->setModulePrivate();
   7321       }
   7322     }
   7323 
   7324     if (isFriend) {
   7325       if (FunctionTemplate) {
   7326         FunctionTemplate->setObjectOfFriendDecl();
   7327         FunctionTemplate->setAccess(AS_public);
   7328       }
   7329       NewFD->setObjectOfFriendDecl();
   7330       NewFD->setAccess(AS_public);
   7331     }
   7332 
   7333     // If a function is defined as defaulted or deleted, mark it as such now.
   7334     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
   7335     // definition kind to FDK_Definition.
   7336     switch (D.getFunctionDefinitionKind()) {
   7337       case FDK_Declaration:
   7338       case FDK_Definition:
   7339         break;
   7340 
   7341       case FDK_Defaulted:
   7342         NewFD->setDefaulted();
   7343         break;
   7344 
   7345       case FDK_Deleted:
   7346         NewFD->setDeletedAsWritten();
   7347         break;
   7348     }
   7349 
   7350     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
   7351         D.isFunctionDefinition()) {
   7352       // C++ [class.mfct]p2:
   7353       //   A member function may be defined (8.4) in its class definition, in
   7354       //   which case it is an inline member function (7.1.2)
   7355       NewFD->setImplicitlyInline();
   7356     }
   7357 
   7358     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   7359         !CurContext->isRecord()) {
   7360       // C++ [class.static]p1:
   7361       //   A data or function member of a class may be declared static
   7362       //   in a class definition, in which case it is a static member of
   7363       //   the class.
   7364 
   7365       // Complain about the 'static' specifier if it's on an out-of-line
   7366       // member function definition.
   7367       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   7368            diag::err_static_out_of_line)
   7369         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   7370     }
   7371 
   7372     // C++11 [except.spec]p15:
   7373     //   A deallocation function with no exception-specification is treated
   7374     //   as if it were specified with noexcept(true).
   7375     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
   7376     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
   7377          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
   7378         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
   7379       NewFD->setType(Context.getFunctionType(
   7380           FPT->getReturnType(), FPT->getParamTypes(),
   7381           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
   7382   }
   7383 
   7384   // Filter out previous declarations that don't match the scope.
   7385   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
   7386                        D.getCXXScopeSpec().isNotEmpty() ||
   7387                        isExplicitSpecialization ||
   7388                        isFunctionTemplateSpecialization);
   7389 
   7390   // Handle GNU asm-label extension (encoded as an attribute).
   7391   if (Expr *E = (Expr*) D.getAsmLabel()) {
   7392     // The parser guarantees this is a string.
   7393     StringLiteral *SE = cast<StringLiteral>(E);
   7394     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   7395                                                 SE->getString(), 0));
   7396   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   7397     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   7398       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
   7399     if (I != ExtnameUndeclaredIdentifiers.end()) {
   7400       NewFD->addAttr(I->second);
   7401       ExtnameUndeclaredIdentifiers.erase(I);
   7402     }
   7403   }
   7404 
   7405   // Copy the parameter declarations from the declarator D to the function
   7406   // declaration NewFD, if they are available.  First scavenge them into Params.
   7407   SmallVector<ParmVarDecl*, 16> Params;
   7408   if (D.isFunctionDeclarator()) {
   7409     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   7410 
   7411     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   7412     // function that takes no arguments, not a function that takes a
   7413     // single void argument.
   7414     // We let through "const void" here because Sema::GetTypeForDeclarator
   7415     // already checks for that case.
   7416     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
   7417       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
   7418         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
   7419         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   7420         Param->setDeclContext(NewFD);
   7421         Params.push_back(Param);
   7422 
   7423         if (Param->isInvalidDecl())
   7424           NewFD->setInvalidDecl();
   7425       }
   7426     }
   7427 
   7428   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   7429     // When we're declaring a function with a typedef, typeof, etc as in the
   7430     // following example, we'll need to synthesize (unnamed)
   7431     // parameters for use in the declaration.
   7432     //
   7433     // @code
   7434     // typedef void fn(int);
   7435     // fn f;
   7436     // @endcode
   7437 
   7438     // Synthesize a parameter for each argument type.
   7439     for (const auto &AI : FT->param_types()) {
   7440       ParmVarDecl *Param =
   7441           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
   7442       Param->setScopeInfo(0, Params.size());
   7443       Params.push_back(Param);
   7444     }
   7445   } else {
   7446     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   7447            "Should not need args for typedef of non-prototype fn");
   7448   }
   7449 
   7450   // Finally, we know we have the right number of parameters, install them.
   7451   NewFD->setParams(Params);
   7452 
   7453   // Find all anonymous symbols defined during the declaration of this function
   7454   // and add to NewFD. This lets us track decls such 'enum Y' in:
   7455   //
   7456   //   void f(enum Y {AA} x) {}
   7457   //
   7458   // which would otherwise incorrectly end up in the translation unit scope.
   7459   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
   7460   DeclsInPrototypeScope.clear();
   7461 
   7462   if (D.getDeclSpec().isNoreturnSpecified())
   7463     NewFD->addAttr(
   7464         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
   7465                                        Context, 0));
   7466 
   7467   // Functions returning a variably modified type violate C99 6.7.5.2p2
   7468   // because all functions have linkage.
   7469   if (!NewFD->isInvalidDecl() &&
   7470       NewFD->getReturnType()->isVariablyModifiedType()) {
   7471     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   7472     NewFD->setInvalidDecl();
   7473   }
   7474 
   7475   // Apply an implicit SectionAttr if #pragma code_seg is active.
   7476   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
   7477       !NewFD->hasAttr<SectionAttr>()) {
   7478     NewFD->addAttr(
   7479         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
   7480                                     CodeSegStack.CurrentValue->getString(),
   7481                                     CodeSegStack.CurrentPragmaLocation));
   7482     if (UnifySection(CodeSegStack.CurrentValue->getString(),
   7483                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
   7484                          ASTContext::PSF_Read,
   7485                      NewFD))
   7486       NewFD->dropAttr<SectionAttr>();
   7487   }
   7488 
   7489   // Handle attributes.
   7490   ProcessDeclAttributes(S, NewFD, D);
   7491 
   7492   if (getLangOpts().OpenCL) {
   7493     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
   7494     // type declaration will generate a compilation error.
   7495     unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
   7496     if (AddressSpace == LangAS::opencl_local ||
   7497         AddressSpace == LangAS::opencl_global ||
   7498         AddressSpace == LangAS::opencl_constant) {
   7499       Diag(NewFD->getLocation(),
   7500            diag::err_opencl_return_value_with_address_space);
   7501       NewFD->setInvalidDecl();
   7502     }
   7503   }
   7504 
   7505   if (!getLangOpts().CPlusPlus) {
   7506     // Perform semantic checking on the function declaration.
   7507     bool isExplicitSpecialization=false;
   7508     if (!NewFD->isInvalidDecl() && NewFD->isMain())
   7509       CheckMain(NewFD, D.getDeclSpec());
   7510 
   7511     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
   7512       CheckMSVCRTEntryPoint(NewFD);
   7513 
   7514     if (!NewFD->isInvalidDecl())
   7515       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   7516                                                   isExplicitSpecialization));
   7517     else if (!Previous.empty())
   7518       // Recover gracefully from an invalid redeclaration.
   7519       D.setRedeclaration(true);
   7520     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   7521             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   7522            "previous declaration set still overloaded");
   7523 
   7524     // Diagnose no-prototype function declarations with calling conventions that
   7525     // don't support variadic calls. Only do this in C and do it after merging
   7526     // possibly prototyped redeclarations.
   7527     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
   7528     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
   7529       CallingConv CC = FT->getExtInfo().getCC();
   7530       if (!supportsVariadicCall(CC)) {
   7531         // Windows system headers sometimes accidentally use stdcall without
   7532         // (void) parameters, so we relax this to a warning.
   7533         int DiagID =
   7534             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
   7535         Diag(NewFD->getLocation(), DiagID)
   7536             << FunctionType::getNameForCallConv(CC);
   7537       }
   7538     }
   7539   } else {
   7540     // C++11 [replacement.functions]p3:
   7541     //  The program's definitions shall not be specified as inline.
   7542     //
   7543     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
   7544     //
   7545     // Suppress the diagnostic if the function is __attribute__((used)), since
   7546     // that forces an external definition to be emitted.
   7547     if (D.getDeclSpec().isInlineSpecified() &&
   7548         NewFD->isReplaceableGlobalAllocationFunction() &&
   7549         !NewFD->hasAttr<UsedAttr>())
   7550       Diag(D.getDeclSpec().getInlineSpecLoc(),
   7551            diag::ext_operator_new_delete_declared_inline)
   7552         << NewFD->getDeclName();
   7553 
   7554     // If the declarator is a template-id, translate the parser's template
   7555     // argument list into our AST format.
   7556     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   7557       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   7558       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   7559       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   7560       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   7561                                          TemplateId->NumArgs);
   7562       translateTemplateArguments(TemplateArgsPtr,
   7563                                  TemplateArgs);
   7564 
   7565       HasExplicitTemplateArgs = true;
   7566 
   7567       if (NewFD->isInvalidDecl()) {
   7568         HasExplicitTemplateArgs = false;
   7569       } else if (FunctionTemplate) {
   7570         // Function template with explicit template arguments.
   7571         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   7572           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   7573 
   7574         HasExplicitTemplateArgs = false;
   7575       } else {
   7576         assert((isFunctionTemplateSpecialization ||
   7577                 D.getDeclSpec().isFriendSpecified()) &&
   7578                "should have a 'template<>' for this decl");
   7579         // "friend void foo<>(int);" is an implicit specialization decl.
   7580         isFunctionTemplateSpecialization = true;
   7581       }
   7582     } else if (isFriend && isFunctionTemplateSpecialization) {
   7583       // This combination is only possible in a recovery case;  the user
   7584       // wrote something like:
   7585       //   template <> friend void foo(int);
   7586       // which we're recovering from as if the user had written:
   7587       //   friend void foo<>(int);
   7588       // Go ahead and fake up a template id.
   7589       HasExplicitTemplateArgs = true;
   7590       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   7591       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   7592     }
   7593 
   7594     // If it's a friend (and only if it's a friend), it's possible
   7595     // that either the specialized function type or the specialized
   7596     // template is dependent, and therefore matching will fail.  In
   7597     // this case, don't check the specialization yet.
   7598     bool InstantiationDependent = false;
   7599     if (isFunctionTemplateSpecialization && isFriend &&
   7600         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
   7601          TemplateSpecializationType::anyDependentTemplateArguments(
   7602             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
   7603             InstantiationDependent))) {
   7604       assert(HasExplicitTemplateArgs &&
   7605              "friend function specialization without template args");
   7606       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   7607                                                        Previous))
   7608         NewFD->setInvalidDecl();
   7609     } else if (isFunctionTemplateSpecialization) {
   7610       if (CurContext->isDependentContext() && CurContext->isRecord()
   7611           && !isFriend) {
   7612         isDependentClassScopeExplicitSpecialization = true;
   7613         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   7614           diag::ext_function_specialization_in_class :
   7615           diag::err_function_specialization_in_class)
   7616           << NewFD->getDeclName();
   7617       } else if (CheckFunctionTemplateSpecialization(NewFD,
   7618                                   (HasExplicitTemplateArgs ? &TemplateArgs
   7619                                                            : nullptr),
   7620                                                      Previous))
   7621         NewFD->setInvalidDecl();
   7622 
   7623       // C++ [dcl.stc]p1:
   7624       //   A storage-class-specifier shall not be specified in an explicit
   7625       //   specialization (14.7.3)
   7626       FunctionTemplateSpecializationInfo *Info =
   7627           NewFD->getTemplateSpecializationInfo();
   7628       if (Info && SC != SC_None) {
   7629         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
   7630           Diag(NewFD->getLocation(),
   7631                diag::err_explicit_specialization_inconsistent_storage_class)
   7632             << SC
   7633             << FixItHint::CreateRemoval(
   7634                                       D.getDeclSpec().getStorageClassSpecLoc());
   7635 
   7636         else
   7637           Diag(NewFD->getLocation(),
   7638                diag::ext_explicit_specialization_storage_class)
   7639             << FixItHint::CreateRemoval(
   7640                                       D.getDeclSpec().getStorageClassSpecLoc());
   7641       }
   7642 
   7643     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   7644       if (CheckMemberSpecialization(NewFD, Previous))
   7645           NewFD->setInvalidDecl();
   7646     }
   7647 
   7648     // Perform semantic checking on the function declaration.
   7649     if (!isDependentClassScopeExplicitSpecialization) {
   7650       if (!NewFD->isInvalidDecl() && NewFD->isMain())
   7651         CheckMain(NewFD, D.getDeclSpec());
   7652 
   7653       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
   7654         CheckMSVCRTEntryPoint(NewFD);
   7655 
   7656       if (!NewFD->isInvalidDecl())
   7657         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   7658                                                     isExplicitSpecialization));
   7659       else if (!Previous.empty())
   7660         // Recover gracefully from an invalid redeclaration.
   7661         D.setRedeclaration(true);
   7662     }
   7663 
   7664     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   7665             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   7666            "previous declaration set still overloaded");
   7667 
   7668     NamedDecl *PrincipalDecl = (FunctionTemplate
   7669                                 ? cast<NamedDecl>(FunctionTemplate)
   7670                                 : NewFD);
   7671 
   7672     if (isFriend && D.isRedeclaration()) {
   7673       AccessSpecifier Access = AS_public;
   7674       if (!NewFD->isInvalidDecl())
   7675         Access = NewFD->getPreviousDecl()->getAccess();
   7676 
   7677       NewFD->setAccess(Access);
   7678       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   7679     }
   7680 
   7681     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   7682         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   7683       PrincipalDecl->setNonMemberOperator();
   7684 
   7685     // If we have a function template, check the template parameter
   7686     // list. This will check and merge default template arguments.
   7687     if (FunctionTemplate) {
   7688       FunctionTemplateDecl *PrevTemplate =
   7689                                      FunctionTemplate->getPreviousDecl();
   7690       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   7691                        PrevTemplate ? PrevTemplate->getTemplateParameters()
   7692                                     : nullptr,
   7693                             D.getDeclSpec().isFriendSpecified()
   7694                               ? (D.isFunctionDefinition()
   7695                                    ? TPC_FriendFunctionTemplateDefinition
   7696                                    : TPC_FriendFunctionTemplate)
   7697                               : (D.getCXXScopeSpec().isSet() &&
   7698                                  DC && DC->isRecord() &&
   7699                                  DC->isDependentContext())
   7700                                   ? TPC_ClassTemplateMember
   7701                                   : TPC_FunctionTemplate);
   7702     }
   7703 
   7704     if (NewFD->isInvalidDecl()) {
   7705       // Ignore all the rest of this.
   7706     } else if (!D.isRedeclaration()) {
   7707       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
   7708                                        AddToScope };
   7709       // Fake up an access specifier if it's supposed to be a class member.
   7710       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   7711         NewFD->setAccess(AS_public);
   7712 
   7713       // Qualified decls generally require a previous declaration.
   7714       if (D.getCXXScopeSpec().isSet()) {
   7715         // ...with the major exception of templated-scope or
   7716         // dependent-scope friend declarations.
   7717 
   7718         // TODO: we currently also suppress this check in dependent
   7719         // contexts because (1) the parameter depth will be off when
   7720         // matching friend templates and (2) we might actually be
   7721         // selecting a friend based on a dependent factor.  But there
   7722         // are situations where these conditions don't apply and we
   7723         // can actually do this check immediately.
   7724         if (isFriend &&
   7725             (TemplateParamLists.size() ||
   7726              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   7727              CurContext->isDependentContext())) {
   7728           // ignore these
   7729         } else {
   7730           // The user tried to provide an out-of-line definition for a
   7731           // function that is a member of a class or namespace, but there
   7732           // was no such member function declared (C++ [class.mfct]p2,
   7733           // C++ [namespace.memdef]p2). For example:
   7734           //
   7735           // class X {
   7736           //   void f() const;
   7737           // };
   7738           //
   7739           // void X::f() { } // ill-formed
   7740           //
   7741           // Complain about this problem, and attempt to suggest close
   7742           // matches (e.g., those that differ only in cv-qualifiers and
   7743           // whether the parameter types are references).
   7744 
   7745           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
   7746                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
   7747             AddToScope = ExtraArgs.AddToScope;
   7748             return Result;
   7749           }
   7750         }
   7751 
   7752         // Unqualified local friend declarations are required to resolve
   7753         // to something.
   7754       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   7755         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
   7756                 *this, Previous, NewFD, ExtraArgs, true, S)) {
   7757           AddToScope = ExtraArgs.AddToScope;
   7758           return Result;
   7759         }
   7760       }
   7761 
   7762     } else if (!D.isFunctionDefinition() &&
   7763                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
   7764                !isFriend && !isFunctionTemplateSpecialization &&
   7765                !isExplicitSpecialization) {
   7766       // An out-of-line member function declaration must also be a
   7767       // definition (C++ [class.mfct]p2).
   7768       // Note that this is not the case for explicit specializations of
   7769       // function templates or member functions of class templates, per
   7770       // C++ [temp.expl.spec]p2. We also allow these declarations as an
   7771       // extension for compatibility with old SWIG code which likes to
   7772       // generate them.
   7773       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   7774         << D.getCXXScopeSpec().getRange();
   7775     }
   7776   }
   7777 
   7778   ProcessPragmaWeak(S, NewFD);
   7779   checkAttributesAfterMerging(*this, *NewFD);
   7780 
   7781   AddKnownFunctionAttributes(NewFD);
   7782 
   7783   if (NewFD->hasAttr<OverloadableAttr>() &&
   7784       !NewFD->getType()->getAs<FunctionProtoType>()) {
   7785     Diag(NewFD->getLocation(),
   7786          diag::err_attribute_overloadable_no_prototype)
   7787       << NewFD;
   7788 
   7789     // Turn this into a variadic function with no parameters.
   7790     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   7791     FunctionProtoType::ExtProtoInfo EPI(
   7792         Context.getDefaultCallingConvention(true, false));
   7793     EPI.Variadic = true;
   7794     EPI.ExtInfo = FT->getExtInfo();
   7795 
   7796     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
   7797     NewFD->setType(R);
   7798   }
   7799 
   7800   // If there's a #pragma GCC visibility in scope, and this isn't a class
   7801   // member, set the visibility of this function.
   7802   if (!DC->isRecord() && NewFD->isExternallyVisible())
   7803     AddPushedVisibilityAttribute(NewFD);
   7804 
   7805   // If there's a #pragma clang arc_cf_code_audited in scope, consider
   7806   // marking the function.
   7807   AddCFAuditedAttribute(NewFD);
   7808 
   7809   // If this is a function definition, check if we have to apply optnone due to
   7810   // a pragma.
   7811   if(D.isFunctionDefinition())
   7812     AddRangeBasedOptnone(NewFD);
   7813 
   7814   // If this is the first declaration of an extern C variable, update
   7815   // the map of such variables.
   7816   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
   7817       isIncompleteDeclExternC(*this, NewFD))
   7818     RegisterLocallyScopedExternCDecl(NewFD, S);
   7819 
   7820   // Set this FunctionDecl's range up to the right paren.
   7821   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   7822 
   7823   if (D.isRedeclaration() && !Previous.empty()) {
   7824     checkDLLAttributeRedeclaration(
   7825         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
   7826         isExplicitSpecialization || isFunctionTemplateSpecialization);
   7827   }
   7828 
   7829   if (getLangOpts().CPlusPlus) {
   7830     if (FunctionTemplate) {
   7831       if (NewFD->isInvalidDecl())
   7832         FunctionTemplate->setInvalidDecl();
   7833       return FunctionTemplate;
   7834     }
   7835   }
   7836 
   7837   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
   7838     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
   7839     if ((getLangOpts().OpenCLVersion >= 120)
   7840         && (SC == SC_Static)) {
   7841       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
   7842       D.setInvalidType();
   7843     }
   7844 
   7845     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
   7846     if (!NewFD->getReturnType()->isVoidType()) {
   7847       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
   7848       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
   7849           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
   7850                                 : FixItHint());
   7851       D.setInvalidType();
   7852     }
   7853 
   7854     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
   7855     for (auto Param : NewFD->params())
   7856       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
   7857   }
   7858 
   7859   MarkUnusedFileScopedDecl(NewFD);
   7860 
   7861   if (getLangOpts().CUDA)
   7862     if (IdentifierInfo *II = NewFD->getIdentifier())
   7863       if (!NewFD->isInvalidDecl() &&
   7864           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   7865         if (II->isStr("cudaConfigureCall")) {
   7866           if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
   7867             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   7868 
   7869           Context.setcudaConfigureCallDecl(NewFD);
   7870         }
   7871       }
   7872 
   7873   // Here we have an function template explicit specialization at class scope.
   7874   // The actually specialization will be postponed to template instatiation
   7875   // time via the ClassScopeFunctionSpecializationDecl node.
   7876   if (isDependentClassScopeExplicitSpecialization) {
   7877     ClassScopeFunctionSpecializationDecl *NewSpec =
   7878                          ClassScopeFunctionSpecializationDecl::Create(
   7879                                 Context, CurContext, SourceLocation(),
   7880                                 cast<CXXMethodDecl>(NewFD),
   7881                                 HasExplicitTemplateArgs, TemplateArgs);
   7882     CurContext->addDecl(NewSpec);
   7883     AddToScope = false;
   7884   }
   7885 
   7886   return NewFD;
   7887 }
   7888 
   7889 /// \brief Perform semantic checking of a new function declaration.
   7890 ///
   7891 /// Performs semantic analysis of the new function declaration
   7892 /// NewFD. This routine performs all semantic checking that does not
   7893 /// require the actual declarator involved in the declaration, and is
   7894 /// used both for the declaration of functions as they are parsed
   7895 /// (called via ActOnDeclarator) and for the declaration of functions
   7896 /// that have been instantiated via C++ template instantiation (called
   7897 /// via InstantiateDecl).
   7898 ///
   7899 /// \param IsExplicitSpecialization whether this new function declaration is
   7900 /// an explicit specialization of the previous declaration.
   7901 ///
   7902 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   7903 ///
   7904 /// \returns true if the function declaration is a redeclaration.
   7905 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   7906                                     LookupResult &Previous,
   7907                                     bool IsExplicitSpecialization) {
   7908   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
   7909          "Variably modified return types are not handled here");
   7910 
   7911   // Determine whether the type of this function should be merged with
   7912   // a previous visible declaration. This never happens for functions in C++,
   7913   // and always happens in C if the previous declaration was visible.
   7914   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
   7915                                !Previous.isShadowed();
   7916 
   7917   // Filter out any non-conflicting previous declarations.
   7918   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
   7919 
   7920   bool Redeclaration = false;
   7921   NamedDecl *OldDecl = nullptr;
   7922 
   7923   // Merge or overload the declaration with an existing declaration of
   7924   // the same name, if appropriate.
   7925   if (!Previous.empty()) {
   7926     // Determine whether NewFD is an overload of PrevDecl or
   7927     // a declaration that requires merging. If it's an overload,
   7928     // there's no more work to do here; we'll just add the new
   7929     // function to the scope.
   7930     if (!AllowOverloadingOfFunction(Previous, Context)) {
   7931       NamedDecl *Candidate = Previous.getFoundDecl();
   7932       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
   7933         Redeclaration = true;
   7934         OldDecl = Candidate;
   7935       }
   7936     } else {
   7937       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   7938                             /*NewIsUsingDecl*/ false)) {
   7939       case Ovl_Match:
   7940         Redeclaration = true;
   7941         break;
   7942 
   7943       case Ovl_NonFunction:
   7944         Redeclaration = true;
   7945         break;
   7946 
   7947       case Ovl_Overload:
   7948         Redeclaration = false;
   7949         break;
   7950       }
   7951 
   7952       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   7953         // If a function name is overloadable in C, then every function
   7954         // with that name must be marked "overloadable".
   7955         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   7956           << Redeclaration << NewFD;
   7957         NamedDecl *OverloadedDecl = nullptr;
   7958         if (Redeclaration)
   7959           OverloadedDecl = OldDecl;
   7960         else if (!Previous.empty())
   7961           OverloadedDecl = Previous.getRepresentativeDecl();
   7962         if (OverloadedDecl)
   7963           Diag(OverloadedDecl->getLocation(),
   7964                diag::note_attribute_overloadable_prev_overload);
   7965         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
   7966       }
   7967     }
   7968   }
   7969 
   7970   // Check for a previous extern "C" declaration with this name.
   7971   if (!Redeclaration &&
   7972       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
   7973     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
   7974     if (!Previous.empty()) {
   7975       // This is an extern "C" declaration with the same name as a previous
   7976       // declaration, and thus redeclares that entity...
   7977       Redeclaration = true;
   7978       OldDecl = Previous.getFoundDecl();
   7979       MergeTypeWithPrevious = false;
   7980 
   7981       // ... except in the presence of __attribute__((overloadable)).
   7982       if (OldDecl->hasAttr<OverloadableAttr>()) {
   7983         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   7984           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   7985             << Redeclaration << NewFD;
   7986           Diag(Previous.getFoundDecl()->getLocation(),
   7987                diag::note_attribute_overloadable_prev_overload);
   7988           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
   7989         }
   7990         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
   7991           Redeclaration = false;
   7992           OldDecl = nullptr;
   7993         }
   7994       }
   7995     }
   7996   }
   7997 
   7998   // C++11 [dcl.constexpr]p8:
   7999   //   A constexpr specifier for a non-static member function that is not
   8000   //   a constructor declares that member function to be const.
   8001   //
   8002   // This needs to be delayed until we know whether this is an out-of-line
   8003   // definition of a static member function.
   8004   //
   8005   // This rule is not present in C++1y, so we produce a backwards
   8006   // compatibility warning whenever it happens in C++11.
   8007   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   8008   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
   8009       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
   8010       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
   8011     CXXMethodDecl *OldMD = nullptr;
   8012     if (OldDecl)
   8013       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
   8014     if (!OldMD || !OldMD->isStatic()) {
   8015       const FunctionProtoType *FPT =
   8016         MD->getType()->castAs<FunctionProtoType>();
   8017       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   8018       EPI.TypeQuals |= Qualifiers::Const;
   8019       MD->setType(Context.getFunctionType(FPT->getReturnType(),
   8020                                           FPT->getParamTypes(), EPI));
   8021 
   8022       // Warn that we did this, if we're not performing template instantiation.
   8023       // In that case, we'll have warned already when the template was defined.
   8024       if (ActiveTemplateInstantiations.empty()) {
   8025         SourceLocation AddConstLoc;
   8026         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
   8027                 .IgnoreParens().getAs<FunctionTypeLoc>())
   8028           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
   8029 
   8030         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
   8031           << FixItHint::CreateInsertion(AddConstLoc, " const");
   8032       }
   8033     }
   8034   }
   8035 
   8036   if (Redeclaration) {
   8037     // NewFD and OldDecl represent declarations that need to be
   8038     // merged.
   8039     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
   8040       NewFD->setInvalidDecl();
   8041       return Redeclaration;
   8042     }
   8043 
   8044     Previous.clear();
   8045     Previous.addDecl(OldDecl);
   8046 
   8047     if (FunctionTemplateDecl *OldTemplateDecl
   8048                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   8049       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   8050       FunctionTemplateDecl *NewTemplateDecl
   8051         = NewFD->getDescribedFunctionTemplate();
   8052       assert(NewTemplateDecl && "Template/non-template mismatch");
   8053       if (CXXMethodDecl *Method
   8054             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   8055         Method->setAccess(OldTemplateDecl->getAccess());
   8056         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   8057       }
   8058 
   8059       // If this is an explicit specialization of a member that is a function
   8060       // template, mark it as a member specialization.
   8061       if (IsExplicitSpecialization &&
   8062           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   8063         NewTemplateDecl->setMemberSpecialization();
   8064         assert(OldTemplateDecl->isMemberSpecialization());
   8065       }
   8066 
   8067     } else {
   8068       // This needs to happen first so that 'inline' propagates.
   8069       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   8070 
   8071       if (isa<CXXMethodDecl>(NewFD))
   8072         NewFD->setAccess(OldDecl->getAccess());
   8073     }
   8074   }
   8075 
   8076   // Semantic checking for this function declaration (in isolation).
   8077 
   8078   if (getLangOpts().CPlusPlus) {
   8079     // C++-specific checks.
   8080     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   8081       CheckConstructor(Constructor);
   8082     } else if (CXXDestructorDecl *Destructor =
   8083                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   8084       CXXRecordDecl *Record = Destructor->getParent();
   8085       QualType ClassType = Context.getTypeDeclType(Record);
   8086 
   8087       // FIXME: Shouldn't we be able to perform this check even when the class
   8088       // type is dependent? Both gcc and edg can handle that.
   8089       if (!ClassType->isDependentType()) {
   8090         DeclarationName Name
   8091           = Context.DeclarationNames.getCXXDestructorName(
   8092                                         Context.getCanonicalType(ClassType));
   8093         if (NewFD->getDeclName() != Name) {
   8094           Diag(NewFD->getLocation(), diag::err_destructor_name);
   8095           NewFD->setInvalidDecl();
   8096           return Redeclaration;
   8097         }
   8098       }
   8099     } else if (CXXConversionDecl *Conversion
   8100                = dyn_cast<CXXConversionDecl>(NewFD)) {
   8101       ActOnConversionDeclarator(Conversion);
   8102     }
   8103 
   8104     // Find any virtual functions that this function overrides.
   8105     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   8106       if (!Method->isFunctionTemplateSpecialization() &&
   8107           !Method->getDescribedFunctionTemplate() &&
   8108           Method->isCanonicalDecl()) {
   8109         if (AddOverriddenMethods(Method->getParent(), Method)) {
   8110           // If the function was marked as "static", we have a problem.
   8111           if (NewFD->getStorageClass() == SC_Static) {
   8112             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
   8113           }
   8114         }
   8115       }
   8116 
   8117       if (Method->isStatic())
   8118         checkThisInStaticMemberFunctionType(Method);
   8119     }
   8120 
   8121     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   8122     if (NewFD->isOverloadedOperator() &&
   8123         CheckOverloadedOperatorDeclaration(NewFD)) {
   8124       NewFD->setInvalidDecl();
   8125       return Redeclaration;
   8126     }
   8127 
   8128     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   8129     if (NewFD->getLiteralIdentifier() &&
   8130         CheckLiteralOperatorDeclaration(NewFD)) {
   8131       NewFD->setInvalidDecl();
   8132       return Redeclaration;
   8133     }
   8134 
   8135     // In C++, check default arguments now that we have merged decls. Unless
   8136     // the lexical context is the class, because in this case this is done
   8137     // during delayed parsing anyway.
   8138     if (!CurContext->isRecord())
   8139       CheckCXXDefaultArguments(NewFD);
   8140 
   8141     // If this function declares a builtin function, check the type of this
   8142     // declaration against the expected type for the builtin.
   8143     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   8144       ASTContext::GetBuiltinTypeError Error;
   8145       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
   8146       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   8147       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   8148         // The type of this function differs from the type of the builtin,
   8149         // so forget about the builtin entirely.
   8150         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
   8151       }
   8152     }
   8153 
   8154     // If this function is declared as being extern "C", then check to see if
   8155     // the function returns a UDT (class, struct, or union type) that is not C
   8156     // compatible, and if it does, warn the user.
   8157     // But, issue any diagnostic on the first declaration only.
   8158     if (Previous.empty() && NewFD->isExternC()) {
   8159       QualType R = NewFD->getReturnType();
   8160       if (R->isIncompleteType() && !R->isVoidType())
   8161         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
   8162             << NewFD << R;
   8163       else if (!R.isPODType(Context) && !R->isVoidType() &&
   8164                !R->isObjCObjectPointerType())
   8165         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
   8166     }
   8167   }
   8168   return Redeclaration;
   8169 }
   8170 
   8171 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
   8172   // C++11 [basic.start.main]p3:
   8173   //   A program that [...] declares main to be inline, static or
   8174   //   constexpr is ill-formed.
   8175   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
   8176   //   appear in a declaration of main.
   8177   // static main is not an error under C99, but we should warn about it.
   8178   // We accept _Noreturn main as an extension.
   8179   if (FD->getStorageClass() == SC_Static)
   8180     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
   8181          ? diag::err_static_main : diag::warn_static_main)
   8182       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   8183   if (FD->isInlineSpecified())
   8184     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
   8185       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
   8186   if (DS.isNoreturnSpecified()) {
   8187     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
   8188     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
   8189     Diag(NoreturnLoc, diag::ext_noreturn_main);
   8190     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
   8191       << FixItHint::CreateRemoval(NoreturnRange);
   8192   }
   8193   if (FD->isConstexpr()) {
   8194     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
   8195       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
   8196     FD->setConstexpr(false);
   8197   }
   8198 
   8199   if (getLangOpts().OpenCL) {
   8200     Diag(FD->getLocation(), diag::err_opencl_no_main)
   8201         << FD->hasAttr<OpenCLKernelAttr>();
   8202     FD->setInvalidDecl();
   8203     return;
   8204   }
   8205 
   8206   QualType T = FD->getType();
   8207   assert(T->isFunctionType() && "function decl is not of function type");
   8208   const FunctionType* FT = T->castAs<FunctionType>();
   8209 
   8210   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
   8211     // In C with GNU extensions we allow main() to have non-integer return
   8212     // type, but we should warn about the extension, and we disable the
   8213     // implicit-return-zero rule.
   8214 
   8215     // GCC in C mode accepts qualified 'int'.
   8216     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
   8217       FD->setHasImplicitReturnZero(true);
   8218     else {
   8219       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
   8220       SourceRange RTRange = FD->getReturnTypeSourceRange();
   8221       if (RTRange.isValid())
   8222         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
   8223             << FixItHint::CreateReplacement(RTRange, "int");
   8224     }
   8225   } else {
   8226     // In C and C++, main magically returns 0 if you fall off the end;
   8227     // set the flag which tells us that.
   8228     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   8229 
   8230     // All the standards say that main() should return 'int'.
   8231     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
   8232       FD->setHasImplicitReturnZero(true);
   8233     else {
   8234       // Otherwise, this is just a flat-out error.
   8235       SourceRange RTRange = FD->getReturnTypeSourceRange();
   8236       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
   8237           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
   8238                                 : FixItHint());
   8239       FD->setInvalidDecl(true);
   8240     }
   8241   }
   8242 
   8243   // Treat protoless main() as nullary.
   8244   if (isa<FunctionNoProtoType>(FT)) return;
   8245 
   8246   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   8247   unsigned nparams = FTP->getNumParams();
   8248   assert(FD->getNumParams() == nparams);
   8249 
   8250   bool HasExtraParameters = (nparams > 3);
   8251 
   8252   // Darwin passes an undocumented fourth argument of type char**.  If
   8253   // other platforms start sprouting these, the logic below will start
   8254   // getting shifty.
   8255   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
   8256     HasExtraParameters = false;
   8257 
   8258   if (HasExtraParameters) {
   8259     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   8260     FD->setInvalidDecl(true);
   8261     nparams = 3;
   8262   }
   8263 
   8264   // FIXME: a lot of the following diagnostics would be improved
   8265   // if we had some location information about types.
   8266 
   8267   QualType CharPP =
   8268     Context.getPointerType(Context.getPointerType(Context.CharTy));
   8269   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   8270 
   8271   for (unsigned i = 0; i < nparams; ++i) {
   8272     QualType AT = FTP->getParamType(i);
   8273 
   8274     bool mismatch = true;
   8275 
   8276     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   8277       mismatch = false;
   8278     else if (Expected[i] == CharPP) {
   8279       // As an extension, the following forms are okay:
   8280       //   char const **
   8281       //   char const * const *
   8282       //   char * const *
   8283 
   8284       QualifierCollector qs;
   8285       const PointerType* PT;
   8286       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   8287           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   8288           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
   8289                               Context.CharTy)) {
   8290         qs.removeConst();
   8291         mismatch = !qs.empty();
   8292       }
   8293     }
   8294 
   8295     if (mismatch) {
   8296       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   8297       // TODO: suggest replacing given type with expected type
   8298       FD->setInvalidDecl(true);
   8299     }
   8300   }
   8301 
   8302   if (nparams == 1 && !FD->isInvalidDecl()) {
   8303     Diag(FD->getLocation(), diag::warn_main_one_arg);
   8304   }
   8305 
   8306   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   8307     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
   8308     FD->setInvalidDecl();
   8309   }
   8310 }
   8311 
   8312 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
   8313   QualType T = FD->getType();
   8314   assert(T->isFunctionType() && "function decl is not of function type");
   8315   const FunctionType *FT = T->castAs<FunctionType>();
   8316 
   8317   // Set an implicit return of 'zero' if the function can return some integral,
   8318   // enumeration, pointer or nullptr type.
   8319   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
   8320       FT->getReturnType()->isAnyPointerType() ||
   8321       FT->getReturnType()->isNullPtrType())
   8322     // DllMain is exempt because a return value of zero means it failed.
   8323     if (FD->getName() != "DllMain")
   8324       FD->setHasImplicitReturnZero(true);
   8325 
   8326   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   8327     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
   8328     FD->setInvalidDecl();
   8329   }
   8330 }
   8331 
   8332 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   8333   // FIXME: Need strict checking.  In C89, we need to check for
   8334   // any assignment, increment, decrement, function-calls, or
   8335   // commas outside of a sizeof.  In C99, it's the same list,
   8336   // except that the aforementioned are allowed in unevaluated
   8337   // expressions.  Everything else falls under the
   8338   // "may accept other forms of constant expressions" exception.
   8339   // (We never end up here for C++, so the constant expression
   8340   // rules there don't matter.)
   8341   const Expr *Culprit;
   8342   if (Init->isConstantInitializer(Context, false, &Culprit))
   8343     return false;
   8344   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
   8345     << Culprit->getSourceRange();
   8346   return true;
   8347 }
   8348 
   8349 namespace {
   8350   // Visits an initialization expression to see if OrigDecl is evaluated in
   8351   // its own initialization and throws a warning if it does.
   8352   class SelfReferenceChecker
   8353       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   8354     Sema &S;
   8355     Decl *OrigDecl;
   8356     bool isRecordType;
   8357     bool isPODType;
   8358     bool isReferenceType;
   8359 
   8360     bool isInitList;
   8361     llvm::SmallVector<unsigned, 4> InitFieldIndex;
   8362   public:
   8363     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   8364 
   8365     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   8366                                                     S(S), OrigDecl(OrigDecl) {
   8367       isPODType = false;
   8368       isRecordType = false;
   8369       isReferenceType = false;
   8370       isInitList = false;
   8371       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
   8372         isPODType = VD->getType().isPODType(S.Context);
   8373         isRecordType = VD->getType()->isRecordType();
   8374         isReferenceType = VD->getType()->isReferenceType();
   8375       }
   8376     }
   8377 
   8378     // For most expressions, just call the visitor.  For initializer lists,
   8379     // track the index of the field being initialized since fields are
   8380     // initialized in order allowing use of previously initialized fields.
   8381     void CheckExpr(Expr *E) {
   8382       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
   8383       if (!InitList) {
   8384         Visit(E);
   8385         return;
   8386       }
   8387 
   8388       // Track and increment the index here.
   8389       isInitList = true;
   8390       InitFieldIndex.push_back(0);
   8391       for (auto Child : InitList->children()) {
   8392         CheckExpr(cast<Expr>(Child));
   8393         ++InitFieldIndex.back();
   8394       }
   8395       InitFieldIndex.pop_back();
   8396     }
   8397 
   8398     // Returns true if MemberExpr is checked and no futher checking is needed.
   8399     // Returns false if additional checking is required.
   8400     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
   8401       llvm::SmallVector<FieldDecl*, 4> Fields;
   8402       Expr *Base = E;
   8403       bool ReferenceField = false;
   8404 
   8405       // Get the field memebers used.
   8406       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   8407         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
   8408         if (!FD)
   8409           return false;
   8410         Fields.push_back(FD);
   8411         if (FD->getType()->isReferenceType())
   8412           ReferenceField = true;
   8413         Base = ME->getBase()->IgnoreParenImpCasts();
   8414       }
   8415 
   8416       // Keep checking only if the base Decl is the same.
   8417       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
   8418       if (!DRE || DRE->getDecl() != OrigDecl)
   8419         return false;
   8420 
   8421       // A reference field can be bound to an unininitialized field.
   8422       if (CheckReference && !ReferenceField)
   8423         return true;
   8424 
   8425       // Convert FieldDecls to their index number.
   8426       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
   8427       for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
   8428         UsedFieldIndex.push_back((*I)->getFieldIndex());
   8429       }
   8430 
   8431       // See if a warning is needed by checking the first difference in index
   8432       // numbers.  If field being used has index less than the field being
   8433       // initialized, then the use is safe.
   8434       for (auto UsedIter = UsedFieldIndex.begin(),
   8435                 UsedEnd = UsedFieldIndex.end(),
   8436                 OrigIter = InitFieldIndex.begin(),
   8437                 OrigEnd = InitFieldIndex.end();
   8438            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
   8439         if (*UsedIter < *OrigIter)
   8440           return true;
   8441         if (*UsedIter > *OrigIter)
   8442           break;
   8443       }
   8444 
   8445       // TODO: Add a different warning which will print the field names.
   8446       HandleDeclRefExpr(DRE);
   8447       return true;
   8448     }
   8449 
   8450     // For most expressions, the cast is directly above the DeclRefExpr.
   8451     // For conditional operators, the cast can be outside the conditional
   8452     // operator if both expressions are DeclRefExpr's.
   8453     void HandleValue(Expr *E) {
   8454       E = E->IgnoreParens();
   8455       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
   8456         HandleDeclRefExpr(DRE);
   8457         return;
   8458       }
   8459 
   8460       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   8461         Visit(CO->getCond());
   8462         HandleValue(CO->getTrueExpr());
   8463         HandleValue(CO->getFalseExpr());
   8464         return;
   8465       }
   8466 
   8467       if (BinaryConditionalOperator *BCO =
   8468               dyn_cast<BinaryConditionalOperator>(E)) {
   8469         Visit(BCO->getCond());
   8470         HandleValue(BCO->getFalseExpr());
   8471         return;
   8472       }
   8473 
   8474       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
   8475         HandleValue(OVE->getSourceExpr());
   8476         return;
   8477       }
   8478 
   8479       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   8480         if (BO->getOpcode() == BO_Comma) {
   8481           Visit(BO->getLHS());
   8482           HandleValue(BO->getRHS());
   8483           return;
   8484         }
   8485       }
   8486 
   8487       if (isa<MemberExpr>(E)) {
   8488         if (isInitList) {
   8489           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
   8490                                       false /*CheckReference*/))
   8491             return;
   8492         }
   8493 
   8494         Expr *Base = E->IgnoreParenImpCasts();
   8495         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   8496           // Check for static member variables and don't warn on them.
   8497           if (!isa<FieldDecl>(ME->getMemberDecl()))
   8498             return;
   8499           Base = ME->getBase()->IgnoreParenImpCasts();
   8500         }
   8501         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
   8502           HandleDeclRefExpr(DRE);
   8503         return;
   8504       }
   8505 
   8506       Visit(E);
   8507     }
   8508 
   8509     // Reference types not handled in HandleValue are handled here since all
   8510     // uses of references are bad, not just r-value uses.
   8511     void VisitDeclRefExpr(DeclRefExpr *E) {
   8512       if (isReferenceType)
   8513         HandleDeclRefExpr(E);
   8514     }
   8515 
   8516     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   8517       if (E->getCastKind() == CK_LValueToRValue) {
   8518         HandleValue(E->getSubExpr());
   8519         return;
   8520       }
   8521 
   8522       Inherited::VisitImplicitCastExpr(E);
   8523     }
   8524 
   8525     void VisitMemberExpr(MemberExpr *E) {
   8526       if (isInitList) {
   8527         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
   8528           return;
   8529       }
   8530 
   8531       // Don't warn on arrays since they can be treated as pointers.
   8532       if (E->getType()->canDecayToPointerType()) return;
   8533 
   8534       // Warn when a non-static method call is followed by non-static member
   8535       // field accesses, which is followed by a DeclRefExpr.
   8536       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
   8537       bool Warn = (MD && !MD->isStatic());
   8538       Expr *Base = E->getBase()->IgnoreParenImpCasts();
   8539       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   8540         if (!isa<FieldDecl>(ME->getMemberDecl()))
   8541           Warn = false;
   8542         Base = ME->getBase()->IgnoreParenImpCasts();
   8543       }
   8544 
   8545       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   8546         if (Warn)
   8547           HandleDeclRefExpr(DRE);
   8548         return;
   8549       }
   8550 
   8551       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
   8552       // Visit that expression.
   8553       Visit(Base);
   8554     }
   8555 
   8556     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
   8557       Expr *Callee = E->getCallee();
   8558 
   8559       if (isa<UnresolvedLookupExpr>(Callee))
   8560         return Inherited::VisitCXXOperatorCallExpr(E);
   8561 
   8562       Visit(Callee);
   8563       for (auto Arg: E->arguments())
   8564         HandleValue(Arg->IgnoreParenImpCasts());
   8565     }
   8566 
   8567     void VisitUnaryOperator(UnaryOperator *E) {
   8568       // For POD record types, addresses of its own members are well-defined.
   8569       if (E->getOpcode() == UO_AddrOf && isRecordType &&
   8570           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
   8571         if (!isPODType)
   8572           HandleValue(E->getSubExpr());
   8573         return;
   8574       }
   8575 
   8576       if (E->isIncrementDecrementOp()) {
   8577         HandleValue(E->getSubExpr());
   8578         return;
   8579       }
   8580 
   8581       Inherited::VisitUnaryOperator(E);
   8582     }
   8583 
   8584     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
   8585 
   8586     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   8587       if (E->getConstructor()->isCopyConstructor()) {
   8588         Expr *ArgExpr = E->getArg(0);
   8589         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
   8590           if (ILE->getNumInits() == 1)
   8591             ArgExpr = ILE->getInit(0);
   8592         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
   8593           if (ICE->getCastKind() == CK_NoOp)
   8594             ArgExpr = ICE->getSubExpr();
   8595         HandleValue(ArgExpr);
   8596         return;
   8597       }
   8598       Inherited::VisitCXXConstructExpr(E);
   8599     }
   8600 
   8601     void VisitCallExpr(CallExpr *E) {
   8602       // Treat std::move as a use.
   8603       if (E->getNumArgs() == 1) {
   8604         if (FunctionDecl *FD = E->getDirectCallee()) {
   8605           if (FD->isInStdNamespace() && FD->getIdentifier() &&
   8606               FD->getIdentifier()->isStr("move")) {
   8607             HandleValue(E->getArg(0));
   8608             return;
   8609           }
   8610         }
   8611       }
   8612 
   8613       Inherited::VisitCallExpr(E);
   8614     }
   8615 
   8616     void VisitBinaryOperator(BinaryOperator *E) {
   8617       if (E->isCompoundAssignmentOp()) {
   8618         HandleValue(E->getLHS());
   8619         Visit(E->getRHS());
   8620         return;
   8621       }
   8622 
   8623       Inherited::VisitBinaryOperator(E);
   8624     }
   8625 
   8626     // A custom visitor for BinaryConditionalOperator is needed because the
   8627     // regular visitor would check the condition and true expression separately
   8628     // but both point to the same place giving duplicate diagnostics.
   8629     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
   8630       Visit(E->getCond());
   8631       Visit(E->getFalseExpr());
   8632     }
   8633 
   8634     void HandleDeclRefExpr(DeclRefExpr *DRE) {
   8635       Decl* ReferenceDecl = DRE->getDecl();
   8636       if (OrigDecl != ReferenceDecl) return;
   8637       unsigned diag;
   8638       if (isReferenceType) {
   8639         diag = diag::warn_uninit_self_reference_in_reference_init;
   8640       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
   8641         diag = diag::warn_static_self_reference_in_init;
   8642       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
   8643                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
   8644                  DRE->getDecl()->getType()->isRecordType()) {
   8645         diag = diag::warn_uninit_self_reference_in_init;
   8646       } else {
   8647         // Local variables will be handled by the CFG analysis.
   8648         return;
   8649       }
   8650 
   8651       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
   8652                             S.PDiag(diag)
   8653                               << DRE->getNameInfo().getName()
   8654                               << OrigDecl->getLocation()
   8655                               << DRE->getSourceRange());
   8656     }
   8657   };
   8658 
   8659   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
   8660   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
   8661                                  bool DirectInit) {
   8662     // Parameters arguments are occassionially constructed with itself,
   8663     // for instance, in recursive functions.  Skip them.
   8664     if (isa<ParmVarDecl>(OrigDecl))
   8665       return;
   8666 
   8667     E = E->IgnoreParens();
   8668 
   8669     // Skip checking T a = a where T is not a record or reference type.
   8670     // Doing so is a way to silence uninitialized warnings.
   8671     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
   8672       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   8673         if (ICE->getCastKind() == CK_LValueToRValue)
   8674           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
   8675             if (DRE->getDecl() == OrigDecl)
   8676               return;
   8677 
   8678     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
   8679   }
   8680 }
   8681 
   8682 /// AddInitializerToDecl - Adds the initializer Init to the
   8683 /// declaration dcl. If DirectInit is true, this is C++ direct
   8684 /// initialization rather than copy initialization.
   8685 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   8686                                 bool DirectInit, bool TypeMayContainAuto) {
   8687   // If there is no declaration, there was an error parsing it.  Just ignore
   8688   // the initializer.
   8689   if (!RealDecl || RealDecl->isInvalidDecl()) {
   8690     CorrectDelayedTyposInExpr(Init);
   8691     return;
   8692   }
   8693 
   8694   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   8695     // With declarators parsed the way they are, the parser cannot
   8696     // distinguish between a normal initializer and a pure-specifier.
   8697     // Thus this grotesque test.
   8698     IntegerLiteral *IL;
   8699     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
   8700         Context.getCanonicalType(IL->getType()) == Context.IntTy)
   8701       CheckPureMethod(Method, Init->getSourceRange());
   8702     else {
   8703       Diag(Method->getLocation(), diag::err_member_function_initialization)
   8704         << Method->getDeclName() << Init->getSourceRange();
   8705       Method->setInvalidDecl();
   8706     }
   8707     return;
   8708   }
   8709 
   8710   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   8711   if (!VDecl) {
   8712     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   8713     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   8714     RealDecl->setInvalidDecl();
   8715     return;
   8716   }
   8717   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
   8718 
   8719   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   8720   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
   8721     // Attempt typo correction early so that the type of the init expression can
   8722     // be deduced based on the chosen correction:if the original init contains a
   8723     // TypoExpr.
   8724     ExprResult Res = CorrectDelayedTyposInExpr(Init);
   8725     if (!Res.isUsable()) {
   8726       RealDecl->setInvalidDecl();
   8727       return;
   8728     }
   8729     if (Res.get() != Init) {
   8730       Init = Res.get();
   8731       if (CXXDirectInit)
   8732         CXXDirectInit = dyn_cast<ParenListExpr>(Init);
   8733     }
   8734 
   8735     Expr *DeduceInit = Init;
   8736     // Initializer could be a C++ direct-initializer. Deduction only works if it
   8737     // contains exactly one expression.
   8738     if (CXXDirectInit) {
   8739       if (CXXDirectInit->getNumExprs() == 0) {
   8740         // It isn't possible to write this directly, but it is possible to
   8741         // end up in this situation with "auto x(some_pack...);"
   8742         Diag(CXXDirectInit->getLocStart(),
   8743              VDecl->isInitCapture() ? diag::err_init_capture_no_expression
   8744                                     : diag::err_auto_var_init_no_expression)
   8745           << VDecl->getDeclName() << VDecl->getType()
   8746           << VDecl->getSourceRange();
   8747         RealDecl->setInvalidDecl();
   8748         return;
   8749       } else if (CXXDirectInit->getNumExprs() > 1) {
   8750         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
   8751              VDecl->isInitCapture()
   8752                  ? diag::err_init_capture_multiple_expressions
   8753                  : diag::err_auto_var_init_multiple_expressions)
   8754           << VDecl->getDeclName() << VDecl->getType()
   8755           << VDecl->getSourceRange();
   8756         RealDecl->setInvalidDecl();
   8757         return;
   8758       } else {
   8759         DeduceInit = CXXDirectInit->getExpr(0);
   8760         if (isa<InitListExpr>(DeduceInit))
   8761           Diag(CXXDirectInit->getLocStart(),
   8762                diag::err_auto_var_init_paren_braces)
   8763             << VDecl->getDeclName() << VDecl->getType()
   8764             << VDecl->getSourceRange();
   8765       }
   8766     }
   8767 
   8768     // Expressions default to 'id' when we're in a debugger.
   8769     bool DefaultedToAuto = false;
   8770     if (getLangOpts().DebuggerCastResultToId &&
   8771         Init->getType() == Context.UnknownAnyTy) {
   8772       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   8773       if (Result.isInvalid()) {
   8774         VDecl->setInvalidDecl();
   8775         return;
   8776       }
   8777       Init = Result.get();
   8778       DefaultedToAuto = true;
   8779     }
   8780 
   8781     QualType DeducedType;
   8782     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
   8783             DAR_Failed)
   8784       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
   8785     if (DeducedType.isNull()) {
   8786       RealDecl->setInvalidDecl();
   8787       return;
   8788     }
   8789     VDecl->setType(DeducedType);
   8790     assert(VDecl->isLinkageValid());
   8791 
   8792     // In ARC, infer lifetime.
   8793     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   8794       VDecl->setInvalidDecl();
   8795 
   8796     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
   8797     // 'id' instead of a specific object type prevents most of our usual checks.
   8798     // We only want to warn outside of template instantiations, though:
   8799     // inside a template, the 'id' could have come from a parameter.
   8800     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
   8801         DeducedType->isObjCIdType()) {
   8802       SourceLocation Loc =
   8803           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
   8804       Diag(Loc, diag::warn_auto_var_is_id)
   8805         << VDecl->getDeclName() << DeduceInit->getSourceRange();
   8806     }
   8807 
   8808     // If this is a redeclaration, check that the type we just deduced matches
   8809     // the previously declared type.
   8810     if (VarDecl *Old = VDecl->getPreviousDecl()) {
   8811       // We never need to merge the type, because we cannot form an incomplete
   8812       // array of auto, nor deduce such a type.
   8813       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
   8814     }
   8815 
   8816     // Check the deduced type is valid for a variable declaration.
   8817     CheckVariableDeclarationType(VDecl);
   8818     if (VDecl->isInvalidDecl())
   8819       return;
   8820 
   8821     // If all looks well, warn if this is a case that will change meaning when
   8822     // we implement N3922.
   8823     if (DirectInit && !CXXDirectInit && isa<InitListExpr>(Init)) {
   8824       Diag(Init->getLocStart(),
   8825            diag::warn_auto_var_direct_list_init)
   8826         << FixItHint::CreateInsertion(Init->getLocStart(), "=");
   8827     }
   8828   }
   8829 
   8830   // dllimport cannot be used on variable definitions.
   8831   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
   8832     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
   8833     VDecl->setInvalidDecl();
   8834     return;
   8835   }
   8836 
   8837   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
   8838     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
   8839     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   8840     VDecl->setInvalidDecl();
   8841     return;
   8842   }
   8843 
   8844   if (!VDecl->getType()->isDependentType()) {
   8845     // A definition must end up with a complete type, which means it must be
   8846     // complete with the restriction that an array type might be completed by
   8847     // the initializer; note that later code assumes this restriction.
   8848     QualType BaseDeclType = VDecl->getType();
   8849     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   8850       BaseDeclType = Array->getElementType();
   8851     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   8852                             diag::err_typecheck_decl_incomplete_type)) {
   8853       RealDecl->setInvalidDecl();
   8854       return;
   8855     }
   8856 
   8857     // The variable can not have an abstract class type.
   8858     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   8859                                diag::err_abstract_type_in_decl,
   8860                                AbstractVariableType))
   8861       VDecl->setInvalidDecl();
   8862   }
   8863 
   8864   const VarDecl *Def;
   8865   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   8866     Diag(VDecl->getLocation(), diag::err_redefinition)
   8867       << VDecl->getDeclName();
   8868     Diag(Def->getLocation(), diag::note_previous_definition);
   8869     VDecl->setInvalidDecl();
   8870     return;
   8871   }
   8872 
   8873   const VarDecl *PrevInit = nullptr;
   8874   if (getLangOpts().CPlusPlus) {
   8875     // C++ [class.static.data]p4
   8876     //   If a static data member is of const integral or const
   8877     //   enumeration type, its declaration in the class definition can
   8878     //   specify a constant-initializer which shall be an integral
   8879     //   constant expression (5.19). In that case, the member can appear
   8880     //   in integral constant expressions. The member shall still be
   8881     //   defined in a namespace scope if it is used in the program and the
   8882     //   namespace scope definition shall not contain an initializer.
   8883     //
   8884     // We already performed a redefinition check above, but for static
   8885     // data members we also need to check whether there was an in-class
   8886     // declaration with an initializer.
   8887     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   8888       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
   8889           << VDecl->getDeclName();
   8890       Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
   8891       return;
   8892     }
   8893 
   8894     if (VDecl->hasLocalStorage())
   8895       getCurFunction()->setHasBranchProtectedScope();
   8896 
   8897     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   8898       VDecl->setInvalidDecl();
   8899       return;
   8900     }
   8901   }
   8902 
   8903   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
   8904   // a kernel function cannot be initialized."
   8905   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
   8906     Diag(VDecl->getLocation(), diag::err_local_cant_init);
   8907     VDecl->setInvalidDecl();
   8908     return;
   8909   }
   8910 
   8911   // Get the decls type and save a reference for later, since
   8912   // CheckInitializerTypes may change it.
   8913   QualType DclT = VDecl->getType(), SavT = DclT;
   8914 
   8915   // Expressions default to 'id' when we're in a debugger
   8916   // and we are assigning it to a variable of Objective-C pointer type.
   8917   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
   8918       Init->getType() == Context.UnknownAnyTy) {
   8919     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   8920     if (Result.isInvalid()) {
   8921       VDecl->setInvalidDecl();
   8922       return;
   8923     }
   8924     Init = Result.get();
   8925   }
   8926 
   8927   // Perform the initialization.
   8928   if (!VDecl->isInvalidDecl()) {
   8929     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   8930     InitializationKind Kind
   8931       = DirectInit ?
   8932           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
   8933                                                            Init->getLocStart(),
   8934                                                            Init->getLocEnd())
   8935                         : InitializationKind::CreateDirectList(
   8936                                                           VDecl->getLocation())
   8937                    : InitializationKind::CreateCopy(VDecl->getLocation(),
   8938                                                     Init->getLocStart());
   8939 
   8940     MultiExprArg Args = Init;
   8941     if (CXXDirectInit)
   8942       Args = MultiExprArg(CXXDirectInit->getExprs(),
   8943                           CXXDirectInit->getNumExprs());
   8944 
   8945     // Try to correct any TypoExprs in the initialization arguments.
   8946     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
   8947       ExprResult Res =
   8948           CorrectDelayedTyposInExpr(Args[Idx], [this, Entity, Kind](Expr *E) {
   8949             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
   8950             return Init.Failed() ? ExprError() : E;
   8951           });
   8952       if (Res.isInvalid()) {
   8953         VDecl->setInvalidDecl();
   8954       } else if (Res.get() != Args[Idx]) {
   8955         Args[Idx] = Res.get();
   8956       }
   8957     }
   8958     if (VDecl->isInvalidDecl())
   8959       return;
   8960 
   8961     InitializationSequence InitSeq(*this, Entity, Kind, Args);
   8962     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
   8963     if (Result.isInvalid()) {
   8964       VDecl->setInvalidDecl();
   8965       return;
   8966     }
   8967 
   8968     Init = Result.getAs<Expr>();
   8969   }
   8970 
   8971   // Check for self-references within variable initializers.
   8972   // Variables declared within a function/method body (except for references)
   8973   // are handled by a dataflow analysis.
   8974   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
   8975       VDecl->getType()->isReferenceType()) {
   8976     CheckSelfReference(*this, RealDecl, Init, DirectInit);
   8977   }
   8978 
   8979   // If the type changed, it means we had an incomplete type that was
   8980   // completed by the initializer. For example:
   8981   //   int ary[] = { 1, 3, 5 };
   8982   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
   8983   if (!VDecl->isInvalidDecl() && (DclT != SavT))
   8984     VDecl->setType(DclT);
   8985 
   8986   if (!VDecl->isInvalidDecl()) {
   8987     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   8988 
   8989     if (VDecl->hasAttr<BlocksAttr>())
   8990       checkRetainCycles(VDecl, Init);
   8991 
   8992     // It is safe to assign a weak reference into a strong variable.
   8993     // Although this code can still have problems:
   8994     //   id x = self.weakProp;
   8995     //   id y = self.weakProp;
   8996     // we do not warn to warn spuriously when 'x' and 'y' are on separate
   8997     // paths through the function. This should be revisited if
   8998     // -Wrepeated-use-of-weak is made flow-sensitive.
   8999     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
   9000         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
   9001                          Init->getLocStart()))
   9002         getCurFunction()->markSafeWeakUse(Init);
   9003   }
   9004 
   9005   // The initialization is usually a full-expression.
   9006   //
   9007   // FIXME: If this is a braced initialization of an aggregate, it is not
   9008   // an expression, and each individual field initializer is a separate
   9009   // full-expression. For instance, in:
   9010   //
   9011   //   struct Temp { ~Temp(); };
   9012   //   struct S { S(Temp); };
   9013   //   struct T { S a, b; } t = { Temp(), Temp() }
   9014   //
   9015   // we should destroy the first Temp before constructing the second.
   9016   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
   9017                                           false,
   9018                                           VDecl->isConstexpr());
   9019   if (Result.isInvalid()) {
   9020     VDecl->setInvalidDecl();
   9021     return;
   9022   }
   9023   Init = Result.get();
   9024 
   9025   // Attach the initializer to the decl.
   9026   VDecl->setInit(Init);
   9027 
   9028   if (VDecl->isLocalVarDecl()) {
   9029     // C99 6.7.8p4: All the expressions in an initializer for an object that has
   9030     // static storage duration shall be constant expressions or string literals.
   9031     // C++ does not have this restriction.
   9032     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
   9033       const Expr *Culprit;
   9034       if (VDecl->getStorageClass() == SC_Static)
   9035         CheckForConstantInitializer(Init, DclT);
   9036       // C89 is stricter than C99 for non-static aggregate types.
   9037       // C89 6.5.7p3: All the expressions [...] in an initializer list
   9038       // for an object that has aggregate or union type shall be
   9039       // constant expressions.
   9040       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
   9041                isa<InitListExpr>(Init) &&
   9042                !Init->isConstantInitializer(Context, false, &Culprit))
   9043         Diag(Culprit->getExprLoc(),
   9044              diag::ext_aggregate_init_not_constant)
   9045           << Culprit->getSourceRange();
   9046     }
   9047   } else if (VDecl->isStaticDataMember() &&
   9048              VDecl->getLexicalDeclContext()->isRecord()) {
   9049     // This is an in-class initialization for a static data member, e.g.,
   9050     //
   9051     // struct S {
   9052     //   static const int value = 17;
   9053     // };
   9054 
   9055     // C++ [class.mem]p4:
   9056     //   A member-declarator can contain a constant-initializer only
   9057     //   if it declares a static member (9.4) of const integral or
   9058     //   const enumeration type, see 9.4.2.
   9059     //
   9060     // C++11 [class.static.data]p3:
   9061     //   If a non-volatile const static data member is of integral or
   9062     //   enumeration type, its declaration in the class definition can
   9063     //   specify a brace-or-equal-initializer in which every initalizer-clause
   9064     //   that is an assignment-expression is a constant expression. A static
   9065     //   data member of literal type can be declared in the class definition
   9066     //   with the constexpr specifier; if so, its declaration shall specify a
   9067     //   brace-or-equal-initializer in which every initializer-clause that is
   9068     //   an assignment-expression is a constant expression.
   9069 
   9070     // Do nothing on dependent types.
   9071     if (DclT->isDependentType()) {
   9072 
   9073     // Allow any 'static constexpr' members, whether or not they are of literal
   9074     // type. We separately check that every constexpr variable is of literal
   9075     // type.
   9076     } else if (VDecl->isConstexpr()) {
   9077 
   9078     // Require constness.
   9079     } else if (!DclT.isConstQualified()) {
   9080       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   9081         << Init->getSourceRange();
   9082       VDecl->setInvalidDecl();
   9083 
   9084     // We allow integer constant expressions in all cases.
   9085     } else if (DclT->isIntegralOrEnumerationType()) {
   9086       // Check whether the expression is a constant expression.
   9087       SourceLocation Loc;
   9088       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
   9089         // In C++11, a non-constexpr const static data member with an
   9090         // in-class initializer cannot be volatile.
   9091         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
   9092       else if (Init->isValueDependent())
   9093         ; // Nothing to check.
   9094       else if (Init->isIntegerConstantExpr(Context, &Loc))
   9095         ; // Ok, it's an ICE!
   9096       else if (Init->isEvaluatable(Context)) {
   9097         // If we can constant fold the initializer through heroics, accept it,
   9098         // but report this as a use of an extension for -pedantic.
   9099         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   9100           << Init->getSourceRange();
   9101       } else {
   9102         // Otherwise, this is some crazy unknown case.  Report the issue at the
   9103         // location provided by the isIntegerConstantExpr failed check.
   9104         Diag(Loc, diag::err_in_class_initializer_non_constant)
   9105           << Init->getSourceRange();
   9106         VDecl->setInvalidDecl();
   9107       }
   9108 
   9109     // We allow foldable floating-point constants as an extension.
   9110     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
   9111       // In C++98, this is a GNU extension. In C++11, it is not, but we support
   9112       // it anyway and provide a fixit to add the 'constexpr'.
   9113       if (getLangOpts().CPlusPlus11) {
   9114         Diag(VDecl->getLocation(),
   9115              diag::ext_in_class_initializer_float_type_cxx11)
   9116             << DclT << Init->getSourceRange();
   9117         Diag(VDecl->getLocStart(),
   9118              diag::note_in_class_initializer_float_type_cxx11)
   9119             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   9120       } else {
   9121         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   9122           << DclT << Init->getSourceRange();
   9123 
   9124         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
   9125           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   9126             << Init->getSourceRange();
   9127           VDecl->setInvalidDecl();
   9128         }
   9129       }
   9130 
   9131     // Suggest adding 'constexpr' in C++11 for literal types.
   9132     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
   9133       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
   9134         << DclT << Init->getSourceRange()
   9135         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   9136       VDecl->setConstexpr(true);
   9137 
   9138     } else {
   9139       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   9140         << DclT << Init->getSourceRange();
   9141       VDecl->setInvalidDecl();
   9142     }
   9143   } else if (VDecl->isFileVarDecl()) {
   9144     if (VDecl->getStorageClass() == SC_Extern &&
   9145         (!getLangOpts().CPlusPlus ||
   9146          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
   9147            VDecl->isExternC())) &&
   9148         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
   9149       Diag(VDecl->getLocation(), diag::warn_extern_init);
   9150 
   9151     // C99 6.7.8p4. All file scoped initializers need to be constant.
   9152     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
   9153       CheckForConstantInitializer(Init, DclT);
   9154   }
   9155 
   9156   // We will represent direct-initialization similarly to copy-initialization:
   9157   //    int x(1);  -as-> int x = 1;
   9158   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
   9159   //
   9160   // Clients that want to distinguish between the two forms, can check for
   9161   // direct initializer using VarDecl::getInitStyle().
   9162   // A major benefit is that clients that don't particularly care about which
   9163   // exactly form was it (like the CodeGen) can handle both cases without
   9164   // special case code.
   9165 
   9166   // C++ 8.5p11:
   9167   // The form of initialization (using parentheses or '=') is generally
   9168   // insignificant, but does matter when the entity being initialized has a
   9169   // class type.
   9170   if (CXXDirectInit) {
   9171     assert(DirectInit && "Call-style initializer must be direct init.");
   9172     VDecl->setInitStyle(VarDecl::CallInit);
   9173   } else if (DirectInit) {
   9174     // This must be list-initialization. No other way is direct-initialization.
   9175     VDecl->setInitStyle(VarDecl::ListInit);
   9176   }
   9177 
   9178   CheckCompleteVariableDeclaration(VDecl);
   9179 }
   9180 
   9181 /// ActOnInitializerError - Given that there was an error parsing an
   9182 /// initializer for the given declaration, try to return to some form
   9183 /// of sanity.
   9184 void Sema::ActOnInitializerError(Decl *D) {
   9185   // Our main concern here is re-establishing invariants like "a
   9186   // variable's type is either dependent or complete".
   9187   if (!D || D->isInvalidDecl()) return;
   9188 
   9189   VarDecl *VD = dyn_cast<VarDecl>(D);
   9190   if (!VD) return;
   9191 
   9192   // Auto types are meaningless if we can't make sense of the initializer.
   9193   if (ParsingInitForAutoVars.count(D)) {
   9194     D->setInvalidDecl();
   9195     return;
   9196   }
   9197 
   9198   QualType Ty = VD->getType();
   9199   if (Ty->isDependentType()) return;
   9200 
   9201   // Require a complete type.
   9202   if (RequireCompleteType(VD->getLocation(),
   9203                           Context.getBaseElementType(Ty),
   9204                           diag::err_typecheck_decl_incomplete_type)) {
   9205     VD->setInvalidDecl();
   9206     return;
   9207   }
   9208 
   9209   // Require a non-abstract type.
   9210   if (RequireNonAbstractType(VD->getLocation(), Ty,
   9211                              diag::err_abstract_type_in_decl,
   9212                              AbstractVariableType)) {
   9213     VD->setInvalidDecl();
   9214     return;
   9215   }
   9216 
   9217   // Don't bother complaining about constructors or destructors,
   9218   // though.
   9219 }
   9220 
   9221 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   9222                                   bool TypeMayContainAuto) {
   9223   // If there is no declaration, there was an error parsing it. Just ignore it.
   9224   if (!RealDecl)
   9225     return;
   9226 
   9227   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   9228     QualType Type = Var->getType();
   9229 
   9230     // C++11 [dcl.spec.auto]p3
   9231     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   9232       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   9233         << Var->getDeclName() << Type;
   9234       Var->setInvalidDecl();
   9235       return;
   9236     }
   9237 
   9238     // C++11 [class.static.data]p3: A static data member can be declared with
   9239     // the constexpr specifier; if so, its declaration shall specify
   9240     // a brace-or-equal-initializer.
   9241     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
   9242     // the definition of a variable [...] or the declaration of a static data
   9243     // member.
   9244     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
   9245       if (Var->isStaticDataMember())
   9246         Diag(Var->getLocation(),
   9247              diag::err_constexpr_static_mem_var_requires_init)
   9248           << Var->getDeclName();
   9249       else
   9250         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
   9251       Var->setInvalidDecl();
   9252       return;
   9253     }
   9254 
   9255     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
   9256     // be initialized.
   9257     if (!Var->isInvalidDecl() &&
   9258         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
   9259         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
   9260       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
   9261       Var->setInvalidDecl();
   9262       return;
   9263     }
   9264 
   9265     switch (Var->isThisDeclarationADefinition()) {
   9266     case VarDecl::Definition:
   9267       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   9268         break;
   9269 
   9270       // We have an out-of-line definition of a static data member
   9271       // that has an in-class initializer, so we type-check this like
   9272       // a declaration.
   9273       //
   9274       // Fall through
   9275 
   9276     case VarDecl::DeclarationOnly:
   9277       // It's only a declaration.
   9278 
   9279       // Block scope. C99 6.7p7: If an identifier for an object is
   9280       // declared with no linkage (C99 6.2.2p6), the type for the
   9281       // object shall be complete.
   9282       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   9283           !Var->hasLinkage() && !Var->isInvalidDecl() &&
   9284           RequireCompleteType(Var->getLocation(), Type,
   9285                               diag::err_typecheck_decl_incomplete_type))
   9286         Var->setInvalidDecl();
   9287 
   9288       // Make sure that the type is not abstract.
   9289       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   9290           RequireNonAbstractType(Var->getLocation(), Type,
   9291                                  diag::err_abstract_type_in_decl,
   9292                                  AbstractVariableType))
   9293         Var->setInvalidDecl();
   9294       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   9295           Var->getStorageClass() == SC_PrivateExtern) {
   9296         Diag(Var->getLocation(), diag::warn_private_extern);
   9297         Diag(Var->getLocation(), diag::note_private_extern);
   9298       }
   9299 
   9300       return;
   9301 
   9302     case VarDecl::TentativeDefinition:
   9303       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   9304       // object that has file scope without an initializer, and without a
   9305       // storage-class specifier or with the storage-class specifier "static",
   9306       // constitutes a tentative definition. Note: A tentative definition with
   9307       // external linkage is valid (C99 6.2.2p5).
   9308       if (!Var->isInvalidDecl()) {
   9309         if (const IncompleteArrayType *ArrayT
   9310                                     = Context.getAsIncompleteArrayType(Type)) {
   9311           if (RequireCompleteType(Var->getLocation(),
   9312                                   ArrayT->getElementType(),
   9313                                   diag::err_illegal_decl_array_incomplete_type))
   9314             Var->setInvalidDecl();
   9315         } else if (Var->getStorageClass() == SC_Static) {
   9316           // C99 6.9.2p3: If the declaration of an identifier for an object is
   9317           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   9318           // declared type shall not be an incomplete type.
   9319           // NOTE: code such as the following
   9320           //     static struct s;
   9321           //     struct s { int a; };
   9322           // is accepted by gcc. Hence here we issue a warning instead of
   9323           // an error and we do not invalidate the static declaration.
   9324           // NOTE: to avoid multiple warnings, only check the first declaration.
   9325           if (Var->isFirstDecl())
   9326             RequireCompleteType(Var->getLocation(), Type,
   9327                                 diag::ext_typecheck_decl_incomplete_type);
   9328         }
   9329       }
   9330 
   9331       // Record the tentative definition; we're done.
   9332       if (!Var->isInvalidDecl())
   9333         TentativeDefinitions.push_back(Var);
   9334       return;
   9335     }
   9336 
   9337     // Provide a specific diagnostic for uninitialized variable
   9338     // definitions with incomplete array type.
   9339     if (Type->isIncompleteArrayType()) {
   9340       Diag(Var->getLocation(),
   9341            diag::err_typecheck_incomplete_array_needs_initializer);
   9342       Var->setInvalidDecl();
   9343       return;
   9344     }
   9345 
   9346     // Provide a specific diagnostic for uninitialized variable
   9347     // definitions with reference type.
   9348     if (Type->isReferenceType()) {
   9349       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   9350         << Var->getDeclName()
   9351         << SourceRange(Var->getLocation(), Var->getLocation());
   9352       Var->setInvalidDecl();
   9353       return;
   9354     }
   9355 
   9356     // Do not attempt to type-check the default initializer for a
   9357     // variable with dependent type.
   9358     if (Type->isDependentType())
   9359       return;
   9360 
   9361     if (Var->isInvalidDecl())
   9362       return;
   9363 
   9364     if (!Var->hasAttr<AliasAttr>()) {
   9365       if (RequireCompleteType(Var->getLocation(),
   9366                               Context.getBaseElementType(Type),
   9367                               diag::err_typecheck_decl_incomplete_type)) {
   9368         Var->setInvalidDecl();
   9369         return;
   9370       }
   9371     } else {
   9372       return;
   9373     }
   9374 
   9375     // The variable can not have an abstract class type.
   9376     if (RequireNonAbstractType(Var->getLocation(), Type,
   9377                                diag::err_abstract_type_in_decl,
   9378                                AbstractVariableType)) {
   9379       Var->setInvalidDecl();
   9380       return;
   9381     }
   9382 
   9383     // Check for jumps past the implicit initializer.  C++0x
   9384     // clarifies that this applies to a "variable with automatic
   9385     // storage duration", not a "local variable".
   9386     // C++11 [stmt.dcl]p3
   9387     //   A program that jumps from a point where a variable with automatic
   9388     //   storage duration is not in scope to a point where it is in scope is
   9389     //   ill-formed unless the variable has scalar type, class type with a
   9390     //   trivial default constructor and a trivial destructor, a cv-qualified
   9391     //   version of one of these types, or an array of one of the preceding
   9392     //   types and is declared without an initializer.
   9393     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
   9394       if (const RecordType *Record
   9395             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   9396         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   9397         // Mark the function for further checking even if the looser rules of
   9398         // C++11 do not require such checks, so that we can diagnose
   9399         // incompatibilities with C++98.
   9400         if (!CXXRecord->isPOD())
   9401           getCurFunction()->setHasBranchProtectedScope();
   9402       }
   9403     }
   9404 
   9405     // C++03 [dcl.init]p9:
   9406     //   If no initializer is specified for an object, and the
   9407     //   object is of (possibly cv-qualified) non-POD class type (or
   9408     //   array thereof), the object shall be default-initialized; if
   9409     //   the object is of const-qualified type, the underlying class
   9410     //   type shall have a user-declared default
   9411     //   constructor. Otherwise, if no initializer is specified for
   9412     //   a non- static object, the object and its subobjects, if
   9413     //   any, have an indeterminate initial value); if the object
   9414     //   or any of its subobjects are of const-qualified type, the
   9415     //   program is ill-formed.
   9416     // C++0x [dcl.init]p11:
   9417     //   If no initializer is specified for an object, the object is
   9418     //   default-initialized; [...].
   9419     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   9420     InitializationKind Kind
   9421       = InitializationKind::CreateDefault(Var->getLocation());
   9422 
   9423     InitializationSequence InitSeq(*this, Entity, Kind, None);
   9424     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
   9425     if (Init.isInvalid())
   9426       Var->setInvalidDecl();
   9427     else if (Init.get()) {
   9428       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   9429       // This is important for template substitution.
   9430       Var->setInitStyle(VarDecl::CallInit);
   9431     }
   9432 
   9433     CheckCompleteVariableDeclaration(Var);
   9434   }
   9435 }
   9436 
   9437 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   9438   VarDecl *VD = dyn_cast<VarDecl>(D);
   9439   if (!VD) {
   9440     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   9441     D->setInvalidDecl();
   9442     return;
   9443   }
   9444 
   9445   VD->setCXXForRangeDecl(true);
   9446 
   9447   // for-range-declaration cannot be given a storage class specifier.
   9448   int Error = -1;
   9449   switch (VD->getStorageClass()) {
   9450   case SC_None:
   9451     break;
   9452   case SC_Extern:
   9453     Error = 0;
   9454     break;
   9455   case SC_Static:
   9456     Error = 1;
   9457     break;
   9458   case SC_PrivateExtern:
   9459     Error = 2;
   9460     break;
   9461   case SC_Auto:
   9462     Error = 3;
   9463     break;
   9464   case SC_Register:
   9465     Error = 4;
   9466     break;
   9467   case SC_OpenCLWorkGroupLocal:
   9468     llvm_unreachable("Unexpected storage class");
   9469   }
   9470   if (Error != -1) {
   9471     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   9472       << VD->getDeclName() << Error;
   9473     D->setInvalidDecl();
   9474   }
   9475 }
   9476 
   9477 StmtResult
   9478 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
   9479                                  IdentifierInfo *Ident,
   9480                                  ParsedAttributes &Attrs,
   9481                                  SourceLocation AttrEnd) {
   9482   // C++1y [stmt.iter]p1:
   9483   //   A range-based for statement of the form
   9484   //      for ( for-range-identifier : for-range-initializer ) statement
   9485   //   is equivalent to
   9486   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
   9487   DeclSpec DS(Attrs.getPool().getFactory());
   9488 
   9489   const char *PrevSpec;
   9490   unsigned DiagID;
   9491   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
   9492                      getPrintingPolicy());
   9493 
   9494   Declarator D(DS, Declarator::ForContext);
   9495   D.SetIdentifier(Ident, IdentLoc);
   9496   D.takeAttributes(Attrs, AttrEnd);
   9497 
   9498   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
   9499   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
   9500                 EmptyAttrs, IdentLoc);
   9501   Decl *Var = ActOnDeclarator(S, D);
   9502   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
   9503   FinalizeDeclaration(Var);
   9504   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
   9505                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
   9506 }
   9507 
   9508 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   9509   if (var->isInvalidDecl()) return;
   9510 
   9511   // In ARC, don't allow jumps past the implicit initialization of a
   9512   // local retaining variable.
   9513   if (getLangOpts().ObjCAutoRefCount &&
   9514       var->hasLocalStorage()) {
   9515     switch (var->getType().getObjCLifetime()) {
   9516     case Qualifiers::OCL_None:
   9517     case Qualifiers::OCL_ExplicitNone:
   9518     case Qualifiers::OCL_Autoreleasing:
   9519       break;
   9520 
   9521     case Qualifiers::OCL_Weak:
   9522     case Qualifiers::OCL_Strong:
   9523       getCurFunction()->setHasBranchProtectedScope();
   9524       break;
   9525     }
   9526   }
   9527 
   9528   // Warn about externally-visible variables being defined without a
   9529   // prior declaration.  We only want to do this for global
   9530   // declarations, but we also specifically need to avoid doing it for
   9531   // class members because the linkage of an anonymous class can
   9532   // change if it's later given a typedef name.
   9533   if (var->isThisDeclarationADefinition() &&
   9534       var->getDeclContext()->getRedeclContext()->isFileContext() &&
   9535       var->isExternallyVisible() && var->hasLinkage() &&
   9536       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
   9537                                   var->getLocation())) {
   9538     // Find a previous declaration that's not a definition.
   9539     VarDecl *prev = var->getPreviousDecl();
   9540     while (prev && prev->isThisDeclarationADefinition())
   9541       prev = prev->getPreviousDecl();
   9542 
   9543     if (!prev)
   9544       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
   9545   }
   9546 
   9547   if (var->getTLSKind() == VarDecl::TLS_Static) {
   9548     const Expr *Culprit;
   9549     if (var->getType().isDestructedType()) {
   9550       // GNU C++98 edits for __thread, [basic.start.term]p3:
   9551       //   The type of an object with thread storage duration shall not
   9552       //   have a non-trivial destructor.
   9553       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
   9554       if (getLangOpts().CPlusPlus11)
   9555         Diag(var->getLocation(), diag::note_use_thread_local);
   9556     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
   9557                !var->getInit()->isConstantInitializer(
   9558                    Context, var->getType()->isReferenceType(), &Culprit)) {
   9559       // GNU C++98 edits for __thread, [basic.start.init]p4:
   9560       //   An object of thread storage duration shall not require dynamic
   9561       //   initialization.
   9562       // FIXME: Need strict checking here.
   9563       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
   9564         << Culprit->getSourceRange();
   9565       if (getLangOpts().CPlusPlus11)
   9566         Diag(var->getLocation(), diag::note_use_thread_local);
   9567     }
   9568 
   9569   }
   9570 
   9571   // Apply section attributes and pragmas to global variables.
   9572   bool GlobalStorage = var->hasGlobalStorage();
   9573   if (GlobalStorage && var->isThisDeclarationADefinition() &&
   9574       ActiveTemplateInstantiations.empty()) {
   9575     PragmaStack<StringLiteral *> *Stack = nullptr;
   9576     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
   9577     if (var->getType().isConstQualified())
   9578       Stack = &ConstSegStack;
   9579     else if (!var->getInit()) {
   9580       Stack = &BSSSegStack;
   9581       SectionFlags |= ASTContext::PSF_Write;
   9582     } else {
   9583       Stack = &DataSegStack;
   9584       SectionFlags |= ASTContext::PSF_Write;
   9585     }
   9586     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
   9587       var->addAttr(SectionAttr::CreateImplicit(
   9588           Context, SectionAttr::Declspec_allocate,
   9589           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
   9590     }
   9591     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
   9592       if (UnifySection(SA->getName(), SectionFlags, var))
   9593         var->dropAttr<SectionAttr>();
   9594 
   9595     // Apply the init_seg attribute if this has an initializer.  If the
   9596     // initializer turns out to not be dynamic, we'll end up ignoring this
   9597     // attribute.
   9598     if (CurInitSeg && var->getInit())
   9599       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
   9600                                                CurInitSegLoc));
   9601   }
   9602 
   9603   // All the following checks are C++ only.
   9604   if (!getLangOpts().CPlusPlus) return;
   9605 
   9606   QualType type = var->getType();
   9607   if (type->isDependentType()) return;
   9608 
   9609   // __block variables might require us to capture a copy-initializer.
   9610   if (var->hasAttr<BlocksAttr>()) {
   9611     // It's currently invalid to ever have a __block variable with an
   9612     // array type; should we diagnose that here?
   9613 
   9614     // Regardless, we don't want to ignore array nesting when
   9615     // constructing this copy.
   9616     if (type->isStructureOrClassType()) {
   9617       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
   9618       SourceLocation poi = var->getLocation();
   9619       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
   9620       ExprResult result
   9621         = PerformMoveOrCopyInitialization(
   9622             InitializedEntity::InitializeBlock(poi, type, false),
   9623             var, var->getType(), varRef, /*AllowNRVO=*/true);
   9624       if (!result.isInvalid()) {
   9625         result = MaybeCreateExprWithCleanups(result);
   9626         Expr *init = result.getAs<Expr>();
   9627         Context.setBlockVarCopyInits(var, init);
   9628       }
   9629     }
   9630   }
   9631 
   9632   Expr *Init = var->getInit();
   9633   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
   9634   QualType baseType = Context.getBaseElementType(type);
   9635 
   9636   if (!var->getDeclContext()->isDependentContext() &&
   9637       Init && !Init->isValueDependent()) {
   9638     if (IsGlobal && !var->isConstexpr() &&
   9639         !getDiagnostics().isIgnored(diag::warn_global_constructor,
   9640                                     var->getLocation())) {
   9641       // Warn about globals which don't have a constant initializer.  Don't
   9642       // warn about globals with a non-trivial destructor because we already
   9643       // warned about them.
   9644       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
   9645       if (!(RD && !RD->hasTrivialDestructor()) &&
   9646           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
   9647         Diag(var->getLocation(), diag::warn_global_constructor)
   9648           << Init->getSourceRange();
   9649     }
   9650 
   9651     if (var->isConstexpr()) {
   9652       SmallVector<PartialDiagnosticAt, 8> Notes;
   9653       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
   9654         SourceLocation DiagLoc = var->getLocation();
   9655         // If the note doesn't add any useful information other than a source
   9656         // location, fold it into the primary diagnostic.
   9657         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   9658               diag::note_invalid_subexpr_in_const_expr) {
   9659           DiagLoc = Notes[0].first;
   9660           Notes.clear();
   9661         }
   9662         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
   9663           << var << Init->getSourceRange();
   9664         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   9665           Diag(Notes[I].first, Notes[I].second);
   9666       }
   9667     } else if (var->isUsableInConstantExpressions(Context)) {
   9668       // Check whether the initializer of a const variable of integral or
   9669       // enumeration type is an ICE now, since we can't tell whether it was
   9670       // initialized by a constant expression if we check later.
   9671       var->checkInitIsICE();
   9672     }
   9673   }
   9674 
   9675   // Require the destructor.
   9676   if (const RecordType *recordType = baseType->getAs<RecordType>())
   9677     FinalizeVarWithDestructor(var, recordType);
   9678 }
   9679 
   9680 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   9681 /// any semantic actions necessary after any initializer has been attached.
   9682 void
   9683 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   9684   // Note that we are no longer parsing the initializer for this declaration.
   9685   ParsingInitForAutoVars.erase(ThisDecl);
   9686 
   9687   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
   9688   if (!VD)
   9689     return;
   9690 
   9691   checkAttributesAfterMerging(*this, *VD);
   9692 
   9693   // Static locals inherit dll attributes from their function.
   9694   if (VD->isStaticLocal()) {
   9695     if (FunctionDecl *FD =
   9696             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
   9697       if (Attr *A = getDLLAttr(FD)) {
   9698         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
   9699         NewAttr->setInherited(true);
   9700         VD->addAttr(NewAttr);
   9701       }
   9702     }
   9703   }
   9704 
   9705   // Grab the dllimport or dllexport attribute off of the VarDecl.
   9706   const InheritableAttr *DLLAttr = getDLLAttr(VD);
   9707 
   9708   // Imported static data members cannot be defined out-of-line.
   9709   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
   9710     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
   9711         VD->isThisDeclarationADefinition()) {
   9712       // We allow definitions of dllimport class template static data members
   9713       // with a warning.
   9714       CXXRecordDecl *Context =
   9715         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
   9716       bool IsClassTemplateMember =
   9717           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
   9718           Context->getDescribedClassTemplate();
   9719 
   9720       Diag(VD->getLocation(),
   9721            IsClassTemplateMember
   9722                ? diag::warn_attribute_dllimport_static_field_definition
   9723                : diag::err_attribute_dllimport_static_field_definition);
   9724       Diag(IA->getLocation(), diag::note_attribute);
   9725       if (!IsClassTemplateMember)
   9726         VD->setInvalidDecl();
   9727     }
   9728   }
   9729 
   9730   // dllimport/dllexport variables cannot be thread local, their TLS index
   9731   // isn't exported with the variable.
   9732   if (DLLAttr && VD->getTLSKind()) {
   9733     Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
   9734                                                                   << DLLAttr;
   9735     VD->setInvalidDecl();
   9736   }
   9737 
   9738   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
   9739     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
   9740       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
   9741       VD->dropAttr<UsedAttr>();
   9742     }
   9743   }
   9744 
   9745   const DeclContext *DC = VD->getDeclContext();
   9746   // If there's a #pragma GCC visibility in scope, and this isn't a class
   9747   // member, set the visibility of this variable.
   9748   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
   9749     AddPushedVisibilityAttribute(VD);
   9750 
   9751   // FIXME: Warn on unused templates.
   9752   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
   9753       !isa<VarTemplatePartialSpecializationDecl>(VD))
   9754     MarkUnusedFileScopedDecl(VD);
   9755 
   9756   // Now we have parsed the initializer and can update the table of magic
   9757   // tag values.
   9758   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
   9759       !VD->getType()->isIntegralOrEnumerationType())
   9760     return;
   9761 
   9762   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
   9763     const Expr *MagicValueExpr = VD->getInit();
   9764     if (!MagicValueExpr) {
   9765       continue;
   9766     }
   9767     llvm::APSInt MagicValueInt;
   9768     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
   9769       Diag(I->getRange().getBegin(),
   9770            diag::err_type_tag_for_datatype_not_ice)
   9771         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   9772       continue;
   9773     }
   9774     if (MagicValueInt.getActiveBits() > 64) {
   9775       Diag(I->getRange().getBegin(),
   9776            diag::err_type_tag_for_datatype_too_large)
   9777         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   9778       continue;
   9779     }
   9780     uint64_t MagicValue = MagicValueInt.getZExtValue();
   9781     RegisterTypeTagForDatatype(I->getArgumentKind(),
   9782                                MagicValue,
   9783                                I->getMatchingCType(),
   9784                                I->getLayoutCompatible(),
   9785                                I->getMustBeNull());
   9786   }
   9787 }
   9788 
   9789 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   9790                                                    ArrayRef<Decl *> Group) {
   9791   SmallVector<Decl*, 8> Decls;
   9792 
   9793   if (DS.isTypeSpecOwned())
   9794     Decls.push_back(DS.getRepAsDecl());
   9795 
   9796   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
   9797   for (unsigned i = 0, e = Group.size(); i != e; ++i)
   9798     if (Decl *D = Group[i]) {
   9799       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
   9800         if (!FirstDeclaratorInGroup)
   9801           FirstDeclaratorInGroup = DD;
   9802       Decls.push_back(D);
   9803     }
   9804 
   9805   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
   9806     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
   9807       handleTagNumbering(Tag, S);
   9808       if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
   9809         Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
   9810     }
   9811   }
   9812 
   9813   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
   9814 }
   9815 
   9816 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   9817 /// group, performing any necessary semantic checking.
   9818 Sema::DeclGroupPtrTy
   9819 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
   9820                            bool TypeMayContainAuto) {
   9821   // C++0x [dcl.spec.auto]p7:
   9822   //   If the type deduced for the template parameter U is not the same in each
   9823   //   deduction, the program is ill-formed.
   9824   // FIXME: When initializer-list support is added, a distinction is needed
   9825   // between the deduced type U and the deduced type which 'auto' stands for.
   9826   //   auto a = 0, b = { 1, 2, 3 };
   9827   // is legal because the deduced type U is 'int' in both cases.
   9828   if (TypeMayContainAuto && Group.size() > 1) {
   9829     QualType Deduced;
   9830     CanQualType DeducedCanon;
   9831     VarDecl *DeducedDecl = nullptr;
   9832     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
   9833       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   9834         AutoType *AT = D->getType()->getContainedAutoType();
   9835         // Don't reissue diagnostics when instantiating a template.
   9836         if (AT && D->isInvalidDecl())
   9837           break;
   9838         QualType U = AT ? AT->getDeducedType() : QualType();
   9839         if (!U.isNull()) {
   9840           CanQualType UCanon = Context.getCanonicalType(U);
   9841           if (Deduced.isNull()) {
   9842             Deduced = U;
   9843             DeducedCanon = UCanon;
   9844             DeducedDecl = D;
   9845           } else if (DeducedCanon != UCanon) {
   9846             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   9847                  diag::err_auto_different_deductions)
   9848               << (AT->isDecltypeAuto() ? 1 : 0)
   9849               << Deduced << DeducedDecl->getDeclName()
   9850               << U << D->getDeclName()
   9851               << DeducedDecl->getInit()->getSourceRange()
   9852               << D->getInit()->getSourceRange();
   9853             D->setInvalidDecl();
   9854             break;
   9855           }
   9856         }
   9857       }
   9858     }
   9859   }
   9860 
   9861   ActOnDocumentableDecls(Group);
   9862 
   9863   return DeclGroupPtrTy::make(
   9864       DeclGroupRef::Create(Context, Group.data(), Group.size()));
   9865 }
   9866 
   9867 void Sema::ActOnDocumentableDecl(Decl *D) {
   9868   ActOnDocumentableDecls(D);
   9869 }
   9870 
   9871 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
   9872   // Don't parse the comment if Doxygen diagnostics are ignored.
   9873   if (Group.empty() || !Group[0])
   9874     return;
   9875 
   9876   if (Diags.isIgnored(diag::warn_doc_param_not_found,
   9877                       Group[0]->getLocation()) &&
   9878       Diags.isIgnored(diag::warn_unknown_comment_command_name,
   9879                       Group[0]->getLocation()))
   9880     return;
   9881 
   9882   if (Group.size() >= 2) {
   9883     // This is a decl group.  Normally it will contain only declarations
   9884     // produced from declarator list.  But in case we have any definitions or
   9885     // additional declaration references:
   9886     //   'typedef struct S {} S;'
   9887     //   'typedef struct S *S;'
   9888     //   'struct S *pS;'
   9889     // FinalizeDeclaratorGroup adds these as separate declarations.
   9890     Decl *MaybeTagDecl = Group[0];
   9891     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
   9892       Group = Group.slice(1);
   9893     }
   9894   }
   9895 
   9896   // See if there are any new comments that are not attached to a decl.
   9897   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
   9898   if (!Comments.empty() &&
   9899       !Comments.back()->isAttached()) {
   9900     // There is at least one comment that not attached to a decl.
   9901     // Maybe it should be attached to one of these decls?
   9902     //
   9903     // Note that this way we pick up not only comments that precede the
   9904     // declaration, but also comments that *follow* the declaration -- thanks to
   9905     // the lookahead in the lexer: we've consumed the semicolon and looked
   9906     // ahead through comments.
   9907     for (unsigned i = 0, e = Group.size(); i != e; ++i)
   9908       Context.getCommentForDecl(Group[i], &PP);
   9909   }
   9910 }
   9911 
   9912 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   9913 /// to introduce parameters into function prototype scope.
   9914 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   9915   const DeclSpec &DS = D.getDeclSpec();
   9916 
   9917   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   9918 
   9919   // C++03 [dcl.stc]p2 also permits 'auto'.
   9920   StorageClass SC = SC_None;
   9921   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   9922     SC = SC_Register;
   9923   } else if (getLangOpts().CPlusPlus &&
   9924              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   9925     SC = SC_Auto;
   9926   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   9927     Diag(DS.getStorageClassSpecLoc(),
   9928          diag::err_invalid_storage_class_in_func_decl);
   9929     D.getMutableDeclSpec().ClearStorageClassSpecs();
   9930   }
   9931 
   9932   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   9933     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
   9934       << DeclSpec::getSpecifierName(TSCS);
   9935   if (DS.isConstexprSpecified())
   9936     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
   9937       << 0;
   9938 
   9939   DiagnoseFunctionSpecifiers(DS);
   9940 
   9941   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   9942   QualType parmDeclType = TInfo->getType();
   9943 
   9944   if (getLangOpts().CPlusPlus) {
   9945     // Check that there are no default arguments inside the type of this
   9946     // parameter.
   9947     CheckExtraCXXDefaultArguments(D);
   9948 
   9949     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   9950     if (D.getCXXScopeSpec().isSet()) {
   9951       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   9952         << D.getCXXScopeSpec().getRange();
   9953       D.getCXXScopeSpec().clear();
   9954     }
   9955   }
   9956 
   9957   // Ensure we have a valid name
   9958   IdentifierInfo *II = nullptr;
   9959   if (D.hasName()) {
   9960     II = D.getIdentifier();
   9961     if (!II) {
   9962       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   9963         << GetNameForDeclarator(D).getName();
   9964       D.setInvalidType(true);
   9965     }
   9966   }
   9967 
   9968   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   9969   if (II) {
   9970     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   9971                    ForRedeclaration);
   9972     LookupName(R, S);
   9973     if (R.isSingleResult()) {
   9974       NamedDecl *PrevDecl = R.getFoundDecl();
   9975       if (PrevDecl->isTemplateParameter()) {
   9976         // Maybe we will complain about the shadowed template parameter.
   9977         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   9978         // Just pretend that we didn't see the previous declaration.
   9979         PrevDecl = nullptr;
   9980       } else if (S->isDeclScope(PrevDecl)) {
   9981         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   9982         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   9983 
   9984         // Recover by removing the name
   9985         II = nullptr;
   9986         D.SetIdentifier(nullptr, D.getIdentifierLoc());
   9987         D.setInvalidType(true);
   9988       }
   9989     }
   9990   }
   9991 
   9992   // Temporarily put parameter variables in the translation unit, not
   9993   // the enclosing context.  This prevents them from accidentally
   9994   // looking like class members in C++.
   9995   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   9996                                     D.getLocStart(),
   9997                                     D.getIdentifierLoc(), II,
   9998                                     parmDeclType, TInfo,
   9999                                     SC);
   10000 
   10001   if (D.isInvalidType())
   10002     New->setInvalidDecl();
   10003 
   10004   assert(S->isFunctionPrototypeScope());
   10005   assert(S->getFunctionPrototypeDepth() >= 1);
   10006   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   10007                     S->getNextFunctionPrototypeIndex());
   10008 
   10009   // Add the parameter declaration into this scope.
   10010   S->AddDecl(New);
   10011   if (II)
   10012     IdResolver.AddDecl(New);
   10013 
   10014   ProcessDeclAttributes(S, New, D);
   10015 
   10016   if (D.getDeclSpec().isModulePrivateSpecified())
   10017     Diag(New->getLocation(), diag::err_module_private_local)
   10018       << 1 << New->getDeclName()
   10019       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   10020       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   10021 
   10022   if (New->hasAttr<BlocksAttr>()) {
   10023     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   10024   }
   10025   return New;
   10026 }
   10027 
   10028 /// \brief Synthesizes a variable for a parameter arising from a
   10029 /// typedef.
   10030 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   10031                                               SourceLocation Loc,
   10032                                               QualType T) {
   10033   /* FIXME: setting StartLoc == Loc.
   10034      Would it be worth to modify callers so as to provide proper source
   10035      location for the unnamed parameters, embedding the parameter's type? */
   10036   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
   10037                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   10038                                            SC_None, nullptr);
   10039   Param->setImplicit();
   10040   return Param;
   10041 }
   10042 
   10043 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
   10044                                     ParmVarDecl * const *ParamEnd) {
   10045   // Don't diagnose unused-parameter errors in template instantiations; we
   10046   // will already have done so in the template itself.
   10047   if (!ActiveTemplateInstantiations.empty())
   10048     return;
   10049 
   10050   for (; Param != ParamEnd; ++Param) {
   10051     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
   10052         !(*Param)->hasAttr<UnusedAttr>()) {
   10053       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
   10054         << (*Param)->getDeclName();
   10055     }
   10056   }
   10057 }
   10058 
   10059 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
   10060                                                   ParmVarDecl * const *ParamEnd,
   10061                                                   QualType ReturnTy,
   10062                                                   NamedDecl *D) {
   10063   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   10064     return;
   10065 
   10066   // Warn if the return value is pass-by-value and larger than the specified
   10067   // threshold.
   10068   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
   10069     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   10070     if (Size > LangOpts.NumLargeByValueCopy)
   10071       Diag(D->getLocation(), diag::warn_return_value_size)
   10072           << D->getDeclName() << Size;
   10073   }
   10074 
   10075   // Warn if any parameter is pass-by-value and larger than the specified
   10076   // threshold.
   10077   for (; Param != ParamEnd; ++Param) {
   10078     QualType T = (*Param)->getType();
   10079     if (T->isDependentType() || !T.isPODType(Context))
   10080       continue;
   10081     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   10082     if (Size > LangOpts.NumLargeByValueCopy)
   10083       Diag((*Param)->getLocation(), diag::warn_parameter_size)
   10084           << (*Param)->getDeclName() << Size;
   10085   }
   10086 }
   10087 
   10088 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   10089                                   SourceLocation NameLoc, IdentifierInfo *Name,
   10090                                   QualType T, TypeSourceInfo *TSInfo,
   10091                                   StorageClass SC) {
   10092   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   10093   if (getLangOpts().ObjCAutoRefCount &&
   10094       T.getObjCLifetime() == Qualifiers::OCL_None &&
   10095       T->isObjCLifetimeType()) {
   10096 
   10097     Qualifiers::ObjCLifetime lifetime;
   10098 
   10099     // Special cases for arrays:
   10100     //   - if it's const, use __unsafe_unretained
   10101     //   - otherwise, it's an error
   10102     if (T->isArrayType()) {
   10103       if (!T.isConstQualified()) {
   10104         DelayedDiagnostics.add(
   10105             sema::DelayedDiagnostic::makeForbiddenType(
   10106             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
   10107       }
   10108       lifetime = Qualifiers::OCL_ExplicitNone;
   10109     } else {
   10110       lifetime = T->getObjCARCImplicitLifetime();
   10111     }
   10112     T = Context.getLifetimeQualifiedType(T, lifetime);
   10113   }
   10114 
   10115   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   10116                                          Context.getAdjustedParameterType(T),
   10117                                          TSInfo, SC, nullptr);
   10118 
   10119   // Parameters can not be abstract class types.
   10120   // For record types, this is done by the AbstractClassUsageDiagnoser once
   10121   // the class has been completely parsed.
   10122   if (!CurContext->isRecord() &&
   10123       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   10124                              AbstractParamType))
   10125     New->setInvalidDecl();
   10126 
   10127   // Parameter declarators cannot be interface types. All ObjC objects are
   10128   // passed by reference.
   10129   if (T->isObjCObjectType()) {
   10130     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
   10131     Diag(NameLoc,
   10132          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
   10133       << FixItHint::CreateInsertion(TypeEndLoc, "*");
   10134     T = Context.getObjCObjectPointerType(T);
   10135     New->setType(T);
   10136   }
   10137 
   10138   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   10139   // duration shall not be qualified by an address-space qualifier."
   10140   // Since all parameters have automatic store duration, they can not have
   10141   // an address space.
   10142   if (T.getAddressSpace() != 0) {
   10143     // OpenCL allows function arguments declared to be an array of a type
   10144     // to be qualified with an address space.
   10145     if (!(getLangOpts().OpenCL && T->isArrayType())) {
   10146       Diag(NameLoc, diag::err_arg_with_address_space);
   10147       New->setInvalidDecl();
   10148     }
   10149   }
   10150 
   10151   return New;
   10152 }
   10153 
   10154 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   10155                                            SourceLocation LocAfterDecls) {
   10156   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   10157 
   10158   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   10159   // for a K&R function.
   10160   if (!FTI.hasPrototype) {
   10161     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
   10162       --i;
   10163       if (FTI.Params[i].Param == nullptr) {
   10164         SmallString<256> Code;
   10165         llvm::raw_svector_ostream(Code)
   10166             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
   10167         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
   10168             << FTI.Params[i].Ident
   10169             << FixItHint::CreateInsertion(LocAfterDecls, Code);
   10170 
   10171         // Implicitly declare the argument as type 'int' for lack of a better
   10172         // type.
   10173         AttributeFactory attrs;
   10174         DeclSpec DS(attrs);
   10175         const char* PrevSpec; // unused
   10176         unsigned DiagID; // unused
   10177         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
   10178                            DiagID, Context.getPrintingPolicy());
   10179         // Use the identifier location for the type source range.
   10180         DS.SetRangeStart(FTI.Params[i].IdentLoc);
   10181         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
   10182         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   10183         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
   10184         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
   10185       }
   10186     }
   10187   }
   10188 }
   10189 
   10190 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
   10191   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
   10192   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   10193   Scope *ParentScope = FnBodyScope->getParent();
   10194 
   10195   D.setFunctionDefinitionKind(FDK_Definition);
   10196   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
   10197   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   10198 }
   10199 
   10200 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
   10201   Consumer.HandleInlineMethodDefinition(D);
   10202 }
   10203 
   10204 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
   10205                              const FunctionDecl*& PossibleZeroParamPrototype) {
   10206   // Don't warn about invalid declarations.
   10207   if (FD->isInvalidDecl())
   10208     return false;
   10209 
   10210   // Or declarations that aren't global.
   10211   if (!FD->isGlobal())
   10212     return false;
   10213 
   10214   // Don't warn about C++ member functions.
   10215   if (isa<CXXMethodDecl>(FD))
   10216     return false;
   10217 
   10218   // Don't warn about 'main'.
   10219   if (FD->isMain())
   10220     return false;
   10221 
   10222   // Don't warn about inline functions.
   10223   if (FD->isInlined())
   10224     return false;
   10225 
   10226   // Don't warn about function templates.
   10227   if (FD->getDescribedFunctionTemplate())
   10228     return false;
   10229 
   10230   // Don't warn about function template specializations.
   10231   if (FD->isFunctionTemplateSpecialization())
   10232     return false;
   10233 
   10234   // Don't warn for OpenCL kernels.
   10235   if (FD->hasAttr<OpenCLKernelAttr>())
   10236     return false;
   10237 
   10238   // Don't warn on explicitly deleted functions.
   10239   if (FD->isDeleted())
   10240     return false;
   10241 
   10242   bool MissingPrototype = true;
   10243   for (const FunctionDecl *Prev = FD->getPreviousDecl();
   10244        Prev; Prev = Prev->getPreviousDecl()) {
   10245     // Ignore any declarations that occur in function or method
   10246     // scope, because they aren't visible from the header.
   10247     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
   10248       continue;
   10249 
   10250     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   10251     if (FD->getNumParams() == 0)
   10252       PossibleZeroParamPrototype = Prev;
   10253     break;
   10254   }
   10255 
   10256   return MissingPrototype;
   10257 }
   10258 
   10259 void
   10260 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
   10261                                    const FunctionDecl *EffectiveDefinition) {
   10262   // Don't complain if we're in GNU89 mode and the previous definition
   10263   // was an extern inline function.
   10264   const FunctionDecl *Definition = EffectiveDefinition;
   10265   if (!Definition)
   10266     if (!FD->isDefined(Definition))
   10267       return;
   10268 
   10269   if (canRedefineFunction(Definition, getLangOpts()))
   10270     return;
   10271 
   10272   // If we don't have a visible definition of the function, and it's inline or
   10273   // a template, it's OK to form another definition of it.
   10274   //
   10275   // FIXME: Should we skip the body of the function and use the old definition
   10276   // in this case? That may be necessary for functions that return local types
   10277   // through a deduced return type, or instantiate templates with local types.
   10278   if (!hasVisibleDefinition(Definition) &&
   10279       (Definition->isInlineSpecified() ||
   10280        Definition->getDescribedFunctionTemplate() ||
   10281        Definition->getNumTemplateParameterLists()))
   10282     return;
   10283 
   10284   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
   10285       Definition->getStorageClass() == SC_Extern)
   10286     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   10287         << FD->getDeclName() << getLangOpts().CPlusPlus;
   10288   else
   10289     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   10290 
   10291   Diag(Definition->getLocation(), diag::note_previous_definition);
   10292   FD->setInvalidDecl();
   10293 }
   10294 
   10295 
   10296 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
   10297                                    Sema &S) {
   10298   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
   10299 
   10300   LambdaScopeInfo *LSI = S.PushLambdaScope();
   10301   LSI->CallOperator = CallOperator;
   10302   LSI->Lambda = LambdaClass;
   10303   LSI->ReturnType = CallOperator->getReturnType();
   10304   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
   10305 
   10306   if (LCD == LCD_None)
   10307     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
   10308   else if (LCD == LCD_ByCopy)
   10309     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
   10310   else if (LCD == LCD_ByRef)
   10311     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
   10312   DeclarationNameInfo DNI = CallOperator->getNameInfo();
   10313 
   10314   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
   10315   LSI->Mutable = !CallOperator->isConst();
   10316 
   10317   // Add the captures to the LSI so they can be noted as already
   10318   // captured within tryCaptureVar.
   10319   auto I = LambdaClass->field_begin();
   10320   for (const auto &C : LambdaClass->captures()) {
   10321     if (C.capturesVariable()) {
   10322       VarDecl *VD = C.getCapturedVar();
   10323       if (VD->isInitCapture())
   10324         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
   10325       QualType CaptureType = VD->getType();
   10326       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
   10327       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
   10328           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
   10329           /*EllipsisLoc*/C.isPackExpansion()
   10330                          ? C.getEllipsisLoc() : SourceLocation(),
   10331           CaptureType, /*Expr*/ nullptr);
   10332 
   10333     } else if (C.capturesThis()) {
   10334       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
   10335                               S.getCurrentThisType(), /*Expr*/ nullptr);
   10336     } else {
   10337       LSI->addVLATypeCapture(C.getLocation(), I->getType());
   10338     }
   10339     ++I;
   10340   }
   10341 }
   10342 
   10343 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
   10344   // Clear the last template instantiation error context.
   10345   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   10346 
   10347   if (!D)
   10348     return D;
   10349   FunctionDecl *FD = nullptr;
   10350 
   10351   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   10352     FD = FunTmpl->getTemplatedDecl();
   10353   else
   10354     FD = cast<FunctionDecl>(D);
   10355   // If we are instantiating a generic lambda call operator, push
   10356   // a LambdaScopeInfo onto the function stack.  But use the information
   10357   // that's already been calculated (ActOnLambdaExpr) to prime the current
   10358   // LambdaScopeInfo.
   10359   // When the template operator is being specialized, the LambdaScopeInfo,
   10360   // has to be properly restored so that tryCaptureVariable doesn't try
   10361   // and capture any new variables. In addition when calculating potential
   10362   // captures during transformation of nested lambdas, it is necessary to
   10363   // have the LSI properly restored.
   10364   if (isGenericLambdaCallOperatorSpecialization(FD)) {
   10365     assert(ActiveTemplateInstantiations.size() &&
   10366       "There should be an active template instantiation on the stack "
   10367       "when instantiating a generic lambda!");
   10368     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
   10369   }
   10370   else
   10371     // Enter a new function scope
   10372     PushFunctionScope();
   10373 
   10374   // See if this is a redefinition.
   10375   if (!FD->isLateTemplateParsed())
   10376     CheckForFunctionRedefinition(FD);
   10377 
   10378   // Builtin functions cannot be defined.
   10379   if (unsigned BuiltinID = FD->getBuiltinID()) {
   10380     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
   10381         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
   10382       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   10383       FD->setInvalidDecl();
   10384     }
   10385   }
   10386 
   10387   // The return type of a function definition must be complete
   10388   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   10389   QualType ResultType = FD->getReturnType();
   10390   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   10391       !FD->isInvalidDecl() &&
   10392       RequireCompleteType(FD->getLocation(), ResultType,
   10393                           diag::err_func_def_incomplete_result))
   10394     FD->setInvalidDecl();
   10395 
   10396   if (FnBodyScope)
   10397     PushDeclContext(FnBodyScope, FD);
   10398 
   10399   // Check the validity of our function parameters
   10400   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
   10401                            /*CheckParameterNames=*/true);
   10402 
   10403   // Introduce our parameters into the function scope
   10404   for (auto Param : FD->params()) {
   10405     Param->setOwningFunction(FD);
   10406 
   10407     // If this has an identifier, add it to the scope stack.
   10408     if (Param->getIdentifier() && FnBodyScope) {
   10409       CheckShadow(FnBodyScope, Param);
   10410 
   10411       PushOnScopeChains(Param, FnBodyScope);
   10412     }
   10413   }
   10414 
   10415   // If we had any tags defined in the function prototype,
   10416   // introduce them into the function scope.
   10417   if (FnBodyScope) {
   10418     for (ArrayRef<NamedDecl *>::iterator
   10419              I = FD->getDeclsInPrototypeScope().begin(),
   10420              E = FD->getDeclsInPrototypeScope().end();
   10421          I != E; ++I) {
   10422       NamedDecl *D = *I;
   10423 
   10424       // Some of these decls (like enums) may have been pinned to the
   10425       // translation unit for lack of a real context earlier. If so, remove
   10426       // from the translation unit and reattach to the current context.
   10427       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
   10428         // Is the decl actually in the context?
   10429         for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
   10430           if (DI == D) {
   10431             Context.getTranslationUnitDecl()->removeDecl(D);
   10432             break;
   10433           }
   10434         }
   10435         // Either way, reassign the lexical decl context to our FunctionDecl.
   10436         D->setLexicalDeclContext(CurContext);
   10437       }
   10438 
   10439       // If the decl has a non-null name, make accessible in the current scope.
   10440       if (!D->getName().empty())
   10441         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
   10442 
   10443       // Similarly, dive into enums and fish their constants out, making them
   10444       // accessible in this scope.
   10445       if (auto *ED = dyn_cast<EnumDecl>(D)) {
   10446         for (auto *EI : ED->enumerators())
   10447           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
   10448       }
   10449     }
   10450   }
   10451 
   10452   // Ensure that the function's exception specification is instantiated.
   10453   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
   10454     ResolveExceptionSpec(D->getLocation(), FPT);
   10455 
   10456   // dllimport cannot be applied to non-inline function definitions.
   10457   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
   10458       !FD->isTemplateInstantiation()) {
   10459     assert(!FD->hasAttr<DLLExportAttr>());
   10460     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
   10461     FD->setInvalidDecl();
   10462     return D;
   10463   }
   10464   // We want to attach documentation to original Decl (which might be
   10465   // a function template).
   10466   ActOnDocumentableDecl(D);
   10467   if (getCurLexicalContext()->isObjCContainer() &&
   10468       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
   10469       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
   10470     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
   10471 
   10472   return D;
   10473 }
   10474 
   10475 /// \brief Given the set of return statements within a function body,
   10476 /// compute the variables that are subject to the named return value
   10477 /// optimization.
   10478 ///
   10479 /// Each of the variables that is subject to the named return value
   10480 /// optimization will be marked as NRVO variables in the AST, and any
   10481 /// return statement that has a marked NRVO variable as its NRVO candidate can
   10482 /// use the named return value optimization.
   10483 ///
   10484 /// This function applies a very simplistic algorithm for NRVO: if every return
   10485 /// statement in the scope of a variable has the same NRVO candidate, that
   10486 /// candidate is an NRVO variable.
   10487 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   10488   ReturnStmt **Returns = Scope->Returns.data();
   10489 
   10490   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   10491     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
   10492       if (!NRVOCandidate->isNRVOVariable())
   10493         Returns[I]->setNRVOCandidate(nullptr);
   10494     }
   10495   }
   10496 }
   10497 
   10498 bool Sema::canDelayFunctionBody(const Declarator &D) {
   10499   // We can't delay parsing the body of a constexpr function template (yet).
   10500   if (D.getDeclSpec().isConstexprSpecified())
   10501     return false;
   10502 
   10503   // We can't delay parsing the body of a function template with a deduced
   10504   // return type (yet).
   10505   if (D.getDeclSpec().containsPlaceholderType()) {
   10506     // If the placeholder introduces a non-deduced trailing return type,
   10507     // we can still delay parsing it.
   10508     if (D.getNumTypeObjects()) {
   10509       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
   10510       if (Outer.Kind == DeclaratorChunk::Function &&
   10511           Outer.Fun.hasTrailingReturnType()) {
   10512         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
   10513         return Ty.isNull() || !Ty->isUndeducedType();
   10514       }
   10515     }
   10516     return false;
   10517   }
   10518 
   10519   return true;
   10520 }
   10521 
   10522 bool Sema::canSkipFunctionBody(Decl *D) {
   10523   // We cannot skip the body of a function (or function template) which is
   10524   // constexpr, since we may need to evaluate its body in order to parse the
   10525   // rest of the file.
   10526   // We cannot skip the body of a function with an undeduced return type,
   10527   // because any callers of that function need to know the type.
   10528   if (const FunctionDecl *FD = D->getAsFunction())
   10529     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
   10530       return false;
   10531   return Consumer.shouldSkipFunctionBody(D);
   10532 }
   10533 
   10534 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
   10535   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
   10536     FD->setHasSkippedBody();
   10537   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
   10538     MD->setHasSkippedBody();
   10539   return ActOnFinishFunctionBody(Decl, nullptr);
   10540 }
   10541 
   10542 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   10543   return ActOnFinishFunctionBody(D, BodyArg, false);
   10544 }
   10545 
   10546 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   10547                                     bool IsInstantiation) {
   10548   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
   10549 
   10550   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   10551   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
   10552 
   10553   if (FD) {
   10554     FD->setBody(Body);
   10555 
   10556     if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
   10557         !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
   10558       // If the function has a deduced result type but contains no 'return'
   10559       // statements, the result type as written must be exactly 'auto', and
   10560       // the deduced result type is 'void'.
   10561       if (!FD->getReturnType()->getAs<AutoType>()) {
   10562         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
   10563             << FD->getReturnType();
   10564         FD->setInvalidDecl();
   10565       } else {
   10566         // Substitute 'void' for the 'auto' in the type.
   10567         TypeLoc ResultType = getReturnTypeLoc(FD);
   10568         Context.adjustDeducedFunctionResultType(
   10569             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
   10570       }
   10571     }
   10572 
   10573     // The only way to be included in UndefinedButUsed is if there is an
   10574     // ODR use before the definition. Avoid the expensive map lookup if this
   10575     // is the first declaration.
   10576     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
   10577       if (!FD->isExternallyVisible())
   10578         UndefinedButUsed.erase(FD);
   10579       else if (FD->isInlined() &&
   10580                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
   10581                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
   10582         UndefinedButUsed.erase(FD);
   10583     }
   10584 
   10585     // If the function implicitly returns zero (like 'main') or is naked,
   10586     // don't complain about missing return statements.
   10587     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
   10588       WP.disableCheckFallThrough();
   10589 
   10590     // MSVC permits the use of pure specifier (=0) on function definition,
   10591     // defined at class scope, warn about this non-standard construct.
   10592     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
   10593       Diag(FD->getLocation(), diag::ext_pure_function_definition);
   10594 
   10595     if (!FD->isInvalidDecl()) {
   10596       // Don't diagnose unused parameters of defaulted or deleted functions.
   10597       if (!FD->isDeleted() && !FD->isDefaulted())
   10598         DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
   10599       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
   10600                                              FD->getReturnType(), FD);
   10601 
   10602       // If this is a structor, we need a vtable.
   10603       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   10604         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   10605       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
   10606         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
   10607 
   10608       // Try to apply the named return value optimization. We have to check
   10609       // if we can do this here because lambdas keep return statements around
   10610       // to deduce an implicit return type.
   10611       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
   10612           !FD->isDependentContext())
   10613         computeNRVO(Body, getCurFunction());
   10614     }
   10615 
   10616     // GNU warning -Wmissing-prototypes:
   10617     //   Warn if a global function is defined without a previous
   10618     //   prototype declaration. This warning is issued even if the
   10619     //   definition itself provides a prototype. The aim is to detect
   10620     //   global functions that fail to be declared in header files.
   10621     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
   10622     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
   10623       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   10624 
   10625       if (PossibleZeroParamPrototype) {
   10626         // We found a declaration that is not a prototype,
   10627         // but that could be a zero-parameter prototype
   10628         if (TypeSourceInfo *TI =
   10629                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
   10630           TypeLoc TL = TI->getTypeLoc();
   10631           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
   10632             Diag(PossibleZeroParamPrototype->getLocation(),
   10633                  diag::note_declaration_not_a_prototype)
   10634                 << PossibleZeroParamPrototype
   10635                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
   10636         }
   10637       }
   10638     }
   10639 
   10640     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
   10641       const CXXMethodDecl *KeyFunction;
   10642       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
   10643           MD->isVirtual() &&
   10644           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
   10645           MD == KeyFunction->getCanonicalDecl()) {
   10646         // Update the key-function state if necessary for this ABI.
   10647         if (FD->isInlined() &&
   10648             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
   10649           Context.setNonKeyFunction(MD);
   10650 
   10651           // If the newly-chosen key function is already defined, then we
   10652           // need to mark the vtable as used retroactively.
   10653           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
   10654           const FunctionDecl *Definition;
   10655           if (KeyFunction && KeyFunction->isDefined(Definition))
   10656             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
   10657         } else {
   10658           // We just defined they key function; mark the vtable as used.
   10659           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
   10660         }
   10661       }
   10662     }
   10663 
   10664     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
   10665            "Function parsing confused");
   10666   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   10667     assert(MD == getCurMethodDecl() && "Method parsing confused");
   10668     MD->setBody(Body);
   10669     if (!MD->isInvalidDecl()) {
   10670       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
   10671       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
   10672                                              MD->getReturnType(), MD);
   10673 
   10674       if (Body)
   10675         computeNRVO(Body, getCurFunction());
   10676     }
   10677     if (getCurFunction()->ObjCShouldCallSuper) {
   10678       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
   10679         << MD->getSelector().getAsString();
   10680       getCurFunction()->ObjCShouldCallSuper = false;
   10681     }
   10682     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
   10683       const ObjCMethodDecl *InitMethod = nullptr;
   10684       bool isDesignated =
   10685           MD->isDesignatedInitializerForTheInterface(&InitMethod);
   10686       assert(isDesignated && InitMethod);
   10687       (void)isDesignated;
   10688 
   10689       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
   10690         auto IFace = MD->getClassInterface();
   10691         if (!IFace)
   10692           return false;
   10693         auto SuperD = IFace->getSuperClass();
   10694         if (!SuperD)
   10695           return false;
   10696         return SuperD->getIdentifier() ==
   10697             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
   10698       };
   10699       // Don't issue this warning for unavailable inits or direct subclasses
   10700       // of NSObject.
   10701       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
   10702         Diag(MD->getLocation(),
   10703              diag::warn_objc_designated_init_missing_super_call);
   10704         Diag(InitMethod->getLocation(),
   10705              diag::note_objc_designated_init_marked_here);
   10706       }
   10707       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
   10708     }
   10709     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
   10710       // Don't issue this warning for unavaialable inits.
   10711       if (!MD->isUnavailable())
   10712         Diag(MD->getLocation(),
   10713              diag::warn_objc_secondary_init_missing_init_call);
   10714       getCurFunction()->ObjCWarnForNoInitDelegation = false;
   10715     }
   10716   } else {
   10717     return nullptr;
   10718   }
   10719 
   10720   assert(!getCurFunction()->ObjCShouldCallSuper &&
   10721          "This should only be set for ObjC methods, which should have been "
   10722          "handled in the block above.");
   10723 
   10724   // Verify and clean out per-function state.
   10725   if (Body && (!FD || !FD->isDefaulted())) {
   10726     // C++ constructors that have function-try-blocks can't have return
   10727     // statements in the handlers of that block. (C++ [except.handle]p14)
   10728     // Verify this.
   10729     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   10730       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   10731 
   10732     // Verify that gotos and switch cases don't jump into scopes illegally.
   10733     if (getCurFunction()->NeedsScopeChecking() &&
   10734         !PP.isCodeCompletionEnabled())
   10735       DiagnoseInvalidJumps(Body);
   10736 
   10737     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   10738       if (!Destructor->getParent()->isDependentType())
   10739         CheckDestructor(Destructor);
   10740 
   10741       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   10742                                              Destructor->getParent());
   10743     }
   10744 
   10745     // If any errors have occurred, clear out any temporaries that may have
   10746     // been leftover. This ensures that these temporaries won't be picked up for
   10747     // deletion in some later function.
   10748     if (getDiagnostics().hasErrorOccurred() ||
   10749         getDiagnostics().getSuppressAllDiagnostics()) {
   10750       DiscardCleanupsInEvaluationContext();
   10751     }
   10752     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
   10753         !isa<FunctionTemplateDecl>(dcl)) {
   10754       // Since the body is valid, issue any analysis-based warnings that are
   10755       // enabled.
   10756       ActivePolicy = &WP;
   10757     }
   10758 
   10759     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
   10760         (!CheckConstexprFunctionDecl(FD) ||
   10761          !CheckConstexprFunctionBody(FD, Body)))
   10762       FD->setInvalidDecl();
   10763 
   10764     if (FD && FD->hasAttr<NakedAttr>()) {
   10765       for (const Stmt *S : Body->children()) {
   10766         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
   10767           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
   10768           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
   10769           FD->setInvalidDecl();
   10770           break;
   10771         }
   10772       }
   10773     }
   10774 
   10775     assert(ExprCleanupObjects.size() ==
   10776                ExprEvalContexts.back().NumCleanupObjects &&
   10777            "Leftover temporaries in function");
   10778     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
   10779     assert(MaybeODRUseExprs.empty() &&
   10780            "Leftover expressions for odr-use checking");
   10781   }
   10782 
   10783   if (!IsInstantiation)
   10784     PopDeclContext();
   10785 
   10786   PopFunctionScopeInfo(ActivePolicy, dcl);
   10787   // If any errors have occurred, clear out any temporaries that may have
   10788   // been leftover. This ensures that these temporaries won't be picked up for
   10789   // deletion in some later function.
   10790   if (getDiagnostics().hasErrorOccurred()) {
   10791     DiscardCleanupsInEvaluationContext();
   10792   }
   10793 
   10794   return dcl;
   10795 }
   10796 
   10797 
   10798 /// When we finish delayed parsing of an attribute, we must attach it to the
   10799 /// relevant Decl.
   10800 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
   10801                                        ParsedAttributes &Attrs) {
   10802   // Always attach attributes to the underlying decl.
   10803   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   10804     D = TD->getTemplatedDecl();
   10805   ProcessDeclAttributeList(S, D, Attrs.getList());
   10806 
   10807   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
   10808     if (Method->isStatic())
   10809       checkThisInStaticMemberFunctionAttributes(Method);
   10810 }
   10811 
   10812 
   10813 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   10814 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   10815 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   10816                                           IdentifierInfo &II, Scope *S) {
   10817   // Before we produce a declaration for an implicitly defined
   10818   // function, see whether there was a locally-scoped declaration of
   10819   // this name as a function or variable. If so, use that
   10820   // (non-visible) declaration, and complain about it.
   10821   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
   10822     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
   10823     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
   10824     return ExternCPrev;
   10825   }
   10826 
   10827   // Extension in C99.  Legal in C90, but warn about it.
   10828   unsigned diag_id;
   10829   if (II.getName().startswith("__builtin_"))
   10830     diag_id = diag::warn_builtin_unknown;
   10831   else if (getLangOpts().C99)
   10832     diag_id = diag::ext_implicit_function_decl;
   10833   else
   10834     diag_id = diag::warn_implicit_function_decl;
   10835   Diag(Loc, diag_id) << &II;
   10836 
   10837   // Because typo correction is expensive, only do it if the implicit
   10838   // function declaration is going to be treated as an error.
   10839   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
   10840     TypoCorrection Corrected;
   10841     if (S &&
   10842         (Corrected = CorrectTypo(
   10843              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
   10844              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
   10845       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
   10846                    /*ErrorRecovery*/false);
   10847   }
   10848 
   10849   // Set a Declarator for the implicit definition: int foo();
   10850   const char *Dummy;
   10851   AttributeFactory attrFactory;
   10852   DeclSpec DS(attrFactory);
   10853   unsigned DiagID;
   10854   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
   10855                                   Context.getPrintingPolicy());
   10856   (void)Error; // Silence warning.
   10857   assert(!Error && "Error setting up implicit decl!");
   10858   SourceLocation NoLoc;
   10859   Declarator D(DS, Declarator::BlockContext);
   10860   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
   10861                                              /*IsAmbiguous=*/false,
   10862                                              /*LParenLoc=*/NoLoc,
   10863                                              /*Params=*/nullptr,
   10864                                              /*NumParams=*/0,
   10865                                              /*EllipsisLoc=*/NoLoc,
   10866                                              /*RParenLoc=*/NoLoc,
   10867                                              /*TypeQuals=*/0,
   10868                                              /*RefQualifierIsLvalueRef=*/true,
   10869                                              /*RefQualifierLoc=*/NoLoc,
   10870                                              /*ConstQualifierLoc=*/NoLoc,
   10871                                              /*VolatileQualifierLoc=*/NoLoc,
   10872                                              /*RestrictQualifierLoc=*/NoLoc,
   10873                                              /*MutableLoc=*/NoLoc,
   10874                                              EST_None,
   10875                                              /*ESpecLoc=*/NoLoc,
   10876                                              /*Exceptions=*/nullptr,
   10877                                              /*ExceptionRanges=*/nullptr,
   10878                                              /*NumExceptions=*/0,
   10879                                              /*NoexceptExpr=*/nullptr,
   10880                                              /*ExceptionSpecTokens=*/nullptr,
   10881                                              Loc, Loc, D),
   10882                 DS.getAttributes(),
   10883                 SourceLocation());
   10884   D.SetIdentifier(&II, Loc);
   10885 
   10886   // Insert this function into translation-unit scope.
   10887 
   10888   DeclContext *PrevDC = CurContext;
   10889   CurContext = Context.getTranslationUnitDecl();
   10890 
   10891   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   10892   FD->setImplicit();
   10893 
   10894   CurContext = PrevDC;
   10895 
   10896   AddKnownFunctionAttributes(FD);
   10897 
   10898   return FD;
   10899 }
   10900 
   10901 /// \brief Adds any function attributes that we know a priori based on
   10902 /// the declaration of this function.
   10903 ///
   10904 /// These attributes can apply both to implicitly-declared builtins
   10905 /// (like __builtin___printf_chk) or to library-declared functions
   10906 /// like NSLog or printf.
   10907 ///
   10908 /// We need to check for duplicate attributes both here and where user-written
   10909 /// attributes are applied to declarations.
   10910 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   10911   if (FD->isInvalidDecl())
   10912     return;
   10913 
   10914   // If this is a built-in function, map its builtin attributes to
   10915   // actual attributes.
   10916   if (unsigned BuiltinID = FD->getBuiltinID()) {
   10917     // Handle printf-formatting attributes.
   10918     unsigned FormatIdx;
   10919     bool HasVAListArg;
   10920     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   10921       if (!FD->hasAttr<FormatAttr>()) {
   10922         const char *fmt = "printf";
   10923         unsigned int NumParams = FD->getNumParams();
   10924         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
   10925             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
   10926           fmt = "NSString";
   10927         FD->addAttr(FormatAttr::CreateImplicit(Context,
   10928                                                &Context.Idents.get(fmt),
   10929                                                FormatIdx+1,
   10930                                                HasVAListArg ? 0 : FormatIdx+2,
   10931                                                FD->getLocation()));
   10932       }
   10933     }
   10934     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   10935                                              HasVAListArg)) {
   10936      if (!FD->hasAttr<FormatAttr>())
   10937        FD->addAttr(FormatAttr::CreateImplicit(Context,
   10938                                               &Context.Idents.get("scanf"),
   10939                                               FormatIdx+1,
   10940                                               HasVAListArg ? 0 : FormatIdx+2,
   10941                                               FD->getLocation()));
   10942     }
   10943 
   10944     // Mark const if we don't care about errno and that is the only
   10945     // thing preventing the function from being const. This allows
   10946     // IRgen to use LLVM intrinsics for such functions.
   10947     if (!getLangOpts().MathErrno &&
   10948         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   10949       if (!FD->hasAttr<ConstAttr>())
   10950         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
   10951     }
   10952 
   10953     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
   10954         !FD->hasAttr<ReturnsTwiceAttr>())
   10955       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
   10956                                          FD->getLocation()));
   10957     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
   10958       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
   10959     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
   10960       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
   10961   }
   10962 
   10963   IdentifierInfo *Name = FD->getIdentifier();
   10964   if (!Name)
   10965     return;
   10966   if ((!getLangOpts().CPlusPlus &&
   10967        FD->getDeclContext()->isTranslationUnit()) ||
   10968       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   10969        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   10970        LinkageSpecDecl::lang_c)) {
   10971     // Okay: this could be a libc/libm/Objective-C function we know
   10972     // about.
   10973   } else
   10974     return;
   10975 
   10976   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   10977     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   10978     // target-specific builtins, perhaps?
   10979     if (!FD->hasAttr<FormatAttr>())
   10980       FD->addAttr(FormatAttr::CreateImplicit(Context,
   10981                                              &Context.Idents.get("printf"), 2,
   10982                                              Name->isStr("vasprintf") ? 0 : 3,
   10983                                              FD->getLocation()));
   10984   }
   10985 
   10986   if (Name->isStr("__CFStringMakeConstantString")) {
   10987     // We already have a __builtin___CFStringMakeConstantString,
   10988     // but builds that use -fno-constant-cfstrings don't go through that.
   10989     if (!FD->hasAttr<FormatArgAttr>())
   10990       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
   10991                                                 FD->getLocation()));
   10992   }
   10993 }
   10994 
   10995 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   10996                                     TypeSourceInfo *TInfo) {
   10997   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   10998   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   10999 
   11000   if (!TInfo) {
   11001     assert(D.isInvalidType() && "no declarator info for valid type");
   11002     TInfo = Context.getTrivialTypeSourceInfo(T);
   11003   }
   11004 
   11005   // Scope manipulation handled by caller.
   11006   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   11007                                            D.getLocStart(),
   11008                                            D.getIdentifierLoc(),
   11009                                            D.getIdentifier(),
   11010                                            TInfo);
   11011 
   11012   // Bail out immediately if we have an invalid declaration.
   11013   if (D.isInvalidType()) {
   11014     NewTD->setInvalidDecl();
   11015     return NewTD;
   11016   }
   11017 
   11018   if (D.getDeclSpec().isModulePrivateSpecified()) {
   11019     if (CurContext->isFunctionOrMethod())
   11020       Diag(NewTD->getLocation(), diag::err_module_private_local)
   11021         << 2 << NewTD->getDeclName()
   11022         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   11023         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   11024     else
   11025       NewTD->setModulePrivate();
   11026   }
   11027 
   11028   // C++ [dcl.typedef]p8:
   11029   //   If the typedef declaration defines an unnamed class (or
   11030   //   enum), the first typedef-name declared by the declaration
   11031   //   to be that class type (or enum type) is used to denote the
   11032   //   class type (or enum type) for linkage purposes only.
   11033   // We need to check whether the type was declared in the declaration.
   11034   switch (D.getDeclSpec().getTypeSpecType()) {
   11035   case TST_enum:
   11036   case TST_struct:
   11037   case TST_interface:
   11038   case TST_union:
   11039   case TST_class: {
   11040     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   11041     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
   11042     break;
   11043   }
   11044 
   11045   default:
   11046     break;
   11047   }
   11048 
   11049   return NewTD;
   11050 }
   11051 
   11052 
   11053 /// \brief Check that this is a valid underlying type for an enum declaration.
   11054 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
   11055   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   11056   QualType T = TI->getType();
   11057 
   11058   if (T->isDependentType())
   11059     return false;
   11060 
   11061   if (const BuiltinType *BT = T->getAs<BuiltinType>())
   11062     if (BT->isInteger())
   11063       return false;
   11064 
   11065   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
   11066   return true;
   11067 }
   11068 
   11069 /// Check whether this is a valid redeclaration of a previous enumeration.
   11070 /// \return true if the redeclaration was invalid.
   11071 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
   11072                                   QualType EnumUnderlyingTy,
   11073                                   const EnumDecl *Prev) {
   11074   bool IsFixed = !EnumUnderlyingTy.isNull();
   11075 
   11076   if (IsScoped != Prev->isScoped()) {
   11077     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
   11078       << Prev->isScoped();
   11079     Diag(Prev->getLocation(), diag::note_previous_declaration);
   11080     return true;
   11081   }
   11082 
   11083   if (IsFixed && Prev->isFixed()) {
   11084     if (!EnumUnderlyingTy->isDependentType() &&
   11085         !Prev->getIntegerType()->isDependentType() &&
   11086         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
   11087                                         Prev->getIntegerType())) {
   11088       // TODO: Highlight the underlying type of the redeclaration.
   11089       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
   11090         << EnumUnderlyingTy << Prev->getIntegerType();
   11091       Diag(Prev->getLocation(), diag::note_previous_declaration)
   11092           << Prev->getIntegerTypeRange();
   11093       return true;
   11094     }
   11095   } else if (IsFixed != Prev->isFixed()) {
   11096     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
   11097       << Prev->isFixed();
   11098     Diag(Prev->getLocation(), diag::note_previous_declaration);
   11099     return true;
   11100   }
   11101 
   11102   return false;
   11103 }
   11104 
   11105 /// \brief Get diagnostic %select index for tag kind for
   11106 /// redeclaration diagnostic message.
   11107 /// WARNING: Indexes apply to particular diagnostics only!
   11108 ///
   11109 /// \returns diagnostic %select index.
   11110 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
   11111   switch (Tag) {
   11112   case TTK_Struct: return 0;
   11113   case TTK_Interface: return 1;
   11114   case TTK_Class:  return 2;
   11115   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
   11116   }
   11117 }
   11118 
   11119 /// \brief Determine if tag kind is a class-key compatible with
   11120 /// class for redeclaration (class, struct, or __interface).
   11121 ///
   11122 /// \returns true iff the tag kind is compatible.
   11123 static bool isClassCompatTagKind(TagTypeKind Tag)
   11124 {
   11125   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
   11126 }
   11127 
   11128 /// \brief Determine whether a tag with a given kind is acceptable
   11129 /// as a redeclaration of the given tag declaration.
   11130 ///
   11131 /// \returns true if the new tag kind is acceptable, false otherwise.
   11132 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   11133                                         TagTypeKind NewTag, bool isDefinition,
   11134                                         SourceLocation NewTagLoc,
   11135                                         const IdentifierInfo &Name) {
   11136   // C++ [dcl.type.elab]p3:
   11137   //   The class-key or enum keyword present in the
   11138   //   elaborated-type-specifier shall agree in kind with the
   11139   //   declaration to which the name in the elaborated-type-specifier
   11140   //   refers. This rule also applies to the form of
   11141   //   elaborated-type-specifier that declares a class-name or
   11142   //   friend class since it can be construed as referring to the
   11143   //   definition of the class. Thus, in any
   11144   //   elaborated-type-specifier, the enum keyword shall be used to
   11145   //   refer to an enumeration (7.2), the union class-key shall be
   11146   //   used to refer to a union (clause 9), and either the class or
   11147   //   struct class-key shall be used to refer to a class (clause 9)
   11148   //   declared using the class or struct class-key.
   11149   TagTypeKind OldTag = Previous->getTagKind();
   11150   if (!isDefinition || !isClassCompatTagKind(NewTag))
   11151     if (OldTag == NewTag)
   11152       return true;
   11153 
   11154   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
   11155     // Warn about the struct/class tag mismatch.
   11156     bool isTemplate = false;
   11157     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   11158       isTemplate = Record->getDescribedClassTemplate();
   11159 
   11160     if (!ActiveTemplateInstantiations.empty()) {
   11161       // In a template instantiation, do not offer fix-its for tag mismatches
   11162       // since they usually mess up the template instead of fixing the problem.
   11163       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   11164         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   11165         << getRedeclDiagFromTagKind(OldTag);
   11166       return true;
   11167     }
   11168 
   11169     if (isDefinition) {
   11170       // On definitions, check previous tags and issue a fix-it for each
   11171       // one that doesn't match the current tag.
   11172       if (Previous->getDefinition()) {
   11173         // Don't suggest fix-its for redefinitions.
   11174         return true;
   11175       }
   11176 
   11177       bool previousMismatch = false;
   11178       for (auto I : Previous->redecls()) {
   11179         if (I->getTagKind() != NewTag) {
   11180           if (!previousMismatch) {
   11181             previousMismatch = true;
   11182             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   11183               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   11184               << getRedeclDiagFromTagKind(I->getTagKind());
   11185           }
   11186           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   11187             << getRedeclDiagFromTagKind(NewTag)
   11188             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   11189                  TypeWithKeyword::getTagTypeKindName(NewTag));
   11190         }
   11191       }
   11192       return true;
   11193     }
   11194 
   11195     // Check for a previous definition.  If current tag and definition
   11196     // are same type, do nothing.  If no definition, but disagree with
   11197     // with previous tag type, give a warning, but no fix-it.
   11198     const TagDecl *Redecl = Previous->getDefinition() ?
   11199                             Previous->getDefinition() : Previous;
   11200     if (Redecl->getTagKind() == NewTag) {
   11201       return true;
   11202     }
   11203 
   11204     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   11205       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   11206       << getRedeclDiagFromTagKind(OldTag);
   11207     Diag(Redecl->getLocation(), diag::note_previous_use);
   11208 
   11209     // If there is a previous definition, suggest a fix-it.
   11210     if (Previous->getDefinition()) {
   11211         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   11212           << getRedeclDiagFromTagKind(Redecl->getTagKind())
   11213           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   11214                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
   11215     }
   11216 
   11217     return true;
   11218   }
   11219   return false;
   11220 }
   11221 
   11222 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
   11223 /// from an outer enclosing namespace or file scope inside a friend declaration.
   11224 /// This should provide the commented out code in the following snippet:
   11225 ///   namespace N {
   11226 ///     struct X;
   11227 ///     namespace M {
   11228 ///       struct Y { friend struct /*N::*/ X; };
   11229 ///     }
   11230 ///   }
   11231 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
   11232                                          SourceLocation NameLoc) {
   11233   // While the decl is in a namespace, do repeated lookup of that name and see
   11234   // if we get the same namespace back.  If we do not, continue until
   11235   // translation unit scope, at which point we have a fully qualified NNS.
   11236   SmallVector<IdentifierInfo *, 4> Namespaces;
   11237   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
   11238   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
   11239     // This tag should be declared in a namespace, which can only be enclosed by
   11240     // other namespaces.  Bail if there's an anonymous namespace in the chain.
   11241     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
   11242     if (!Namespace || Namespace->isAnonymousNamespace())
   11243       return FixItHint();
   11244     IdentifierInfo *II = Namespace->getIdentifier();
   11245     Namespaces.push_back(II);
   11246     NamedDecl *Lookup = SemaRef.LookupSingleName(
   11247         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
   11248     if (Lookup == Namespace)
   11249       break;
   11250   }
   11251 
   11252   // Once we have all the namespaces, reverse them to go outermost first, and
   11253   // build an NNS.
   11254   SmallString<64> Insertion;
   11255   llvm::raw_svector_ostream OS(Insertion);
   11256   if (DC->isTranslationUnit())
   11257     OS << "::";
   11258   std::reverse(Namespaces.begin(), Namespaces.end());
   11259   for (auto *II : Namespaces)
   11260     OS << II->getName() << "::";
   11261   OS.flush();
   11262   return FixItHint::CreateInsertion(NameLoc, Insertion);
   11263 }
   11264 
   11265 /// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
   11266 /// former case, Name will be non-null.  In the later case, Name will be null.
   11267 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   11268 /// reference/declaration/definition of a tag.
   11269 ///
   11270 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
   11271 /// trailing-type-specifier) other than one in an alias-declaration.
   11272 ///
   11273 /// \param SkipBody If non-null, will be set to true if the caller should skip
   11274 /// the definition of this tag, and treat it as if it were a declaration.
   11275 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   11276                      SourceLocation KWLoc, CXXScopeSpec &SS,
   11277                      IdentifierInfo *Name, SourceLocation NameLoc,
   11278                      AttributeList *Attr, AccessSpecifier AS,
   11279                      SourceLocation ModulePrivateLoc,
   11280                      MultiTemplateParamsArg TemplateParameterLists,
   11281                      bool &OwnedDecl, bool &IsDependent,
   11282                      SourceLocation ScopedEnumKWLoc,
   11283                      bool ScopedEnumUsesClassTag,
   11284                      TypeResult UnderlyingType,
   11285                      bool IsTypeSpecifier, bool *SkipBody) {
   11286   // If this is not a definition, it must have a name.
   11287   IdentifierInfo *OrigName = Name;
   11288   assert((Name != nullptr || TUK == TUK_Definition) &&
   11289          "Nameless record must be a definition!");
   11290   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   11291 
   11292   OwnedDecl = false;
   11293   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   11294   bool ScopedEnum = ScopedEnumKWLoc.isValid();
   11295 
   11296   // FIXME: Check explicit specializations more carefully.
   11297   bool isExplicitSpecialization = false;
   11298   bool Invalid = false;
   11299 
   11300   // We only need to do this matching if we have template parameters
   11301   // or a scope specifier, which also conveniently avoids this work
   11302   // for non-C++ cases.
   11303   if (TemplateParameterLists.size() > 0 ||
   11304       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   11305     if (TemplateParameterList *TemplateParams =
   11306             MatchTemplateParametersToScopeSpecifier(
   11307                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
   11308                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
   11309       if (Kind == TTK_Enum) {
   11310         Diag(KWLoc, diag::err_enum_template);
   11311         return nullptr;
   11312       }
   11313 
   11314       if (TemplateParams->size() > 0) {
   11315         // This is a declaration or definition of a class template (which may
   11316         // be a member of another template).
   11317 
   11318         if (Invalid)
   11319           return nullptr;
   11320 
   11321         OwnedDecl = false;
   11322         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   11323                                                SS, Name, NameLoc, Attr,
   11324                                                TemplateParams, AS,
   11325                                                ModulePrivateLoc,
   11326                                                /*FriendLoc*/SourceLocation(),
   11327                                                TemplateParameterLists.size()-1,
   11328                                                TemplateParameterLists.data(),
   11329                                                SkipBody);
   11330         return Result.get();
   11331       } else {
   11332         // The "template<>" header is extraneous.
   11333         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   11334           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   11335         isExplicitSpecialization = true;
   11336       }
   11337     }
   11338   }
   11339 
   11340   // Figure out the underlying type if this a enum declaration. We need to do
   11341   // this early, because it's needed to detect if this is an incompatible
   11342   // redeclaration.
   11343   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   11344 
   11345   if (Kind == TTK_Enum) {
   11346     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   11347       // No underlying type explicitly specified, or we failed to parse the
   11348       // type, default to int.
   11349       EnumUnderlying = Context.IntTy.getTypePtr();
   11350     else if (UnderlyingType.get()) {
   11351       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   11352       // integral type; any cv-qualification is ignored.
   11353       TypeSourceInfo *TI = nullptr;
   11354       GetTypeFromParser(UnderlyingType.get(), &TI);
   11355       EnumUnderlying = TI;
   11356 
   11357       if (CheckEnumUnderlyingType(TI))
   11358         // Recover by falling back to int.
   11359         EnumUnderlying = Context.IntTy.getTypePtr();
   11360 
   11361       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
   11362                                           UPPC_FixedUnderlyingType))
   11363         EnumUnderlying = Context.IntTy.getTypePtr();
   11364 
   11365     } else if (getLangOpts().MSVCCompat)
   11366       // Microsoft enums are always of int type.
   11367       EnumUnderlying = Context.IntTy.getTypePtr();
   11368   }
   11369 
   11370   DeclContext *SearchDC = CurContext;
   11371   DeclContext *DC = CurContext;
   11372   bool isStdBadAlloc = false;
   11373 
   11374   RedeclarationKind Redecl = ForRedeclaration;
   11375   if (TUK == TUK_Friend || TUK == TUK_Reference)
   11376     Redecl = NotForRedeclaration;
   11377 
   11378   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   11379   if (Name && SS.isNotEmpty()) {
   11380     // We have a nested-name tag ('struct foo::bar').
   11381 
   11382     // Check for invalid 'foo::'.
   11383     if (SS.isInvalid()) {
   11384       Name = nullptr;
   11385       goto CreateNewDecl;
   11386     }
   11387 
   11388     // If this is a friend or a reference to a class in a dependent
   11389     // context, don't try to make a decl for it.
   11390     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   11391       DC = computeDeclContext(SS, false);
   11392       if (!DC) {
   11393         IsDependent = true;
   11394         return nullptr;
   11395       }
   11396     } else {
   11397       DC = computeDeclContext(SS, true);
   11398       if (!DC) {
   11399         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   11400           << SS.getRange();
   11401         return nullptr;
   11402       }
   11403     }
   11404 
   11405     if (RequireCompleteDeclContext(SS, DC))
   11406       return nullptr;
   11407 
   11408     SearchDC = DC;
   11409     // Look-up name inside 'foo::'.
   11410     LookupQualifiedName(Previous, DC);
   11411 
   11412     if (Previous.isAmbiguous())
   11413       return nullptr;
   11414 
   11415     if (Previous.empty()) {
   11416       // Name lookup did not find anything. However, if the
   11417       // nested-name-specifier refers to the current instantiation,
   11418       // and that current instantiation has any dependent base
   11419       // classes, we might find something at instantiation time: treat
   11420       // this as a dependent elaborated-type-specifier.
   11421       // But this only makes any sense for reference-like lookups.
   11422       if (Previous.wasNotFoundInCurrentInstantiation() &&
   11423           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   11424         IsDependent = true;
   11425         return nullptr;
   11426       }
   11427 
   11428       // A tag 'foo::bar' must already exist.
   11429       Diag(NameLoc, diag::err_not_tag_in_scope)
   11430         << Kind << Name << DC << SS.getRange();
   11431       Name = nullptr;
   11432       Invalid = true;
   11433       goto CreateNewDecl;
   11434     }
   11435   } else if (Name) {
   11436     // If this is a named struct, check to see if there was a previous forward
   11437     // declaration or definition.
   11438     // FIXME: We're looking into outer scopes here, even when we
   11439     // shouldn't be. Doing so can result in ambiguities that we
   11440     // shouldn't be diagnosing.
   11441     LookupName(Previous, S);
   11442 
   11443     // When declaring or defining a tag, ignore ambiguities introduced
   11444     // by types using'ed into this scope.
   11445     if (Previous.isAmbiguous() &&
   11446         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   11447       LookupResult::Filter F = Previous.makeFilter();
   11448       while (F.hasNext()) {
   11449         NamedDecl *ND = F.next();
   11450         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
   11451           F.erase();
   11452       }
   11453       F.done();
   11454     }
   11455 
   11456     // C++11 [namespace.memdef]p3:
   11457     //   If the name in a friend declaration is neither qualified nor
   11458     //   a template-id and the declaration is a function or an
   11459     //   elaborated-type-specifier, the lookup to determine whether
   11460     //   the entity has been previously declared shall not consider
   11461     //   any scopes outside the innermost enclosing namespace.
   11462     //
   11463     // MSVC doesn't implement the above rule for types, so a friend tag
   11464     // declaration may be a redeclaration of a type declared in an enclosing
   11465     // scope.  They do implement this rule for friend functions.
   11466     //
   11467     // Does it matter that this should be by scope instead of by
   11468     // semantic context?
   11469     if (!Previous.empty() && TUK == TUK_Friend) {
   11470       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
   11471       LookupResult::Filter F = Previous.makeFilter();
   11472       bool FriendSawTagOutsideEnclosingNamespace = false;
   11473       while (F.hasNext()) {
   11474         NamedDecl *ND = F.next();
   11475         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
   11476         if (DC->isFileContext() &&
   11477             !EnclosingNS->Encloses(ND->getDeclContext())) {
   11478           if (getLangOpts().MSVCCompat)
   11479             FriendSawTagOutsideEnclosingNamespace = true;
   11480           else
   11481             F.erase();
   11482         }
   11483       }
   11484       F.done();
   11485 
   11486       // Diagnose this MSVC extension in the easy case where lookup would have
   11487       // unambiguously found something outside the enclosing namespace.
   11488       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
   11489         NamedDecl *ND = Previous.getFoundDecl();
   11490         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
   11491             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
   11492       }
   11493     }
   11494 
   11495     // Note:  there used to be some attempt at recovery here.
   11496     if (Previous.isAmbiguous())
   11497       return nullptr;
   11498 
   11499     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
   11500       // FIXME: This makes sure that we ignore the contexts associated
   11501       // with C structs, unions, and enums when looking for a matching
   11502       // tag declaration or definition. See the similar lookup tweak
   11503       // in Sema::LookupName; is there a better way to deal with this?
   11504       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   11505         SearchDC = SearchDC->getParent();
   11506     }
   11507   }
   11508 
   11509   if (Previous.isSingleResult() &&
   11510       Previous.getFoundDecl()->isTemplateParameter()) {
   11511     // Maybe we will complain about the shadowed template parameter.
   11512     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   11513     // Just pretend that we didn't see the previous declaration.
   11514     Previous.clear();
   11515   }
   11516 
   11517   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
   11518       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   11519     // This is a declaration of or a reference to "std::bad_alloc".
   11520     isStdBadAlloc = true;
   11521 
   11522     if (Previous.empty() && StdBadAlloc) {
   11523       // std::bad_alloc has been implicitly declared (but made invisible to
   11524       // name lookup). Fill in this implicit declaration as the previous
   11525       // declaration, so that the declarations get chained appropriately.
   11526       Previous.addDecl(getStdBadAlloc());
   11527     }
   11528   }
   11529 
   11530   // If we didn't find a previous declaration, and this is a reference
   11531   // (or friend reference), move to the correct scope.  In C++, we
   11532   // also need to do a redeclaration lookup there, just in case
   11533   // there's a shadow friend decl.
   11534   if (Name && Previous.empty() &&
   11535       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   11536     if (Invalid) goto CreateNewDecl;
   11537     assert(SS.isEmpty());
   11538 
   11539     if (TUK == TUK_Reference) {
   11540       // C++ [basic.scope.pdecl]p5:
   11541       //   -- for an elaborated-type-specifier of the form
   11542       //
   11543       //          class-key identifier
   11544       //
   11545       //      if the elaborated-type-specifier is used in the
   11546       //      decl-specifier-seq or parameter-declaration-clause of a
   11547       //      function defined in namespace scope, the identifier is
   11548       //      declared as a class-name in the namespace that contains
   11549       //      the declaration; otherwise, except as a friend
   11550       //      declaration, the identifier is declared in the smallest
   11551       //      non-class, non-function-prototype scope that contains the
   11552       //      declaration.
   11553       //
   11554       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   11555       // C structs and unions.
   11556       //
   11557       // It is an error in C++ to declare (rather than define) an enum
   11558       // type, including via an elaborated type specifier.  We'll
   11559       // diagnose that later; for now, declare the enum in the same
   11560       // scope as we would have picked for any other tag type.
   11561       //
   11562       // GNU C also supports this behavior as part of its incomplete
   11563       // enum types extension, while GNU C++ does not.
   11564       //
   11565       // Find the context where we'll be declaring the tag.
   11566       // FIXME: We would like to maintain the current DeclContext as the
   11567       // lexical context,
   11568       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
   11569         SearchDC = SearchDC->getParent();
   11570 
   11571       // Find the scope where we'll be declaring the tag.
   11572       while (S->isClassScope() ||
   11573              (getLangOpts().CPlusPlus &&
   11574               S->isFunctionPrototypeScope()) ||
   11575              ((S->getFlags() & Scope::DeclScope) == 0) ||
   11576              (S->getEntity() && S->getEntity()->isTransparentContext()))
   11577         S = S->getParent();
   11578     } else {
   11579       assert(TUK == TUK_Friend);
   11580       // C++ [namespace.memdef]p3:
   11581       //   If a friend declaration in a non-local class first declares a
   11582       //   class or function, the friend class or function is a member of
   11583       //   the innermost enclosing namespace.
   11584       SearchDC = SearchDC->getEnclosingNamespaceContext();
   11585     }
   11586 
   11587     // In C++, we need to do a redeclaration lookup to properly
   11588     // diagnose some problems.
   11589     if (getLangOpts().CPlusPlus) {
   11590       Previous.setRedeclarationKind(ForRedeclaration);
   11591       LookupQualifiedName(Previous, SearchDC);
   11592     }
   11593   }
   11594 
   11595   if (!Previous.empty()) {
   11596     NamedDecl *PrevDecl = Previous.getFoundDecl();
   11597     NamedDecl *DirectPrevDecl =
   11598         getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
   11599 
   11600     // It's okay to have a tag decl in the same scope as a typedef
   11601     // which hides a tag decl in the same scope.  Finding this
   11602     // insanity with a redeclaration lookup can only actually happen
   11603     // in C++.
   11604     //
   11605     // This is also okay for elaborated-type-specifiers, which is
   11606     // technically forbidden by the current standard but which is
   11607     // okay according to the likely resolution of an open issue;
   11608     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   11609     if (getLangOpts().CPlusPlus) {
   11610       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   11611         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   11612           TagDecl *Tag = TT->getDecl();
   11613           if (Tag->getDeclName() == Name &&
   11614               Tag->getDeclContext()->getRedeclContext()
   11615                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   11616             PrevDecl = Tag;
   11617             Previous.clear();
   11618             Previous.addDecl(Tag);
   11619             Previous.resolveKind();
   11620           }
   11621         }
   11622       }
   11623     }
   11624 
   11625     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   11626       // If this is a use of a previous tag, or if the tag is already declared
   11627       // in the same scope (so that the definition/declaration completes or
   11628       // rementions the tag), reuse the decl.
   11629       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   11630           isDeclInScope(DirectPrevDecl, SearchDC, S,
   11631                         SS.isNotEmpty() || isExplicitSpecialization)) {
   11632         // Make sure that this wasn't declared as an enum and now used as a
   11633         // struct or something similar.
   11634         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   11635                                           TUK == TUK_Definition, KWLoc,
   11636                                           *Name)) {
   11637           bool SafeToContinue
   11638             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   11639                Kind != TTK_Enum);
   11640           if (SafeToContinue)
   11641             Diag(KWLoc, diag::err_use_with_wrong_tag)
   11642               << Name
   11643               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   11644                                               PrevTagDecl->getKindName());
   11645           else
   11646             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   11647           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   11648 
   11649           if (SafeToContinue)
   11650             Kind = PrevTagDecl->getTagKind();
   11651           else {
   11652             // Recover by making this an anonymous redefinition.
   11653             Name = nullptr;
   11654             Previous.clear();
   11655             Invalid = true;
   11656           }
   11657         }
   11658 
   11659         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   11660           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   11661 
   11662           // If this is an elaborated-type-specifier for a scoped enumeration,
   11663           // the 'class' keyword is not necessary and not permitted.
   11664           if (TUK == TUK_Reference || TUK == TUK_Friend) {
   11665             if (ScopedEnum)
   11666               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
   11667                 << PrevEnum->isScoped()
   11668                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
   11669             return PrevTagDecl;
   11670           }
   11671 
   11672           QualType EnumUnderlyingTy;
   11673           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   11674             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
   11675           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
   11676             EnumUnderlyingTy = QualType(T, 0);
   11677 
   11678           // All conflicts with previous declarations are recovered by
   11679           // returning the previous declaration, unless this is a definition,
   11680           // in which case we want the caller to bail out.
   11681           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
   11682                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
   11683             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
   11684         }
   11685 
   11686         // C++11 [class.mem]p1:
   11687         //   A member shall not be declared twice in the member-specification,
   11688         //   except that a nested class or member class template can be declared
   11689         //   and then later defined.
   11690         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
   11691             S->isDeclScope(PrevDecl)) {
   11692           Diag(NameLoc, diag::ext_member_redeclared);
   11693           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
   11694         }
   11695 
   11696         if (!Invalid) {
   11697           // If this is a use, just return the declaration we found, unless
   11698           // we have attributes.
   11699 
   11700           // FIXME: In the future, return a variant or some other clue
   11701           // for the consumer of this Decl to know it doesn't own it.
   11702           // For our current ASTs this shouldn't be a problem, but will
   11703           // need to be changed with DeclGroups.
   11704           if (!Attr &&
   11705               ((TUK == TUK_Reference &&
   11706                 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
   11707                || TUK == TUK_Friend))
   11708             return PrevTagDecl;
   11709 
   11710           // Diagnose attempts to redefine a tag.
   11711           if (TUK == TUK_Definition) {
   11712             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
   11713               // If we're defining a specialization and the previous definition
   11714               // is from an implicit instantiation, don't emit an error
   11715               // here; we'll catch this in the general case below.
   11716               bool IsExplicitSpecializationAfterInstantiation = false;
   11717               if (isExplicitSpecialization) {
   11718                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
   11719                   IsExplicitSpecializationAfterInstantiation =
   11720                     RD->getTemplateSpecializationKind() !=
   11721                     TSK_ExplicitSpecialization;
   11722                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
   11723                   IsExplicitSpecializationAfterInstantiation =
   11724                     ED->getTemplateSpecializationKind() !=
   11725                     TSK_ExplicitSpecialization;
   11726               }
   11727 
   11728               NamedDecl *Hidden = nullptr;
   11729               if (SkipBody && getLangOpts().CPlusPlus &&
   11730                   !hasVisibleDefinition(Def, &Hidden)) {
   11731                 // There is a definition of this tag, but it is not visible. We
   11732                 // explicitly make use of C++'s one definition rule here, and
   11733                 // assume that this definition is identical to the hidden one
   11734                 // we already have. Make the existing definition visible and
   11735                 // use it in place of this one.
   11736                 *SkipBody = true;
   11737                 if (auto *Listener = getASTMutationListener())
   11738                   Listener->RedefinedHiddenDefinition(Hidden, KWLoc);
   11739                 Hidden->setHidden(false);
   11740                 return Def;
   11741               } else if (!IsExplicitSpecializationAfterInstantiation) {
   11742                 // A redeclaration in function prototype scope in C isn't
   11743                 // visible elsewhere, so merely issue a warning.
   11744                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
   11745                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
   11746                 else
   11747                   Diag(NameLoc, diag::err_redefinition) << Name;
   11748                 Diag(Def->getLocation(), diag::note_previous_definition);
   11749                 // If this is a redefinition, recover by making this
   11750                 // struct be anonymous, which will make any later
   11751                 // references get the previous definition.
   11752                 Name = nullptr;
   11753                 Previous.clear();
   11754                 Invalid = true;
   11755               }
   11756             } else {
   11757               // If the type is currently being defined, complain
   11758               // about a nested redefinition.
   11759               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
   11760               if (TD->isBeingDefined()) {
   11761                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   11762                 Diag(PrevTagDecl->getLocation(),
   11763                      diag::note_previous_definition);
   11764                 Name = nullptr;
   11765                 Previous.clear();
   11766                 Invalid = true;
   11767               }
   11768             }
   11769 
   11770             // Okay, this is definition of a previously declared or referenced
   11771             // tag. We're going to create a new Decl for it.
   11772           }
   11773 
   11774           // Okay, we're going to make a redeclaration.  If this is some kind
   11775           // of reference, make sure we build the redeclaration in the same DC
   11776           // as the original, and ignore the current access specifier.
   11777           if (TUK == TUK_Friend || TUK == TUK_Reference) {
   11778             SearchDC = PrevTagDecl->getDeclContext();
   11779             AS = AS_none;
   11780           }
   11781         }
   11782         // If we get here we have (another) forward declaration or we
   11783         // have a definition.  Just create a new decl.
   11784 
   11785       } else {
   11786         // If we get here, this is a definition of a new tag type in a nested
   11787         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   11788         // new decl/type.  We set PrevDecl to NULL so that the entities
   11789         // have distinct types.
   11790         Previous.clear();
   11791       }
   11792       // If we get here, we're going to create a new Decl. If PrevDecl
   11793       // is non-NULL, it's a definition of the tag declared by
   11794       // PrevDecl. If it's NULL, we have a new definition.
   11795 
   11796 
   11797     // Otherwise, PrevDecl is not a tag, but was found with tag
   11798     // lookup.  This is only actually possible in C++, where a few
   11799     // things like templates still live in the tag namespace.
   11800     } else {
   11801       // Use a better diagnostic if an elaborated-type-specifier
   11802       // found the wrong kind of type on the first
   11803       // (non-redeclaration) lookup.
   11804       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   11805           !Previous.isForRedeclaration()) {
   11806         unsigned Kind = 0;
   11807         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   11808         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   11809         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   11810         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   11811         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   11812         Invalid = true;
   11813 
   11814       // Otherwise, only diagnose if the declaration is in scope.
   11815       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
   11816                                 SS.isNotEmpty() || isExplicitSpecialization)) {
   11817         // do nothing
   11818 
   11819       // Diagnose implicit declarations introduced by elaborated types.
   11820       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   11821         unsigned Kind = 0;
   11822         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   11823         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   11824         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   11825         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   11826         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   11827         Invalid = true;
   11828 
   11829       // Otherwise it's a declaration.  Call out a particularly common
   11830       // case here.
   11831       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   11832         unsigned Kind = 0;
   11833         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   11834         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   11835           << Name << Kind << TND->getUnderlyingType();
   11836         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   11837         Invalid = true;
   11838 
   11839       // Otherwise, diagnose.
   11840       } else {
   11841         // The tag name clashes with something else in the target scope,
   11842         // issue an error and recover by making this tag be anonymous.
   11843         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   11844         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   11845         Name = nullptr;
   11846         Invalid = true;
   11847       }
   11848 
   11849       // The existing declaration isn't relevant to us; we're in a
   11850       // new scope, so clear out the previous declaration.
   11851       Previous.clear();
   11852     }
   11853   }
   11854 
   11855 CreateNewDecl:
   11856 
   11857   TagDecl *PrevDecl = nullptr;
   11858   if (Previous.isSingleResult())
   11859     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   11860 
   11861   // If there is an identifier, use the location of the identifier as the
   11862   // location of the decl, otherwise use the location of the struct/union
   11863   // keyword.
   11864   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   11865 
   11866   // Otherwise, create a new declaration. If there is a previous
   11867   // declaration of the same entity, the two will be linked via
   11868   // PrevDecl.
   11869   TagDecl *New;
   11870 
   11871   bool IsForwardReference = false;
   11872   if (Kind == TTK_Enum) {
   11873     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   11874     // enum X { A, B, C } D;    D should chain to X.
   11875     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   11876                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   11877                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   11878     // If this is an undefined enum, warn.
   11879     if (TUK != TUK_Definition && !Invalid) {
   11880       TagDecl *Def;
   11881       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
   11882           cast<EnumDecl>(New)->isFixed()) {
   11883         // C++0x: 7.2p2: opaque-enum-declaration.
   11884         // Conflicts are diagnosed above. Do nothing.
   11885       }
   11886       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   11887         Diag(Loc, diag::ext_forward_ref_enum_def)
   11888           << New;
   11889         Diag(Def->getLocation(), diag::note_previous_definition);
   11890       } else {
   11891         unsigned DiagID = diag::ext_forward_ref_enum;
   11892         if (getLangOpts().MSVCCompat)
   11893           DiagID = diag::ext_ms_forward_ref_enum;
   11894         else if (getLangOpts().CPlusPlus)
   11895           DiagID = diag::err_forward_ref_enum;
   11896         Diag(Loc, DiagID);
   11897 
   11898         // If this is a forward-declared reference to an enumeration, make a
   11899         // note of it; we won't actually be introducing the declaration into
   11900         // the declaration context.
   11901         if (TUK == TUK_Reference)
   11902           IsForwardReference = true;
   11903       }
   11904     }
   11905 
   11906     if (EnumUnderlying) {
   11907       EnumDecl *ED = cast<EnumDecl>(New);
   11908       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   11909         ED->setIntegerTypeSourceInfo(TI);
   11910       else
   11911         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   11912       ED->setPromotionType(ED->getIntegerType());
   11913     }
   11914 
   11915   } else {
   11916     // struct/union/class
   11917 
   11918     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   11919     // struct X { int A; } D;    D should chain to X.
   11920     if (getLangOpts().CPlusPlus) {
   11921       // FIXME: Look for a way to use RecordDecl for simple structs.
   11922       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   11923                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   11924 
   11925       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   11926         StdBadAlloc = cast<CXXRecordDecl>(New);
   11927     } else
   11928       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   11929                                cast_or_null<RecordDecl>(PrevDecl));
   11930   }
   11931 
   11932   // C++11 [dcl.type]p3:
   11933   //   A type-specifier-seq shall not define a class or enumeration [...].
   11934   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
   11935     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
   11936       << Context.getTagDeclType(New);
   11937     Invalid = true;
   11938   }
   11939 
   11940   // Maybe add qualifier info.
   11941   if (SS.isNotEmpty()) {
   11942     if (SS.isSet()) {
   11943       // If this is either a declaration or a definition, check the
   11944       // nested-name-specifier against the current context. We don't do this
   11945       // for explicit specializations, because they have similar checking
   11946       // (with more specific diagnostics) in the call to
   11947       // CheckMemberSpecialization, below.
   11948       if (!isExplicitSpecialization &&
   11949           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
   11950           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
   11951         Invalid = true;
   11952 
   11953       New->setQualifierInfo(SS.getWithLocInContext(Context));
   11954       if (TemplateParameterLists.size() > 0) {
   11955         New->setTemplateParameterListsInfo(Context,
   11956                                            TemplateParameterLists.size(),
   11957                                            TemplateParameterLists.data());
   11958       }
   11959     }
   11960     else
   11961       Invalid = true;
   11962   }
   11963 
   11964   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   11965     // Add alignment attributes if necessary; these attributes are checked when
   11966     // the ASTContext lays out the structure.
   11967     //
   11968     // It is important for implementing the correct semantics that this
   11969     // happen here (in act on tag decl). The #pragma pack stack is
   11970     // maintained as a result of parser callbacks which can occur at
   11971     // many points during the parsing of a struct declaration (because
   11972     // the #pragma tokens are effectively skipped over during the
   11973     // parsing of the struct).
   11974     if (TUK == TUK_Definition) {
   11975       AddAlignmentAttributesForRecord(RD);
   11976       AddMsStructLayoutForRecord(RD);
   11977     }
   11978   }
   11979 
   11980   if (ModulePrivateLoc.isValid()) {
   11981     if (isExplicitSpecialization)
   11982       Diag(New->getLocation(), diag::err_module_private_specialization)
   11983         << 2
   11984         << FixItHint::CreateRemoval(ModulePrivateLoc);
   11985     // __module_private__ does not apply to local classes. However, we only
   11986     // diagnose this as an error when the declaration specifiers are
   11987     // freestanding. Here, we just ignore the __module_private__.
   11988     else if (!SearchDC->isFunctionOrMethod())
   11989       New->setModulePrivate();
   11990   }
   11991 
   11992   // If this is a specialization of a member class (of a class template),
   11993   // check the specialization.
   11994   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   11995     Invalid = true;
   11996 
   11997   // If we're declaring or defining a tag in function prototype scope in C,
   11998   // note that this type can only be used within the function and add it to
   11999   // the list of decls to inject into the function definition scope.
   12000   if ((Name || Kind == TTK_Enum) &&
   12001       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
   12002     if (getLangOpts().CPlusPlus) {
   12003       // C++ [dcl.fct]p6:
   12004       //   Types shall not be defined in return or parameter types.
   12005       if (TUK == TUK_Definition && !IsTypeSpecifier) {
   12006         Diag(Loc, diag::err_type_defined_in_param_type)
   12007             << Name;
   12008         Invalid = true;
   12009       }
   12010     } else {
   12011       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   12012     }
   12013     DeclsInPrototypeScope.push_back(New);
   12014   }
   12015 
   12016   if (Invalid)
   12017     New->setInvalidDecl();
   12018 
   12019   if (Attr)
   12020     ProcessDeclAttributeList(S, New, Attr);
   12021 
   12022   // Set the lexical context. If the tag has a C++ scope specifier, the
   12023   // lexical context will be different from the semantic context.
   12024   New->setLexicalDeclContext(CurContext);
   12025 
   12026   // Mark this as a friend decl if applicable.
   12027   // In Microsoft mode, a friend declaration also acts as a forward
   12028   // declaration so we always pass true to setObjectOfFriendDecl to make
   12029   // the tag name visible.
   12030   if (TUK == TUK_Friend)
   12031     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
   12032 
   12033   // Set the access specifier.
   12034   if (!Invalid && SearchDC->isRecord())
   12035     SetMemberAccessSpecifier(New, PrevDecl, AS);
   12036 
   12037   if (TUK == TUK_Definition)
   12038     New->startDefinition();
   12039 
   12040   // If this has an identifier, add it to the scope stack.
   12041   if (TUK == TUK_Friend) {
   12042     // We might be replacing an existing declaration in the lookup tables;
   12043     // if so, borrow its access specifier.
   12044     if (PrevDecl)
   12045       New->setAccess(PrevDecl->getAccess());
   12046 
   12047     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   12048     DC->makeDeclVisibleInContext(New);
   12049     if (Name) // can be null along some error paths
   12050       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   12051         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   12052   } else if (Name) {
   12053     S = getNonFieldDeclScope(S);
   12054     PushOnScopeChains(New, S, !IsForwardReference);
   12055     if (IsForwardReference)
   12056       SearchDC->makeDeclVisibleInContext(New);
   12057 
   12058   } else {
   12059     CurContext->addDecl(New);
   12060   }
   12061 
   12062   // If this is the C FILE type, notify the AST context.
   12063   if (IdentifierInfo *II = New->getIdentifier())
   12064     if (!New->isInvalidDecl() &&
   12065         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   12066         II->isStr("FILE"))
   12067       Context.setFILEDecl(New);
   12068 
   12069   if (PrevDecl)
   12070     mergeDeclAttributes(New, PrevDecl);
   12071 
   12072   // If there's a #pragma GCC visibility in scope, set the visibility of this
   12073   // record.
   12074   AddPushedVisibilityAttribute(New);
   12075 
   12076   OwnedDecl = true;
   12077   // In C++, don't return an invalid declaration. We can't recover well from
   12078   // the cases where we make the type anonymous.
   12079   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
   12080 }
   12081 
   12082 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   12083   AdjustDeclIfTemplate(TagD);
   12084   TagDecl *Tag = cast<TagDecl>(TagD);
   12085 
   12086   // Enter the tag context.
   12087   PushDeclContext(S, Tag);
   12088 
   12089   ActOnDocumentableDecl(TagD);
   12090 
   12091   // If there's a #pragma GCC visibility in scope, set the visibility of this
   12092   // record.
   12093   AddPushedVisibilityAttribute(Tag);
   12094 }
   12095 
   12096 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
   12097   assert(isa<ObjCContainerDecl>(IDecl) &&
   12098          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
   12099   DeclContext *OCD = cast<DeclContext>(IDecl);
   12100   assert(getContainingDC(OCD) == CurContext &&
   12101       "The next DeclContext should be lexically contained in the current one.");
   12102   CurContext = OCD;
   12103   return IDecl;
   12104 }
   12105 
   12106 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   12107                                            SourceLocation FinalLoc,
   12108                                            bool IsFinalSpelledSealed,
   12109                                            SourceLocation LBraceLoc) {
   12110   AdjustDeclIfTemplate(TagD);
   12111   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   12112 
   12113   FieldCollector->StartClass();
   12114 
   12115   if (!Record->getIdentifier())
   12116     return;
   12117 
   12118   if (FinalLoc.isValid())
   12119     Record->addAttr(new (Context)
   12120                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
   12121 
   12122   // C++ [class]p2:
   12123   //   [...] The class-name is also inserted into the scope of the
   12124   //   class itself; this is known as the injected-class-name. For
   12125   //   purposes of access checking, the injected-class-name is treated
   12126   //   as if it were a public member name.
   12127   CXXRecordDecl *InjectedClassName
   12128     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   12129                             Record->getLocStart(), Record->getLocation(),
   12130                             Record->getIdentifier(),
   12131                             /*PrevDecl=*/nullptr,
   12132                             /*DelayTypeCreation=*/true);
   12133   Context.getTypeDeclType(InjectedClassName, Record);
   12134   InjectedClassName->setImplicit();
   12135   InjectedClassName->setAccess(AS_public);
   12136   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   12137       InjectedClassName->setDescribedClassTemplate(Template);
   12138   PushOnScopeChains(InjectedClassName, S);
   12139   assert(InjectedClassName->isInjectedClassName() &&
   12140          "Broken injected-class-name");
   12141 }
   12142 
   12143 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   12144                                     SourceLocation RBraceLoc) {
   12145   AdjustDeclIfTemplate(TagD);
   12146   TagDecl *Tag = cast<TagDecl>(TagD);
   12147   Tag->setRBraceLoc(RBraceLoc);
   12148 
   12149   // Make sure we "complete" the definition even it is invalid.
   12150   if (Tag->isBeingDefined()) {
   12151     assert(Tag->isInvalidDecl() && "We should already have completed it");
   12152     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   12153       RD->completeDefinition();
   12154   }
   12155 
   12156   if (isa<CXXRecordDecl>(Tag))
   12157     FieldCollector->FinishClass();
   12158 
   12159   // Exit this scope of this tag's definition.
   12160   PopDeclContext();
   12161 
   12162   if (getCurLexicalContext()->isObjCContainer() &&
   12163       Tag->getDeclContext()->isFileContext())
   12164     Tag->setTopLevelDeclInObjCContainer();
   12165 
   12166   // Notify the consumer that we've defined a tag.
   12167   if (!Tag->isInvalidDecl())
   12168     Consumer.HandleTagDeclDefinition(Tag);
   12169 }
   12170 
   12171 void Sema::ActOnObjCContainerFinishDefinition() {
   12172   // Exit this scope of this interface definition.
   12173   PopDeclContext();
   12174 }
   12175 
   12176 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
   12177   assert(DC == CurContext && "Mismatch of container contexts");
   12178   OriginalLexicalContext = DC;
   12179   ActOnObjCContainerFinishDefinition();
   12180 }
   12181 
   12182 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
   12183   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
   12184   OriginalLexicalContext = nullptr;
   12185 }
   12186 
   12187 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   12188   AdjustDeclIfTemplate(TagD);
   12189   TagDecl *Tag = cast<TagDecl>(TagD);
   12190   Tag->setInvalidDecl();
   12191 
   12192   // Make sure we "complete" the definition even it is invalid.
   12193   if (Tag->isBeingDefined()) {
   12194     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   12195       RD->completeDefinition();
   12196   }
   12197 
   12198   // We're undoing ActOnTagStartDefinition here, not
   12199   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   12200   // the FieldCollector.
   12201 
   12202   PopDeclContext();
   12203 }
   12204 
   12205 // Note that FieldName may be null for anonymous bitfields.
   12206 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
   12207                                 IdentifierInfo *FieldName,
   12208                                 QualType FieldTy, bool IsMsStruct,
   12209                                 Expr *BitWidth, bool *ZeroWidth) {
   12210   // Default to true; that shouldn't confuse checks for emptiness
   12211   if (ZeroWidth)
   12212     *ZeroWidth = true;
   12213 
   12214   // C99 6.7.2.1p4 - verify the field type.
   12215   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   12216   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   12217     // Handle incomplete types with specific error.
   12218     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   12219       return ExprError();
   12220     if (FieldName)
   12221       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   12222         << FieldName << FieldTy << BitWidth->getSourceRange();
   12223     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   12224       << FieldTy << BitWidth->getSourceRange();
   12225   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   12226                                              UPPC_BitFieldWidth))
   12227     return ExprError();
   12228 
   12229   // If the bit-width is type- or value-dependent, don't try to check
   12230   // it now.
   12231   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   12232     return BitWidth;
   12233 
   12234   llvm::APSInt Value;
   12235   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
   12236   if (ICE.isInvalid())
   12237     return ICE;
   12238   BitWidth = ICE.get();
   12239 
   12240   if (Value != 0 && ZeroWidth)
   12241     *ZeroWidth = false;
   12242 
   12243   // Zero-width bitfield is ok for anonymous field.
   12244   if (Value == 0 && FieldName)
   12245     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   12246 
   12247   if (Value.isSigned() && Value.isNegative()) {
   12248     if (FieldName)
   12249       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   12250                << FieldName << Value.toString(10);
   12251     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   12252       << Value.toString(10);
   12253   }
   12254 
   12255   if (!FieldTy->isDependentType()) {
   12256     uint64_t TypeSize = Context.getTypeSize(FieldTy);
   12257     if (Value.getZExtValue() > TypeSize) {
   12258       if (!getLangOpts().CPlusPlus || IsMsStruct ||
   12259           Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   12260         if (FieldName)
   12261           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
   12262             << FieldName << (unsigned)Value.getZExtValue()
   12263             << (unsigned)TypeSize;
   12264 
   12265         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
   12266           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   12267       }
   12268 
   12269       if (FieldName)
   12270         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
   12271           << FieldName << (unsigned)Value.getZExtValue()
   12272           << (unsigned)TypeSize;
   12273       else
   12274         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
   12275           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   12276     }
   12277   }
   12278 
   12279   return BitWidth;
   12280 }
   12281 
   12282 /// ActOnField - Each field of a C struct/union is passed into this in order
   12283 /// to create a FieldDecl object for it.
   12284 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   12285                        Declarator &D, Expr *BitfieldWidth) {
   12286   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   12287                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   12288                                /*InitStyle=*/ICIS_NoInit, AS_public);
   12289   return Res;
   12290 }
   12291 
   12292 /// HandleField - Analyze a field of a C struct or a C++ data member.
   12293 ///
   12294 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   12295                              SourceLocation DeclStart,
   12296                              Declarator &D, Expr *BitWidth,
   12297                              InClassInitStyle InitStyle,
   12298                              AccessSpecifier AS) {
   12299   IdentifierInfo *II = D.getIdentifier();
   12300   SourceLocation Loc = DeclStart;
   12301   if (II) Loc = D.getIdentifierLoc();
   12302 
   12303   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   12304   QualType T = TInfo->getType();
   12305   if (getLangOpts().CPlusPlus) {
   12306     CheckExtraCXXDefaultArguments(D);
   12307 
   12308     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   12309                                         UPPC_DataMemberType)) {
   12310       D.setInvalidType();
   12311       T = Context.IntTy;
   12312       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   12313     }
   12314   }
   12315 
   12316   // TR 18037 does not allow fields to be declared with address spaces.
   12317   if (T.getQualifiers().hasAddressSpace()) {
   12318     Diag(Loc, diag::err_field_with_address_space);
   12319     D.setInvalidType();
   12320   }
   12321 
   12322   // OpenCL 1.2 spec, s6.9 r:
   12323   // The event type cannot be used to declare a structure or union field.
   12324   if (LangOpts.OpenCL && T->isEventT()) {
   12325     Diag(Loc, diag::err_event_t_struct_field);
   12326     D.setInvalidType();
   12327   }
   12328 
   12329   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   12330 
   12331   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   12332     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   12333          diag::err_invalid_thread)
   12334       << DeclSpec::getSpecifierName(TSCS);
   12335 
   12336   // Check to see if this name was declared as a member previously
   12337   NamedDecl *PrevDecl = nullptr;
   12338   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   12339   LookupName(Previous, S);
   12340   switch (Previous.getResultKind()) {
   12341     case LookupResult::Found:
   12342     case LookupResult::FoundUnresolvedValue:
   12343       PrevDecl = Previous.getAsSingle<NamedDecl>();
   12344       break;
   12345 
   12346     case LookupResult::FoundOverloaded:
   12347       PrevDecl = Previous.getRepresentativeDecl();
   12348       break;
   12349 
   12350     case LookupResult::NotFound:
   12351     case LookupResult::NotFoundInCurrentInstantiation:
   12352     case LookupResult::Ambiguous:
   12353       break;
   12354   }
   12355   Previous.suppressDiagnostics();
   12356 
   12357   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   12358     // Maybe we will complain about the shadowed template parameter.
   12359     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   12360     // Just pretend that we didn't see the previous declaration.
   12361     PrevDecl = nullptr;
   12362   }
   12363 
   12364   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   12365     PrevDecl = nullptr;
   12366 
   12367   bool Mutable
   12368     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   12369   SourceLocation TSSL = D.getLocStart();
   12370   FieldDecl *NewFD
   12371     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
   12372                      TSSL, AS, PrevDecl, &D);
   12373 
   12374   if (NewFD->isInvalidDecl())
   12375     Record->setInvalidDecl();
   12376 
   12377   if (D.getDeclSpec().isModulePrivateSpecified())
   12378     NewFD->setModulePrivate();
   12379 
   12380   if (NewFD->isInvalidDecl() && PrevDecl) {
   12381     // Don't introduce NewFD into scope; there's already something
   12382     // with the same name in the same scope.
   12383   } else if (II) {
   12384     PushOnScopeChains(NewFD, S);
   12385   } else
   12386     Record->addDecl(NewFD);
   12387 
   12388   return NewFD;
   12389 }
   12390 
   12391 /// \brief Build a new FieldDecl and check its well-formedness.
   12392 ///
   12393 /// This routine builds a new FieldDecl given the fields name, type,
   12394 /// record, etc. \p PrevDecl should refer to any previous declaration
   12395 /// with the same name and in the same scope as the field to be
   12396 /// created.
   12397 ///
   12398 /// \returns a new FieldDecl.
   12399 ///
   12400 /// \todo The Declarator argument is a hack. It will be removed once
   12401 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   12402                                 TypeSourceInfo *TInfo,
   12403                                 RecordDecl *Record, SourceLocation Loc,
   12404                                 bool Mutable, Expr *BitWidth,
   12405                                 InClassInitStyle InitStyle,
   12406                                 SourceLocation TSSL,
   12407                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   12408                                 Declarator *D) {
   12409   IdentifierInfo *II = Name.getAsIdentifierInfo();
   12410   bool InvalidDecl = false;
   12411   if (D) InvalidDecl = D->isInvalidType();
   12412 
   12413   // If we receive a broken type, recover by assuming 'int' and
   12414   // marking this declaration as invalid.
   12415   if (T.isNull()) {
   12416     InvalidDecl = true;
   12417     T = Context.IntTy;
   12418   }
   12419 
   12420   QualType EltTy = Context.getBaseElementType(T);
   12421   if (!EltTy->isDependentType()) {
   12422     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   12423       // Fields of incomplete type force their record to be invalid.
   12424       Record->setInvalidDecl();
   12425       InvalidDecl = true;
   12426     } else {
   12427       NamedDecl *Def;
   12428       EltTy->isIncompleteType(&Def);
   12429       if (Def && Def->isInvalidDecl()) {
   12430         Record->setInvalidDecl();
   12431         InvalidDecl = true;
   12432       }
   12433     }
   12434   }
   12435 
   12436   // OpenCL v1.2 s6.9.c: bitfields are not supported.
   12437   if (BitWidth && getLangOpts().OpenCL) {
   12438     Diag(Loc, diag::err_opencl_bitfields);
   12439     InvalidDecl = true;
   12440   }
   12441 
   12442   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   12443   // than a variably modified type.
   12444   if (!InvalidDecl && T->isVariablyModifiedType()) {
   12445     bool SizeIsNegative;
   12446     llvm::APSInt Oversized;
   12447 
   12448     TypeSourceInfo *FixedTInfo =
   12449       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   12450                                                     SizeIsNegative,
   12451                                                     Oversized);
   12452     if (FixedTInfo) {
   12453       Diag(Loc, diag::warn_illegal_constant_array_size);
   12454       TInfo = FixedTInfo;
   12455       T = FixedTInfo->getType();
   12456     } else {
   12457       if (SizeIsNegative)
   12458         Diag(Loc, diag::err_typecheck_negative_array_size);
   12459       else if (Oversized.getBoolValue())
   12460         Diag(Loc, diag::err_array_too_large)
   12461           << Oversized.toString(10);
   12462       else
   12463         Diag(Loc, diag::err_typecheck_field_variable_size);
   12464       InvalidDecl = true;
   12465     }
   12466   }
   12467 
   12468   // Fields can not have abstract class types
   12469   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   12470                                              diag::err_abstract_type_in_decl,
   12471                                              AbstractFieldType))
   12472     InvalidDecl = true;
   12473 
   12474   bool ZeroWidth = false;
   12475   // If this is declared as a bit-field, check the bit-field.
   12476   if (!InvalidDecl && BitWidth) {
   12477     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
   12478                               &ZeroWidth).get();
   12479     if (!BitWidth) {
   12480       InvalidDecl = true;
   12481       BitWidth = nullptr;
   12482       ZeroWidth = false;
   12483     }
   12484   }
   12485 
   12486   // Check that 'mutable' is consistent with the type of the declaration.
   12487   if (!InvalidDecl && Mutable) {
   12488     unsigned DiagID = 0;
   12489     if (T->isReferenceType())
   12490       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
   12491                                         : diag::err_mutable_reference;
   12492     else if (T.isConstQualified())
   12493       DiagID = diag::err_mutable_const;
   12494 
   12495     if (DiagID) {
   12496       SourceLocation ErrLoc = Loc;
   12497       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   12498         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   12499       Diag(ErrLoc, DiagID);
   12500       if (DiagID != diag::ext_mutable_reference) {
   12501         Mutable = false;
   12502         InvalidDecl = true;
   12503       }
   12504     }
   12505   }
   12506 
   12507   // C++11 [class.union]p8 (DR1460):
   12508   //   At most one variant member of a union may have a
   12509   //   brace-or-equal-initializer.
   12510   if (InitStyle != ICIS_NoInit)
   12511     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
   12512 
   12513   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   12514                                        BitWidth, Mutable, InitStyle);
   12515   if (InvalidDecl)
   12516     NewFD->setInvalidDecl();
   12517 
   12518   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   12519     Diag(Loc, diag::err_duplicate_member) << II;
   12520     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   12521     NewFD->setInvalidDecl();
   12522   }
   12523 
   12524   if (!InvalidDecl && getLangOpts().CPlusPlus) {
   12525     if (Record->isUnion()) {
   12526       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   12527         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   12528         if (RDecl->getDefinition()) {
   12529           // C++ [class.union]p1: An object of a class with a non-trivial
   12530           // constructor, a non-trivial copy constructor, a non-trivial
   12531           // destructor, or a non-trivial copy assignment operator
   12532           // cannot be a member of a union, nor can an array of such
   12533           // objects.
   12534           if (CheckNontrivialField(NewFD))
   12535             NewFD->setInvalidDecl();
   12536         }
   12537       }
   12538 
   12539       // C++ [class.union]p1: If a union contains a member of reference type,
   12540       // the program is ill-formed, except when compiling with MSVC extensions
   12541       // enabled.
   12542       if (EltTy->isReferenceType()) {
   12543         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   12544                                     diag::ext_union_member_of_reference_type :
   12545                                     diag::err_union_member_of_reference_type)
   12546           << NewFD->getDeclName() << EltTy;
   12547         if (!getLangOpts().MicrosoftExt)
   12548           NewFD->setInvalidDecl();
   12549       }
   12550     }
   12551   }
   12552 
   12553   // FIXME: We need to pass in the attributes given an AST
   12554   // representation, not a parser representation.
   12555   if (D) {
   12556     // FIXME: The current scope is almost... but not entirely... correct here.
   12557     ProcessDeclAttributes(getCurScope(), NewFD, *D);
   12558 
   12559     if (NewFD->hasAttrs())
   12560       CheckAlignasUnderalignment(NewFD);
   12561   }
   12562 
   12563   // In auto-retain/release, infer strong retension for fields of
   12564   // retainable type.
   12565   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   12566     NewFD->setInvalidDecl();
   12567 
   12568   if (T.isObjCGCWeak())
   12569     Diag(Loc, diag::warn_attribute_weak_on_field);
   12570 
   12571   NewFD->setAccess(AS);
   12572   return NewFD;
   12573 }
   12574 
   12575 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   12576   assert(FD);
   12577   assert(getLangOpts().CPlusPlus && "valid check only for C++");
   12578 
   12579   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
   12580     return false;
   12581 
   12582   QualType EltTy = Context.getBaseElementType(FD->getType());
   12583   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   12584     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
   12585     if (RDecl->getDefinition()) {
   12586       // We check for copy constructors before constructors
   12587       // because otherwise we'll never get complaints about
   12588       // copy constructors.
   12589 
   12590       CXXSpecialMember member = CXXInvalid;
   12591       // We're required to check for any non-trivial constructors. Since the
   12592       // implicit default constructor is suppressed if there are any
   12593       // user-declared constructors, we just need to check that there is a
   12594       // trivial default constructor and a trivial copy constructor. (We don't
   12595       // worry about move constructors here, since this is a C++98 check.)
   12596       if (RDecl->hasNonTrivialCopyConstructor())
   12597         member = CXXCopyConstructor;
   12598       else if (!RDecl->hasTrivialDefaultConstructor())
   12599         member = CXXDefaultConstructor;
   12600       else if (RDecl->hasNonTrivialCopyAssignment())
   12601         member = CXXCopyAssignment;
   12602       else if (RDecl->hasNonTrivialDestructor())
   12603         member = CXXDestructor;
   12604 
   12605       if (member != CXXInvalid) {
   12606         if (!getLangOpts().CPlusPlus11 &&
   12607             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   12608           // Objective-C++ ARC: it is an error to have a non-trivial field of
   12609           // a union. However, system headers in Objective-C programs
   12610           // occasionally have Objective-C lifetime objects within unions,
   12611           // and rather than cause the program to fail, we make those
   12612           // members unavailable.
   12613           SourceLocation Loc = FD->getLocation();
   12614           if (getSourceManager().isInSystemHeader(Loc)) {
   12615             if (!FD->hasAttr<UnavailableAttr>())
   12616               FD->addAttr(UnavailableAttr::CreateImplicit(Context,
   12617                                   "this system field has retaining ownership",
   12618                                   Loc));
   12619             return false;
   12620           }
   12621         }
   12622 
   12623         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
   12624                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
   12625                diag::err_illegal_union_or_anon_struct_member)
   12626           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
   12627         DiagnoseNontrivial(RDecl, member);
   12628         return !getLangOpts().CPlusPlus11;
   12629       }
   12630     }
   12631   }
   12632 
   12633   return false;
   12634 }
   12635 
   12636 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   12637 ///  AST enum value.
   12638 static ObjCIvarDecl::AccessControl
   12639 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   12640   switch (ivarVisibility) {
   12641   default: llvm_unreachable("Unknown visitibility kind");
   12642   case tok::objc_private: return ObjCIvarDecl::Private;
   12643   case tok::objc_public: return ObjCIvarDecl::Public;
   12644   case tok::objc_protected: return ObjCIvarDecl::Protected;
   12645   case tok::objc_package: return ObjCIvarDecl::Package;
   12646   }
   12647 }
   12648 
   12649 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   12650 /// in order to create an IvarDecl object for it.
   12651 Decl *Sema::ActOnIvar(Scope *S,
   12652                                 SourceLocation DeclStart,
   12653                                 Declarator &D, Expr *BitfieldWidth,
   12654                                 tok::ObjCKeywordKind Visibility) {
   12655 
   12656   IdentifierInfo *II = D.getIdentifier();
   12657   Expr *BitWidth = (Expr*)BitfieldWidth;
   12658   SourceLocation Loc = DeclStart;
   12659   if (II) Loc = D.getIdentifierLoc();
   12660 
   12661   // FIXME: Unnamed fields can be handled in various different ways, for
   12662   // example, unnamed unions inject all members into the struct namespace!
   12663 
   12664   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   12665   QualType T = TInfo->getType();
   12666 
   12667   if (BitWidth) {
   12668     // 6.7.2.1p3, 6.7.2.1p4
   12669     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
   12670     if (!BitWidth)
   12671       D.setInvalidType();
   12672   } else {
   12673     // Not a bitfield.
   12674 
   12675     // validate II.
   12676 
   12677   }
   12678   if (T->isReferenceType()) {
   12679     Diag(Loc, diag::err_ivar_reference_type);
   12680     D.setInvalidType();
   12681   }
   12682   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   12683   // than a variably modified type.
   12684   else if (T->isVariablyModifiedType()) {
   12685     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   12686     D.setInvalidType();
   12687   }
   12688 
   12689   // Get the visibility (access control) for this ivar.
   12690   ObjCIvarDecl::AccessControl ac =
   12691     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   12692                                         : ObjCIvarDecl::None;
   12693   // Must set ivar's DeclContext to its enclosing interface.
   12694   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
   12695   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
   12696     return nullptr;
   12697   ObjCContainerDecl *EnclosingContext;
   12698   if (ObjCImplementationDecl *IMPDecl =
   12699       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   12700     if (LangOpts.ObjCRuntime.isFragile()) {
   12701     // Case of ivar declared in an implementation. Context is that of its class.
   12702       EnclosingContext = IMPDecl->getClassInterface();
   12703       assert(EnclosingContext && "Implementation has no class interface!");
   12704     }
   12705     else
   12706       EnclosingContext = EnclosingDecl;
   12707   } else {
   12708     if (ObjCCategoryDecl *CDecl =
   12709         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   12710       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
   12711         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   12712         return nullptr;
   12713       }
   12714     }
   12715     EnclosingContext = EnclosingDecl;
   12716   }
   12717 
   12718   // Construct the decl.
   12719   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   12720                                              DeclStart, Loc, II, T,
   12721                                              TInfo, ac, (Expr *)BitfieldWidth);
   12722 
   12723   if (II) {
   12724     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   12725                                            ForRedeclaration);
   12726     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   12727         && !isa<TagDecl>(PrevDecl)) {
   12728       Diag(Loc, diag::err_duplicate_member) << II;
   12729       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   12730       NewID->setInvalidDecl();
   12731     }
   12732   }
   12733 
   12734   // Process attributes attached to the ivar.
   12735   ProcessDeclAttributes(S, NewID, D);
   12736 
   12737   if (D.isInvalidType())
   12738     NewID->setInvalidDecl();
   12739 
   12740   // In ARC, infer 'retaining' for ivars of retainable type.
   12741   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   12742     NewID->setInvalidDecl();
   12743 
   12744   if (D.getDeclSpec().isModulePrivateSpecified())
   12745     NewID->setModulePrivate();
   12746 
   12747   if (II) {
   12748     // FIXME: When interfaces are DeclContexts, we'll need to add
   12749     // these to the interface.
   12750     S->AddDecl(NewID);
   12751     IdResolver.AddDecl(NewID);
   12752   }
   12753 
   12754   if (LangOpts.ObjCRuntime.isNonFragile() &&
   12755       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
   12756     Diag(Loc, diag::warn_ivars_in_interface);
   12757 
   12758   return NewID;
   12759 }
   12760 
   12761 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   12762 /// class and class extensions. For every class \@interface and class
   12763 /// extension \@interface, if the last ivar is a bitfield of any type,
   12764 /// then add an implicit `char :0` ivar to the end of that interface.
   12765 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
   12766                              SmallVectorImpl<Decl *> &AllIvarDecls) {
   12767   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
   12768     return;
   12769 
   12770   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   12771   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   12772 
   12773   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
   12774     return;
   12775   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
   12776   if (!ID) {
   12777     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
   12778       if (!CD->IsClassExtension())
   12779         return;
   12780     }
   12781     // No need to add this to end of @implementation.
   12782     else
   12783       return;
   12784   }
   12785   // All conditions are met. Add a new bitfield to the tail end of ivars.
   12786   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
   12787   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
   12788 
   12789   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
   12790                               DeclLoc, DeclLoc, nullptr,
   12791                               Context.CharTy,
   12792                               Context.getTrivialTypeSourceInfo(Context.CharTy,
   12793                                                                DeclLoc),
   12794                               ObjCIvarDecl::Private, BW,
   12795                               true);
   12796   AllIvarDecls.push_back(Ivar);
   12797 }
   12798 
   12799 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
   12800                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
   12801                        SourceLocation RBrac, AttributeList *Attr) {
   12802   assert(EnclosingDecl && "missing record or interface decl");
   12803 
   12804   // If this is an Objective-C @implementation or category and we have
   12805   // new fields here we should reset the layout of the interface since
   12806   // it will now change.
   12807   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
   12808     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
   12809     switch (DC->getKind()) {
   12810     default: break;
   12811     case Decl::ObjCCategory:
   12812       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
   12813       break;
   12814     case Decl::ObjCImplementation:
   12815       Context.
   12816         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
   12817       break;
   12818     }
   12819   }
   12820 
   12821   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   12822 
   12823   // Start counting up the number of named members; make sure to include
   12824   // members of anonymous structs and unions in the total.
   12825   unsigned NumNamedMembers = 0;
   12826   if (Record) {
   12827     for (const auto *I : Record->decls()) {
   12828       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
   12829         if (IFD->getDeclName())
   12830           ++NumNamedMembers;
   12831     }
   12832   }
   12833 
   12834   // Verify that all the fields are okay.
   12835   SmallVector<FieldDecl*, 32> RecFields;
   12836 
   12837   bool ARCErrReported = false;
   12838   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
   12839        i != end; ++i) {
   12840     FieldDecl *FD = cast<FieldDecl>(*i);
   12841 
   12842     // Get the type for the field.
   12843     const Type *FDTy = FD->getType().getTypePtr();
   12844 
   12845     if (!FD->isAnonymousStructOrUnion()) {
   12846       // Remember all fields written by the user.
   12847       RecFields.push_back(FD);
   12848     }
   12849 
   12850     // If the field is already invalid for some reason, don't emit more
   12851     // diagnostics about it.
   12852     if (FD->isInvalidDecl()) {
   12853       EnclosingDecl->setInvalidDecl();
   12854       continue;
   12855     }
   12856 
   12857     // C99 6.7.2.1p2:
   12858     //   A structure or union shall not contain a member with
   12859     //   incomplete or function type (hence, a structure shall not
   12860     //   contain an instance of itself, but may contain a pointer to
   12861     //   an instance of itself), except that the last member of a
   12862     //   structure with more than one named member may have incomplete
   12863     //   array type; such a structure (and any union containing,
   12864     //   possibly recursively, a member that is such a structure)
   12865     //   shall not be a member of a structure or an element of an
   12866     //   array.
   12867     if (FDTy->isFunctionType()) {
   12868       // Field declared as a function.
   12869       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   12870         << FD->getDeclName();
   12871       FD->setInvalidDecl();
   12872       EnclosingDecl->setInvalidDecl();
   12873       continue;
   12874     } else if (FDTy->isIncompleteArrayType() && Record &&
   12875                ((i + 1 == Fields.end() && !Record->isUnion()) ||
   12876                 ((getLangOpts().MicrosoftExt ||
   12877                   getLangOpts().CPlusPlus) &&
   12878                  (i + 1 == Fields.end() || Record->isUnion())))) {
   12879       // Flexible array member.
   12880       // Microsoft and g++ is more permissive regarding flexible array.
   12881       // It will accept flexible array in union and also
   12882       // as the sole element of a struct/class.
   12883       unsigned DiagID = 0;
   12884       if (Record->isUnion())
   12885         DiagID = getLangOpts().MicrosoftExt
   12886                      ? diag::ext_flexible_array_union_ms
   12887                      : getLangOpts().CPlusPlus
   12888                            ? diag::ext_flexible_array_union_gnu
   12889                            : diag::err_flexible_array_union;
   12890       else if (Fields.size() == 1)
   12891         DiagID = getLangOpts().MicrosoftExt
   12892                      ? diag::ext_flexible_array_empty_aggregate_ms
   12893                      : getLangOpts().CPlusPlus
   12894                            ? diag::ext_flexible_array_empty_aggregate_gnu
   12895                            : NumNamedMembers < 1
   12896                                  ? diag::err_flexible_array_empty_aggregate
   12897                                  : 0;
   12898 
   12899       if (DiagID)
   12900         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
   12901                                         << Record->getTagKind();
   12902       // While the layout of types that contain virtual bases is not specified
   12903       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
   12904       // virtual bases after the derived members.  This would make a flexible
   12905       // array member declared at the end of an object not adjacent to the end
   12906       // of the type.
   12907       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
   12908         if (RD->getNumVBases() != 0)
   12909           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
   12910             << FD->getDeclName() << Record->getTagKind();
   12911       if (!getLangOpts().C99)
   12912         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
   12913           << FD->getDeclName() << Record->getTagKind();
   12914 
   12915       // If the element type has a non-trivial destructor, we would not
   12916       // implicitly destroy the elements, so disallow it for now.
   12917       //
   12918       // FIXME: GCC allows this. We should probably either implicitly delete
   12919       // the destructor of the containing class, or just allow this.
   12920       QualType BaseElem = Context.getBaseElementType(FD->getType());
   12921       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
   12922         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
   12923           << FD->getDeclName() << FD->getType();
   12924         FD->setInvalidDecl();
   12925         EnclosingDecl->setInvalidDecl();
   12926         continue;
   12927       }
   12928       // Okay, we have a legal flexible array member at the end of the struct.
   12929       Record->setHasFlexibleArrayMember(true);
   12930     } else if (!FDTy->isDependentType() &&
   12931                RequireCompleteType(FD->getLocation(), FD->getType(),
   12932                                    diag::err_field_incomplete)) {
   12933       // Incomplete type
   12934       FD->setInvalidDecl();
   12935       EnclosingDecl->setInvalidDecl();
   12936       continue;
   12937     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   12938       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
   12939         // A type which contains a flexible array member is considered to be a
   12940         // flexible array member.
   12941         Record->setHasFlexibleArrayMember(true);
   12942         if (!Record->isUnion()) {
   12943           // If this is a struct/class and this is not the last element, reject
   12944           // it.  Note that GCC supports variable sized arrays in the middle of
   12945           // structures.
   12946           if (i + 1 != Fields.end())
   12947             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   12948               << FD->getDeclName() << FD->getType();
   12949           else {
   12950             // We support flexible arrays at the end of structs in
   12951             // other structs as an extension.
   12952             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   12953               << FD->getDeclName();
   12954           }
   12955         }
   12956       }
   12957       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
   12958           RequireNonAbstractType(FD->getLocation(), FD->getType(),
   12959                                  diag::err_abstract_type_in_decl,
   12960                                  AbstractIvarType)) {
   12961         // Ivars can not have abstract class types
   12962         FD->setInvalidDecl();
   12963       }
   12964       if (Record && FDTTy->getDecl()->hasObjectMember())
   12965         Record->setHasObjectMember(true);
   12966       if (Record && FDTTy->getDecl()->hasVolatileMember())
   12967         Record->setHasVolatileMember(true);
   12968     } else if (FDTy->isObjCObjectType()) {
   12969       /// A field cannot be an Objective-c object
   12970       Diag(FD->getLocation(), diag::err_statically_allocated_object)
   12971         << FixItHint::CreateInsertion(FD->getLocation(), "*");
   12972       QualType T = Context.getObjCObjectPointerType(FD->getType());
   12973       FD->setType(T);
   12974     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
   12975                (!getLangOpts().CPlusPlus || Record->isUnion())) {
   12976       // It's an error in ARC if a field has lifetime.
   12977       // We don't want to report this in a system header, though,
   12978       // so we just make the field unavailable.
   12979       // FIXME: that's really not sufficient; we need to make the type
   12980       // itself invalid to, say, initialize or copy.
   12981       QualType T = FD->getType();
   12982       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   12983       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   12984         SourceLocation loc = FD->getLocation();
   12985         if (getSourceManager().isInSystemHeader(loc)) {
   12986           if (!FD->hasAttr<UnavailableAttr>()) {
   12987             FD->addAttr(UnavailableAttr::CreateImplicit(Context,
   12988                               "this system field has retaining ownership",
   12989                               loc));
   12990           }
   12991         } else {
   12992           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
   12993             << T->isBlockPointerType() << Record->getTagKind();
   12994         }
   12995         ARCErrReported = true;
   12996       }
   12997     } else if (getLangOpts().ObjC1 &&
   12998                getLangOpts().getGC() != LangOptions::NonGC &&
   12999                Record && !Record->hasObjectMember()) {
   13000       if (FD->getType()->isObjCObjectPointerType() ||
   13001           FD->getType().isObjCGCStrong())
   13002         Record->setHasObjectMember(true);
   13003       else if (Context.getAsArrayType(FD->getType())) {
   13004         QualType BaseType = Context.getBaseElementType(FD->getType());
   13005         if (BaseType->isRecordType() &&
   13006             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   13007           Record->setHasObjectMember(true);
   13008         else if (BaseType->isObjCObjectPointerType() ||
   13009                  BaseType.isObjCGCStrong())
   13010                Record->setHasObjectMember(true);
   13011       }
   13012     }
   13013     if (Record && FD->getType().isVolatileQualified())
   13014       Record->setHasVolatileMember(true);
   13015     // Keep track of the number of named members.
   13016     if (FD->getIdentifier())
   13017       ++NumNamedMembers;
   13018   }
   13019 
   13020   // Okay, we successfully defined 'Record'.
   13021   if (Record) {
   13022     bool Completed = false;
   13023     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   13024       if (!CXXRecord->isInvalidDecl()) {
   13025         // Set access bits correctly on the directly-declared conversions.
   13026         for (CXXRecordDecl::conversion_iterator
   13027                I = CXXRecord->conversion_begin(),
   13028                E = CXXRecord->conversion_end(); I != E; ++I)
   13029           I.setAccess((*I)->getAccess());
   13030 
   13031         if (!CXXRecord->isDependentType()) {
   13032           if (CXXRecord->hasUserDeclaredDestructor()) {
   13033             // Adjust user-defined destructor exception spec.
   13034             if (getLangOpts().CPlusPlus11)
   13035               AdjustDestructorExceptionSpec(CXXRecord,
   13036                                             CXXRecord->getDestructor());
   13037           }
   13038 
   13039           // Add any implicitly-declared members to this class.
   13040           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   13041 
   13042           // If we have virtual base classes, we may end up finding multiple
   13043           // final overriders for a given virtual function. Check for this
   13044           // problem now.
   13045           if (CXXRecord->getNumVBases()) {
   13046             CXXFinalOverriderMap FinalOverriders;
   13047             CXXRecord->getFinalOverriders(FinalOverriders);
   13048 
   13049             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   13050                                              MEnd = FinalOverriders.end();
   13051                  M != MEnd; ++M) {
   13052               for (OverridingMethods::iterator SO = M->second.begin(),
   13053                                             SOEnd = M->second.end();
   13054                    SO != SOEnd; ++SO) {
   13055                 assert(SO->second.size() > 0 &&
   13056                        "Virtual function without overridding functions?");
   13057                 if (SO->second.size() == 1)
   13058                   continue;
   13059 
   13060                 // C++ [class.virtual]p2:
   13061                 //   In a derived class, if a virtual member function of a base
   13062                 //   class subobject has more than one final overrider the
   13063                 //   program is ill-formed.
   13064                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   13065                   << (const NamedDecl *)M->first << Record;
   13066                 Diag(M->first->getLocation(),
   13067                      diag::note_overridden_virtual_function);
   13068                 for (OverridingMethods::overriding_iterator
   13069                           OM = SO->second.begin(),
   13070                        OMEnd = SO->second.end();
   13071                      OM != OMEnd; ++OM)
   13072                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   13073                     << (const NamedDecl *)M->first << OM->Method->getParent();
   13074 
   13075                 Record->setInvalidDecl();
   13076               }
   13077             }
   13078             CXXRecord->completeDefinition(&FinalOverriders);
   13079             Completed = true;
   13080           }
   13081         }
   13082       }
   13083     }
   13084 
   13085     if (!Completed)
   13086       Record->completeDefinition();
   13087 
   13088     if (Record->hasAttrs()) {
   13089       CheckAlignasUnderalignment(Record);
   13090 
   13091       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
   13092         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
   13093                                            IA->getRange(), IA->getBestCase(),
   13094                                            IA->getSemanticSpelling());
   13095     }
   13096 
   13097     // Check if the structure/union declaration is a type that can have zero
   13098     // size in C. For C this is a language extension, for C++ it may cause
   13099     // compatibility problems.
   13100     bool CheckForZeroSize;
   13101     if (!getLangOpts().CPlusPlus) {
   13102       CheckForZeroSize = true;
   13103     } else {
   13104       // For C++ filter out types that cannot be referenced in C code.
   13105       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
   13106       CheckForZeroSize =
   13107           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
   13108           !CXXRecord->isDependentType() &&
   13109           CXXRecord->isCLike();
   13110     }
   13111     if (CheckForZeroSize) {
   13112       bool ZeroSize = true;
   13113       bool IsEmpty = true;
   13114       unsigned NonBitFields = 0;
   13115       for (RecordDecl::field_iterator I = Record->field_begin(),
   13116                                       E = Record->field_end();
   13117            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
   13118         IsEmpty = false;
   13119         if (I->isUnnamedBitfield()) {
   13120           if (I->getBitWidthValue(Context) > 0)
   13121             ZeroSize = false;
   13122         } else {
   13123           ++NonBitFields;
   13124           QualType FieldType = I->getType();
   13125           if (FieldType->isIncompleteType() ||
   13126               !Context.getTypeSizeInChars(FieldType).isZero())
   13127             ZeroSize = false;
   13128         }
   13129       }
   13130 
   13131       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
   13132       // allowed in C++, but warn if its declaration is inside
   13133       // extern "C" block.
   13134       if (ZeroSize) {
   13135         Diag(RecLoc, getLangOpts().CPlusPlus ?
   13136                          diag::warn_zero_size_struct_union_in_extern_c :
   13137                          diag::warn_zero_size_struct_union_compat)
   13138           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
   13139       }
   13140 
   13141       // Structs without named members are extension in C (C99 6.7.2.1p7),
   13142       // but are accepted by GCC.
   13143       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
   13144         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
   13145                                diag::ext_no_named_members_in_struct_union)
   13146           << Record->isUnion();
   13147       }
   13148     }
   13149   } else {
   13150     ObjCIvarDecl **ClsFields =
   13151       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   13152     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   13153       ID->setEndOfDefinitionLoc(RBrac);
   13154       // Add ivar's to class's DeclContext.
   13155       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   13156         ClsFields[i]->setLexicalDeclContext(ID);
   13157         ID->addDecl(ClsFields[i]);
   13158       }
   13159       // Must enforce the rule that ivars in the base classes may not be
   13160       // duplicates.
   13161       if (ID->getSuperClass())
   13162         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   13163     } else if (ObjCImplementationDecl *IMPDecl =
   13164                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   13165       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   13166       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   13167         // Ivar declared in @implementation never belongs to the implementation.
   13168         // Only it is in implementation's lexical context.
   13169         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   13170       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   13171       IMPDecl->setIvarLBraceLoc(LBrac);
   13172       IMPDecl->setIvarRBraceLoc(RBrac);
   13173     } else if (ObjCCategoryDecl *CDecl =
   13174                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   13175       // case of ivars in class extension; all other cases have been
   13176       // reported as errors elsewhere.
   13177       // FIXME. Class extension does not have a LocEnd field.
   13178       // CDecl->setLocEnd(RBrac);
   13179       // Add ivar's to class extension's DeclContext.
   13180       // Diagnose redeclaration of private ivars.
   13181       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
   13182       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   13183         if (IDecl) {
   13184           if (const ObjCIvarDecl *ClsIvar =
   13185               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   13186             Diag(ClsFields[i]->getLocation(),
   13187                  diag::err_duplicate_ivar_declaration);
   13188             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   13189             continue;
   13190           }
   13191           for (const auto *Ext : IDecl->known_extensions()) {
   13192             if (const ObjCIvarDecl *ClsExtIvar
   13193                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
   13194               Diag(ClsFields[i]->getLocation(),
   13195                    diag::err_duplicate_ivar_declaration);
   13196               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   13197               continue;
   13198             }
   13199           }
   13200         }
   13201         ClsFields[i]->setLexicalDeclContext(CDecl);
   13202         CDecl->addDecl(ClsFields[i]);
   13203       }
   13204       CDecl->setIvarLBraceLoc(LBrac);
   13205       CDecl->setIvarRBraceLoc(RBrac);
   13206     }
   13207   }
   13208 
   13209   if (Attr)
   13210     ProcessDeclAttributeList(S, Record, Attr);
   13211 }
   13212 
   13213 /// \brief Determine whether the given integral value is representable within
   13214 /// the given type T.
   13215 static bool isRepresentableIntegerValue(ASTContext &Context,
   13216                                         llvm::APSInt &Value,
   13217                                         QualType T) {
   13218   assert(T->isIntegralType(Context) && "Integral type required!");
   13219   unsigned BitWidth = Context.getIntWidth(T);
   13220 
   13221   if (Value.isUnsigned() || Value.isNonNegative()) {
   13222     if (T->isSignedIntegerOrEnumerationType())
   13223       --BitWidth;
   13224     return Value.getActiveBits() <= BitWidth;
   13225   }
   13226   return Value.getMinSignedBits() <= BitWidth;
   13227 }
   13228 
   13229 // \brief Given an integral type, return the next larger integral type
   13230 // (or a NULL type of no such type exists).
   13231 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   13232   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   13233   // enum checking below.
   13234   assert(T->isIntegralType(Context) && "Integral type required!");
   13235   const unsigned NumTypes = 4;
   13236   QualType SignedIntegralTypes[NumTypes] = {
   13237     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   13238   };
   13239   QualType UnsignedIntegralTypes[NumTypes] = {
   13240     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   13241     Context.UnsignedLongLongTy
   13242   };
   13243 
   13244   unsigned BitWidth = Context.getTypeSize(T);
   13245   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   13246                                                         : UnsignedIntegralTypes;
   13247   for (unsigned I = 0; I != NumTypes; ++I)
   13248     if (Context.getTypeSize(Types[I]) > BitWidth)
   13249       return Types[I];
   13250 
   13251   return QualType();
   13252 }
   13253 
   13254 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   13255                                           EnumConstantDecl *LastEnumConst,
   13256                                           SourceLocation IdLoc,
   13257                                           IdentifierInfo *Id,
   13258                                           Expr *Val) {
   13259   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   13260   llvm::APSInt EnumVal(IntWidth);
   13261   QualType EltTy;
   13262 
   13263   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   13264     Val = nullptr;
   13265 
   13266   if (Val)
   13267     Val = DefaultLvalueConversion(Val).get();
   13268 
   13269   if (Val) {
   13270     if (Enum->isDependentType() || Val->isTypeDependent())
   13271       EltTy = Context.DependentTy;
   13272     else {
   13273       SourceLocation ExpLoc;
   13274       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
   13275           !getLangOpts().MSVCCompat) {
   13276         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
   13277         // constant-expression in the enumerator-definition shall be a converted
   13278         // constant expression of the underlying type.
   13279         EltTy = Enum->getIntegerType();
   13280         ExprResult Converted =
   13281           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
   13282                                            CCEK_Enumerator);
   13283         if (Converted.isInvalid())
   13284           Val = nullptr;
   13285         else
   13286           Val = Converted.get();
   13287       } else if (!Val->isValueDependent() &&
   13288                  !(Val = VerifyIntegerConstantExpression(Val,
   13289                                                          &EnumVal).get())) {
   13290         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   13291       } else {
   13292         if (Enum->isFixed()) {
   13293           EltTy = Enum->getIntegerType();
   13294 
   13295           // In Obj-C and Microsoft mode, require the enumeration value to be
   13296           // representable in the underlying type of the enumeration. In C++11,
   13297           // we perform a non-narrowing conversion as part of converted constant
   13298           // expression checking.
   13299           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   13300             if (getLangOpts().MSVCCompat) {
   13301               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   13302               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
   13303             } else
   13304               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
   13305           } else
   13306             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
   13307         } else if (getLangOpts().CPlusPlus) {
   13308           // C++11 [dcl.enum]p5:
   13309           //   If the underlying type is not fixed, the type of each enumerator
   13310           //   is the type of its initializing value:
   13311           //     - If an initializer is specified for an enumerator, the
   13312           //       initializing value has the same type as the expression.
   13313           EltTy = Val->getType();
   13314         } else {
   13315           // C99 6.7.2.2p2:
   13316           //   The expression that defines the value of an enumeration constant
   13317           //   shall be an integer constant expression that has a value
   13318           //   representable as an int.
   13319 
   13320           // Complain if the value is not representable in an int.
   13321           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   13322             Diag(IdLoc, diag::ext_enum_value_not_int)
   13323               << EnumVal.toString(10) << Val->getSourceRange()
   13324               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   13325           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   13326             // Force the type of the expression to 'int'.
   13327             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
   13328           }
   13329           EltTy = Val->getType();
   13330         }
   13331       }
   13332     }
   13333   }
   13334 
   13335   if (!Val) {
   13336     if (Enum->isDependentType())
   13337       EltTy = Context.DependentTy;
   13338     else if (!LastEnumConst) {
   13339       // C++0x [dcl.enum]p5:
   13340       //   If the underlying type is not fixed, the type of each enumerator
   13341       //   is the type of its initializing value:
   13342       //     - If no initializer is specified for the first enumerator, the
   13343       //       initializing value has an unspecified integral type.
   13344       //
   13345       // GCC uses 'int' for its unspecified integral type, as does
   13346       // C99 6.7.2.2p3.
   13347       if (Enum->isFixed()) {
   13348         EltTy = Enum->getIntegerType();
   13349       }
   13350       else {
   13351         EltTy = Context.IntTy;
   13352       }
   13353     } else {
   13354       // Assign the last value + 1.
   13355       EnumVal = LastEnumConst->getInitVal();
   13356       ++EnumVal;
   13357       EltTy = LastEnumConst->getType();
   13358 
   13359       // Check for overflow on increment.
   13360       if (EnumVal < LastEnumConst->getInitVal()) {
   13361         // C++0x [dcl.enum]p5:
   13362         //   If the underlying type is not fixed, the type of each enumerator
   13363         //   is the type of its initializing value:
   13364         //
   13365         //     - Otherwise the type of the initializing value is the same as
   13366         //       the type of the initializing value of the preceding enumerator
   13367         //       unless the incremented value is not representable in that type,
   13368         //       in which case the type is an unspecified integral type
   13369         //       sufficient to contain the incremented value. If no such type
   13370         //       exists, the program is ill-formed.
   13371         QualType T = getNextLargerIntegralType(Context, EltTy);
   13372         if (T.isNull() || Enum->isFixed()) {
   13373           // There is no integral type larger enough to represent this
   13374           // value. Complain, then allow the value to wrap around.
   13375           EnumVal = LastEnumConst->getInitVal();
   13376           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   13377           ++EnumVal;
   13378           if (Enum->isFixed())
   13379             // When the underlying type is fixed, this is ill-formed.
   13380             Diag(IdLoc, diag::err_enumerator_wrapped)
   13381               << EnumVal.toString(10)
   13382               << EltTy;
   13383           else
   13384             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
   13385               << EnumVal.toString(10);
   13386         } else {
   13387           EltTy = T;
   13388         }
   13389 
   13390         // Retrieve the last enumerator's value, extent that type to the
   13391         // type that is supposed to be large enough to represent the incremented
   13392         // value, then increment.
   13393         EnumVal = LastEnumConst->getInitVal();
   13394         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   13395         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   13396         ++EnumVal;
   13397 
   13398         // If we're not in C++, diagnose the overflow of enumerator values,
   13399         // which in C99 means that the enumerator value is not representable in
   13400         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   13401         // permits enumerator values that are representable in some larger
   13402         // integral type.
   13403         if (!getLangOpts().CPlusPlus && !T.isNull())
   13404           Diag(IdLoc, diag::warn_enum_value_overflow);
   13405       } else if (!getLangOpts().CPlusPlus &&
   13406                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   13407         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   13408         Diag(IdLoc, diag::ext_enum_value_not_int)
   13409           << EnumVal.toString(10) << 1;
   13410       }
   13411     }
   13412   }
   13413 
   13414   if (!EltTy->isDependentType()) {
   13415     // Make the enumerator value match the signedness and size of the
   13416     // enumerator's type.
   13417     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
   13418     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   13419   }
   13420 
   13421   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   13422                                   Val, EnumVal);
   13423 }
   13424 
   13425 
   13426 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   13427                               SourceLocation IdLoc, IdentifierInfo *Id,
   13428                               AttributeList *Attr,
   13429                               SourceLocation EqualLoc, Expr *Val) {
   13430   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   13431   EnumConstantDecl *LastEnumConst =
   13432     cast_or_null<EnumConstantDecl>(lastEnumConst);
   13433 
   13434   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   13435   // we find one that is.
   13436   S = getNonFieldDeclScope(S);
   13437 
   13438   // Verify that there isn't already something declared with this name in this
   13439   // scope.
   13440   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   13441                                          ForRedeclaration);
   13442   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   13443     // Maybe we will complain about the shadowed template parameter.
   13444     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   13445     // Just pretend that we didn't see the previous declaration.
   13446     PrevDecl = nullptr;
   13447   }
   13448 
   13449   if (PrevDecl) {
   13450     // When in C++, we may get a TagDecl with the same name; in this case the
   13451     // enum constant will 'hide' the tag.
   13452     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   13453            "Received TagDecl when not in C++!");
   13454     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
   13455       if (isa<EnumConstantDecl>(PrevDecl))
   13456         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   13457       else
   13458         Diag(IdLoc, diag::err_redefinition) << Id;
   13459       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   13460       return nullptr;
   13461     }
   13462   }
   13463 
   13464   // C++ [class.mem]p15:
   13465   // If T is the name of a class, then each of the following shall have a name
   13466   // different from T:
   13467   // - every enumerator of every member of class T that is an unscoped
   13468   // enumerated type
   13469   if (CXXRecordDecl *Record
   13470                       = dyn_cast<CXXRecordDecl>(
   13471                              TheEnumDecl->getDeclContext()->getRedeclContext()))
   13472     if (!TheEnumDecl->isScoped() &&
   13473         Record->getIdentifier() && Record->getIdentifier() == Id)
   13474       Diag(IdLoc, diag::err_member_name_of_class) << Id;
   13475 
   13476   EnumConstantDecl *New =
   13477     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   13478 
   13479   if (New) {
   13480     // Process attributes.
   13481     if (Attr) ProcessDeclAttributeList(S, New, Attr);
   13482 
   13483     // Register this decl in the current scope stack.
   13484     New->setAccess(TheEnumDecl->getAccess());
   13485     PushOnScopeChains(New, S);
   13486   }
   13487 
   13488   ActOnDocumentableDecl(New);
   13489 
   13490   return New;
   13491 }
   13492 
   13493 // Returns true when the enum initial expression does not trigger the
   13494 // duplicate enum warning.  A few common cases are exempted as follows:
   13495 // Element2 = Element1
   13496 // Element2 = Element1 + 1
   13497 // Element2 = Element1 - 1
   13498 // Where Element2 and Element1 are from the same enum.
   13499 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
   13500   Expr *InitExpr = ECD->getInitExpr();
   13501   if (!InitExpr)
   13502     return true;
   13503   InitExpr = InitExpr->IgnoreImpCasts();
   13504 
   13505   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
   13506     if (!BO->isAdditiveOp())
   13507       return true;
   13508     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
   13509     if (!IL)
   13510       return true;
   13511     if (IL->getValue() != 1)
   13512       return true;
   13513 
   13514     InitExpr = BO->getLHS();
   13515   }
   13516 
   13517   // This checks if the elements are from the same enum.
   13518   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
   13519   if (!DRE)
   13520     return true;
   13521 
   13522   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
   13523   if (!EnumConstant)
   13524     return true;
   13525 
   13526   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
   13527       Enum)
   13528     return true;
   13529 
   13530   return false;
   13531 }
   13532 
   13533 struct DupKey {
   13534   int64_t val;
   13535   bool isTombstoneOrEmptyKey;
   13536   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
   13537     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
   13538 };
   13539 
   13540 static DupKey GetDupKey(const llvm::APSInt& Val) {
   13541   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
   13542                 false);
   13543 }
   13544 
   13545 struct DenseMapInfoDupKey {
   13546   static DupKey getEmptyKey() { return DupKey(0, true); }
   13547   static DupKey getTombstoneKey() { return DupKey(1, true); }
   13548   static unsigned getHashValue(const DupKey Key) {
   13549     return (unsigned)(Key.val * 37);
   13550   }
   13551   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
   13552     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
   13553            LHS.val == RHS.val;
   13554   }
   13555 };
   13556 
   13557 // Emits a warning when an element is implicitly set a value that
   13558 // a previous element has already been set to.
   13559 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
   13560                                         EnumDecl *Enum,
   13561                                         QualType EnumType) {
   13562   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
   13563     return;
   13564   // Avoid anonymous enums
   13565   if (!Enum->getIdentifier())
   13566     return;
   13567 
   13568   // Only check for small enums.
   13569   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
   13570     return;
   13571 
   13572   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
   13573   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
   13574 
   13575   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
   13576   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
   13577           ValueToVectorMap;
   13578 
   13579   DuplicatesVector DupVector;
   13580   ValueToVectorMap EnumMap;
   13581 
   13582   // Populate the EnumMap with all values represented by enum constants without
   13583   // an initialier.
   13584   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13585     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   13586 
   13587     // Null EnumConstantDecl means a previous diagnostic has been emitted for
   13588     // this constant.  Skip this enum since it may be ill-formed.
   13589     if (!ECD) {
   13590       return;
   13591     }
   13592 
   13593     if (ECD->getInitExpr())
   13594       continue;
   13595 
   13596     DupKey Key = GetDupKey(ECD->getInitVal());
   13597     DeclOrVector &Entry = EnumMap[Key];
   13598 
   13599     // First time encountering this value.
   13600     if (Entry.isNull())
   13601       Entry = ECD;
   13602   }
   13603 
   13604   // Create vectors for any values that has duplicates.
   13605   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13606     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
   13607     if (!ValidDuplicateEnum(ECD, Enum))
   13608       continue;
   13609 
   13610     DupKey Key = GetDupKey(ECD->getInitVal());
   13611 
   13612     DeclOrVector& Entry = EnumMap[Key];
   13613     if (Entry.isNull())
   13614       continue;
   13615 
   13616     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
   13617       // Ensure constants are different.
   13618       if (D == ECD)
   13619         continue;
   13620 
   13621       // Create new vector and push values onto it.
   13622       ECDVector *Vec = new ECDVector();
   13623       Vec->push_back(D);
   13624       Vec->push_back(ECD);
   13625 
   13626       // Update entry to point to the duplicates vector.
   13627       Entry = Vec;
   13628 
   13629       // Store the vector somewhere we can consult later for quick emission of
   13630       // diagnostics.
   13631       DupVector.push_back(Vec);
   13632       continue;
   13633     }
   13634 
   13635     ECDVector *Vec = Entry.get<ECDVector*>();
   13636     // Make sure constants are not added more than once.
   13637     if (*Vec->begin() == ECD)
   13638       continue;
   13639 
   13640     Vec->push_back(ECD);
   13641   }
   13642 
   13643   // Emit diagnostics.
   13644   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
   13645                                   DupVectorEnd = DupVector.end();
   13646        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
   13647     ECDVector *Vec = *DupVectorIter;
   13648     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
   13649 
   13650     // Emit warning for one enum constant.
   13651     ECDVector::iterator I = Vec->begin();
   13652     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
   13653       << (*I)->getName() << (*I)->getInitVal().toString(10)
   13654       << (*I)->getSourceRange();
   13655     ++I;
   13656 
   13657     // Emit one note for each of the remaining enum constants with
   13658     // the same value.
   13659     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
   13660       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
   13661         << (*I)->getName() << (*I)->getInitVal().toString(10)
   13662         << (*I)->getSourceRange();
   13663     delete Vec;
   13664   }
   13665 }
   13666 
   13667 bool
   13668 Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
   13669                         bool AllowMask) const {
   13670   FlagEnumAttr *FEAttr = ED->getAttr<FlagEnumAttr>();
   13671   assert(FEAttr && "looking for value in non-flag enum");
   13672 
   13673   llvm::APInt FlagMask = ~FEAttr->getFlagBits();
   13674   unsigned Width = FlagMask.getBitWidth();
   13675 
   13676   // We will try a zero-extended value for the regular check first.
   13677   llvm::APInt ExtVal = Val.zextOrSelf(Width);
   13678 
   13679   // A value is in a flag enum if either its bits are a subset of the enum's
   13680   // flag bits (the first condition) or we are allowing masks and the same is
   13681   // true of its complement (the second condition). When masks are allowed, we
   13682   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
   13683   //
   13684   // While it's true that any value could be used as a mask, the assumption is
   13685   // that a mask will have all of the insignificant bits set. Anything else is
   13686   // likely a logic error.
   13687   if (!(FlagMask & ExtVal))
   13688     return true;
   13689 
   13690   if (AllowMask) {
   13691     // Try a one-extended value instead. This can happen if the enum is wider
   13692     // than the constant used, in C with extensions to allow for wider enums.
   13693     // The mask will still have the correct behaviour, so we give the user the
   13694     // benefit of the doubt.
   13695     //
   13696     // FIXME: This heuristic can cause weird results if the enum was extended
   13697     // to a larger type and is signed, because then bit-masks of smaller types
   13698     // that get extended will fall out of range (e.g. ~0x1u). We currently don't
   13699     // detect that case and will get a false positive for it. In most cases,
   13700     // though, it can be fixed by making it a signed type (e.g. ~0x1), so it may
   13701     // be fine just to accept this as a warning.
   13702     ExtVal |= llvm::APInt::getHighBitsSet(Width, Width - Val.getBitWidth());
   13703     if (!(FlagMask & ~ExtVal))
   13704       return true;
   13705   }
   13706 
   13707   return false;
   13708 }
   13709 
   13710 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   13711                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   13712                          ArrayRef<Decl *> Elements,
   13713                          Scope *S, AttributeList *Attr) {
   13714   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   13715   QualType EnumType = Context.getTypeDeclType(Enum);
   13716 
   13717   if (Attr)
   13718     ProcessDeclAttributeList(S, Enum, Attr);
   13719 
   13720   if (Enum->isDependentType()) {
   13721     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13722       EnumConstantDecl *ECD =
   13723         cast_or_null<EnumConstantDecl>(Elements[i]);
   13724       if (!ECD) continue;
   13725 
   13726       ECD->setType(EnumType);
   13727     }
   13728 
   13729     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   13730     return;
   13731   }
   13732 
   13733   // TODO: If the result value doesn't fit in an int, it must be a long or long
   13734   // long value.  ISO C does not support this, but GCC does as an extension,
   13735   // emit a warning.
   13736   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   13737   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
   13738   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
   13739 
   13740   // Verify that all the values are okay, compute the size of the values, and
   13741   // reverse the list.
   13742   unsigned NumNegativeBits = 0;
   13743   unsigned NumPositiveBits = 0;
   13744 
   13745   // Keep track of whether all elements have type int.
   13746   bool AllElementsInt = true;
   13747 
   13748   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   13749     EnumConstantDecl *ECD =
   13750       cast_or_null<EnumConstantDecl>(Elements[i]);
   13751     if (!ECD) continue;  // Already issued a diagnostic.
   13752 
   13753     const llvm::APSInt &InitVal = ECD->getInitVal();
   13754 
   13755     // Keep track of the size of positive and negative values.
   13756     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   13757       NumPositiveBits = std::max(NumPositiveBits,
   13758                                  (unsigned)InitVal.getActiveBits());
   13759     else
   13760       NumNegativeBits = std::max(NumNegativeBits,
   13761                                  (unsigned)InitVal.getMinSignedBits());
   13762 
   13763     // Keep track of whether every enum element has type int (very commmon).
   13764     if (AllElementsInt)
   13765       AllElementsInt = ECD->getType() == Context.IntTy;
   13766   }
   13767 
   13768   // Figure out the type that should be used for this enum.
   13769   QualType BestType;
   13770   unsigned BestWidth;
   13771 
   13772   // C++0x N3000 [conv.prom]p3:
   13773   //   An rvalue of an unscoped enumeration type whose underlying
   13774   //   type is not fixed can be converted to an rvalue of the first
   13775   //   of the following types that can represent all the values of
   13776   //   the enumeration: int, unsigned int, long int, unsigned long
   13777   //   int, long long int, or unsigned long long int.
   13778   // C99 6.4.4.3p2:
   13779   //   An identifier declared as an enumeration constant has type int.
   13780   // The C99 rule is modified by a gcc extension
   13781   QualType BestPromotionType;
   13782 
   13783   bool Packed = Enum->hasAttr<PackedAttr>();
   13784   // -fshort-enums is the equivalent to specifying the packed attribute on all
   13785   // enum definitions.
   13786   if (LangOpts.ShortEnums)
   13787     Packed = true;
   13788 
   13789   if (Enum->isFixed()) {
   13790     BestType = Enum->getIntegerType();
   13791     if (BestType->isPromotableIntegerType())
   13792       BestPromotionType = Context.getPromotedIntegerType(BestType);
   13793     else
   13794       BestPromotionType = BestType;
   13795 
   13796     BestWidth = Context.getIntWidth(BestType);
   13797   }
   13798   else if (NumNegativeBits) {
   13799     // If there is a negative value, figure out the smallest integer type (of
   13800     // int/long/longlong) that fits.
   13801     // If it's packed, check also if it fits a char or a short.
   13802     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   13803       BestType = Context.SignedCharTy;
   13804       BestWidth = CharWidth;
   13805     } else if (Packed && NumNegativeBits <= ShortWidth &&
   13806                NumPositiveBits < ShortWidth) {
   13807       BestType = Context.ShortTy;
   13808       BestWidth = ShortWidth;
   13809     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   13810       BestType = Context.IntTy;
   13811       BestWidth = IntWidth;
   13812     } else {
   13813       BestWidth = Context.getTargetInfo().getLongWidth();
   13814 
   13815       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   13816         BestType = Context.LongTy;
   13817       } else {
   13818         BestWidth = Context.getTargetInfo().getLongLongWidth();
   13819 
   13820         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   13821           Diag(Enum->getLocation(), diag::ext_enum_too_large);
   13822         BestType = Context.LongLongTy;
   13823       }
   13824     }
   13825     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   13826   } else {
   13827     // If there is no negative value, figure out the smallest type that fits
   13828     // all of the enumerator values.
   13829     // If it's packed, check also if it fits a char or a short.
   13830     if (Packed && NumPositiveBits <= CharWidth) {
   13831       BestType = Context.UnsignedCharTy;
   13832       BestPromotionType = Context.IntTy;
   13833       BestWidth = CharWidth;
   13834     } else if (Packed && NumPositiveBits <= ShortWidth) {
   13835       BestType = Context.UnsignedShortTy;
   13836       BestPromotionType = Context.IntTy;
   13837       BestWidth = ShortWidth;
   13838     } else if (NumPositiveBits <= IntWidth) {
   13839       BestType = Context.UnsignedIntTy;
   13840       BestWidth = IntWidth;
   13841       BestPromotionType
   13842         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   13843                            ? Context.UnsignedIntTy : Context.IntTy;
   13844     } else if (NumPositiveBits <=
   13845                (BestWidth = Context.getTargetInfo().getLongWidth())) {
   13846       BestType = Context.UnsignedLongTy;
   13847       BestPromotionType
   13848         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   13849                            ? Context.UnsignedLongTy : Context.LongTy;
   13850     } else {
   13851       BestWidth = Context.getTargetInfo().getLongLongWidth();
   13852       assert(NumPositiveBits <= BestWidth &&
   13853              "How could an initializer get larger than ULL?");
   13854       BestType = Context.UnsignedLongLongTy;
   13855       BestPromotionType
   13856         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   13857                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   13858     }
   13859   }
   13860 
   13861   FlagEnumAttr *FEAttr = Enum->getAttr<FlagEnumAttr>();
   13862   if (FEAttr)
   13863     FEAttr->getFlagBits() = llvm::APInt(BestWidth, 0);
   13864 
   13865   // Loop over all of the enumerator constants, changing their types to match
   13866   // the type of the enum if needed. If we have a flag type, we also prepare the
   13867   // FlagBits cache.
   13868   for (auto *D : Elements) {
   13869     auto *ECD = cast_or_null<EnumConstantDecl>(D);
   13870     if (!ECD) continue;  // Already issued a diagnostic.
   13871 
   13872     // Standard C says the enumerators have int type, but we allow, as an
   13873     // extension, the enumerators to be larger than int size.  If each
   13874     // enumerator value fits in an int, type it as an int, otherwise type it the
   13875     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   13876     // that X has type 'int', not 'unsigned'.
   13877 
   13878     // Determine whether the value fits into an int.
   13879     llvm::APSInt InitVal = ECD->getInitVal();
   13880 
   13881     // If it fits into an integer type, force it.  Otherwise force it to match
   13882     // the enum decl type.
   13883     QualType NewTy;
   13884     unsigned NewWidth;
   13885     bool NewSign;
   13886     if (!getLangOpts().CPlusPlus &&
   13887         !Enum->isFixed() &&
   13888         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   13889       NewTy = Context.IntTy;
   13890       NewWidth = IntWidth;
   13891       NewSign = true;
   13892     } else if (ECD->getType() == BestType) {
   13893       // Already the right type!
   13894       if (getLangOpts().CPlusPlus)
   13895         // C++ [dcl.enum]p4: Following the closing brace of an
   13896         // enum-specifier, each enumerator has the type of its
   13897         // enumeration.
   13898         ECD->setType(EnumType);
   13899       goto flagbits;
   13900     } else {
   13901       NewTy = BestType;
   13902       NewWidth = BestWidth;
   13903       NewSign = BestType->isSignedIntegerOrEnumerationType();
   13904     }
   13905 
   13906     // Adjust the APSInt value.
   13907     InitVal = InitVal.extOrTrunc(NewWidth);
   13908     InitVal.setIsSigned(NewSign);
   13909     ECD->setInitVal(InitVal);
   13910 
   13911     // Adjust the Expr initializer and type.
   13912     if (ECD->getInitExpr() &&
   13913         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   13914       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   13915                                                 CK_IntegralCast,
   13916                                                 ECD->getInitExpr(),
   13917                                                 /*base paths*/ nullptr,
   13918                                                 VK_RValue));
   13919     if (getLangOpts().CPlusPlus)
   13920       // C++ [dcl.enum]p4: Following the closing brace of an
   13921       // enum-specifier, each enumerator has the type of its
   13922       // enumeration.
   13923       ECD->setType(EnumType);
   13924     else
   13925       ECD->setType(NewTy);
   13926 
   13927 flagbits:
   13928     // Check to see if we have a constant with exactly one bit set. Note that x
   13929     // & (x - 1) will be nonzero if and only if x has more than one bit set.
   13930     if (FEAttr) {
   13931       llvm::APInt ExtVal = InitVal.zextOrSelf(BestWidth);
   13932       if (ExtVal != 0 && !(ExtVal & (ExtVal - 1))) {
   13933         FEAttr->getFlagBits() |= ExtVal;
   13934       }
   13935     }
   13936   }
   13937 
   13938   if (FEAttr) {
   13939     for (Decl *D : Elements) {
   13940       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
   13941       if (!ECD) continue;  // Already issued a diagnostic.
   13942 
   13943       llvm::APSInt InitVal = ECD->getInitVal();
   13944       if (InitVal != 0 && !IsValueInFlagEnum(Enum, InitVal, true))
   13945         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
   13946           << ECD << Enum;
   13947     }
   13948   }
   13949 
   13950 
   13951 
   13952   Enum->completeDefinition(BestType, BestPromotionType,
   13953                            NumPositiveBits, NumNegativeBits);
   13954 
   13955   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
   13956 
   13957   // Now that the enum type is defined, ensure it's not been underaligned.
   13958   if (Enum->hasAttrs())
   13959     CheckAlignasUnderalignment(Enum);
   13960 }
   13961 
   13962 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   13963                                   SourceLocation StartLoc,
   13964                                   SourceLocation EndLoc) {
   13965   StringLiteral *AsmString = cast<StringLiteral>(expr);
   13966 
   13967   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   13968                                                    AsmString, StartLoc,
   13969                                                    EndLoc);
   13970   CurContext->addDecl(New);
   13971   return New;
   13972 }
   13973 
   13974 static void checkModuleImportContext(Sema &S, Module *M,
   13975                                      SourceLocation ImportLoc,
   13976                                      DeclContext *DC) {
   13977   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
   13978     switch (LSD->getLanguage()) {
   13979     case LinkageSpecDecl::lang_c:
   13980       if (!M->IsExternC) {
   13981         S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
   13982           << M->getFullModuleName();
   13983         S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
   13984         return;
   13985       }
   13986       break;
   13987     case LinkageSpecDecl::lang_cxx:
   13988       break;
   13989     }
   13990     DC = LSD->getParent();
   13991   }
   13992 
   13993   while (isa<LinkageSpecDecl>(DC))
   13994     DC = DC->getParent();
   13995   if (!isa<TranslationUnitDecl>(DC)) {
   13996     S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
   13997       << M->getFullModuleName() << DC;
   13998     S.Diag(cast<Decl>(DC)->getLocStart(),
   13999            diag::note_module_import_not_at_top_level)
   14000       << DC;
   14001   }
   14002 }
   14003 
   14004 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
   14005                                    SourceLocation ImportLoc,
   14006                                    ModuleIdPath Path) {
   14007   Module *Mod =
   14008       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
   14009                                    /*IsIncludeDirective=*/false);
   14010   if (!Mod)
   14011     return true;
   14012 
   14013   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
   14014 
   14015   // FIXME: we should support importing a submodule within a different submodule
   14016   // of the same top-level module. Until we do, make it an error rather than
   14017   // silently ignoring the import.
   14018   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
   14019     Diag(ImportLoc, diag::err_module_self_import)
   14020         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
   14021   else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
   14022     Diag(ImportLoc, diag::err_module_import_in_implementation)
   14023         << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
   14024 
   14025   SmallVector<SourceLocation, 2> IdentifierLocs;
   14026   Module *ModCheck = Mod;
   14027   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
   14028     // If we've run out of module parents, just drop the remaining identifiers.
   14029     // We need the length to be consistent.
   14030     if (!ModCheck)
   14031       break;
   14032     ModCheck = ModCheck->Parent;
   14033 
   14034     IdentifierLocs.push_back(Path[I].second);
   14035   }
   14036 
   14037   ImportDecl *Import = ImportDecl::Create(Context,
   14038                                           Context.getTranslationUnitDecl(),
   14039                                           AtLoc.isValid()? AtLoc : ImportLoc,
   14040                                           Mod, IdentifierLocs);
   14041   Context.getTranslationUnitDecl()->addDecl(Import);
   14042   return Import;
   14043 }
   14044 
   14045 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
   14046   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
   14047 
   14048   // FIXME: Should we synthesize an ImportDecl here?
   14049   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
   14050                                       /*Complain=*/true);
   14051 }
   14052 
   14053 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
   14054                                                       Module *Mod) {
   14055   // Bail if we're not allowed to implicitly import a module here.
   14056   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
   14057     return;
   14058 
   14059   // Create the implicit import declaration.
   14060   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
   14061   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
   14062                                                    Loc, Mod, Loc);
   14063   TU->addDecl(ImportD);
   14064   Consumer.HandleImplicitImportDecl(ImportD);
   14065 
   14066   // Make the module visible.
   14067   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
   14068                                       /*Complain=*/false);
   14069 }
   14070 
   14071 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
   14072                                       IdentifierInfo* AliasName,
   14073                                       SourceLocation PragmaLoc,
   14074                                       SourceLocation NameLoc,
   14075                                       SourceLocation AliasNameLoc) {
   14076   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
   14077                                     LookupOrdinaryName);
   14078   AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
   14079                                                     AliasName->getName(), 0);
   14080 
   14081   if (PrevDecl)
   14082     PrevDecl->addAttr(Attr);
   14083   else
   14084     (void)ExtnameUndeclaredIdentifiers.insert(
   14085       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
   14086 }
   14087 
   14088 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   14089                              SourceLocation PragmaLoc,
   14090                              SourceLocation NameLoc) {
   14091   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   14092 
   14093   if (PrevDecl) {
   14094     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
   14095   } else {
   14096     (void)WeakUndeclaredIdentifiers.insert(
   14097       std::pair<IdentifierInfo*,WeakInfo>
   14098         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
   14099   }
   14100 }
   14101 
   14102 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   14103                                 IdentifierInfo* AliasName,
   14104                                 SourceLocation PragmaLoc,
   14105                                 SourceLocation NameLoc,
   14106                                 SourceLocation AliasNameLoc) {
   14107   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   14108                                     LookupOrdinaryName);
   14109   WeakInfo W = WeakInfo(Name, NameLoc);
   14110 
   14111   if (PrevDecl) {
   14112     if (!PrevDecl->hasAttr<AliasAttr>())
   14113       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   14114         DeclApplyPragmaWeak(TUScope, ND, W);
   14115   } else {
   14116     (void)WeakUndeclaredIdentifiers.insert(
   14117       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   14118   }
   14119 }
   14120 
   14121 Decl *Sema::getObjCDeclContext() const {
   14122   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
   14123 }
   14124 
   14125 AvailabilityResult Sema::getCurContextAvailability() const {
   14126   const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
   14127   if (!D)
   14128     return AR_Available;
   14129 
   14130   // If we are within an Objective-C method, we should consult
   14131   // both the availability of the method as well as the
   14132   // enclosing class.  If the class is (say) deprecated,
   14133   // the entire method is considered deprecated from the
   14134   // purpose of checking if the current context is deprecated.
   14135   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
   14136     AvailabilityResult R = MD->getAvailability();
   14137     if (R != AR_Available)
   14138       return R;
   14139     D = MD->getClassInterface();
   14140   }
   14141   // If we are within an Objective-c @implementation, it
   14142   // gets the same availability context as the @interface.
   14143   else if (const ObjCImplementationDecl *ID =
   14144             dyn_cast<ObjCImplementationDecl>(D)) {
   14145     D = ID->getClassInterface();
   14146   }
   14147   // Recover from user error.
   14148   return D ? D->getAvailability() : AR_Available;
   14149 }
   14150