Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/RecursiveASTVisitor.h"
     28 #include "clang/AST/TypeLoc.h"
     29 #include "clang/Basic/PartialDiagnostic.h"
     30 #include "clang/Basic/SourceManager.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Lex/LiteralSupport.h"
     33 #include "clang/Lex/Preprocessor.h"
     34 #include "clang/Sema/AnalysisBasedWarnings.h"
     35 #include "clang/Sema/DeclSpec.h"
     36 #include "clang/Sema/DelayedDiagnostic.h"
     37 #include "clang/Sema/Designator.h"
     38 #include "clang/Sema/Initialization.h"
     39 #include "clang/Sema/Lookup.h"
     40 #include "clang/Sema/ParsedTemplate.h"
     41 #include "clang/Sema/Scope.h"
     42 #include "clang/Sema/ScopeInfo.h"
     43 #include "clang/Sema/SemaFixItUtils.h"
     44 #include "clang/Sema/Template.h"
     45 #include "llvm/Support/ConvertUTF.h"
     46 using namespace clang;
     47 using namespace sema;
     48 
     49 /// \brief Determine whether the use of this declaration is valid, without
     50 /// emitting diagnostics.
     51 bool Sema::CanUseDecl(NamedDecl *D) {
     52   // See if this is an auto-typed variable whose initializer we are parsing.
     53   if (ParsingInitForAutoVars.count(D))
     54     return false;
     55 
     56   // See if this is a deleted function.
     57   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     58     if (FD->isDeleted())
     59       return false;
     60 
     61     // If the function has a deduced return type, and we can't deduce it,
     62     // then we can't use it either.
     63     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
     64         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
     65       return false;
     66   }
     67 
     68   // See if this function is unavailable.
     69   if (D->getAvailability() == AR_Unavailable &&
     70       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     71     return false;
     72 
     73   return true;
     74 }
     75 
     76 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     77   // Warn if this is used but marked unused.
     78   if (D->hasAttr<UnusedAttr>()) {
     79     const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
     80     if (DC && !DC->hasAttr<UnusedAttr>())
     81       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     82   }
     83 }
     84 
     85 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
     86   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
     87   if (!OMD)
     88     return false;
     89   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
     90   if (!OID)
     91     return false;
     92 
     93   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
     94     if (ObjCMethodDecl *CatMeth =
     95             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
     96       if (!CatMeth->hasAttr<AvailabilityAttr>())
     97         return true;
     98   return false;
     99 }
    100 
    101 static AvailabilityResult
    102 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
    103                            const ObjCInterfaceDecl *UnknownObjCClass,
    104                            bool ObjCPropertyAccess) {
    105   // See if this declaration is unavailable or deprecated.
    106   std::string Message;
    107 
    108   // Forward class declarations get their attributes from their definition.
    109   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
    110     if (IDecl->getDefinition())
    111       D = IDecl->getDefinition();
    112   }
    113   AvailabilityResult Result = D->getAvailability(&Message);
    114   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
    115     if (Result == AR_Available) {
    116       const DeclContext *DC = ECD->getDeclContext();
    117       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
    118         Result = TheEnumDecl->getAvailability(&Message);
    119     }
    120 
    121   const ObjCPropertyDecl *ObjCPDecl = nullptr;
    122   if (Result == AR_Deprecated || Result == AR_Unavailable ||
    123       AR_NotYetIntroduced) {
    124     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    125       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    126         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
    127         if (PDeclResult == Result)
    128           ObjCPDecl = PD;
    129       }
    130     }
    131   }
    132 
    133   switch (Result) {
    134     case AR_Available:
    135       break;
    136 
    137     case AR_Deprecated:
    138       if (S.getCurContextAvailability() != AR_Deprecated)
    139         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
    140                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    141                                   ObjCPropertyAccess);
    142       break;
    143 
    144     case AR_NotYetIntroduced: {
    145       // Don't do this for enums, they can't be redeclared.
    146       if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
    147         break;
    148 
    149       bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
    150       // Objective-C method declarations in categories are not modelled as
    151       // redeclarations, so manually look for a redeclaration in a category
    152       // if necessary.
    153       if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
    154         Warn = false;
    155       // In general, D will point to the most recent redeclaration. However,
    156       // for `@class A;` decls, this isn't true -- manually go through the
    157       // redecl chain in that case.
    158       if (Warn && isa<ObjCInterfaceDecl>(D))
    159         for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
    160              Redecl = Redecl->getPreviousDecl())
    161           if (!Redecl->hasAttr<AvailabilityAttr>() ||
    162               Redecl->getAttr<AvailabilityAttr>()->isInherited())
    163             Warn = false;
    164 
    165       if (Warn)
    166         S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
    167                                   UnknownObjCClass, ObjCPDecl,
    168                                   ObjCPropertyAccess);
    169       break;
    170     }
    171 
    172     case AR_Unavailable:
    173       if (S.getCurContextAvailability() != AR_Unavailable)
    174         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
    175                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    176                                   ObjCPropertyAccess);
    177       break;
    178 
    179     }
    180     return Result;
    181 }
    182 
    183 /// \brief Emit a note explaining that this function is deleted.
    184 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    185   assert(Decl->isDeleted());
    186 
    187   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    188 
    189   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    190     // If the method was explicitly defaulted, point at that declaration.
    191     if (!Method->isImplicit())
    192       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    193 
    194     // Try to diagnose why this special member function was implicitly
    195     // deleted. This might fail, if that reason no longer applies.
    196     CXXSpecialMember CSM = getSpecialMember(Method);
    197     if (CSM != CXXInvalid)
    198       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
    199 
    200     return;
    201   }
    202 
    203   if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
    204     if (CXXConstructorDecl *BaseCD =
    205             const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
    206       Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
    207       if (BaseCD->isDeleted()) {
    208         NoteDeletedFunction(BaseCD);
    209       } else {
    210         // FIXME: An explanation of why exactly it can't be inherited
    211         // would be nice.
    212         Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
    213       }
    214       return;
    215     }
    216   }
    217 
    218   Diag(Decl->getLocation(), diag::note_availability_specified_here)
    219     << Decl << true;
    220 }
    221 
    222 /// \brief Determine whether a FunctionDecl was ever declared with an
    223 /// explicit storage class.
    224 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    225   for (auto I : D->redecls()) {
    226     if (I->getStorageClass() != SC_None)
    227       return true;
    228   }
    229   return false;
    230 }
    231 
    232 /// \brief Check whether we're in an extern inline function and referring to a
    233 /// variable or function with internal linkage (C11 6.7.4p3).
    234 ///
    235 /// This is only a warning because we used to silently accept this code, but
    236 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    237 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    238 /// and so while there may still be user mistakes, most of the time we can't
    239 /// prove that there are errors.
    240 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    241                                                       const NamedDecl *D,
    242                                                       SourceLocation Loc) {
    243   // This is disabled under C++; there are too many ways for this to fire in
    244   // contexts where the warning is a false positive, or where it is technically
    245   // correct but benign.
    246   if (S.getLangOpts().CPlusPlus)
    247     return;
    248 
    249   // Check if this is an inlined function or method.
    250   FunctionDecl *Current = S.getCurFunctionDecl();
    251   if (!Current)
    252     return;
    253   if (!Current->isInlined())
    254     return;
    255   if (!Current->isExternallyVisible())
    256     return;
    257 
    258   // Check if the decl has internal linkage.
    259   if (D->getFormalLinkage() != InternalLinkage)
    260     return;
    261 
    262   // Downgrade from ExtWarn to Extension if
    263   //  (1) the supposedly external inline function is in the main file,
    264   //      and probably won't be included anywhere else.
    265   //  (2) the thing we're referencing is a pure function.
    266   //  (3) the thing we're referencing is another inline function.
    267   // This last can give us false negatives, but it's better than warning on
    268   // wrappers for simple C library functions.
    269   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    270   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
    271   if (!DowngradeWarning && UsedFn)
    272     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    273 
    274   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
    275                                : diag::ext_internal_in_extern_inline)
    276     << /*IsVar=*/!UsedFn << D;
    277 
    278   S.MaybeSuggestAddingStaticToDecl(Current);
    279 
    280   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
    281       << D;
    282 }
    283 
    284 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    285   const FunctionDecl *First = Cur->getFirstDecl();
    286 
    287   // Suggest "static" on the function, if possible.
    288   if (!hasAnyExplicitStorageClass(First)) {
    289     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    290     Diag(DeclBegin, diag::note_convert_inline_to_static)
    291       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    292   }
    293 }
    294 
    295 /// \brief Determine whether the use of this declaration is valid, and
    296 /// emit any corresponding diagnostics.
    297 ///
    298 /// This routine diagnoses various problems with referencing
    299 /// declarations that can occur when using a declaration. For example,
    300 /// it might warn if a deprecated or unavailable declaration is being
    301 /// used, or produce an error (and return true) if a C++0x deleted
    302 /// function is being used.
    303 ///
    304 /// \returns true if there was an error (this declaration cannot be
    305 /// referenced), false otherwise.
    306 ///
    307 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    308                              const ObjCInterfaceDecl *UnknownObjCClass,
    309                              bool ObjCPropertyAccess) {
    310   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    311     // If there were any diagnostics suppressed by template argument deduction,
    312     // emit them now.
    313     SuppressedDiagnosticsMap::iterator
    314       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    315     if (Pos != SuppressedDiagnostics.end()) {
    316       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
    317       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
    318         Diag(Suppressed[I].first, Suppressed[I].second);
    319 
    320       // Clear out the list of suppressed diagnostics, so that we don't emit
    321       // them again for this specialization. However, we don't obsolete this
    322       // entry from the table, because we want to avoid ever emitting these
    323       // diagnostics again.
    324       Suppressed.clear();
    325     }
    326 
    327     // C++ [basic.start.main]p3:
    328     //   The function 'main' shall not be used within a program.
    329     if (cast<FunctionDecl>(D)->isMain())
    330       Diag(Loc, diag::ext_main_used);
    331   }
    332 
    333   // See if this is an auto-typed variable whose initializer we are parsing.
    334   if (ParsingInitForAutoVars.count(D)) {
    335     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    336       << D->getDeclName();
    337     return true;
    338   }
    339 
    340   // See if this is a deleted function.
    341   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    342     if (FD->isDeleted()) {
    343       Diag(Loc, diag::err_deleted_function_use);
    344       NoteDeletedFunction(FD);
    345       return true;
    346     }
    347 
    348     // If the function has a deduced return type, and we can't deduce it,
    349     // then we can't use it either.
    350     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
    351         DeduceReturnType(FD, Loc))
    352       return true;
    353   }
    354   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
    355                              ObjCPropertyAccess);
    356 
    357   DiagnoseUnusedOfDecl(*this, D, Loc);
    358 
    359   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    360 
    361   return false;
    362 }
    363 
    364 /// \brief Retrieve the message suffix that should be added to a
    365 /// diagnostic complaining about the given function being deleted or
    366 /// unavailable.
    367 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    368   std::string Message;
    369   if (FD->getAvailability(&Message))
    370     return ": " + Message;
    371 
    372   return std::string();
    373 }
    374 
    375 /// DiagnoseSentinelCalls - This routine checks whether a call or
    376 /// message-send is to a declaration with the sentinel attribute, and
    377 /// if so, it checks that the requirements of the sentinel are
    378 /// satisfied.
    379 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    380                                  ArrayRef<Expr *> Args) {
    381   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    382   if (!attr)
    383     return;
    384 
    385   // The number of formal parameters of the declaration.
    386   unsigned numFormalParams;
    387 
    388   // The kind of declaration.  This is also an index into a %select in
    389   // the diagnostic.
    390   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    391 
    392   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    393     numFormalParams = MD->param_size();
    394     calleeType = CT_Method;
    395   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    396     numFormalParams = FD->param_size();
    397     calleeType = CT_Function;
    398   } else if (isa<VarDecl>(D)) {
    399     QualType type = cast<ValueDecl>(D)->getType();
    400     const FunctionType *fn = nullptr;
    401     if (const PointerType *ptr = type->getAs<PointerType>()) {
    402       fn = ptr->getPointeeType()->getAs<FunctionType>();
    403       if (!fn) return;
    404       calleeType = CT_Function;
    405     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    406       fn = ptr->getPointeeType()->castAs<FunctionType>();
    407       calleeType = CT_Block;
    408     } else {
    409       return;
    410     }
    411 
    412     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    413       numFormalParams = proto->getNumParams();
    414     } else {
    415       numFormalParams = 0;
    416     }
    417   } else {
    418     return;
    419   }
    420 
    421   // "nullPos" is the number of formal parameters at the end which
    422   // effectively count as part of the variadic arguments.  This is
    423   // useful if you would prefer to not have *any* formal parameters,
    424   // but the language forces you to have at least one.
    425   unsigned nullPos = attr->getNullPos();
    426   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    427   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    428 
    429   // The number of arguments which should follow the sentinel.
    430   unsigned numArgsAfterSentinel = attr->getSentinel();
    431 
    432   // If there aren't enough arguments for all the formal parameters,
    433   // the sentinel, and the args after the sentinel, complain.
    434   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    435     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    436     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    437     return;
    438   }
    439 
    440   // Otherwise, find the sentinel expression.
    441   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    442   if (!sentinelExpr) return;
    443   if (sentinelExpr->isValueDependent()) return;
    444   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    445 
    446   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
    447   // or 'NULL' if those are actually defined in the context.  Only use
    448   // 'nil' for ObjC methods, where it's much more likely that the
    449   // variadic arguments form a list of object pointers.
    450   SourceLocation MissingNilLoc
    451     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
    452   std::string NullValue;
    453   if (calleeType == CT_Method &&
    454       PP.getIdentifierInfo("nil")->hasMacroDefinition())
    455     NullValue = "nil";
    456   else if (getLangOpts().CPlusPlus11)
    457     NullValue = "nullptr";
    458   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
    459     NullValue = "NULL";
    460   else
    461     NullValue = "(void*) 0";
    462 
    463   if (MissingNilLoc.isInvalid())
    464     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    465   else
    466     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    467       << int(calleeType)
    468       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    469   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    470 }
    471 
    472 SourceRange Sema::getExprRange(Expr *E) const {
    473   return E ? E->getSourceRange() : SourceRange();
    474 }
    475 
    476 //===----------------------------------------------------------------------===//
    477 //  Standard Promotions and Conversions
    478 //===----------------------------------------------------------------------===//
    479 
    480 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    481 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
    482   // Handle any placeholder expressions which made it here.
    483   if (E->getType()->isPlaceholderType()) {
    484     ExprResult result = CheckPlaceholderExpr(E);
    485     if (result.isInvalid()) return ExprError();
    486     E = result.get();
    487   }
    488 
    489   QualType Ty = E->getType();
    490   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    491 
    492   if (Ty->isFunctionType()) {
    493     // If we are here, we are not calling a function but taking
    494     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
    495     if (getLangOpts().OpenCL) {
    496       Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
    497       return ExprError();
    498     }
    499     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    500                           CK_FunctionToPointerDecay).get();
    501   } else if (Ty->isArrayType()) {
    502     // In C90 mode, arrays only promote to pointers if the array expression is
    503     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    504     // type 'array of type' is converted to an expression that has type 'pointer
    505     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    506     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    507     // (C90) to "an expression" (C99).
    508     //
    509     // C++ 4.2p1:
    510     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    511     // T" can be converted to an rvalue of type "pointer to T".
    512     //
    513     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    514       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    515                             CK_ArrayToPointerDecay).get();
    516   }
    517   return E;
    518 }
    519 
    520 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    521   // Check to see if we are dereferencing a null pointer.  If so,
    522   // and if not volatile-qualified, this is undefined behavior that the
    523   // optimizer will delete, so warn about it.  People sometimes try to use this
    524   // to get a deterministic trap and are surprised by clang's behavior.  This
    525   // only handles the pattern "*null", which is a very syntactic check.
    526   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    527     if (UO->getOpcode() == UO_Deref &&
    528         UO->getSubExpr()->IgnoreParenCasts()->
    529           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    530         !UO->getType().isVolatileQualified()) {
    531     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    532                           S.PDiag(diag::warn_indirection_through_null)
    533                             << UO->getSubExpr()->getSourceRange());
    534     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    535                         S.PDiag(diag::note_indirection_through_null));
    536   }
    537 }
    538 
    539 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    540                                     SourceLocation AssignLoc,
    541                                     const Expr* RHS) {
    542   const ObjCIvarDecl *IV = OIRE->getDecl();
    543   if (!IV)
    544     return;
    545 
    546   DeclarationName MemberName = IV->getDeclName();
    547   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    548   if (!Member || !Member->isStr("isa"))
    549     return;
    550 
    551   const Expr *Base = OIRE->getBase();
    552   QualType BaseType = Base->getType();
    553   if (OIRE->isArrow())
    554     BaseType = BaseType->getPointeeType();
    555   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    556     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    557       ObjCInterfaceDecl *ClassDeclared = nullptr;
    558       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    559       if (!ClassDeclared->getSuperClass()
    560           && (*ClassDeclared->ivar_begin()) == IV) {
    561         if (RHS) {
    562           NamedDecl *ObjectSetClass =
    563             S.LookupSingleName(S.TUScope,
    564                                &S.Context.Idents.get("object_setClass"),
    565                                SourceLocation(), S.LookupOrdinaryName);
    566           if (ObjectSetClass) {
    567             SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
    568             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    569             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    570             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    571                                                      AssignLoc), ",") <<
    572             FixItHint::CreateInsertion(RHSLocEnd, ")");
    573           }
    574           else
    575             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    576         } else {
    577           NamedDecl *ObjectGetClass =
    578             S.LookupSingleName(S.TUScope,
    579                                &S.Context.Idents.get("object_getClass"),
    580                                SourceLocation(), S.LookupOrdinaryName);
    581           if (ObjectGetClass)
    582             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    583             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    584             FixItHint::CreateReplacement(
    585                                          SourceRange(OIRE->getOpLoc(),
    586                                                      OIRE->getLocEnd()), ")");
    587           else
    588             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    589         }
    590         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    591       }
    592     }
    593 }
    594 
    595 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    596   // Handle any placeholder expressions which made it here.
    597   if (E->getType()->isPlaceholderType()) {
    598     ExprResult result = CheckPlaceholderExpr(E);
    599     if (result.isInvalid()) return ExprError();
    600     E = result.get();
    601   }
    602 
    603   // C++ [conv.lval]p1:
    604   //   A glvalue of a non-function, non-array type T can be
    605   //   converted to a prvalue.
    606   if (!E->isGLValue()) return E;
    607 
    608   QualType T = E->getType();
    609   assert(!T.isNull() && "r-value conversion on typeless expression?");
    610 
    611   // We don't want to throw lvalue-to-rvalue casts on top of
    612   // expressions of certain types in C++.
    613   if (getLangOpts().CPlusPlus &&
    614       (E->getType() == Context.OverloadTy ||
    615        T->isDependentType() ||
    616        T->isRecordType()))
    617     return E;
    618 
    619   // The C standard is actually really unclear on this point, and
    620   // DR106 tells us what the result should be but not why.  It's
    621   // generally best to say that void types just doesn't undergo
    622   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    623   // 'void' type are never l-values, but qualified void can be.
    624   if (T->isVoidType())
    625     return E;
    626 
    627   // OpenCL usually rejects direct accesses to values of 'half' type.
    628   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    629       T->isHalfType()) {
    630     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    631       << 0 << T;
    632     return ExprError();
    633   }
    634 
    635   CheckForNullPointerDereference(*this, E);
    636   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    637     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    638                                      &Context.Idents.get("object_getClass"),
    639                                      SourceLocation(), LookupOrdinaryName);
    640     if (ObjectGetClass)
    641       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    642         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    643         FixItHint::CreateReplacement(
    644                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    645     else
    646       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    647   }
    648   else if (const ObjCIvarRefExpr *OIRE =
    649             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    650     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
    651 
    652   // C++ [conv.lval]p1:
    653   //   [...] If T is a non-class type, the type of the prvalue is the
    654   //   cv-unqualified version of T. Otherwise, the type of the
    655   //   rvalue is T.
    656   //
    657   // C99 6.3.2.1p2:
    658   //   If the lvalue has qualified type, the value has the unqualified
    659   //   version of the type of the lvalue; otherwise, the value has the
    660   //   type of the lvalue.
    661   if (T.hasQualifiers())
    662     T = T.getUnqualifiedType();
    663 
    664   UpdateMarkingForLValueToRValue(E);
    665 
    666   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    667   // balance that.
    668   if (getLangOpts().ObjCAutoRefCount &&
    669       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    670     ExprNeedsCleanups = true;
    671 
    672   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
    673                                             nullptr, VK_RValue);
    674 
    675   // C11 6.3.2.1p2:
    676   //   ... if the lvalue has atomic type, the value has the non-atomic version
    677   //   of the type of the lvalue ...
    678   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    679     T = Atomic->getValueType().getUnqualifiedType();
    680     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
    681                                    nullptr, VK_RValue);
    682   }
    683 
    684   return Res;
    685 }
    686 
    687 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
    688   ExprResult Res = DefaultFunctionArrayConversion(E);
    689   if (Res.isInvalid())
    690     return ExprError();
    691   Res = DefaultLvalueConversion(Res.get());
    692   if (Res.isInvalid())
    693     return ExprError();
    694   return Res;
    695 }
    696 
    697 /// CallExprUnaryConversions - a special case of an unary conversion
    698 /// performed on a function designator of a call expression.
    699 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
    700   QualType Ty = E->getType();
    701   ExprResult Res = E;
    702   // Only do implicit cast for a function type, but not for a pointer
    703   // to function type.
    704   if (Ty->isFunctionType()) {
    705     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
    706                             CK_FunctionToPointerDecay).get();
    707     if (Res.isInvalid())
    708       return ExprError();
    709   }
    710   Res = DefaultLvalueConversion(Res.get());
    711   if (Res.isInvalid())
    712     return ExprError();
    713   return Res.get();
    714 }
    715 
    716 /// UsualUnaryConversions - Performs various conversions that are common to most
    717 /// operators (C99 6.3). The conversions of array and function types are
    718 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    719 /// apply if the array is an argument to the sizeof or address (&) operators.
    720 /// In these instances, this routine should *not* be called.
    721 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    722   // First, convert to an r-value.
    723   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    724   if (Res.isInvalid())
    725     return ExprError();
    726   E = Res.get();
    727 
    728   QualType Ty = E->getType();
    729   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    730 
    731   // Half FP have to be promoted to float unless it is natively supported
    732   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    733     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
    734 
    735   // Try to perform integral promotions if the object has a theoretically
    736   // promotable type.
    737   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    738     // C99 6.3.1.1p2:
    739     //
    740     //   The following may be used in an expression wherever an int or
    741     //   unsigned int may be used:
    742     //     - an object or expression with an integer type whose integer
    743     //       conversion rank is less than or equal to the rank of int
    744     //       and unsigned int.
    745     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    746     //
    747     //   If an int can represent all values of the original type, the
    748     //   value is converted to an int; otherwise, it is converted to an
    749     //   unsigned int. These are called the integer promotions. All
    750     //   other types are unchanged by the integer promotions.
    751 
    752     QualType PTy = Context.isPromotableBitField(E);
    753     if (!PTy.isNull()) {
    754       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
    755       return E;
    756     }
    757     if (Ty->isPromotableIntegerType()) {
    758       QualType PT = Context.getPromotedIntegerType(Ty);
    759       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
    760       return E;
    761     }
    762   }
    763   return E;
    764 }
    765 
    766 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    767 /// do not have a prototype. Arguments that have type float or __fp16
    768 /// are promoted to double. All other argument types are converted by
    769 /// UsualUnaryConversions().
    770 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    771   QualType Ty = E->getType();
    772   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    773 
    774   ExprResult Res = UsualUnaryConversions(E);
    775   if (Res.isInvalid())
    776     return ExprError();
    777   E = Res.get();
    778 
    779   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    780   // double.
    781   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    782   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    783               BTy->getKind() == BuiltinType::Float))
    784     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    785 
    786   // C++ performs lvalue-to-rvalue conversion as a default argument
    787   // promotion, even on class types, but note:
    788   //   C++11 [conv.lval]p2:
    789   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    790   //     operand or a subexpression thereof the value contained in the
    791   //     referenced object is not accessed. Otherwise, if the glvalue
    792   //     has a class type, the conversion copy-initializes a temporary
    793   //     of type T from the glvalue and the result of the conversion
    794   //     is a prvalue for the temporary.
    795   // FIXME: add some way to gate this entire thing for correctness in
    796   // potentially potentially evaluated contexts.
    797   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    798     ExprResult Temp = PerformCopyInitialization(
    799                        InitializedEntity::InitializeTemporary(E->getType()),
    800                                                 E->getExprLoc(), E);
    801     if (Temp.isInvalid())
    802       return ExprError();
    803     E = Temp.get();
    804   }
    805 
    806   return E;
    807 }
    808 
    809 /// Determine the degree of POD-ness for an expression.
    810 /// Incomplete types are considered POD, since this check can be performed
    811 /// when we're in an unevaluated context.
    812 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    813   if (Ty->isIncompleteType()) {
    814     // C++11 [expr.call]p7:
    815     //   After these conversions, if the argument does not have arithmetic,
    816     //   enumeration, pointer, pointer to member, or class type, the program
    817     //   is ill-formed.
    818     //
    819     // Since we've already performed array-to-pointer and function-to-pointer
    820     // decay, the only such type in C++ is cv void. This also handles
    821     // initializer lists as variadic arguments.
    822     if (Ty->isVoidType())
    823       return VAK_Invalid;
    824 
    825     if (Ty->isObjCObjectType())
    826       return VAK_Invalid;
    827     return VAK_Valid;
    828   }
    829 
    830   if (Ty.isCXX98PODType(Context))
    831     return VAK_Valid;
    832 
    833   // C++11 [expr.call]p7:
    834   //   Passing a potentially-evaluated argument of class type (Clause 9)
    835   //   having a non-trivial copy constructor, a non-trivial move constructor,
    836   //   or a non-trivial destructor, with no corresponding parameter,
    837   //   is conditionally-supported with implementation-defined semantics.
    838   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    839     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    840       if (!Record->hasNonTrivialCopyConstructor() &&
    841           !Record->hasNonTrivialMoveConstructor() &&
    842           !Record->hasNonTrivialDestructor())
    843         return VAK_ValidInCXX11;
    844 
    845   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    846     return VAK_Valid;
    847 
    848   if (Ty->isObjCObjectType())
    849     return VAK_Invalid;
    850 
    851   if (getLangOpts().MSVCCompat)
    852     return VAK_MSVCUndefined;
    853 
    854   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    855   // permitted to reject them. We should consider doing so.
    856   return VAK_Undefined;
    857 }
    858 
    859 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    860   // Don't allow one to pass an Objective-C interface to a vararg.
    861   const QualType &Ty = E->getType();
    862   VarArgKind VAK = isValidVarArgType(Ty);
    863 
    864   // Complain about passing non-POD types through varargs.
    865   switch (VAK) {
    866   case VAK_ValidInCXX11:
    867     DiagRuntimeBehavior(
    868         E->getLocStart(), nullptr,
    869         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    870           << Ty << CT);
    871     // Fall through.
    872   case VAK_Valid:
    873     if (Ty->isRecordType()) {
    874       // This is unlikely to be what the user intended. If the class has a
    875       // 'c_str' member function, the user probably meant to call that.
    876       DiagRuntimeBehavior(E->getLocStart(), nullptr,
    877                           PDiag(diag::warn_pass_class_arg_to_vararg)
    878                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
    879     }
    880     break;
    881 
    882   case VAK_Undefined:
    883   case VAK_MSVCUndefined:
    884     DiagRuntimeBehavior(
    885         E->getLocStart(), nullptr,
    886         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    887           << getLangOpts().CPlusPlus11 << Ty << CT);
    888     break;
    889 
    890   case VAK_Invalid:
    891     if (Ty->isObjCObjectType())
    892       DiagRuntimeBehavior(
    893           E->getLocStart(), nullptr,
    894           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    895             << Ty << CT);
    896     else
    897       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    898         << isa<InitListExpr>(E) << Ty << CT;
    899     break;
    900   }
    901 }
    902 
    903 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    904 /// will create a trap if the resulting type is not a POD type.
    905 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    906                                                   FunctionDecl *FDecl) {
    907   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    908     // Strip the unbridged-cast placeholder expression off, if applicable.
    909     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    910         (CT == VariadicMethod ||
    911          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    912       E = stripARCUnbridgedCast(E);
    913 
    914     // Otherwise, do normal placeholder checking.
    915     } else {
    916       ExprResult ExprRes = CheckPlaceholderExpr(E);
    917       if (ExprRes.isInvalid())
    918         return ExprError();
    919       E = ExprRes.get();
    920     }
    921   }
    922 
    923   ExprResult ExprRes = DefaultArgumentPromotion(E);
    924   if (ExprRes.isInvalid())
    925     return ExprError();
    926   E = ExprRes.get();
    927 
    928   // Diagnostics regarding non-POD argument types are
    929   // emitted along with format string checking in Sema::CheckFunctionCall().
    930   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    931     // Turn this into a trap.
    932     CXXScopeSpec SS;
    933     SourceLocation TemplateKWLoc;
    934     UnqualifiedId Name;
    935     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    936                        E->getLocStart());
    937     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    938                                           Name, true, false);
    939     if (TrapFn.isInvalid())
    940       return ExprError();
    941 
    942     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    943                                     E->getLocStart(), None,
    944                                     E->getLocEnd());
    945     if (Call.isInvalid())
    946       return ExprError();
    947 
    948     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    949                                   Call.get(), E);
    950     if (Comma.isInvalid())
    951       return ExprError();
    952     return Comma.get();
    953   }
    954 
    955   if (!getLangOpts().CPlusPlus &&
    956       RequireCompleteType(E->getExprLoc(), E->getType(),
    957                           diag::err_call_incomplete_argument))
    958     return ExprError();
    959 
    960   return E;
    961 }
    962 
    963 /// \brief Converts an integer to complex float type.  Helper function of
    964 /// UsualArithmeticConversions()
    965 ///
    966 /// \return false if the integer expression is an integer type and is
    967 /// successfully converted to the complex type.
    968 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
    969                                                   ExprResult &ComplexExpr,
    970                                                   QualType IntTy,
    971                                                   QualType ComplexTy,
    972                                                   bool SkipCast) {
    973   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
    974   if (SkipCast) return false;
    975   if (IntTy->isIntegerType()) {
    976     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
    977     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
    978     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
    979                                   CK_FloatingRealToComplex);
    980   } else {
    981     assert(IntTy->isComplexIntegerType());
    982     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
    983                                   CK_IntegralComplexToFloatingComplex);
    984   }
    985   return false;
    986 }
    987 
    988 /// \brief Handle arithmetic conversion with complex types.  Helper function of
    989 /// UsualArithmeticConversions()
    990 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
    991                                              ExprResult &RHS, QualType LHSType,
    992                                              QualType RHSType,
    993                                              bool IsCompAssign) {
    994   // if we have an integer operand, the result is the complex type.
    995   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
    996                                              /*skipCast*/false))
    997     return LHSType;
    998   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
    999                                              /*skipCast*/IsCompAssign))
   1000     return RHSType;
   1001 
   1002   // This handles complex/complex, complex/float, or float/complex.
   1003   // When both operands are complex, the shorter operand is converted to the
   1004   // type of the longer, and that is the type of the result. This corresponds
   1005   // to what is done when combining two real floating-point operands.
   1006   // The fun begins when size promotion occur across type domains.
   1007   // From H&S 6.3.4: When one operand is complex and the other is a real
   1008   // floating-point type, the less precise type is converted, within it's
   1009   // real or complex domain, to the precision of the other type. For example,
   1010   // when combining a "long double" with a "double _Complex", the
   1011   // "double _Complex" is promoted to "long double _Complex".
   1012 
   1013   // Compute the rank of the two types, regardless of whether they are complex.
   1014   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1015 
   1016   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
   1017   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
   1018   QualType LHSElementType =
   1019       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
   1020   QualType RHSElementType =
   1021       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
   1022 
   1023   QualType ResultType = S.Context.getComplexType(LHSElementType);
   1024   if (Order < 0) {
   1025     // Promote the precision of the LHS if not an assignment.
   1026     ResultType = S.Context.getComplexType(RHSElementType);
   1027     if (!IsCompAssign) {
   1028       if (LHSComplexType)
   1029         LHS =
   1030             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
   1031       else
   1032         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
   1033     }
   1034   } else if (Order > 0) {
   1035     // Promote the precision of the RHS.
   1036     if (RHSComplexType)
   1037       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
   1038     else
   1039       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
   1040   }
   1041   return ResultType;
   1042 }
   1043 
   1044 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1045 /// of UsualArithmeticConversions()
   1046 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1047                                            ExprResult &IntExpr,
   1048                                            QualType FloatTy, QualType IntTy,
   1049                                            bool ConvertFloat, bool ConvertInt) {
   1050   if (IntTy->isIntegerType()) {
   1051     if (ConvertInt)
   1052       // Convert intExpr to the lhs floating point type.
   1053       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
   1054                                     CK_IntegralToFloating);
   1055     return FloatTy;
   1056   }
   1057 
   1058   // Convert both sides to the appropriate complex float.
   1059   assert(IntTy->isComplexIntegerType());
   1060   QualType result = S.Context.getComplexType(FloatTy);
   1061 
   1062   // _Complex int -> _Complex float
   1063   if (ConvertInt)
   1064     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
   1065                                   CK_IntegralComplexToFloatingComplex);
   1066 
   1067   // float -> _Complex float
   1068   if (ConvertFloat)
   1069     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
   1070                                     CK_FloatingRealToComplex);
   1071 
   1072   return result;
   1073 }
   1074 
   1075 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1076 /// function of UsualArithmeticConversions()
   1077 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1078                                       ExprResult &RHS, QualType LHSType,
   1079                                       QualType RHSType, bool IsCompAssign) {
   1080   bool LHSFloat = LHSType->isRealFloatingType();
   1081   bool RHSFloat = RHSType->isRealFloatingType();
   1082 
   1083   // If we have two real floating types, convert the smaller operand
   1084   // to the bigger result.
   1085   if (LHSFloat && RHSFloat) {
   1086     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1087     if (order > 0) {
   1088       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
   1089       return LHSType;
   1090     }
   1091 
   1092     assert(order < 0 && "illegal float comparison");
   1093     if (!IsCompAssign)
   1094       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
   1095     return RHSType;
   1096   }
   1097 
   1098   if (LHSFloat)
   1099     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1100                                       /*convertFloat=*/!IsCompAssign,
   1101                                       /*convertInt=*/ true);
   1102   assert(RHSFloat);
   1103   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1104                                     /*convertInt=*/ true,
   1105                                     /*convertFloat=*/!IsCompAssign);
   1106 }
   1107 
   1108 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1109 
   1110 namespace {
   1111 /// These helper callbacks are placed in an anonymous namespace to
   1112 /// permit their use as function template parameters.
   1113 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1114   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1115 }
   1116 
   1117 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1118   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1119                              CK_IntegralComplexCast);
   1120 }
   1121 }
   1122 
   1123 /// \brief Handle integer arithmetic conversions.  Helper function of
   1124 /// UsualArithmeticConversions()
   1125 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1126 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1127                                         ExprResult &RHS, QualType LHSType,
   1128                                         QualType RHSType, bool IsCompAssign) {
   1129   // The rules for this case are in C99 6.3.1.8
   1130   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1131   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1132   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1133   if (LHSSigned == RHSSigned) {
   1134     // Same signedness; use the higher-ranked type
   1135     if (order >= 0) {
   1136       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1137       return LHSType;
   1138     } else if (!IsCompAssign)
   1139       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1140     return RHSType;
   1141   } else if (order != (LHSSigned ? 1 : -1)) {
   1142     // The unsigned type has greater than or equal rank to the
   1143     // signed type, so use the unsigned type
   1144     if (RHSSigned) {
   1145       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1146       return LHSType;
   1147     } else if (!IsCompAssign)
   1148       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1149     return RHSType;
   1150   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1151     // The two types are different widths; if we are here, that
   1152     // means the signed type is larger than the unsigned type, so
   1153     // use the signed type.
   1154     if (LHSSigned) {
   1155       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1156       return LHSType;
   1157     } else if (!IsCompAssign)
   1158       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1159     return RHSType;
   1160   } else {
   1161     // The signed type is higher-ranked than the unsigned type,
   1162     // but isn't actually any bigger (like unsigned int and long
   1163     // on most 32-bit systems).  Use the unsigned type corresponding
   1164     // to the signed type.
   1165     QualType result =
   1166       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1167     RHS = (*doRHSCast)(S, RHS.get(), result);
   1168     if (!IsCompAssign)
   1169       LHS = (*doLHSCast)(S, LHS.get(), result);
   1170     return result;
   1171   }
   1172 }
   1173 
   1174 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1175 /// of UsualArithmeticConversions()
   1176 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1177                                            ExprResult &RHS, QualType LHSType,
   1178                                            QualType RHSType,
   1179                                            bool IsCompAssign) {
   1180   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1181   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1182 
   1183   if (LHSComplexInt && RHSComplexInt) {
   1184     QualType LHSEltType = LHSComplexInt->getElementType();
   1185     QualType RHSEltType = RHSComplexInt->getElementType();
   1186     QualType ScalarType =
   1187       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1188         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1189 
   1190     return S.Context.getComplexType(ScalarType);
   1191   }
   1192 
   1193   if (LHSComplexInt) {
   1194     QualType LHSEltType = LHSComplexInt->getElementType();
   1195     QualType ScalarType =
   1196       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1197         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1198     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1199     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
   1200                               CK_IntegralRealToComplex);
   1201 
   1202     return ComplexType;
   1203   }
   1204 
   1205   assert(RHSComplexInt);
   1206 
   1207   QualType RHSEltType = RHSComplexInt->getElementType();
   1208   QualType ScalarType =
   1209     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1210       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1211   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1212 
   1213   if (!IsCompAssign)
   1214     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
   1215                               CK_IntegralRealToComplex);
   1216   return ComplexType;
   1217 }
   1218 
   1219 /// UsualArithmeticConversions - Performs various conversions that are common to
   1220 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1221 /// routine returns the first non-arithmetic type found. The client is
   1222 /// responsible for emitting appropriate error diagnostics.
   1223 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1224                                           bool IsCompAssign) {
   1225   if (!IsCompAssign) {
   1226     LHS = UsualUnaryConversions(LHS.get());
   1227     if (LHS.isInvalid())
   1228       return QualType();
   1229   }
   1230 
   1231   RHS = UsualUnaryConversions(RHS.get());
   1232   if (RHS.isInvalid())
   1233     return QualType();
   1234 
   1235   // For conversion purposes, we ignore any qualifiers.
   1236   // For example, "const float" and "float" are equivalent.
   1237   QualType LHSType =
   1238     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1239   QualType RHSType =
   1240     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1241 
   1242   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1243   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1244     LHSType = AtomicLHS->getValueType();
   1245 
   1246   // If both types are identical, no conversion is needed.
   1247   if (LHSType == RHSType)
   1248     return LHSType;
   1249 
   1250   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1251   // The caller can deal with this (e.g. pointer + int).
   1252   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1253     return QualType();
   1254 
   1255   // Apply unary and bitfield promotions to the LHS's type.
   1256   QualType LHSUnpromotedType = LHSType;
   1257   if (LHSType->isPromotableIntegerType())
   1258     LHSType = Context.getPromotedIntegerType(LHSType);
   1259   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1260   if (!LHSBitfieldPromoteTy.isNull())
   1261     LHSType = LHSBitfieldPromoteTy;
   1262   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1263     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
   1264 
   1265   // If both types are identical, no conversion is needed.
   1266   if (LHSType == RHSType)
   1267     return LHSType;
   1268 
   1269   // At this point, we have two different arithmetic types.
   1270 
   1271   // Handle complex types first (C99 6.3.1.8p1).
   1272   if (LHSType->isComplexType() || RHSType->isComplexType())
   1273     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1274                                         IsCompAssign);
   1275 
   1276   // Now handle "real" floating types (i.e. float, double, long double).
   1277   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1278     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1279                                  IsCompAssign);
   1280 
   1281   // Handle GCC complex int extension.
   1282   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1283     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1284                                       IsCompAssign);
   1285 
   1286   // Finally, we have two differing integer types.
   1287   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1288            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1289 }
   1290 
   1291 
   1292 //===----------------------------------------------------------------------===//
   1293 //  Semantic Analysis for various Expression Types
   1294 //===----------------------------------------------------------------------===//
   1295 
   1296 
   1297 ExprResult
   1298 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1299                                 SourceLocation DefaultLoc,
   1300                                 SourceLocation RParenLoc,
   1301                                 Expr *ControllingExpr,
   1302                                 ArrayRef<ParsedType> ArgTypes,
   1303                                 ArrayRef<Expr *> ArgExprs) {
   1304   unsigned NumAssocs = ArgTypes.size();
   1305   assert(NumAssocs == ArgExprs.size());
   1306 
   1307   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1308   for (unsigned i = 0; i < NumAssocs; ++i) {
   1309     if (ArgTypes[i])
   1310       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1311     else
   1312       Types[i] = nullptr;
   1313   }
   1314 
   1315   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1316                                              ControllingExpr,
   1317                                              llvm::makeArrayRef(Types, NumAssocs),
   1318                                              ArgExprs);
   1319   delete [] Types;
   1320   return ER;
   1321 }
   1322 
   1323 ExprResult
   1324 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1325                                  SourceLocation DefaultLoc,
   1326                                  SourceLocation RParenLoc,
   1327                                  Expr *ControllingExpr,
   1328                                  ArrayRef<TypeSourceInfo *> Types,
   1329                                  ArrayRef<Expr *> Exprs) {
   1330   unsigned NumAssocs = Types.size();
   1331   assert(NumAssocs == Exprs.size());
   1332   if (ControllingExpr->getType()->isPlaceholderType()) {
   1333     ExprResult result = CheckPlaceholderExpr(ControllingExpr);
   1334     if (result.isInvalid()) return ExprError();
   1335     ControllingExpr = result.get();
   1336   }
   1337 
   1338   // The controlling expression is an unevaluated operand, so side effects are
   1339   // likely unintended.
   1340   if (ActiveTemplateInstantiations.empty() &&
   1341       ControllingExpr->HasSideEffects(Context, false))
   1342     Diag(ControllingExpr->getExprLoc(),
   1343          diag::warn_side_effects_unevaluated_context);
   1344 
   1345   bool TypeErrorFound = false,
   1346        IsResultDependent = ControllingExpr->isTypeDependent(),
   1347        ContainsUnexpandedParameterPack
   1348          = ControllingExpr->containsUnexpandedParameterPack();
   1349 
   1350   for (unsigned i = 0; i < NumAssocs; ++i) {
   1351     if (Exprs[i]->containsUnexpandedParameterPack())
   1352       ContainsUnexpandedParameterPack = true;
   1353 
   1354     if (Types[i]) {
   1355       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1356         ContainsUnexpandedParameterPack = true;
   1357 
   1358       if (Types[i]->getType()->isDependentType()) {
   1359         IsResultDependent = true;
   1360       } else {
   1361         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1362         // complete object type other than a variably modified type."
   1363         unsigned D = 0;
   1364         if (Types[i]->getType()->isIncompleteType())
   1365           D = diag::err_assoc_type_incomplete;
   1366         else if (!Types[i]->getType()->isObjectType())
   1367           D = diag::err_assoc_type_nonobject;
   1368         else if (Types[i]->getType()->isVariablyModifiedType())
   1369           D = diag::err_assoc_type_variably_modified;
   1370 
   1371         if (D != 0) {
   1372           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1373             << Types[i]->getTypeLoc().getSourceRange()
   1374             << Types[i]->getType();
   1375           TypeErrorFound = true;
   1376         }
   1377 
   1378         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1379         // selection shall specify compatible types."
   1380         for (unsigned j = i+1; j < NumAssocs; ++j)
   1381           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1382               Context.typesAreCompatible(Types[i]->getType(),
   1383                                          Types[j]->getType())) {
   1384             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1385                  diag::err_assoc_compatible_types)
   1386               << Types[j]->getTypeLoc().getSourceRange()
   1387               << Types[j]->getType()
   1388               << Types[i]->getType();
   1389             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1390                  diag::note_compat_assoc)
   1391               << Types[i]->getTypeLoc().getSourceRange()
   1392               << Types[i]->getType();
   1393             TypeErrorFound = true;
   1394           }
   1395       }
   1396     }
   1397   }
   1398   if (TypeErrorFound)
   1399     return ExprError();
   1400 
   1401   // If we determined that the generic selection is result-dependent, don't
   1402   // try to compute the result expression.
   1403   if (IsResultDependent)
   1404     return new (Context) GenericSelectionExpr(
   1405         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1406         ContainsUnexpandedParameterPack);
   1407 
   1408   SmallVector<unsigned, 1> CompatIndices;
   1409   unsigned DefaultIndex = -1U;
   1410   for (unsigned i = 0; i < NumAssocs; ++i) {
   1411     if (!Types[i])
   1412       DefaultIndex = i;
   1413     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1414                                         Types[i]->getType()))
   1415       CompatIndices.push_back(i);
   1416   }
   1417 
   1418   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1419   // type compatible with at most one of the types named in its generic
   1420   // association list."
   1421   if (CompatIndices.size() > 1) {
   1422     // We strip parens here because the controlling expression is typically
   1423     // parenthesized in macro definitions.
   1424     ControllingExpr = ControllingExpr->IgnoreParens();
   1425     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1426       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1427       << (unsigned) CompatIndices.size();
   1428     for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
   1429          E = CompatIndices.end(); I != E; ++I) {
   1430       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
   1431            diag::note_compat_assoc)
   1432         << Types[*I]->getTypeLoc().getSourceRange()
   1433         << Types[*I]->getType();
   1434     }
   1435     return ExprError();
   1436   }
   1437 
   1438   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1439   // its controlling expression shall have type compatible with exactly one of
   1440   // the types named in its generic association list."
   1441   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1442     // We strip parens here because the controlling expression is typically
   1443     // parenthesized in macro definitions.
   1444     ControllingExpr = ControllingExpr->IgnoreParens();
   1445     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1446       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1447     return ExprError();
   1448   }
   1449 
   1450   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1451   // type name that is compatible with the type of the controlling expression,
   1452   // then the result expression of the generic selection is the expression
   1453   // in that generic association. Otherwise, the result expression of the
   1454   // generic selection is the expression in the default generic association."
   1455   unsigned ResultIndex =
   1456     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1457 
   1458   return new (Context) GenericSelectionExpr(
   1459       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1460       ContainsUnexpandedParameterPack, ResultIndex);
   1461 }
   1462 
   1463 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1464 /// location of the token and the offset of the ud-suffix within it.
   1465 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1466                                      unsigned Offset) {
   1467   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1468                                         S.getLangOpts());
   1469 }
   1470 
   1471 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1472 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1473 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1474                                                  IdentifierInfo *UDSuffix,
   1475                                                  SourceLocation UDSuffixLoc,
   1476                                                  ArrayRef<Expr*> Args,
   1477                                                  SourceLocation LitEndLoc) {
   1478   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1479 
   1480   QualType ArgTy[2];
   1481   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1482     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1483     if (ArgTy[ArgIdx]->isArrayType())
   1484       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1485   }
   1486 
   1487   DeclarationName OpName =
   1488     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1489   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1490   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1491 
   1492   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1493   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1494                               /*AllowRaw*/false, /*AllowTemplate*/false,
   1495                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
   1496     return ExprError();
   1497 
   1498   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1499 }
   1500 
   1501 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1502 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1503 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1504 /// multiple tokens.  However, the common case is that StringToks points to one
   1505 /// string.
   1506 ///
   1507 ExprResult
   1508 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
   1509   assert(!StringToks.empty() && "Must have at least one string!");
   1510 
   1511   StringLiteralParser Literal(StringToks, PP);
   1512   if (Literal.hadError)
   1513     return ExprError();
   1514 
   1515   SmallVector<SourceLocation, 4> StringTokLocs;
   1516   for (unsigned i = 0; i != StringToks.size(); ++i)
   1517     StringTokLocs.push_back(StringToks[i].getLocation());
   1518 
   1519   QualType CharTy = Context.CharTy;
   1520   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1521   if (Literal.isWide()) {
   1522     CharTy = Context.getWideCharType();
   1523     Kind = StringLiteral::Wide;
   1524   } else if (Literal.isUTF8()) {
   1525     Kind = StringLiteral::UTF8;
   1526   } else if (Literal.isUTF16()) {
   1527     CharTy = Context.Char16Ty;
   1528     Kind = StringLiteral::UTF16;
   1529   } else if (Literal.isUTF32()) {
   1530     CharTy = Context.Char32Ty;
   1531     Kind = StringLiteral::UTF32;
   1532   } else if (Literal.isPascal()) {
   1533     CharTy = Context.UnsignedCharTy;
   1534   }
   1535 
   1536   QualType CharTyConst = CharTy;
   1537   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1538   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1539     CharTyConst.addConst();
   1540 
   1541   // Get an array type for the string, according to C99 6.4.5.  This includes
   1542   // the nul terminator character as well as the string length for pascal
   1543   // strings.
   1544   QualType StrTy = Context.getConstantArrayType(CharTyConst,
   1545                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1546                                  ArrayType::Normal, 0);
   1547 
   1548   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
   1549   if (getLangOpts().OpenCL) {
   1550     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
   1551   }
   1552 
   1553   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1554   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1555                                              Kind, Literal.Pascal, StrTy,
   1556                                              &StringTokLocs[0],
   1557                                              StringTokLocs.size());
   1558   if (Literal.getUDSuffix().empty())
   1559     return Lit;
   1560 
   1561   // We're building a user-defined literal.
   1562   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1563   SourceLocation UDSuffixLoc =
   1564     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1565                    Literal.getUDSuffixOffset());
   1566 
   1567   // Make sure we're allowed user-defined literals here.
   1568   if (!UDLScope)
   1569     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1570 
   1571   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1572   //   operator "" X (str, len)
   1573   QualType SizeType = Context.getSizeType();
   1574 
   1575   DeclarationName OpName =
   1576     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1577   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1578   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1579 
   1580   QualType ArgTy[] = {
   1581     Context.getArrayDecayedType(StrTy), SizeType
   1582   };
   1583 
   1584   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   1585   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
   1586                                 /*AllowRaw*/false, /*AllowTemplate*/false,
   1587                                 /*AllowStringTemplate*/true)) {
   1588 
   1589   case LOLR_Cooked: {
   1590     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1591     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1592                                                     StringTokLocs[0]);
   1593     Expr *Args[] = { Lit, LenArg };
   1594 
   1595     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
   1596   }
   1597 
   1598   case LOLR_StringTemplate: {
   1599     TemplateArgumentListInfo ExplicitArgs;
   1600 
   1601     unsigned CharBits = Context.getIntWidth(CharTy);
   1602     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
   1603     llvm::APSInt Value(CharBits, CharIsUnsigned);
   1604 
   1605     TemplateArgument TypeArg(CharTy);
   1606     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
   1607     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
   1608 
   1609     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
   1610       Value = Lit->getCodeUnit(I);
   1611       TemplateArgument Arg(Context, Value, CharTy);
   1612       TemplateArgumentLocInfo ArgInfo;
   1613       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   1614     }
   1615     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
   1616                                     &ExplicitArgs);
   1617   }
   1618   case LOLR_Raw:
   1619   case LOLR_Template:
   1620     llvm_unreachable("unexpected literal operator lookup result");
   1621   case LOLR_Error:
   1622     return ExprError();
   1623   }
   1624   llvm_unreachable("unexpected literal operator lookup result");
   1625 }
   1626 
   1627 ExprResult
   1628 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1629                        SourceLocation Loc,
   1630                        const CXXScopeSpec *SS) {
   1631   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1632   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1633 }
   1634 
   1635 /// BuildDeclRefExpr - Build an expression that references a
   1636 /// declaration that does not require a closure capture.
   1637 ExprResult
   1638 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1639                        const DeclarationNameInfo &NameInfo,
   1640                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1641                        const TemplateArgumentListInfo *TemplateArgs) {
   1642   if (getLangOpts().CUDA)
   1643     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1644       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1645         if (CheckCUDATarget(Caller, Callee)) {
   1646           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1647             << IdentifyCUDATarget(Callee) << D->getIdentifier()
   1648             << IdentifyCUDATarget(Caller);
   1649           Diag(D->getLocation(), diag::note_previous_decl)
   1650             << D->getIdentifier();
   1651           return ExprError();
   1652         }
   1653       }
   1654 
   1655   bool RefersToCapturedVariable =
   1656       isa<VarDecl>(D) &&
   1657       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
   1658 
   1659   DeclRefExpr *E;
   1660   if (isa<VarTemplateSpecializationDecl>(D)) {
   1661     VarTemplateSpecializationDecl *VarSpec =
   1662         cast<VarTemplateSpecializationDecl>(D);
   1663 
   1664     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1665                                         : NestedNameSpecifierLoc(),
   1666                             VarSpec->getTemplateKeywordLoc(), D,
   1667                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
   1668                             FoundD, TemplateArgs);
   1669   } else {
   1670     assert(!TemplateArgs && "No template arguments for non-variable"
   1671                             " template specialization references");
   1672     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1673                                         : NestedNameSpecifierLoc(),
   1674                             SourceLocation(), D, RefersToCapturedVariable,
   1675                             NameInfo, Ty, VK, FoundD);
   1676   }
   1677 
   1678   MarkDeclRefReferenced(E);
   1679 
   1680   if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
   1681       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
   1682       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
   1683       recordUseOfEvaluatedWeak(E);
   1684 
   1685   // Just in case we're building an illegal pointer-to-member.
   1686   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   1687   if (FD && FD->isBitField())
   1688     E->setObjectKind(OK_BitField);
   1689 
   1690   return E;
   1691 }
   1692 
   1693 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1694 /// possibly a list of template arguments.
   1695 ///
   1696 /// If this produces template arguments, it is permitted to call
   1697 /// DecomposeTemplateName.
   1698 ///
   1699 /// This actually loses a lot of source location information for
   1700 /// non-standard name kinds; we should consider preserving that in
   1701 /// some way.
   1702 void
   1703 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1704                              TemplateArgumentListInfo &Buffer,
   1705                              DeclarationNameInfo &NameInfo,
   1706                              const TemplateArgumentListInfo *&TemplateArgs) {
   1707   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1708     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1709     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1710 
   1711     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1712                                        Id.TemplateId->NumArgs);
   1713     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1714 
   1715     TemplateName TName = Id.TemplateId->Template.get();
   1716     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1717     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1718     TemplateArgs = &Buffer;
   1719   } else {
   1720     NameInfo = GetNameFromUnqualifiedId(Id);
   1721     TemplateArgs = nullptr;
   1722   }
   1723 }
   1724 
   1725 static void emitEmptyLookupTypoDiagnostic(
   1726     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
   1727     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
   1728     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
   1729   DeclContext *Ctx =
   1730       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
   1731   if (!TC) {
   1732     // Emit a special diagnostic for failed member lookups.
   1733     // FIXME: computing the declaration context might fail here (?)
   1734     if (Ctx)
   1735       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
   1736                                                  << SS.getRange();
   1737     else
   1738       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
   1739     return;
   1740   }
   1741 
   1742   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
   1743   bool DroppedSpecifier =
   1744       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
   1745   unsigned NoteID =
   1746       (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
   1747           ? diag::note_implicit_param_decl
   1748           : diag::note_previous_decl;
   1749   if (!Ctx)
   1750     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
   1751                          SemaRef.PDiag(NoteID));
   1752   else
   1753     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
   1754                                  << Typo << Ctx << DroppedSpecifier
   1755                                  << SS.getRange(),
   1756                          SemaRef.PDiag(NoteID));
   1757 }
   1758 
   1759 /// Diagnose an empty lookup.
   1760 ///
   1761 /// \return false if new lookup candidates were found
   1762 bool
   1763 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1764                           std::unique_ptr<CorrectionCandidateCallback> CCC,
   1765                           TemplateArgumentListInfo *ExplicitTemplateArgs,
   1766                           ArrayRef<Expr *> Args, TypoExpr **Out) {
   1767   DeclarationName Name = R.getLookupName();
   1768 
   1769   unsigned diagnostic = diag::err_undeclared_var_use;
   1770   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1771   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1772       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1773       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1774     diagnostic = diag::err_undeclared_use;
   1775     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1776   }
   1777 
   1778   // If the original lookup was an unqualified lookup, fake an
   1779   // unqualified lookup.  This is useful when (for example) the
   1780   // original lookup would not have found something because it was a
   1781   // dependent name.
   1782   DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
   1783     ? CurContext : nullptr;
   1784   while (DC) {
   1785     if (isa<CXXRecordDecl>(DC)) {
   1786       LookupQualifiedName(R, DC);
   1787 
   1788       if (!R.empty()) {
   1789         // Don't give errors about ambiguities in this lookup.
   1790         R.suppressDiagnostics();
   1791 
   1792         // During a default argument instantiation the CurContext points
   1793         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1794         // function parameter list, hence add an explicit check.
   1795         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1796                               ActiveTemplateInstantiations.back().Kind ==
   1797             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1798         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1799         bool isInstance = CurMethod &&
   1800                           CurMethod->isInstance() &&
   1801                           DC == CurMethod->getParent() && !isDefaultArgument;
   1802 
   1803 
   1804         // Give a code modification hint to insert 'this->'.
   1805         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1806         // Actually quite difficult!
   1807         if (getLangOpts().MSVCCompat)
   1808           diagnostic = diag::ext_found_via_dependent_bases_lookup;
   1809         if (isInstance) {
   1810           Diag(R.getNameLoc(), diagnostic) << Name
   1811             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1812           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
   1813               CallsUndergoingInstantiation.back()->getCallee());
   1814 
   1815           CXXMethodDecl *DepMethod;
   1816           if (CurMethod->isDependentContext())
   1817             DepMethod = CurMethod;
   1818           else if (CurMethod->getTemplatedKind() ==
   1819               FunctionDecl::TK_FunctionTemplateSpecialization)
   1820             DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
   1821                 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
   1822           else
   1823             DepMethod = cast<CXXMethodDecl>(
   1824                 CurMethod->getInstantiatedFromMemberFunction());
   1825           assert(DepMethod && "No template pattern found");
   1826 
   1827           QualType DepThisType = DepMethod->getThisType(Context);
   1828           CheckCXXThisCapture(R.getNameLoc());
   1829           CXXThisExpr *DepThis = new (Context) CXXThisExpr(
   1830                                      R.getNameLoc(), DepThisType, false);
   1831           TemplateArgumentListInfo TList;
   1832           if (ULE->hasExplicitTemplateArgs())
   1833             ULE->copyTemplateArgumentsInto(TList);
   1834 
   1835           CXXScopeSpec SS;
   1836           SS.Adopt(ULE->getQualifierLoc());
   1837           CXXDependentScopeMemberExpr *DepExpr =
   1838               CXXDependentScopeMemberExpr::Create(
   1839                   Context, DepThis, DepThisType, true, SourceLocation(),
   1840                   SS.getWithLocInContext(Context),
   1841                   ULE->getTemplateKeywordLoc(), nullptr,
   1842                   R.getLookupNameInfo(),
   1843                   ULE->hasExplicitTemplateArgs() ? &TList : nullptr);
   1844           CallsUndergoingInstantiation.back()->setCallee(DepExpr);
   1845         } else {
   1846           Diag(R.getNameLoc(), diagnostic) << Name;
   1847         }
   1848 
   1849         // Do we really want to note all of these?
   1850         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   1851           Diag((*I)->getLocation(), diag::note_dependent_var_use);
   1852 
   1853         // Return true if we are inside a default argument instantiation
   1854         // and the found name refers to an instance member function, otherwise
   1855         // the function calling DiagnoseEmptyLookup will try to create an
   1856         // implicit member call and this is wrong for default argument.
   1857         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1858           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1859           return true;
   1860         }
   1861 
   1862         // Tell the callee to try to recover.
   1863         return false;
   1864       }
   1865 
   1866       R.clear();
   1867     }
   1868 
   1869     // In Microsoft mode, if we are performing lookup from within a friend
   1870     // function definition declared at class scope then we must set
   1871     // DC to the lexical parent to be able to search into the parent
   1872     // class.
   1873     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
   1874         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1875         DC->getLexicalParent()->isRecord())
   1876       DC = DC->getLexicalParent();
   1877     else
   1878       DC = DC->getParent();
   1879   }
   1880 
   1881   // We didn't find anything, so try to correct for a typo.
   1882   TypoCorrection Corrected;
   1883   if (S && Out) {
   1884     SourceLocation TypoLoc = R.getNameLoc();
   1885     assert(!ExplicitTemplateArgs &&
   1886            "Diagnosing an empty lookup with explicit template args!");
   1887     *Out = CorrectTypoDelayed(
   1888         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
   1889         [=](const TypoCorrection &TC) {
   1890           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
   1891                                         diagnostic, diagnostic_suggest);
   1892         },
   1893         nullptr, CTK_ErrorRecovery);
   1894     if (*Out)
   1895       return true;
   1896   } else if (S && (Corrected =
   1897                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
   1898                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
   1899     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1900     bool DroppedSpecifier =
   1901         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1902     R.setLookupName(Corrected.getCorrection());
   1903 
   1904     bool AcceptableWithRecovery = false;
   1905     bool AcceptableWithoutRecovery = false;
   1906     NamedDecl *ND = Corrected.getCorrectionDecl();
   1907     if (ND) {
   1908       if (Corrected.isOverloaded()) {
   1909         OverloadCandidateSet OCS(R.getNameLoc(),
   1910                                  OverloadCandidateSet::CSK_Normal);
   1911         OverloadCandidateSet::iterator Best;
   1912         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   1913                                         CDEnd = Corrected.end();
   1914              CD != CDEnd; ++CD) {
   1915           if (FunctionTemplateDecl *FTD =
   1916                    dyn_cast<FunctionTemplateDecl>(*CD))
   1917             AddTemplateOverloadCandidate(
   1918                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1919                 Args, OCS);
   1920           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   1921             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1922               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1923                                    Args, OCS);
   1924         }
   1925         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1926         case OR_Success:
   1927           ND = Best->Function;
   1928           Corrected.setCorrectionDecl(ND);
   1929           break;
   1930         default:
   1931           // FIXME: Arbitrarily pick the first declaration for the note.
   1932           Corrected.setCorrectionDecl(ND);
   1933           break;
   1934         }
   1935       }
   1936       R.addDecl(ND);
   1937       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
   1938         CXXRecordDecl *Record = nullptr;
   1939         if (Corrected.getCorrectionSpecifier()) {
   1940           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
   1941           Record = Ty->getAsCXXRecordDecl();
   1942         }
   1943         if (!Record)
   1944           Record = cast<CXXRecordDecl>(
   1945               ND->getDeclContext()->getRedeclContext());
   1946         R.setNamingClass(Record);
   1947       }
   1948 
   1949       AcceptableWithRecovery =
   1950           isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
   1951       // FIXME: If we ended up with a typo for a type name or
   1952       // Objective-C class name, we're in trouble because the parser
   1953       // is in the wrong place to recover. Suggest the typo
   1954       // correction, but don't make it a fix-it since we're not going
   1955       // to recover well anyway.
   1956       AcceptableWithoutRecovery =
   1957           isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
   1958     } else {
   1959       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1960       // because we aren't able to recover.
   1961       AcceptableWithoutRecovery = true;
   1962     }
   1963 
   1964     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
   1965       unsigned NoteID = (Corrected.getCorrectionDecl() &&
   1966                          isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
   1967                             ? diag::note_implicit_param_decl
   1968                             : diag::note_previous_decl;
   1969       if (SS.isEmpty())
   1970         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
   1971                      PDiag(NoteID), AcceptableWithRecovery);
   1972       else
   1973         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   1974                                   << Name << computeDeclContext(SS, false)
   1975                                   << DroppedSpecifier << SS.getRange(),
   1976                      PDiag(NoteID), AcceptableWithRecovery);
   1977 
   1978       // Tell the callee whether to try to recover.
   1979       return !AcceptableWithRecovery;
   1980     }
   1981   }
   1982   R.clear();
   1983 
   1984   // Emit a special diagnostic for failed member lookups.
   1985   // FIXME: computing the declaration context might fail here (?)
   1986   if (!SS.isEmpty()) {
   1987     Diag(R.getNameLoc(), diag::err_no_member)
   1988       << Name << computeDeclContext(SS, false)
   1989       << SS.getRange();
   1990     return true;
   1991   }
   1992 
   1993   // Give up, we can't recover.
   1994   Diag(R.getNameLoc(), diagnostic) << Name;
   1995   return true;
   1996 }
   1997 
   1998 /// In Microsoft mode, if we are inside a template class whose parent class has
   1999 /// dependent base classes, and we can't resolve an unqualified identifier, then
   2000 /// assume the identifier is a member of a dependent base class.  We can only
   2001 /// recover successfully in static methods, instance methods, and other contexts
   2002 /// where 'this' is available.  This doesn't precisely match MSVC's
   2003 /// instantiation model, but it's close enough.
   2004 static Expr *
   2005 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
   2006                                DeclarationNameInfo &NameInfo,
   2007                                SourceLocation TemplateKWLoc,
   2008                                const TemplateArgumentListInfo *TemplateArgs) {
   2009   // Only try to recover from lookup into dependent bases in static methods or
   2010   // contexts where 'this' is available.
   2011   QualType ThisType = S.getCurrentThisType();
   2012   const CXXRecordDecl *RD = nullptr;
   2013   if (!ThisType.isNull())
   2014     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
   2015   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
   2016     RD = MD->getParent();
   2017   if (!RD || !RD->hasAnyDependentBases())
   2018     return nullptr;
   2019 
   2020   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
   2021   // is available, suggest inserting 'this->' as a fixit.
   2022   SourceLocation Loc = NameInfo.getLoc();
   2023   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
   2024   DB << NameInfo.getName() << RD;
   2025 
   2026   if (!ThisType.isNull()) {
   2027     DB << FixItHint::CreateInsertion(Loc, "this->");
   2028     return CXXDependentScopeMemberExpr::Create(
   2029         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
   2030         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
   2031         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
   2032   }
   2033 
   2034   // Synthesize a fake NNS that points to the derived class.  This will
   2035   // perform name lookup during template instantiation.
   2036   CXXScopeSpec SS;
   2037   auto *NNS =
   2038       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
   2039   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
   2040   return DependentScopeDeclRefExpr::Create(
   2041       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   2042       TemplateArgs);
   2043 }
   2044 
   2045 ExprResult
   2046 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
   2047                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
   2048                         bool HasTrailingLParen, bool IsAddressOfOperand,
   2049                         std::unique_ptr<CorrectionCandidateCallback> CCC,
   2050                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
   2051   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   2052          "cannot be direct & operand and have a trailing lparen");
   2053   if (SS.isInvalid())
   2054     return ExprError();
   2055 
   2056   TemplateArgumentListInfo TemplateArgsBuffer;
   2057 
   2058   // Decompose the UnqualifiedId into the following data.
   2059   DeclarationNameInfo NameInfo;
   2060   const TemplateArgumentListInfo *TemplateArgs;
   2061   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   2062 
   2063   DeclarationName Name = NameInfo.getName();
   2064   IdentifierInfo *II = Name.getAsIdentifierInfo();
   2065   SourceLocation NameLoc = NameInfo.getLoc();
   2066 
   2067   // C++ [temp.dep.expr]p3:
   2068   //   An id-expression is type-dependent if it contains:
   2069   //     -- an identifier that was declared with a dependent type,
   2070   //        (note: handled after lookup)
   2071   //     -- a template-id that is dependent,
   2072   //        (note: handled in BuildTemplateIdExpr)
   2073   //     -- a conversion-function-id that specifies a dependent type,
   2074   //     -- a nested-name-specifier that contains a class-name that
   2075   //        names a dependent type.
   2076   // Determine whether this is a member of an unknown specialization;
   2077   // we need to handle these differently.
   2078   bool DependentID = false;
   2079   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   2080       Name.getCXXNameType()->isDependentType()) {
   2081     DependentID = true;
   2082   } else if (SS.isSet()) {
   2083     if (DeclContext *DC = computeDeclContext(SS, false)) {
   2084       if (RequireCompleteDeclContext(SS, DC))
   2085         return ExprError();
   2086     } else {
   2087       DependentID = true;
   2088     }
   2089   }
   2090 
   2091   if (DependentID)
   2092     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2093                                       IsAddressOfOperand, TemplateArgs);
   2094 
   2095   // Perform the required lookup.
   2096   LookupResult R(*this, NameInfo,
   2097                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   2098                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   2099   if (TemplateArgs) {
   2100     // Lookup the template name again to correctly establish the context in
   2101     // which it was found. This is really unfortunate as we already did the
   2102     // lookup to determine that it was a template name in the first place. If
   2103     // this becomes a performance hit, we can work harder to preserve those
   2104     // results until we get here but it's likely not worth it.
   2105     bool MemberOfUnknownSpecialization;
   2106     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   2107                        MemberOfUnknownSpecialization);
   2108 
   2109     if (MemberOfUnknownSpecialization ||
   2110         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   2111       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2112                                         IsAddressOfOperand, TemplateArgs);
   2113   } else {
   2114     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   2115     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   2116 
   2117     // If the result might be in a dependent base class, this is a dependent
   2118     // id-expression.
   2119     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2120       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2121                                         IsAddressOfOperand, TemplateArgs);
   2122 
   2123     // If this reference is in an Objective-C method, then we need to do
   2124     // some special Objective-C lookup, too.
   2125     if (IvarLookupFollowUp) {
   2126       ExprResult E(LookupInObjCMethod(R, S, II, true));
   2127       if (E.isInvalid())
   2128         return ExprError();
   2129 
   2130       if (Expr *Ex = E.getAs<Expr>())
   2131         return Ex;
   2132     }
   2133   }
   2134 
   2135   if (R.isAmbiguous())
   2136     return ExprError();
   2137 
   2138   // This could be an implicitly declared function reference (legal in C90,
   2139   // extension in C99, forbidden in C++).
   2140   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   2141     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   2142     if (D) R.addDecl(D);
   2143   }
   2144 
   2145   // Determine whether this name might be a candidate for
   2146   // argument-dependent lookup.
   2147   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   2148 
   2149   if (R.empty() && !ADL) {
   2150     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
   2151       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
   2152                                                    TemplateKWLoc, TemplateArgs))
   2153         return E;
   2154     }
   2155 
   2156     // Don't diagnose an empty lookup for inline assembly.
   2157     if (IsInlineAsmIdentifier)
   2158       return ExprError();
   2159 
   2160     // If this name wasn't predeclared and if this is not a function
   2161     // call, diagnose the problem.
   2162     TypoExpr *TE = nullptr;
   2163     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
   2164         II, SS.isValid() ? SS.getScopeRep() : nullptr);
   2165     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
   2166     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
   2167            "Typo correction callback misconfigured");
   2168     if (CCC) {
   2169       // Make sure the callback knows what the typo being diagnosed is.
   2170       CCC->setTypoName(II);
   2171       if (SS.isValid())
   2172         CCC->setTypoNNS(SS.getScopeRep());
   2173     }
   2174     if (DiagnoseEmptyLookup(S, SS, R,
   2175                             CCC ? std::move(CCC) : std::move(DefaultValidator),
   2176                             nullptr, None, &TE)) {
   2177       if (TE && KeywordReplacement) {
   2178         auto &State = getTypoExprState(TE);
   2179         auto BestTC = State.Consumer->getNextCorrection();
   2180         if (BestTC.isKeyword()) {
   2181           auto *II = BestTC.getCorrectionAsIdentifierInfo();
   2182           if (State.DiagHandler)
   2183             State.DiagHandler(BestTC);
   2184           KeywordReplacement->startToken();
   2185           KeywordReplacement->setKind(II->getTokenID());
   2186           KeywordReplacement->setIdentifierInfo(II);
   2187           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
   2188           // Clean up the state associated with the TypoExpr, since it has
   2189           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
   2190           clearDelayedTypo(TE);
   2191           // Signal that a correction to a keyword was performed by returning a
   2192           // valid-but-null ExprResult.
   2193           return (Expr*)nullptr;
   2194         }
   2195         State.Consumer->resetCorrectionStream();
   2196       }
   2197       return TE ? TE : ExprError();
   2198     }
   2199 
   2200     assert(!R.empty() &&
   2201            "DiagnoseEmptyLookup returned false but added no results");
   2202 
   2203     // If we found an Objective-C instance variable, let
   2204     // LookupInObjCMethod build the appropriate expression to
   2205     // reference the ivar.
   2206     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2207       R.clear();
   2208       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2209       // In a hopelessly buggy code, Objective-C instance variable
   2210       // lookup fails and no expression will be built to reference it.
   2211       if (!E.isInvalid() && !E.get())
   2212         return ExprError();
   2213       return E;
   2214     }
   2215   }
   2216 
   2217   // This is guaranteed from this point on.
   2218   assert(!R.empty() || ADL);
   2219 
   2220   // Check whether this might be a C++ implicit instance member access.
   2221   // C++ [class.mfct.non-static]p3:
   2222   //   When an id-expression that is not part of a class member access
   2223   //   syntax and not used to form a pointer to member is used in the
   2224   //   body of a non-static member function of class X, if name lookup
   2225   //   resolves the name in the id-expression to a non-static non-type
   2226   //   member of some class C, the id-expression is transformed into a
   2227   //   class member access expression using (*this) as the
   2228   //   postfix-expression to the left of the . operator.
   2229   //
   2230   // But we don't actually need to do this for '&' operands if R
   2231   // resolved to a function or overloaded function set, because the
   2232   // expression is ill-formed if it actually works out to be a
   2233   // non-static member function:
   2234   //
   2235   // C++ [expr.ref]p4:
   2236   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2237   //   [t]he expression can be used only as the left-hand operand of a
   2238   //   member function call.
   2239   //
   2240   // There are other safeguards against such uses, but it's important
   2241   // to get this right here so that we don't end up making a
   2242   // spuriously dependent expression if we're inside a dependent
   2243   // instance method.
   2244   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2245     bool MightBeImplicitMember;
   2246     if (!IsAddressOfOperand)
   2247       MightBeImplicitMember = true;
   2248     else if (!SS.isEmpty())
   2249       MightBeImplicitMember = false;
   2250     else if (R.isOverloadedResult())
   2251       MightBeImplicitMember = false;
   2252     else if (R.isUnresolvableResult())
   2253       MightBeImplicitMember = true;
   2254     else
   2255       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2256                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2257                               isa<MSPropertyDecl>(R.getFoundDecl());
   2258 
   2259     if (MightBeImplicitMember)
   2260       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2261                                              R, TemplateArgs);
   2262   }
   2263 
   2264   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2265 
   2266     // In C++1y, if this is a variable template id, then check it
   2267     // in BuildTemplateIdExpr().
   2268     // The single lookup result must be a variable template declaration.
   2269     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2270         Id.TemplateId->Kind == TNK_Var_template) {
   2271       assert(R.getAsSingle<VarTemplateDecl>() &&
   2272              "There should only be one declaration found.");
   2273     }
   2274 
   2275     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2276   }
   2277 
   2278   return BuildDeclarationNameExpr(SS, R, ADL);
   2279 }
   2280 
   2281 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2282 /// declaration name, generally during template instantiation.
   2283 /// There's a large number of things which don't need to be done along
   2284 /// this path.
   2285 ExprResult
   2286 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
   2287                                         const DeclarationNameInfo &NameInfo,
   2288                                         bool IsAddressOfOperand,
   2289                                         TypeSourceInfo **RecoveryTSI) {
   2290   DeclContext *DC = computeDeclContext(SS, false);
   2291   if (!DC)
   2292     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2293                                      NameInfo, /*TemplateArgs=*/nullptr);
   2294 
   2295   if (RequireCompleteDeclContext(SS, DC))
   2296     return ExprError();
   2297 
   2298   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2299   LookupQualifiedName(R, DC);
   2300 
   2301   if (R.isAmbiguous())
   2302     return ExprError();
   2303 
   2304   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2305     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2306                                      NameInfo, /*TemplateArgs=*/nullptr);
   2307 
   2308   if (R.empty()) {
   2309     Diag(NameInfo.getLoc(), diag::err_no_member)
   2310       << NameInfo.getName() << DC << SS.getRange();
   2311     return ExprError();
   2312   }
   2313 
   2314   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
   2315     // Diagnose a missing typename if this resolved unambiguously to a type in
   2316     // a dependent context.  If we can recover with a type, downgrade this to
   2317     // a warning in Microsoft compatibility mode.
   2318     unsigned DiagID = diag::err_typename_missing;
   2319     if (RecoveryTSI && getLangOpts().MSVCCompat)
   2320       DiagID = diag::ext_typename_missing;
   2321     SourceLocation Loc = SS.getBeginLoc();
   2322     auto D = Diag(Loc, DiagID);
   2323     D << SS.getScopeRep() << NameInfo.getName().getAsString()
   2324       << SourceRange(Loc, NameInfo.getEndLoc());
   2325 
   2326     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
   2327     // context.
   2328     if (!RecoveryTSI)
   2329       return ExprError();
   2330 
   2331     // Only issue the fixit if we're prepared to recover.
   2332     D << FixItHint::CreateInsertion(Loc, "typename ");
   2333 
   2334     // Recover by pretending this was an elaborated type.
   2335     QualType Ty = Context.getTypeDeclType(TD);
   2336     TypeLocBuilder TLB;
   2337     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
   2338 
   2339     QualType ET = getElaboratedType(ETK_None, SS, Ty);
   2340     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
   2341     QTL.setElaboratedKeywordLoc(SourceLocation());
   2342     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2343 
   2344     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
   2345 
   2346     return ExprEmpty();
   2347   }
   2348 
   2349   // Defend against this resolving to an implicit member access. We usually
   2350   // won't get here if this might be a legitimate a class member (we end up in
   2351   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2352   // a pointer-to-member or in an unevaluated context in C++11.
   2353   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2354     return BuildPossibleImplicitMemberExpr(SS,
   2355                                            /*TemplateKWLoc=*/SourceLocation(),
   2356                                            R, /*TemplateArgs=*/nullptr);
   2357 
   2358   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2359 }
   2360 
   2361 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2362 /// detected that we're currently inside an ObjC method.  Perform some
   2363 /// additional lookup.
   2364 ///
   2365 /// Ideally, most of this would be done by lookup, but there's
   2366 /// actually quite a lot of extra work involved.
   2367 ///
   2368 /// Returns a null sentinel to indicate trivial success.
   2369 ExprResult
   2370 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2371                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2372   SourceLocation Loc = Lookup.getNameLoc();
   2373   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2374 
   2375   // Check for error condition which is already reported.
   2376   if (!CurMethod)
   2377     return ExprError();
   2378 
   2379   // There are two cases to handle here.  1) scoped lookup could have failed,
   2380   // in which case we should look for an ivar.  2) scoped lookup could have
   2381   // found a decl, but that decl is outside the current instance method (i.e.
   2382   // a global variable).  In these two cases, we do a lookup for an ivar with
   2383   // this name, if the lookup sucedes, we replace it our current decl.
   2384 
   2385   // If we're in a class method, we don't normally want to look for
   2386   // ivars.  But if we don't find anything else, and there's an
   2387   // ivar, that's an error.
   2388   bool IsClassMethod = CurMethod->isClassMethod();
   2389 
   2390   bool LookForIvars;
   2391   if (Lookup.empty())
   2392     LookForIvars = true;
   2393   else if (IsClassMethod)
   2394     LookForIvars = false;
   2395   else
   2396     LookForIvars = (Lookup.isSingleResult() &&
   2397                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2398   ObjCInterfaceDecl *IFace = nullptr;
   2399   if (LookForIvars) {
   2400     IFace = CurMethod->getClassInterface();
   2401     ObjCInterfaceDecl *ClassDeclared;
   2402     ObjCIvarDecl *IV = nullptr;
   2403     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2404       // Diagnose using an ivar in a class method.
   2405       if (IsClassMethod)
   2406         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2407                          << IV->getDeclName());
   2408 
   2409       // If we're referencing an invalid decl, just return this as a silent
   2410       // error node.  The error diagnostic was already emitted on the decl.
   2411       if (IV->isInvalidDecl())
   2412         return ExprError();
   2413 
   2414       // Check if referencing a field with __attribute__((deprecated)).
   2415       if (DiagnoseUseOfDecl(IV, Loc))
   2416         return ExprError();
   2417 
   2418       // Diagnose the use of an ivar outside of the declaring class.
   2419       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2420           !declaresSameEntity(ClassDeclared, IFace) &&
   2421           !getLangOpts().DebuggerSupport)
   2422         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2423 
   2424       // FIXME: This should use a new expr for a direct reference, don't
   2425       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2426       IdentifierInfo &II = Context.Idents.get("self");
   2427       UnqualifiedId SelfName;
   2428       SelfName.setIdentifier(&II, SourceLocation());
   2429       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2430       CXXScopeSpec SelfScopeSpec;
   2431       SourceLocation TemplateKWLoc;
   2432       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2433                                               SelfName, false, false);
   2434       if (SelfExpr.isInvalid())
   2435         return ExprError();
   2436 
   2437       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
   2438       if (SelfExpr.isInvalid())
   2439         return ExprError();
   2440 
   2441       MarkAnyDeclReferenced(Loc, IV, true);
   2442 
   2443       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2444       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2445           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2446         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2447 
   2448       ObjCIvarRefExpr *Result = new (Context)
   2449           ObjCIvarRefExpr(IV, IV->getType(), Loc, IV->getLocation(),
   2450                           SelfExpr.get(), true, true);
   2451 
   2452       if (getLangOpts().ObjCAutoRefCount) {
   2453         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2454           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   2455             recordUseOfEvaluatedWeak(Result);
   2456         }
   2457         if (CurContext->isClosure())
   2458           Diag(Loc, diag::warn_implicitly_retains_self)
   2459             << FixItHint::CreateInsertion(Loc, "self->");
   2460       }
   2461 
   2462       return Result;
   2463     }
   2464   } else if (CurMethod->isInstanceMethod()) {
   2465     // We should warn if a local variable hides an ivar.
   2466     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2467       ObjCInterfaceDecl *ClassDeclared;
   2468       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2469         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2470             declaresSameEntity(IFace, ClassDeclared))
   2471           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2472       }
   2473     }
   2474   } else if (Lookup.isSingleResult() &&
   2475              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2476     // If accessing a stand-alone ivar in a class method, this is an error.
   2477     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2478       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2479                        << IV->getDeclName());
   2480   }
   2481 
   2482   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2483     // FIXME. Consolidate this with similar code in LookupName.
   2484     if (unsigned BuiltinID = II->getBuiltinID()) {
   2485       if (!(getLangOpts().CPlusPlus &&
   2486             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2487         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2488                                            S, Lookup.isForRedeclaration(),
   2489                                            Lookup.getNameLoc());
   2490         if (D) Lookup.addDecl(D);
   2491       }
   2492     }
   2493   }
   2494   // Sentinel value saying that we didn't do anything special.
   2495   return ExprResult((Expr *)nullptr);
   2496 }
   2497 
   2498 /// \brief Cast a base object to a member's actual type.
   2499 ///
   2500 /// Logically this happens in three phases:
   2501 ///
   2502 /// * First we cast from the base type to the naming class.
   2503 ///   The naming class is the class into which we were looking
   2504 ///   when we found the member;  it's the qualifier type if a
   2505 ///   qualifier was provided, and otherwise it's the base type.
   2506 ///
   2507 /// * Next we cast from the naming class to the declaring class.
   2508 ///   If the member we found was brought into a class's scope by
   2509 ///   a using declaration, this is that class;  otherwise it's
   2510 ///   the class declaring the member.
   2511 ///
   2512 /// * Finally we cast from the declaring class to the "true"
   2513 ///   declaring class of the member.  This conversion does not
   2514 ///   obey access control.
   2515 ExprResult
   2516 Sema::PerformObjectMemberConversion(Expr *From,
   2517                                     NestedNameSpecifier *Qualifier,
   2518                                     NamedDecl *FoundDecl,
   2519                                     NamedDecl *Member) {
   2520   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2521   if (!RD)
   2522     return From;
   2523 
   2524   QualType DestRecordType;
   2525   QualType DestType;
   2526   QualType FromRecordType;
   2527   QualType FromType = From->getType();
   2528   bool PointerConversions = false;
   2529   if (isa<FieldDecl>(Member)) {
   2530     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2531 
   2532     if (FromType->getAs<PointerType>()) {
   2533       DestType = Context.getPointerType(DestRecordType);
   2534       FromRecordType = FromType->getPointeeType();
   2535       PointerConversions = true;
   2536     } else {
   2537       DestType = DestRecordType;
   2538       FromRecordType = FromType;
   2539     }
   2540   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2541     if (Method->isStatic())
   2542       return From;
   2543 
   2544     DestType = Method->getThisType(Context);
   2545     DestRecordType = DestType->getPointeeType();
   2546 
   2547     if (FromType->getAs<PointerType>()) {
   2548       FromRecordType = FromType->getPointeeType();
   2549       PointerConversions = true;
   2550     } else {
   2551       FromRecordType = FromType;
   2552       DestType = DestRecordType;
   2553     }
   2554   } else {
   2555     // No conversion necessary.
   2556     return From;
   2557   }
   2558 
   2559   if (DestType->isDependentType() || FromType->isDependentType())
   2560     return From;
   2561 
   2562   // If the unqualified types are the same, no conversion is necessary.
   2563   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2564     return From;
   2565 
   2566   SourceRange FromRange = From->getSourceRange();
   2567   SourceLocation FromLoc = FromRange.getBegin();
   2568 
   2569   ExprValueKind VK = From->getValueKind();
   2570 
   2571   // C++ [class.member.lookup]p8:
   2572   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2573   //   class name.
   2574   //
   2575   // If the member was a qualified name and the qualified referred to a
   2576   // specific base subobject type, we'll cast to that intermediate type
   2577   // first and then to the object in which the member is declared. That allows
   2578   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2579   //
   2580   //   class Base { public: int x; };
   2581   //   class Derived1 : public Base { };
   2582   //   class Derived2 : public Base { };
   2583   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2584   //
   2585   //   void VeryDerived::f() {
   2586   //     x = 17; // error: ambiguous base subobjects
   2587   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2588   //   }
   2589   if (Qualifier && Qualifier->getAsType()) {
   2590     QualType QType = QualType(Qualifier->getAsType(), 0);
   2591     assert(QType->isRecordType() && "lookup done with non-record type");
   2592 
   2593     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2594 
   2595     // In C++98, the qualifier type doesn't actually have to be a base
   2596     // type of the object type, in which case we just ignore it.
   2597     // Otherwise build the appropriate casts.
   2598     if (IsDerivedFrom(FromRecordType, QRecordType)) {
   2599       CXXCastPath BasePath;
   2600       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2601                                        FromLoc, FromRange, &BasePath))
   2602         return ExprError();
   2603 
   2604       if (PointerConversions)
   2605         QType = Context.getPointerType(QType);
   2606       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2607                                VK, &BasePath).get();
   2608 
   2609       FromType = QType;
   2610       FromRecordType = QRecordType;
   2611 
   2612       // If the qualifier type was the same as the destination type,
   2613       // we're done.
   2614       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2615         return From;
   2616     }
   2617   }
   2618 
   2619   bool IgnoreAccess = false;
   2620 
   2621   // If we actually found the member through a using declaration, cast
   2622   // down to the using declaration's type.
   2623   //
   2624   // Pointer equality is fine here because only one declaration of a
   2625   // class ever has member declarations.
   2626   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2627     assert(isa<UsingShadowDecl>(FoundDecl));
   2628     QualType URecordType = Context.getTypeDeclType(
   2629                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2630 
   2631     // We only need to do this if the naming-class to declaring-class
   2632     // conversion is non-trivial.
   2633     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2634       assert(IsDerivedFrom(FromRecordType, URecordType));
   2635       CXXCastPath BasePath;
   2636       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2637                                        FromLoc, FromRange, &BasePath))
   2638         return ExprError();
   2639 
   2640       QualType UType = URecordType;
   2641       if (PointerConversions)
   2642         UType = Context.getPointerType(UType);
   2643       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2644                                VK, &BasePath).get();
   2645       FromType = UType;
   2646       FromRecordType = URecordType;
   2647     }
   2648 
   2649     // We don't do access control for the conversion from the
   2650     // declaring class to the true declaring class.
   2651     IgnoreAccess = true;
   2652   }
   2653 
   2654   CXXCastPath BasePath;
   2655   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2656                                    FromLoc, FromRange, &BasePath,
   2657                                    IgnoreAccess))
   2658     return ExprError();
   2659 
   2660   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2661                            VK, &BasePath);
   2662 }
   2663 
   2664 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2665                                       const LookupResult &R,
   2666                                       bool HasTrailingLParen) {
   2667   // Only when used directly as the postfix-expression of a call.
   2668   if (!HasTrailingLParen)
   2669     return false;
   2670 
   2671   // Never if a scope specifier was provided.
   2672   if (SS.isSet())
   2673     return false;
   2674 
   2675   // Only in C++ or ObjC++.
   2676   if (!getLangOpts().CPlusPlus)
   2677     return false;
   2678 
   2679   // Turn off ADL when we find certain kinds of declarations during
   2680   // normal lookup:
   2681   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2682     NamedDecl *D = *I;
   2683 
   2684     // C++0x [basic.lookup.argdep]p3:
   2685     //     -- a declaration of a class member
   2686     // Since using decls preserve this property, we check this on the
   2687     // original decl.
   2688     if (D->isCXXClassMember())
   2689       return false;
   2690 
   2691     // C++0x [basic.lookup.argdep]p3:
   2692     //     -- a block-scope function declaration that is not a
   2693     //        using-declaration
   2694     // NOTE: we also trigger this for function templates (in fact, we
   2695     // don't check the decl type at all, since all other decl types
   2696     // turn off ADL anyway).
   2697     if (isa<UsingShadowDecl>(D))
   2698       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2699     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
   2700       return false;
   2701 
   2702     // C++0x [basic.lookup.argdep]p3:
   2703     //     -- a declaration that is neither a function or a function
   2704     //        template
   2705     // And also for builtin functions.
   2706     if (isa<FunctionDecl>(D)) {
   2707       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2708 
   2709       // But also builtin functions.
   2710       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2711         return false;
   2712     } else if (!isa<FunctionTemplateDecl>(D))
   2713       return false;
   2714   }
   2715 
   2716   return true;
   2717 }
   2718 
   2719 
   2720 /// Diagnoses obvious problems with the use of the given declaration
   2721 /// as an expression.  This is only actually called for lookups that
   2722 /// were not overloaded, and it doesn't promise that the declaration
   2723 /// will in fact be used.
   2724 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2725   if (isa<TypedefNameDecl>(D)) {
   2726     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2727     return true;
   2728   }
   2729 
   2730   if (isa<ObjCInterfaceDecl>(D)) {
   2731     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2732     return true;
   2733   }
   2734 
   2735   if (isa<NamespaceDecl>(D)) {
   2736     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2737     return true;
   2738   }
   2739 
   2740   return false;
   2741 }
   2742 
   2743 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2744                                           LookupResult &R, bool NeedsADL,
   2745                                           bool AcceptInvalidDecl) {
   2746   // If this is a single, fully-resolved result and we don't need ADL,
   2747   // just build an ordinary singleton decl ref.
   2748   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2749     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2750                                     R.getRepresentativeDecl(), nullptr,
   2751                                     AcceptInvalidDecl);
   2752 
   2753   // We only need to check the declaration if there's exactly one
   2754   // result, because in the overloaded case the results can only be
   2755   // functions and function templates.
   2756   if (R.isSingleResult() &&
   2757       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2758     return ExprError();
   2759 
   2760   // Otherwise, just build an unresolved lookup expression.  Suppress
   2761   // any lookup-related diagnostics; we'll hash these out later, when
   2762   // we've picked a target.
   2763   R.suppressDiagnostics();
   2764 
   2765   UnresolvedLookupExpr *ULE
   2766     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2767                                    SS.getWithLocInContext(Context),
   2768                                    R.getLookupNameInfo(),
   2769                                    NeedsADL, R.isOverloadedResult(),
   2770                                    R.begin(), R.end());
   2771 
   2772   return ULE;
   2773 }
   2774 
   2775 /// \brief Complete semantic analysis for a reference to the given declaration.
   2776 ExprResult Sema::BuildDeclarationNameExpr(
   2777     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2778     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
   2779     bool AcceptInvalidDecl) {
   2780   assert(D && "Cannot refer to a NULL declaration");
   2781   assert(!isa<FunctionTemplateDecl>(D) &&
   2782          "Cannot refer unambiguously to a function template");
   2783 
   2784   SourceLocation Loc = NameInfo.getLoc();
   2785   if (CheckDeclInExpr(*this, Loc, D))
   2786     return ExprError();
   2787 
   2788   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2789     // Specifically diagnose references to class templates that are missing
   2790     // a template argument list.
   2791     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2792                                            << Template << SS.getRange();
   2793     Diag(Template->getLocation(), diag::note_template_decl_here);
   2794     return ExprError();
   2795   }
   2796 
   2797   // Make sure that we're referring to a value.
   2798   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2799   if (!VD) {
   2800     Diag(Loc, diag::err_ref_non_value)
   2801       << D << SS.getRange();
   2802     Diag(D->getLocation(), diag::note_declared_at);
   2803     return ExprError();
   2804   }
   2805 
   2806   // Check whether this declaration can be used. Note that we suppress
   2807   // this check when we're going to perform argument-dependent lookup
   2808   // on this function name, because this might not be the function
   2809   // that overload resolution actually selects.
   2810   if (DiagnoseUseOfDecl(VD, Loc))
   2811     return ExprError();
   2812 
   2813   // Only create DeclRefExpr's for valid Decl's.
   2814   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
   2815     return ExprError();
   2816 
   2817   // Handle members of anonymous structs and unions.  If we got here,
   2818   // and the reference is to a class member indirect field, then this
   2819   // must be the subject of a pointer-to-member expression.
   2820   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2821     if (!indirectField->isCXXClassMember())
   2822       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2823                                                       indirectField);
   2824 
   2825   {
   2826     QualType type = VD->getType();
   2827     ExprValueKind valueKind = VK_RValue;
   2828 
   2829     switch (D->getKind()) {
   2830     // Ignore all the non-ValueDecl kinds.
   2831 #define ABSTRACT_DECL(kind)
   2832 #define VALUE(type, base)
   2833 #define DECL(type, base) \
   2834     case Decl::type:
   2835 #include "clang/AST/DeclNodes.inc"
   2836       llvm_unreachable("invalid value decl kind");
   2837 
   2838     // These shouldn't make it here.
   2839     case Decl::ObjCAtDefsField:
   2840     case Decl::ObjCIvar:
   2841       llvm_unreachable("forming non-member reference to ivar?");
   2842 
   2843     // Enum constants are always r-values and never references.
   2844     // Unresolved using declarations are dependent.
   2845     case Decl::EnumConstant:
   2846     case Decl::UnresolvedUsingValue:
   2847       valueKind = VK_RValue;
   2848       break;
   2849 
   2850     // Fields and indirect fields that got here must be for
   2851     // pointer-to-member expressions; we just call them l-values for
   2852     // internal consistency, because this subexpression doesn't really
   2853     // exist in the high-level semantics.
   2854     case Decl::Field:
   2855     case Decl::IndirectField:
   2856       assert(getLangOpts().CPlusPlus &&
   2857              "building reference to field in C?");
   2858 
   2859       // These can't have reference type in well-formed programs, but
   2860       // for internal consistency we do this anyway.
   2861       type = type.getNonReferenceType();
   2862       valueKind = VK_LValue;
   2863       break;
   2864 
   2865     // Non-type template parameters are either l-values or r-values
   2866     // depending on the type.
   2867     case Decl::NonTypeTemplateParm: {
   2868       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2869         type = reftype->getPointeeType();
   2870         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2871         break;
   2872       }
   2873 
   2874       // For non-references, we need to strip qualifiers just in case
   2875       // the template parameter was declared as 'const int' or whatever.
   2876       valueKind = VK_RValue;
   2877       type = type.getUnqualifiedType();
   2878       break;
   2879     }
   2880 
   2881     case Decl::Var:
   2882     case Decl::VarTemplateSpecialization:
   2883     case Decl::VarTemplatePartialSpecialization:
   2884       // In C, "extern void blah;" is valid and is an r-value.
   2885       if (!getLangOpts().CPlusPlus &&
   2886           !type.hasQualifiers() &&
   2887           type->isVoidType()) {
   2888         valueKind = VK_RValue;
   2889         break;
   2890       }
   2891       // fallthrough
   2892 
   2893     case Decl::ImplicitParam:
   2894     case Decl::ParmVar: {
   2895       // These are always l-values.
   2896       valueKind = VK_LValue;
   2897       type = type.getNonReferenceType();
   2898 
   2899       // FIXME: Does the addition of const really only apply in
   2900       // potentially-evaluated contexts? Since the variable isn't actually
   2901       // captured in an unevaluated context, it seems that the answer is no.
   2902       if (!isUnevaluatedContext()) {
   2903         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2904         if (!CapturedType.isNull())
   2905           type = CapturedType;
   2906       }
   2907 
   2908       break;
   2909     }
   2910 
   2911     case Decl::Function: {
   2912       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2913         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2914           type = Context.BuiltinFnTy;
   2915           valueKind = VK_RValue;
   2916           break;
   2917         }
   2918       }
   2919 
   2920       const FunctionType *fty = type->castAs<FunctionType>();
   2921 
   2922       // If we're referring to a function with an __unknown_anytype
   2923       // result type, make the entire expression __unknown_anytype.
   2924       if (fty->getReturnType() == Context.UnknownAnyTy) {
   2925         type = Context.UnknownAnyTy;
   2926         valueKind = VK_RValue;
   2927         break;
   2928       }
   2929 
   2930       // Functions are l-values in C++.
   2931       if (getLangOpts().CPlusPlus) {
   2932         valueKind = VK_LValue;
   2933         break;
   2934       }
   2935 
   2936       // C99 DR 316 says that, if a function type comes from a
   2937       // function definition (without a prototype), that type is only
   2938       // used for checking compatibility. Therefore, when referencing
   2939       // the function, we pretend that we don't have the full function
   2940       // type.
   2941       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2942           isa<FunctionProtoType>(fty))
   2943         type = Context.getFunctionNoProtoType(fty->getReturnType(),
   2944                                               fty->getExtInfo());
   2945 
   2946       // Functions are r-values in C.
   2947       valueKind = VK_RValue;
   2948       break;
   2949     }
   2950 
   2951     case Decl::MSProperty:
   2952       valueKind = VK_LValue;
   2953       break;
   2954 
   2955     case Decl::CXXMethod:
   2956       // If we're referring to a method with an __unknown_anytype
   2957       // result type, make the entire expression __unknown_anytype.
   2958       // This should only be possible with a type written directly.
   2959       if (const FunctionProtoType *proto
   2960             = dyn_cast<FunctionProtoType>(VD->getType()))
   2961         if (proto->getReturnType() == Context.UnknownAnyTy) {
   2962           type = Context.UnknownAnyTy;
   2963           valueKind = VK_RValue;
   2964           break;
   2965         }
   2966 
   2967       // C++ methods are l-values if static, r-values if non-static.
   2968       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2969         valueKind = VK_LValue;
   2970         break;
   2971       }
   2972       // fallthrough
   2973 
   2974     case Decl::CXXConversion:
   2975     case Decl::CXXDestructor:
   2976     case Decl::CXXConstructor:
   2977       valueKind = VK_RValue;
   2978       break;
   2979     }
   2980 
   2981     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   2982                             TemplateArgs);
   2983   }
   2984 }
   2985 
   2986 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   2987                                     SmallString<32> &Target) {
   2988   Target.resize(CharByteWidth * (Source.size() + 1));
   2989   char *ResultPtr = &Target[0];
   2990   const UTF8 *ErrorPtr;
   2991   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   2992   (void)success;
   2993   assert(success);
   2994   Target.resize(ResultPtr - &Target[0]);
   2995 }
   2996 
   2997 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
   2998                                      PredefinedExpr::IdentType IT) {
   2999   // Pick the current block, lambda, captured statement or function.
   3000   Decl *currentDecl = nullptr;
   3001   if (const BlockScopeInfo *BSI = getCurBlock())
   3002     currentDecl = BSI->TheDecl;
   3003   else if (const LambdaScopeInfo *LSI = getCurLambda())
   3004     currentDecl = LSI->CallOperator;
   3005   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
   3006     currentDecl = CSI->TheCapturedDecl;
   3007   else
   3008     currentDecl = getCurFunctionOrMethodDecl();
   3009 
   3010   if (!currentDecl) {
   3011     Diag(Loc, diag::ext_predef_outside_function);
   3012     currentDecl = Context.getTranslationUnitDecl();
   3013   }
   3014 
   3015   QualType ResTy;
   3016   StringLiteral *SL = nullptr;
   3017   if (cast<DeclContext>(currentDecl)->isDependentContext())
   3018     ResTy = Context.DependentTy;
   3019   else {
   3020     // Pre-defined identifiers are of type char[x], where x is the length of
   3021     // the string.
   3022     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
   3023     unsigned Length = Str.length();
   3024 
   3025     llvm::APInt LengthI(32, Length + 1);
   3026     if (IT == PredefinedExpr::LFunction) {
   3027       ResTy = Context.WideCharTy.withConst();
   3028       SmallString<32> RawChars;
   3029       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
   3030                               Str, RawChars);
   3031       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3032                                            /*IndexTypeQuals*/ 0);
   3033       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
   3034                                  /*Pascal*/ false, ResTy, Loc);
   3035     } else {
   3036       ResTy = Context.CharTy.withConst();
   3037       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3038                                            /*IndexTypeQuals*/ 0);
   3039       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
   3040                                  /*Pascal*/ false, ResTy, Loc);
   3041     }
   3042   }
   3043 
   3044   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
   3045 }
   3046 
   3047 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   3048   PredefinedExpr::IdentType IT;
   3049 
   3050   switch (Kind) {
   3051   default: llvm_unreachable("Unknown simple primary expr!");
   3052   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   3053   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   3054   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
   3055   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
   3056   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   3057   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   3058   }
   3059 
   3060   return BuildPredefinedExpr(Loc, IT);
   3061 }
   3062 
   3063 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   3064   SmallString<16> CharBuffer;
   3065   bool Invalid = false;
   3066   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   3067   if (Invalid)
   3068     return ExprError();
   3069 
   3070   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   3071                             PP, Tok.getKind());
   3072   if (Literal.hadError())
   3073     return ExprError();
   3074 
   3075   QualType Ty;
   3076   if (Literal.isWide())
   3077     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   3078   else if (Literal.isUTF16())
   3079     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   3080   else if (Literal.isUTF32())
   3081     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   3082   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   3083     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   3084   else
   3085     Ty = Context.CharTy;  // 'x' -> char in C++
   3086 
   3087   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   3088   if (Literal.isWide())
   3089     Kind = CharacterLiteral::Wide;
   3090   else if (Literal.isUTF16())
   3091     Kind = CharacterLiteral::UTF16;
   3092   else if (Literal.isUTF32())
   3093     Kind = CharacterLiteral::UTF32;
   3094 
   3095   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   3096                                              Tok.getLocation());
   3097 
   3098   if (Literal.getUDSuffix().empty())
   3099     return Lit;
   3100 
   3101   // We're building a user-defined literal.
   3102   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3103   SourceLocation UDSuffixLoc =
   3104     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3105 
   3106   // Make sure we're allowed user-defined literals here.
   3107   if (!UDLScope)
   3108     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   3109 
   3110   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   3111   //   operator "" X (ch)
   3112   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   3113                                         Lit, Tok.getLocation());
   3114 }
   3115 
   3116 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   3117   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3118   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   3119                                 Context.IntTy, Loc);
   3120 }
   3121 
   3122 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   3123                                   QualType Ty, SourceLocation Loc) {
   3124   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   3125 
   3126   using llvm::APFloat;
   3127   APFloat Val(Format);
   3128 
   3129   APFloat::opStatus result = Literal.GetFloatValue(Val);
   3130 
   3131   // Overflow is always an error, but underflow is only an error if
   3132   // we underflowed to zero (APFloat reports denormals as underflow).
   3133   if ((result & APFloat::opOverflow) ||
   3134       ((result & APFloat::opUnderflow) && Val.isZero())) {
   3135     unsigned diagnostic;
   3136     SmallString<20> buffer;
   3137     if (result & APFloat::opOverflow) {
   3138       diagnostic = diag::warn_float_overflow;
   3139       APFloat::getLargest(Format).toString(buffer);
   3140     } else {
   3141       diagnostic = diag::warn_float_underflow;
   3142       APFloat::getSmallest(Format).toString(buffer);
   3143     }
   3144 
   3145     S.Diag(Loc, diagnostic)
   3146       << Ty
   3147       << StringRef(buffer.data(), buffer.size());
   3148   }
   3149 
   3150   bool isExact = (result == APFloat::opOK);
   3151   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   3152 }
   3153 
   3154 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
   3155   assert(E && "Invalid expression");
   3156 
   3157   if (E->isValueDependent())
   3158     return false;
   3159 
   3160   QualType QT = E->getType();
   3161   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
   3162     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
   3163     return true;
   3164   }
   3165 
   3166   llvm::APSInt ValueAPS;
   3167   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
   3168 
   3169   if (R.isInvalid())
   3170     return true;
   3171 
   3172   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
   3173   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
   3174     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
   3175         << ValueAPS.toString(10) << ValueIsPositive;
   3176     return true;
   3177   }
   3178 
   3179   return false;
   3180 }
   3181 
   3182 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   3183   // Fast path for a single digit (which is quite common).  A single digit
   3184   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   3185   if (Tok.getLength() == 1) {
   3186     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   3187     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   3188   }
   3189 
   3190   SmallString<128> SpellingBuffer;
   3191   // NumericLiteralParser wants to overread by one character.  Add padding to
   3192   // the buffer in case the token is copied to the buffer.  If getSpelling()
   3193   // returns a StringRef to the memory buffer, it should have a null char at
   3194   // the EOF, so it is also safe.
   3195   SpellingBuffer.resize(Tok.getLength() + 1);
   3196 
   3197   // Get the spelling of the token, which eliminates trigraphs, etc.
   3198   bool Invalid = false;
   3199   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   3200   if (Invalid)
   3201     return ExprError();
   3202 
   3203   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   3204   if (Literal.hadError)
   3205     return ExprError();
   3206 
   3207   if (Literal.hasUDSuffix()) {
   3208     // We're building a user-defined literal.
   3209     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3210     SourceLocation UDSuffixLoc =
   3211       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3212 
   3213     // Make sure we're allowed user-defined literals here.
   3214     if (!UDLScope)
   3215       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   3216 
   3217     QualType CookedTy;
   3218     if (Literal.isFloatingLiteral()) {
   3219       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   3220       // long double, the literal is treated as a call of the form
   3221       //   operator "" X (f L)
   3222       CookedTy = Context.LongDoubleTy;
   3223     } else {
   3224       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   3225       // unsigned long long, the literal is treated as a call of the form
   3226       //   operator "" X (n ULL)
   3227       CookedTy = Context.UnsignedLongLongTy;
   3228     }
   3229 
   3230     DeclarationName OpName =
   3231       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   3232     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   3233     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   3234 
   3235     SourceLocation TokLoc = Tok.getLocation();
   3236 
   3237     // Perform literal operator lookup to determine if we're building a raw
   3238     // literal or a cooked one.
   3239     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   3240     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   3241                                   /*AllowRaw*/true, /*AllowTemplate*/true,
   3242                                   /*AllowStringTemplate*/false)) {
   3243     case LOLR_Error:
   3244       return ExprError();
   3245 
   3246     case LOLR_Cooked: {
   3247       Expr *Lit;
   3248       if (Literal.isFloatingLiteral()) {
   3249         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   3250       } else {
   3251         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   3252         if (Literal.GetIntegerValue(ResultVal))
   3253           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3254               << /* Unsigned */ 1;
   3255         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   3256                                      Tok.getLocation());
   3257       }
   3258       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3259     }
   3260 
   3261     case LOLR_Raw: {
   3262       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   3263       // literal is treated as a call of the form
   3264       //   operator "" X ("n")
   3265       unsigned Length = Literal.getUDSuffixOffset();
   3266       QualType StrTy = Context.getConstantArrayType(
   3267           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   3268           ArrayType::Normal, 0);
   3269       Expr *Lit = StringLiteral::Create(
   3270           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   3271           /*Pascal*/false, StrTy, &TokLoc, 1);
   3272       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3273     }
   3274 
   3275     case LOLR_Template: {
   3276       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   3277       // template), L is treated as a call fo the form
   3278       //   operator "" X <'c1', 'c2', ... 'ck'>()
   3279       // where n is the source character sequence c1 c2 ... ck.
   3280       TemplateArgumentListInfo ExplicitArgs;
   3281       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   3282       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   3283       llvm::APSInt Value(CharBits, CharIsUnsigned);
   3284       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   3285         Value = TokSpelling[I];
   3286         TemplateArgument Arg(Context, Value, Context.CharTy);
   3287         TemplateArgumentLocInfo ArgInfo;
   3288         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3289       }
   3290       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
   3291                                       &ExplicitArgs);
   3292     }
   3293     case LOLR_StringTemplate:
   3294       llvm_unreachable("unexpected literal operator lookup result");
   3295     }
   3296   }
   3297 
   3298   Expr *Res;
   3299 
   3300   if (Literal.isFloatingLiteral()) {
   3301     QualType Ty;
   3302     if (Literal.isFloat)
   3303       Ty = Context.FloatTy;
   3304     else if (!Literal.isLong)
   3305       Ty = Context.DoubleTy;
   3306     else
   3307       Ty = Context.LongDoubleTy;
   3308 
   3309     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3310 
   3311     if (Ty == Context.DoubleTy) {
   3312       if (getLangOpts().SinglePrecisionConstants) {
   3313         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3314       } else if (getLangOpts().OpenCL &&
   3315                  !((getLangOpts().OpenCLVersion >= 120) ||
   3316                    getOpenCLOptions().cl_khr_fp64)) {
   3317         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3318         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3319       }
   3320     }
   3321   } else if (!Literal.isIntegerLiteral()) {
   3322     return ExprError();
   3323   } else {
   3324     QualType Ty;
   3325 
   3326     // 'long long' is a C99 or C++11 feature.
   3327     if (!getLangOpts().C99 && Literal.isLongLong) {
   3328       if (getLangOpts().CPlusPlus)
   3329         Diag(Tok.getLocation(),
   3330              getLangOpts().CPlusPlus11 ?
   3331              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3332       else
   3333         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3334     }
   3335 
   3336     // Get the value in the widest-possible width.
   3337     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3338     // The microsoft literal suffix extensions support 128-bit literals, which
   3339     // may be wider than [u]intmax_t.
   3340     // FIXME: Actually, they don't. We seem to have accidentally invented the
   3341     //        i128 suffix.
   3342     if (Literal.MicrosoftInteger == 128 && MaxWidth < 128 &&
   3343         Context.getTargetInfo().hasInt128Type())
   3344       MaxWidth = 128;
   3345     llvm::APInt ResultVal(MaxWidth, 0);
   3346 
   3347     if (Literal.GetIntegerValue(ResultVal)) {
   3348       // If this value didn't fit into uintmax_t, error and force to ull.
   3349       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3350           << /* Unsigned */ 1;
   3351       Ty = Context.UnsignedLongLongTy;
   3352       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3353              "long long is not intmax_t?");
   3354     } else {
   3355       // If this value fits into a ULL, try to figure out what else it fits into
   3356       // according to the rules of C99 6.4.4.1p5.
   3357 
   3358       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3359       // be an unsigned int.
   3360       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3361 
   3362       // Check from smallest to largest, picking the smallest type we can.
   3363       unsigned Width = 0;
   3364 
   3365       // Microsoft specific integer suffixes are explicitly sized.
   3366       if (Literal.MicrosoftInteger) {
   3367         if (Literal.MicrosoftInteger > MaxWidth) {
   3368           // If this target doesn't support __int128, error and force to ull.
   3369           Diag(Tok.getLocation(), diag::err_int128_unsupported);
   3370           Width = MaxWidth;
   3371           Ty = Context.getIntMaxType();
   3372         } else if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
   3373           Width = 8;
   3374           Ty = Context.CharTy;
   3375         } else {
   3376           Width = Literal.MicrosoftInteger;
   3377           Ty = Context.getIntTypeForBitwidth(Width,
   3378                                              /*Signed=*/!Literal.isUnsigned);
   3379         }
   3380       }
   3381 
   3382       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
   3383         // Are int/unsigned possibilities?
   3384         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3385 
   3386         // Does it fit in a unsigned int?
   3387         if (ResultVal.isIntN(IntSize)) {
   3388           // Does it fit in a signed int?
   3389           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3390             Ty = Context.IntTy;
   3391           else if (AllowUnsigned)
   3392             Ty = Context.UnsignedIntTy;
   3393           Width = IntSize;
   3394         }
   3395       }
   3396 
   3397       // Are long/unsigned long possibilities?
   3398       if (Ty.isNull() && !Literal.isLongLong) {
   3399         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3400 
   3401         // Does it fit in a unsigned long?
   3402         if (ResultVal.isIntN(LongSize)) {
   3403           // Does it fit in a signed long?
   3404           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3405             Ty = Context.LongTy;
   3406           else if (AllowUnsigned)
   3407             Ty = Context.UnsignedLongTy;
   3408           Width = LongSize;
   3409         }
   3410       }
   3411 
   3412       // Check long long if needed.
   3413       if (Ty.isNull()) {
   3414         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3415 
   3416         // Does it fit in a unsigned long long?
   3417         if (ResultVal.isIntN(LongLongSize)) {
   3418           // Does it fit in a signed long long?
   3419           // To be compatible with MSVC, hex integer literals ending with the
   3420           // LL or i64 suffix are always signed in Microsoft mode.
   3421           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3422               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3423             Ty = Context.LongLongTy;
   3424           else if (AllowUnsigned)
   3425             Ty = Context.UnsignedLongLongTy;
   3426           Width = LongLongSize;
   3427         }
   3428       }
   3429 
   3430       // If we still couldn't decide a type, we probably have something that
   3431       // does not fit in a signed long long, but has no U suffix.
   3432       if (Ty.isNull()) {
   3433         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
   3434         Ty = Context.UnsignedLongLongTy;
   3435         Width = Context.getTargetInfo().getLongLongWidth();
   3436       }
   3437 
   3438       if (ResultVal.getBitWidth() != Width)
   3439         ResultVal = ResultVal.trunc(Width);
   3440     }
   3441     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3442   }
   3443 
   3444   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3445   if (Literal.isImaginary)
   3446     Res = new (Context) ImaginaryLiteral(Res,
   3447                                         Context.getComplexType(Res->getType()));
   3448 
   3449   return Res;
   3450 }
   3451 
   3452 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3453   assert(E && "ActOnParenExpr() missing expr");
   3454   return new (Context) ParenExpr(L, R, E);
   3455 }
   3456 
   3457 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3458                                          SourceLocation Loc,
   3459                                          SourceRange ArgRange) {
   3460   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3461   // scalar or vector data type argument..."
   3462   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3463   // type (C99 6.2.5p18) or void.
   3464   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3465     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3466       << T << ArgRange;
   3467     return true;
   3468   }
   3469 
   3470   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3471          "Scalar types should always be complete");
   3472   return false;
   3473 }
   3474 
   3475 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3476                                            SourceLocation Loc,
   3477                                            SourceRange ArgRange,
   3478                                            UnaryExprOrTypeTrait TraitKind) {
   3479   // Invalid types must be hard errors for SFINAE in C++.
   3480   if (S.LangOpts.CPlusPlus)
   3481     return true;
   3482 
   3483   // C99 6.5.3.4p1:
   3484   if (T->isFunctionType() &&
   3485       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3486     // sizeof(function)/alignof(function) is allowed as an extension.
   3487     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3488       << TraitKind << ArgRange;
   3489     return false;
   3490   }
   3491 
   3492   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
   3493   // this is an error (OpenCL v1.1 s6.3.k)
   3494   if (T->isVoidType()) {
   3495     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
   3496                                         : diag::ext_sizeof_alignof_void_type;
   3497     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
   3498     return false;
   3499   }
   3500 
   3501   return true;
   3502 }
   3503 
   3504 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3505                                              SourceLocation Loc,
   3506                                              SourceRange ArgRange,
   3507                                              UnaryExprOrTypeTrait TraitKind) {
   3508   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3509   // runtime doesn't allow it.
   3510   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3511     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3512       << T << (TraitKind == UETT_SizeOf)
   3513       << ArgRange;
   3514     return true;
   3515   }
   3516 
   3517   return false;
   3518 }
   3519 
   3520 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3521 /// pointer type is equal to T) and emit a warning if it is.
   3522 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3523                                      Expr *E) {
   3524   // Don't warn if the operation changed the type.
   3525   if (T != E->getType())
   3526     return;
   3527 
   3528   // Now look for array decays.
   3529   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3530   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3531     return;
   3532 
   3533   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3534                                              << ICE->getType()
   3535                                              << ICE->getSubExpr()->getType();
   3536 }
   3537 
   3538 /// \brief Check the constraints on expression operands to unary type expression
   3539 /// and type traits.
   3540 ///
   3541 /// Completes any types necessary and validates the constraints on the operand
   3542 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3543 /// the expression as it completes the type for that expression through template
   3544 /// instantiation, etc.
   3545 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3546                                             UnaryExprOrTypeTrait ExprKind) {
   3547   QualType ExprTy = E->getType();
   3548   assert(!ExprTy->isReferenceType());
   3549 
   3550   if (ExprKind == UETT_VecStep)
   3551     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3552                                         E->getSourceRange());
   3553 
   3554   // Whitelist some types as extensions
   3555   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3556                                       E->getSourceRange(), ExprKind))
   3557     return false;
   3558 
   3559   // 'alignof' applied to an expression only requires the base element type of
   3560   // the expression to be complete. 'sizeof' requires the expression's type to
   3561   // be complete (and will attempt to complete it if it's an array of unknown
   3562   // bound).
   3563   if (ExprKind == UETT_AlignOf) {
   3564     if (RequireCompleteType(E->getExprLoc(),
   3565                             Context.getBaseElementType(E->getType()),
   3566                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
   3567                             E->getSourceRange()))
   3568       return true;
   3569   } else {
   3570     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
   3571                                 ExprKind, E->getSourceRange()))
   3572       return true;
   3573   }
   3574 
   3575   // Completing the expression's type may have changed it.
   3576   ExprTy = E->getType();
   3577   assert(!ExprTy->isReferenceType());
   3578 
   3579   if (ExprTy->isFunctionType()) {
   3580     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
   3581       << ExprKind << E->getSourceRange();
   3582     return true;
   3583   }
   3584 
   3585   // The operand for sizeof and alignof is in an unevaluated expression context,
   3586   // so side effects could result in unintended consequences.
   3587   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
   3588       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
   3589     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
   3590 
   3591   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3592                                        E->getSourceRange(), ExprKind))
   3593     return true;
   3594 
   3595   if (ExprKind == UETT_SizeOf) {
   3596     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3597       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3598         QualType OType = PVD->getOriginalType();
   3599         QualType Type = PVD->getType();
   3600         if (Type->isPointerType() && OType->isArrayType()) {
   3601           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3602             << Type << OType;
   3603           Diag(PVD->getLocation(), diag::note_declared_at);
   3604         }
   3605       }
   3606     }
   3607 
   3608     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3609     // decays into a pointer and returns an unintended result. This is most
   3610     // likely a typo for "sizeof(array) op x".
   3611     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3612       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3613                                BO->getLHS());
   3614       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3615                                BO->getRHS());
   3616     }
   3617   }
   3618 
   3619   return false;
   3620 }
   3621 
   3622 /// \brief Check the constraints on operands to unary expression and type
   3623 /// traits.
   3624 ///
   3625 /// This will complete any types necessary, and validate the various constraints
   3626 /// on those operands.
   3627 ///
   3628 /// The UsualUnaryConversions() function is *not* called by this routine.
   3629 /// C99 6.3.2.1p[2-4] all state:
   3630 ///   Except when it is the operand of the sizeof operator ...
   3631 ///
   3632 /// C++ [expr.sizeof]p4
   3633 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3634 ///   standard conversions are not applied to the operand of sizeof.
   3635 ///
   3636 /// This policy is followed for all of the unary trait expressions.
   3637 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3638                                             SourceLocation OpLoc,
   3639                                             SourceRange ExprRange,
   3640                                             UnaryExprOrTypeTrait ExprKind) {
   3641   if (ExprType->isDependentType())
   3642     return false;
   3643 
   3644   // C++ [expr.sizeof]p2:
   3645   //     When applied to a reference or a reference type, the result
   3646   //     is the size of the referenced type.
   3647   // C++11 [expr.alignof]p3:
   3648   //     When alignof is applied to a reference type, the result
   3649   //     shall be the alignment of the referenced type.
   3650   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3651     ExprType = Ref->getPointeeType();
   3652 
   3653   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
   3654   //   When alignof or _Alignof is applied to an array type, the result
   3655   //   is the alignment of the element type.
   3656   if (ExprKind == UETT_AlignOf)
   3657     ExprType = Context.getBaseElementType(ExprType);
   3658 
   3659   if (ExprKind == UETT_VecStep)
   3660     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3661 
   3662   // Whitelist some types as extensions
   3663   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3664                                       ExprKind))
   3665     return false;
   3666 
   3667   if (RequireCompleteType(OpLoc, ExprType,
   3668                           diag::err_sizeof_alignof_incomplete_type,
   3669                           ExprKind, ExprRange))
   3670     return true;
   3671 
   3672   if (ExprType->isFunctionType()) {
   3673     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
   3674       << ExprKind << ExprRange;
   3675     return true;
   3676   }
   3677 
   3678   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3679                                        ExprKind))
   3680     return true;
   3681 
   3682   return false;
   3683 }
   3684 
   3685 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3686   E = E->IgnoreParens();
   3687 
   3688   // Cannot know anything else if the expression is dependent.
   3689   if (E->isTypeDependent())
   3690     return false;
   3691 
   3692   if (E->getObjectKind() == OK_BitField) {
   3693     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
   3694        << 1 << E->getSourceRange();
   3695     return true;
   3696   }
   3697 
   3698   ValueDecl *D = nullptr;
   3699   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3700     D = DRE->getDecl();
   3701   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3702     D = ME->getMemberDecl();
   3703   }
   3704 
   3705   // If it's a field, require the containing struct to have a
   3706   // complete definition so that we can compute the layout.
   3707   //
   3708   // This can happen in C++11 onwards, either by naming the member
   3709   // in a way that is not transformed into a member access expression
   3710   // (in an unevaluated operand, for instance), or by naming the member
   3711   // in a trailing-return-type.
   3712   //
   3713   // For the record, since __alignof__ on expressions is a GCC
   3714   // extension, GCC seems to permit this but always gives the
   3715   // nonsensical answer 0.
   3716   //
   3717   // We don't really need the layout here --- we could instead just
   3718   // directly check for all the appropriate alignment-lowing
   3719   // attributes --- but that would require duplicating a lot of
   3720   // logic that just isn't worth duplicating for such a marginal
   3721   // use-case.
   3722   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3723     // Fast path this check, since we at least know the record has a
   3724     // definition if we can find a member of it.
   3725     if (!FD->getParent()->isCompleteDefinition()) {
   3726       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3727         << E->getSourceRange();
   3728       return true;
   3729     }
   3730 
   3731     // Otherwise, if it's a field, and the field doesn't have
   3732     // reference type, then it must have a complete type (or be a
   3733     // flexible array member, which we explicitly want to
   3734     // white-list anyway), which makes the following checks trivial.
   3735     if (!FD->getType()->isReferenceType())
   3736       return false;
   3737   }
   3738 
   3739   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3740 }
   3741 
   3742 bool Sema::CheckVecStepExpr(Expr *E) {
   3743   E = E->IgnoreParens();
   3744 
   3745   // Cannot know anything else if the expression is dependent.
   3746   if (E->isTypeDependent())
   3747     return false;
   3748 
   3749   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3750 }
   3751 
   3752 /// \brief Build a sizeof or alignof expression given a type operand.
   3753 ExprResult
   3754 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3755                                      SourceLocation OpLoc,
   3756                                      UnaryExprOrTypeTrait ExprKind,
   3757                                      SourceRange R) {
   3758   if (!TInfo)
   3759     return ExprError();
   3760 
   3761   QualType T = TInfo->getType();
   3762 
   3763   if (!T->isDependentType() &&
   3764       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3765     return ExprError();
   3766 
   3767   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3768   return new (Context) UnaryExprOrTypeTraitExpr(
   3769       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
   3770 }
   3771 
   3772 /// \brief Build a sizeof or alignof expression given an expression
   3773 /// operand.
   3774 ExprResult
   3775 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3776                                      UnaryExprOrTypeTrait ExprKind) {
   3777   ExprResult PE = CheckPlaceholderExpr(E);
   3778   if (PE.isInvalid())
   3779     return ExprError();
   3780 
   3781   E = PE.get();
   3782 
   3783   // Verify that the operand is valid.
   3784   bool isInvalid = false;
   3785   if (E->isTypeDependent()) {
   3786     // Delay type-checking for type-dependent expressions.
   3787   } else if (ExprKind == UETT_AlignOf) {
   3788     isInvalid = CheckAlignOfExpr(*this, E);
   3789   } else if (ExprKind == UETT_VecStep) {
   3790     isInvalid = CheckVecStepExpr(E);
   3791   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   3792     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
   3793     isInvalid = true;
   3794   } else {
   3795     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   3796   }
   3797 
   3798   if (isInvalid)
   3799     return ExprError();
   3800 
   3801   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   3802     PE = TransformToPotentiallyEvaluated(E);
   3803     if (PE.isInvalid()) return ExprError();
   3804     E = PE.get();
   3805   }
   3806 
   3807   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3808   return new (Context) UnaryExprOrTypeTraitExpr(
   3809       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
   3810 }
   3811 
   3812 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   3813 /// expr and the same for @c alignof and @c __alignof
   3814 /// Note that the ArgRange is invalid if isType is false.
   3815 ExprResult
   3816 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   3817                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   3818                                     void *TyOrEx, const SourceRange &ArgRange) {
   3819   // If error parsing type, ignore.
   3820   if (!TyOrEx) return ExprError();
   3821 
   3822   if (IsType) {
   3823     TypeSourceInfo *TInfo;
   3824     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   3825     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   3826   }
   3827 
   3828   Expr *ArgEx = (Expr *)TyOrEx;
   3829   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   3830   return Result;
   3831 }
   3832 
   3833 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   3834                                      bool IsReal) {
   3835   if (V.get()->isTypeDependent())
   3836     return S.Context.DependentTy;
   3837 
   3838   // _Real and _Imag are only l-values for normal l-values.
   3839   if (V.get()->getObjectKind() != OK_Ordinary) {
   3840     V = S.DefaultLvalueConversion(V.get());
   3841     if (V.isInvalid())
   3842       return QualType();
   3843   }
   3844 
   3845   // These operators return the element type of a complex type.
   3846   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   3847     return CT->getElementType();
   3848 
   3849   // Otherwise they pass through real integer and floating point types here.
   3850   if (V.get()->getType()->isArithmeticType())
   3851     return V.get()->getType();
   3852 
   3853   // Test for placeholders.
   3854   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   3855   if (PR.isInvalid()) return QualType();
   3856   if (PR.get() != V.get()) {
   3857     V = PR;
   3858     return CheckRealImagOperand(S, V, Loc, IsReal);
   3859   }
   3860 
   3861   // Reject anything else.
   3862   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   3863     << (IsReal ? "__real" : "__imag");
   3864   return QualType();
   3865 }
   3866 
   3867 
   3868 
   3869 ExprResult
   3870 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   3871                           tok::TokenKind Kind, Expr *Input) {
   3872   UnaryOperatorKind Opc;
   3873   switch (Kind) {
   3874   default: llvm_unreachable("Unknown unary op!");
   3875   case tok::plusplus:   Opc = UO_PostInc; break;
   3876   case tok::minusminus: Opc = UO_PostDec; break;
   3877   }
   3878 
   3879   // Since this might is a postfix expression, get rid of ParenListExprs.
   3880   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   3881   if (Result.isInvalid()) return ExprError();
   3882   Input = Result.get();
   3883 
   3884   return BuildUnaryOp(S, OpLoc, Opc, Input);
   3885 }
   3886 
   3887 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   3888 ///
   3889 /// \return true on error
   3890 static bool checkArithmeticOnObjCPointer(Sema &S,
   3891                                          SourceLocation opLoc,
   3892                                          Expr *op) {
   3893   assert(op->getType()->isObjCObjectPointerType());
   3894   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
   3895       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
   3896     return false;
   3897 
   3898   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   3899     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   3900     << op->getSourceRange();
   3901   return true;
   3902 }
   3903 
   3904 ExprResult
   3905 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   3906                               Expr *idx, SourceLocation rbLoc) {
   3907   // Since this might be a postfix expression, get rid of ParenListExprs.
   3908   if (isa<ParenListExpr>(base)) {
   3909     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   3910     if (result.isInvalid()) return ExprError();
   3911     base = result.get();
   3912   }
   3913 
   3914   // Handle any non-overload placeholder types in the base and index
   3915   // expressions.  We can't handle overloads here because the other
   3916   // operand might be an overloadable type, in which case the overload
   3917   // resolution for the operator overload should get the first crack
   3918   // at the overload.
   3919   if (base->getType()->isNonOverloadPlaceholderType()) {
   3920     ExprResult result = CheckPlaceholderExpr(base);
   3921     if (result.isInvalid()) return ExprError();
   3922     base = result.get();
   3923   }
   3924   if (idx->getType()->isNonOverloadPlaceholderType()) {
   3925     ExprResult result = CheckPlaceholderExpr(idx);
   3926     if (result.isInvalid()) return ExprError();
   3927     idx = result.get();
   3928   }
   3929 
   3930   // Build an unanalyzed expression if either operand is type-dependent.
   3931   if (getLangOpts().CPlusPlus &&
   3932       (base->isTypeDependent() || idx->isTypeDependent())) {
   3933     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
   3934                                             VK_LValue, OK_Ordinary, rbLoc);
   3935   }
   3936 
   3937   // Use C++ overloaded-operator rules if either operand has record
   3938   // type.  The spec says to do this if either type is *overloadable*,
   3939   // but enum types can't declare subscript operators or conversion
   3940   // operators, so there's nothing interesting for overload resolution
   3941   // to do if there aren't any record types involved.
   3942   //
   3943   // ObjC pointers have their own subscripting logic that is not tied
   3944   // to overload resolution and so should not take this path.
   3945   if (getLangOpts().CPlusPlus &&
   3946       (base->getType()->isRecordType() ||
   3947        (!base->getType()->isObjCObjectPointerType() &&
   3948         idx->getType()->isRecordType()))) {
   3949     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   3950   }
   3951 
   3952   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   3953 }
   3954 
   3955 ExprResult
   3956 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   3957                                       Expr *Idx, SourceLocation RLoc) {
   3958   Expr *LHSExp = Base;
   3959   Expr *RHSExp = Idx;
   3960 
   3961   // Perform default conversions.
   3962   if (!LHSExp->getType()->getAs<VectorType>()) {
   3963     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   3964     if (Result.isInvalid())
   3965       return ExprError();
   3966     LHSExp = Result.get();
   3967   }
   3968   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   3969   if (Result.isInvalid())
   3970     return ExprError();
   3971   RHSExp = Result.get();
   3972 
   3973   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   3974   ExprValueKind VK = VK_LValue;
   3975   ExprObjectKind OK = OK_Ordinary;
   3976 
   3977   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   3978   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   3979   // in the subscript position. As a result, we need to derive the array base
   3980   // and index from the expression types.
   3981   Expr *BaseExpr, *IndexExpr;
   3982   QualType ResultType;
   3983   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   3984     BaseExpr = LHSExp;
   3985     IndexExpr = RHSExp;
   3986     ResultType = Context.DependentTy;
   3987   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   3988     BaseExpr = LHSExp;
   3989     IndexExpr = RHSExp;
   3990     ResultType = PTy->getPointeeType();
   3991   } else if (const ObjCObjectPointerType *PTy =
   3992                LHSTy->getAs<ObjCObjectPointerType>()) {
   3993     BaseExpr = LHSExp;
   3994     IndexExpr = RHSExp;
   3995 
   3996     // Use custom logic if this should be the pseudo-object subscript
   3997     // expression.
   3998     if (!LangOpts.isSubscriptPointerArithmetic())
   3999       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
   4000                                           nullptr);
   4001 
   4002     ResultType = PTy->getPointeeType();
   4003   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   4004      // Handle the uncommon case of "123[Ptr]".
   4005     BaseExpr = RHSExp;
   4006     IndexExpr = LHSExp;
   4007     ResultType = PTy->getPointeeType();
   4008   } else if (const ObjCObjectPointerType *PTy =
   4009                RHSTy->getAs<ObjCObjectPointerType>()) {
   4010      // Handle the uncommon case of "123[Ptr]".
   4011     BaseExpr = RHSExp;
   4012     IndexExpr = LHSExp;
   4013     ResultType = PTy->getPointeeType();
   4014     if (!LangOpts.isSubscriptPointerArithmetic()) {
   4015       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   4016         << ResultType << BaseExpr->getSourceRange();
   4017       return ExprError();
   4018     }
   4019   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   4020     BaseExpr = LHSExp;    // vectors: V[123]
   4021     IndexExpr = RHSExp;
   4022     VK = LHSExp->getValueKind();
   4023     if (VK != VK_RValue)
   4024       OK = OK_VectorComponent;
   4025 
   4026     // FIXME: need to deal with const...
   4027     ResultType = VTy->getElementType();
   4028   } else if (LHSTy->isArrayType()) {
   4029     // If we see an array that wasn't promoted by
   4030     // DefaultFunctionArrayLvalueConversion, it must be an array that
   4031     // wasn't promoted because of the C90 rule that doesn't
   4032     // allow promoting non-lvalue arrays.  Warn, then
   4033     // force the promotion here.
   4034     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4035         LHSExp->getSourceRange();
   4036     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   4037                                CK_ArrayToPointerDecay).get();
   4038     LHSTy = LHSExp->getType();
   4039 
   4040     BaseExpr = LHSExp;
   4041     IndexExpr = RHSExp;
   4042     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   4043   } else if (RHSTy->isArrayType()) {
   4044     // Same as previous, except for 123[f().a] case
   4045     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4046         RHSExp->getSourceRange();
   4047     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   4048                                CK_ArrayToPointerDecay).get();
   4049     RHSTy = RHSExp->getType();
   4050 
   4051     BaseExpr = RHSExp;
   4052     IndexExpr = LHSExp;
   4053     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   4054   } else {
   4055     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   4056        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   4057   }
   4058   // C99 6.5.2.1p1
   4059   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   4060     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   4061                      << IndexExpr->getSourceRange());
   4062 
   4063   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4064        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4065          && !IndexExpr->isTypeDependent())
   4066     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   4067 
   4068   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4069   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4070   // type. Note that Functions are not objects, and that (in C99 parlance)
   4071   // incomplete types are not object types.
   4072   if (ResultType->isFunctionType()) {
   4073     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   4074       << ResultType << BaseExpr->getSourceRange();
   4075     return ExprError();
   4076   }
   4077 
   4078   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   4079     // GNU extension: subscripting on pointer to void
   4080     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   4081       << BaseExpr->getSourceRange();
   4082 
   4083     // C forbids expressions of unqualified void type from being l-values.
   4084     // See IsCForbiddenLValueType.
   4085     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   4086   } else if (!ResultType->isDependentType() &&
   4087       RequireCompleteType(LLoc, ResultType,
   4088                           diag::err_subscript_incomplete_type, BaseExpr))
   4089     return ExprError();
   4090 
   4091   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   4092          !ResultType.isCForbiddenLValueType());
   4093 
   4094   return new (Context)
   4095       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
   4096 }
   4097 
   4098 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   4099                                         FunctionDecl *FD,
   4100                                         ParmVarDecl *Param) {
   4101   if (Param->hasUnparsedDefaultArg()) {
   4102     Diag(CallLoc,
   4103          diag::err_use_of_default_argument_to_function_declared_later) <<
   4104       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   4105     Diag(UnparsedDefaultArgLocs[Param],
   4106          diag::note_default_argument_declared_here);
   4107     return ExprError();
   4108   }
   4109 
   4110   if (Param->hasUninstantiatedDefaultArg()) {
   4111     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   4112 
   4113     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   4114                                                  Param);
   4115 
   4116     // Instantiate the expression.
   4117     MultiLevelTemplateArgumentList MutiLevelArgList
   4118       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
   4119 
   4120     InstantiatingTemplate Inst(*this, CallLoc, Param,
   4121                                MutiLevelArgList.getInnermost());
   4122     if (Inst.isInvalid())
   4123       return ExprError();
   4124 
   4125     ExprResult Result;
   4126     {
   4127       // C++ [dcl.fct.default]p5:
   4128       //   The names in the [default argument] expression are bound, and
   4129       //   the semantic constraints are checked, at the point where the
   4130       //   default argument expression appears.
   4131       ContextRAII SavedContext(*this, FD);
   4132       LocalInstantiationScope Local(*this);
   4133       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   4134     }
   4135     if (Result.isInvalid())
   4136       return ExprError();
   4137 
   4138     // Check the expression as an initializer for the parameter.
   4139     InitializedEntity Entity
   4140       = InitializedEntity::InitializeParameter(Context, Param);
   4141     InitializationKind Kind
   4142       = InitializationKind::CreateCopy(Param->getLocation(),
   4143              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   4144     Expr *ResultE = Result.getAs<Expr>();
   4145 
   4146     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   4147     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   4148     if (Result.isInvalid())
   4149       return ExprError();
   4150 
   4151     Expr *Arg = Result.getAs<Expr>();
   4152     CheckCompletedExpr(Arg, Param->getOuterLocStart());
   4153     // Build the default argument expression.
   4154     return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
   4155   }
   4156 
   4157   // If the default expression creates temporaries, we need to
   4158   // push them to the current stack of expression temporaries so they'll
   4159   // be properly destroyed.
   4160   // FIXME: We should really be rebuilding the default argument with new
   4161   // bound temporaries; see the comment in PR5810.
   4162   // We don't need to do that with block decls, though, because
   4163   // blocks in default argument expression can never capture anything.
   4164   if (isa<ExprWithCleanups>(Param->getInit())) {
   4165     // Set the "needs cleanups" bit regardless of whether there are
   4166     // any explicit objects.
   4167     ExprNeedsCleanups = true;
   4168 
   4169     // Append all the objects to the cleanup list.  Right now, this
   4170     // should always be a no-op, because blocks in default argument
   4171     // expressions should never be able to capture anything.
   4172     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
   4173            "default argument expression has capturing blocks?");
   4174   }
   4175 
   4176   // We already type-checked the argument, so we know it works.
   4177   // Just mark all of the declarations in this potentially-evaluated expression
   4178   // as being "referenced".
   4179   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   4180                                    /*SkipLocalVariables=*/true);
   4181   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
   4182 }
   4183 
   4184 
   4185 Sema::VariadicCallType
   4186 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   4187                           Expr *Fn) {
   4188   if (Proto && Proto->isVariadic()) {
   4189     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   4190       return VariadicConstructor;
   4191     else if (Fn && Fn->getType()->isBlockPointerType())
   4192       return VariadicBlock;
   4193     else if (FDecl) {
   4194       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4195         if (Method->isInstance())
   4196           return VariadicMethod;
   4197     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   4198       return VariadicMethod;
   4199     return VariadicFunction;
   4200   }
   4201   return VariadicDoesNotApply;
   4202 }
   4203 
   4204 namespace {
   4205 class FunctionCallCCC : public FunctionCallFilterCCC {
   4206 public:
   4207   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   4208                   unsigned NumArgs, MemberExpr *ME)
   4209       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
   4210         FunctionName(FuncName) {}
   4211 
   4212   bool ValidateCandidate(const TypoCorrection &candidate) override {
   4213     if (!candidate.getCorrectionSpecifier() ||
   4214         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   4215       return false;
   4216     }
   4217 
   4218     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   4219   }
   4220 
   4221 private:
   4222   const IdentifierInfo *const FunctionName;
   4223 };
   4224 }
   4225 
   4226 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
   4227                                                FunctionDecl *FDecl,
   4228                                                ArrayRef<Expr *> Args) {
   4229   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
   4230   DeclarationName FuncName = FDecl->getDeclName();
   4231   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
   4232 
   4233   if (TypoCorrection Corrected = S.CorrectTypo(
   4234           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
   4235           S.getScopeForContext(S.CurContext), nullptr,
   4236           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
   4237                                              Args.size(), ME),
   4238           Sema::CTK_ErrorRecovery)) {
   4239     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   4240       if (Corrected.isOverloaded()) {
   4241         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
   4242         OverloadCandidateSet::iterator Best;
   4243         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   4244                                            CDEnd = Corrected.end();
   4245              CD != CDEnd; ++CD) {
   4246           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   4247             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   4248                                    OCS);
   4249         }
   4250         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
   4251         case OR_Success:
   4252           ND = Best->Function;
   4253           Corrected.setCorrectionDecl(ND);
   4254           break;
   4255         default:
   4256           break;
   4257         }
   4258       }
   4259       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   4260         return Corrected;
   4261       }
   4262     }
   4263   }
   4264   return TypoCorrection();
   4265 }
   4266 
   4267 /// ConvertArgumentsForCall - Converts the arguments specified in
   4268 /// Args/NumArgs to the parameter types of the function FDecl with
   4269 /// function prototype Proto. Call is the call expression itself, and
   4270 /// Fn is the function expression. For a C++ member function, this
   4271 /// routine does not attempt to convert the object argument. Returns
   4272 /// true if the call is ill-formed.
   4273 bool
   4274 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   4275                               FunctionDecl *FDecl,
   4276                               const FunctionProtoType *Proto,
   4277                               ArrayRef<Expr *> Args,
   4278                               SourceLocation RParenLoc,
   4279                               bool IsExecConfig) {
   4280   // Bail out early if calling a builtin with custom typechecking.
   4281   // We don't need to do this in the
   4282   if (FDecl)
   4283     if (unsigned ID = FDecl->getBuiltinID())
   4284       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   4285         return false;
   4286 
   4287   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   4288   // assignment, to the types of the corresponding parameter, ...
   4289   unsigned NumParams = Proto->getNumParams();
   4290   bool Invalid = false;
   4291   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
   4292   unsigned FnKind = Fn->getType()->isBlockPointerType()
   4293                        ? 1 /* block */
   4294                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   4295                                        : 0 /* function */);
   4296 
   4297   // If too few arguments are available (and we don't have default
   4298   // arguments for the remaining parameters), don't make the call.
   4299   if (Args.size() < NumParams) {
   4300     if (Args.size() < MinArgs) {
   4301       TypoCorrection TC;
   4302       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4303         unsigned diag_id =
   4304             MinArgs == NumParams && !Proto->isVariadic()
   4305                 ? diag::err_typecheck_call_too_few_args_suggest
   4306                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
   4307         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
   4308                                         << static_cast<unsigned>(Args.size())
   4309                                         << TC.getCorrectionRange());
   4310       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   4311         Diag(RParenLoc,
   4312              MinArgs == NumParams && !Proto->isVariadic()
   4313                  ? diag::err_typecheck_call_too_few_args_one
   4314                  : diag::err_typecheck_call_too_few_args_at_least_one)
   4315             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
   4316       else
   4317         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
   4318                             ? diag::err_typecheck_call_too_few_args
   4319                             : diag::err_typecheck_call_too_few_args_at_least)
   4320             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
   4321             << Fn->getSourceRange();
   4322 
   4323       // Emit the location of the prototype.
   4324       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4325         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4326           << FDecl;
   4327 
   4328       return true;
   4329     }
   4330     Call->setNumArgs(Context, NumParams);
   4331   }
   4332 
   4333   // If too many are passed and not variadic, error on the extras and drop
   4334   // them.
   4335   if (Args.size() > NumParams) {
   4336     if (!Proto->isVariadic()) {
   4337       TypoCorrection TC;
   4338       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4339         unsigned diag_id =
   4340             MinArgs == NumParams && !Proto->isVariadic()
   4341                 ? diag::err_typecheck_call_too_many_args_suggest
   4342                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
   4343         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
   4344                                         << static_cast<unsigned>(Args.size())
   4345                                         << TC.getCorrectionRange());
   4346       } else if (NumParams == 1 && FDecl &&
   4347                  FDecl->getParamDecl(0)->getDeclName())
   4348         Diag(Args[NumParams]->getLocStart(),
   4349              MinArgs == NumParams
   4350                  ? diag::err_typecheck_call_too_many_args_one
   4351                  : diag::err_typecheck_call_too_many_args_at_most_one)
   4352             << FnKind << FDecl->getParamDecl(0)
   4353             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
   4354             << SourceRange(Args[NumParams]->getLocStart(),
   4355                            Args.back()->getLocEnd());
   4356       else
   4357         Diag(Args[NumParams]->getLocStart(),
   4358              MinArgs == NumParams
   4359                  ? diag::err_typecheck_call_too_many_args
   4360                  : diag::err_typecheck_call_too_many_args_at_most)
   4361             << FnKind << NumParams << static_cast<unsigned>(Args.size())
   4362             << Fn->getSourceRange()
   4363             << SourceRange(Args[NumParams]->getLocStart(),
   4364                            Args.back()->getLocEnd());
   4365 
   4366       // Emit the location of the prototype.
   4367       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4368         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4369           << FDecl;
   4370 
   4371       // This deletes the extra arguments.
   4372       Call->setNumArgs(Context, NumParams);
   4373       return true;
   4374     }
   4375   }
   4376   SmallVector<Expr *, 8> AllArgs;
   4377   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   4378 
   4379   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   4380                                    Proto, 0, Args, AllArgs, CallType);
   4381   if (Invalid)
   4382     return true;
   4383   unsigned TotalNumArgs = AllArgs.size();
   4384   for (unsigned i = 0; i < TotalNumArgs; ++i)
   4385     Call->setArg(i, AllArgs[i]);
   4386 
   4387   return false;
   4388 }
   4389 
   4390 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
   4391                                   const FunctionProtoType *Proto,
   4392                                   unsigned FirstParam, ArrayRef<Expr *> Args,
   4393                                   SmallVectorImpl<Expr *> &AllArgs,
   4394                                   VariadicCallType CallType, bool AllowExplicit,
   4395                                   bool IsListInitialization) {
   4396   unsigned NumParams = Proto->getNumParams();
   4397   bool Invalid = false;
   4398   unsigned ArgIx = 0;
   4399   // Continue to check argument types (even if we have too few/many args).
   4400   for (unsigned i = FirstParam; i < NumParams; i++) {
   4401     QualType ProtoArgType = Proto->getParamType(i);
   4402 
   4403     Expr *Arg;
   4404     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
   4405     if (ArgIx < Args.size()) {
   4406       Arg = Args[ArgIx++];
   4407 
   4408       if (RequireCompleteType(Arg->getLocStart(),
   4409                               ProtoArgType,
   4410                               diag::err_call_incomplete_argument, Arg))
   4411         return true;
   4412 
   4413       // Strip the unbridged-cast placeholder expression off, if applicable.
   4414       bool CFAudited = false;
   4415       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   4416           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4417           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4418         Arg = stripARCUnbridgedCast(Arg);
   4419       else if (getLangOpts().ObjCAutoRefCount &&
   4420                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4421                (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4422         CFAudited = true;
   4423 
   4424       InitializedEntity Entity =
   4425           Param ? InitializedEntity::InitializeParameter(Context, Param,
   4426                                                          ProtoArgType)
   4427                 : InitializedEntity::InitializeParameter(
   4428                       Context, ProtoArgType, Proto->isParamConsumed(i));
   4429 
   4430       // Remember that parameter belongs to a CF audited API.
   4431       if (CFAudited)
   4432         Entity.setParameterCFAudited();
   4433 
   4434       ExprResult ArgE = PerformCopyInitialization(
   4435           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
   4436       if (ArgE.isInvalid())
   4437         return true;
   4438 
   4439       Arg = ArgE.getAs<Expr>();
   4440     } else {
   4441       assert(Param && "can't use default arguments without a known callee");
   4442 
   4443       ExprResult ArgExpr =
   4444         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   4445       if (ArgExpr.isInvalid())
   4446         return true;
   4447 
   4448       Arg = ArgExpr.getAs<Expr>();
   4449     }
   4450 
   4451     // Check for array bounds violations for each argument to the call. This
   4452     // check only triggers warnings when the argument isn't a more complex Expr
   4453     // with its own checking, such as a BinaryOperator.
   4454     CheckArrayAccess(Arg);
   4455 
   4456     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   4457     CheckStaticArrayArgument(CallLoc, Param, Arg);
   4458 
   4459     AllArgs.push_back(Arg);
   4460   }
   4461 
   4462   // If this is a variadic call, handle args passed through "...".
   4463   if (CallType != VariadicDoesNotApply) {
   4464     // Assume that extern "C" functions with variadic arguments that
   4465     // return __unknown_anytype aren't *really* variadic.
   4466     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
   4467         FDecl->isExternC()) {
   4468       for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
   4469         QualType paramType; // ignored
   4470         ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
   4471         Invalid |= arg.isInvalid();
   4472         AllArgs.push_back(arg.get());
   4473       }
   4474 
   4475     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   4476     } else {
   4477       for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
   4478         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
   4479                                                           FDecl);
   4480         Invalid |= Arg.isInvalid();
   4481         AllArgs.push_back(Arg.get());
   4482       }
   4483     }
   4484 
   4485     // Check for array bounds violations.
   4486     for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
   4487       CheckArrayAccess(Args[i]);
   4488   }
   4489   return Invalid;
   4490 }
   4491 
   4492 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   4493   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   4494   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
   4495     TL = DTL.getOriginalLoc();
   4496   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
   4497     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
   4498       << ATL.getLocalSourceRange();
   4499 }
   4500 
   4501 /// CheckStaticArrayArgument - If the given argument corresponds to a static
   4502 /// array parameter, check that it is non-null, and that if it is formed by
   4503 /// array-to-pointer decay, the underlying array is sufficiently large.
   4504 ///
   4505 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
   4506 /// array type derivation, then for each call to the function, the value of the
   4507 /// corresponding actual argument shall provide access to the first element of
   4508 /// an array with at least as many elements as specified by the size expression.
   4509 void
   4510 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
   4511                                ParmVarDecl *Param,
   4512                                const Expr *ArgExpr) {
   4513   // Static array parameters are not supported in C++.
   4514   if (!Param || getLangOpts().CPlusPlus)
   4515     return;
   4516 
   4517   QualType OrigTy = Param->getOriginalType();
   4518 
   4519   const ArrayType *AT = Context.getAsArrayType(OrigTy);
   4520   if (!AT || AT->getSizeModifier() != ArrayType::Static)
   4521     return;
   4522 
   4523   if (ArgExpr->isNullPointerConstant(Context,
   4524                                      Expr::NPC_NeverValueDependent)) {
   4525     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   4526     DiagnoseCalleeStaticArrayParam(*this, Param);
   4527     return;
   4528   }
   4529 
   4530   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
   4531   if (!CAT)
   4532     return;
   4533 
   4534   const ConstantArrayType *ArgCAT =
   4535     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
   4536   if (!ArgCAT)
   4537     return;
   4538 
   4539   if (ArgCAT->getSize().ult(CAT->getSize())) {
   4540     Diag(CallLoc, diag::warn_static_array_too_small)
   4541       << ArgExpr->getSourceRange()
   4542       << (unsigned) ArgCAT->getSize().getZExtValue()
   4543       << (unsigned) CAT->getSize().getZExtValue();
   4544     DiagnoseCalleeStaticArrayParam(*this, Param);
   4545   }
   4546 }
   4547 
   4548 /// Given a function expression of unknown-any type, try to rebuild it
   4549 /// to have a function type.
   4550 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   4551 
   4552 /// Is the given type a placeholder that we need to lower out
   4553 /// immediately during argument processing?
   4554 static bool isPlaceholderToRemoveAsArg(QualType type) {
   4555   // Placeholders are never sugared.
   4556   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
   4557   if (!placeholder) return false;
   4558 
   4559   switch (placeholder->getKind()) {
   4560   // Ignore all the non-placeholder types.
   4561 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
   4562 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
   4563 #include "clang/AST/BuiltinTypes.def"
   4564     return false;
   4565 
   4566   // We cannot lower out overload sets; they might validly be resolved
   4567   // by the call machinery.
   4568   case BuiltinType::Overload:
   4569     return false;
   4570 
   4571   // Unbridged casts in ARC can be handled in some call positions and
   4572   // should be left in place.
   4573   case BuiltinType::ARCUnbridgedCast:
   4574     return false;
   4575 
   4576   // Pseudo-objects should be converted as soon as possible.
   4577   case BuiltinType::PseudoObject:
   4578     return true;
   4579 
   4580   // The debugger mode could theoretically but currently does not try
   4581   // to resolve unknown-typed arguments based on known parameter types.
   4582   case BuiltinType::UnknownAny:
   4583     return true;
   4584 
   4585   // These are always invalid as call arguments and should be reported.
   4586   case BuiltinType::BoundMember:
   4587   case BuiltinType::BuiltinFn:
   4588     return true;
   4589   }
   4590   llvm_unreachable("bad builtin type kind");
   4591 }
   4592 
   4593 /// Check an argument list for placeholders that we won't try to
   4594 /// handle later.
   4595 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
   4596   // Apply this processing to all the arguments at once instead of
   4597   // dying at the first failure.
   4598   bool hasInvalid = false;
   4599   for (size_t i = 0, e = args.size(); i != e; i++) {
   4600     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
   4601       ExprResult result = S.CheckPlaceholderExpr(args[i]);
   4602       if (result.isInvalid()) hasInvalid = true;
   4603       else args[i] = result.get();
   4604     } else if (hasInvalid) {
   4605       (void)S.CorrectDelayedTyposInExpr(args[i]);
   4606     }
   4607   }
   4608   return hasInvalid;
   4609 }
   4610 
   4611 /// If a builtin function has a pointer argument with no explicit address
   4612 /// space, than it should be able to accept a pointer to any address
   4613 /// space as input.  In order to do this, we need to replace the
   4614 /// standard builtin declaration with one that uses the same address space
   4615 /// as the call.
   4616 ///
   4617 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
   4618 ///                  it does not contain any pointer arguments without
   4619 ///                  an address space qualifer.  Otherwise the rewritten
   4620 ///                  FunctionDecl is returned.
   4621 /// TODO: Handle pointer return types.
   4622 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
   4623                                                 const FunctionDecl *FDecl,
   4624                                                 MultiExprArg ArgExprs) {
   4625 
   4626   QualType DeclType = FDecl->getType();
   4627   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
   4628 
   4629   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
   4630       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
   4631     return nullptr;
   4632 
   4633   bool NeedsNewDecl = false;
   4634   unsigned i = 0;
   4635   SmallVector<QualType, 8> OverloadParams;
   4636 
   4637   for (QualType ParamType : FT->param_types()) {
   4638 
   4639     // Convert array arguments to pointer to simplify type lookup.
   4640     Expr *Arg = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]).get();
   4641     QualType ArgType = Arg->getType();
   4642     if (!ParamType->isPointerType() ||
   4643         ParamType.getQualifiers().hasAddressSpace() ||
   4644         !ArgType->isPointerType() ||
   4645         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
   4646       OverloadParams.push_back(ParamType);
   4647       continue;
   4648     }
   4649 
   4650     NeedsNewDecl = true;
   4651     unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
   4652 
   4653     QualType PointeeType = ParamType->getPointeeType();
   4654     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
   4655     OverloadParams.push_back(Context.getPointerType(PointeeType));
   4656   }
   4657 
   4658   if (!NeedsNewDecl)
   4659     return nullptr;
   4660 
   4661   FunctionProtoType::ExtProtoInfo EPI;
   4662   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
   4663                                                 OverloadParams, EPI);
   4664   DeclContext *Parent = Context.getTranslationUnitDecl();
   4665   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
   4666                                                     FDecl->getLocation(),
   4667                                                     FDecl->getLocation(),
   4668                                                     FDecl->getIdentifier(),
   4669                                                     OverloadTy,
   4670                                                     /*TInfo=*/nullptr,
   4671                                                     SC_Extern, false,
   4672                                                     /*hasPrototype=*/true);
   4673   SmallVector<ParmVarDecl*, 16> Params;
   4674   FT = cast<FunctionProtoType>(OverloadTy);
   4675   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   4676     QualType ParamType = FT->getParamType(i);
   4677     ParmVarDecl *Parm =
   4678         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
   4679                                 SourceLocation(), nullptr, ParamType,
   4680                                 /*TInfo=*/nullptr, SC_None, nullptr);
   4681     Parm->setScopeInfo(0, i);
   4682     Params.push_back(Parm);
   4683   }
   4684   OverloadDecl->setParams(Params);
   4685   return OverloadDecl;
   4686 }
   4687 
   4688 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   4689 /// This provides the location of the left/right parens and a list of comma
   4690 /// locations.
   4691 ExprResult
   4692 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   4693                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
   4694                     Expr *ExecConfig, bool IsExecConfig) {
   4695   // Since this might be a postfix expression, get rid of ParenListExprs.
   4696   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   4697   if (Result.isInvalid()) return ExprError();
   4698   Fn = Result.get();
   4699 
   4700   if (checkArgsForPlaceholders(*this, ArgExprs))
   4701     return ExprError();
   4702 
   4703   if (getLangOpts().CPlusPlus) {
   4704     // If this is a pseudo-destructor expression, build the call immediately.
   4705     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   4706       if (!ArgExprs.empty()) {
   4707         // Pseudo-destructor calls should not have any arguments.
   4708         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   4709           << FixItHint::CreateRemoval(
   4710                                     SourceRange(ArgExprs[0]->getLocStart(),
   4711                                                 ArgExprs.back()->getLocEnd()));
   4712       }
   4713 
   4714       return new (Context)
   4715           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
   4716     }
   4717     if (Fn->getType() == Context.PseudoObjectTy) {
   4718       ExprResult result = CheckPlaceholderExpr(Fn);
   4719       if (result.isInvalid()) return ExprError();
   4720       Fn = result.get();
   4721     }
   4722 
   4723     // Determine whether this is a dependent call inside a C++ template,
   4724     // in which case we won't do any semantic analysis now.
   4725     // FIXME: Will need to cache the results of name lookup (including ADL) in
   4726     // Fn.
   4727     bool Dependent = false;
   4728     if (Fn->isTypeDependent())
   4729       Dependent = true;
   4730     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
   4731       Dependent = true;
   4732 
   4733     if (Dependent) {
   4734       if (ExecConfig) {
   4735         return new (Context) CUDAKernelCallExpr(
   4736             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
   4737             Context.DependentTy, VK_RValue, RParenLoc);
   4738       } else {
   4739         return new (Context) CallExpr(
   4740             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
   4741       }
   4742     }
   4743 
   4744     // Determine whether this is a call to an object (C++ [over.call.object]).
   4745     if (Fn->getType()->isRecordType())
   4746       return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
   4747                                           RParenLoc);
   4748 
   4749     if (Fn->getType() == Context.UnknownAnyTy) {
   4750       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4751       if (result.isInvalid()) return ExprError();
   4752       Fn = result.get();
   4753     }
   4754 
   4755     if (Fn->getType() == Context.BoundMemberTy) {
   4756       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
   4757     }
   4758   }
   4759 
   4760   // Check for overloaded calls.  This can happen even in C due to extensions.
   4761   if (Fn->getType() == Context.OverloadTy) {
   4762     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
   4763 
   4764     // We aren't supposed to apply this logic for if there's an '&' involved.
   4765     if (!find.HasFormOfMemberPointer) {
   4766       OverloadExpr *ovl = find.Expression;
   4767       if (isa<UnresolvedLookupExpr>(ovl)) {
   4768         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
   4769         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
   4770                                        RParenLoc, ExecConfig);
   4771       } else {
   4772         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
   4773                                          RParenLoc);
   4774       }
   4775     }
   4776   }
   4777 
   4778   // If we're directly calling a function, get the appropriate declaration.
   4779   if (Fn->getType() == Context.UnknownAnyTy) {
   4780     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4781     if (result.isInvalid()) return ExprError();
   4782     Fn = result.get();
   4783   }
   4784 
   4785   Expr *NakedFn = Fn->IgnoreParens();
   4786 
   4787   NamedDecl *NDecl = nullptr;
   4788   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
   4789     if (UnOp->getOpcode() == UO_AddrOf)
   4790       NakedFn = UnOp->getSubExpr()->IgnoreParens();
   4791 
   4792   if (isa<DeclRefExpr>(NakedFn)) {
   4793     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
   4794 
   4795     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
   4796     if (FDecl && FDecl->getBuiltinID()) {
   4797       // Rewrite the function decl for this builtin by replacing paramaters
   4798       // with no explicit address space with the address space of the arguments
   4799       // in ArgExprs.
   4800       if ((FDecl = rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
   4801         NDecl = FDecl;
   4802         Fn = DeclRefExpr::Create(Context, FDecl->getQualifierLoc(),
   4803                            SourceLocation(), FDecl, false,
   4804                            SourceLocation(), FDecl->getType(),
   4805                            Fn->getValueKind(), FDecl);
   4806       }
   4807     }
   4808   } else if (isa<MemberExpr>(NakedFn))
   4809     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
   4810 
   4811   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
   4812     if (FD->hasAttr<EnableIfAttr>()) {
   4813       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
   4814         Diag(Fn->getLocStart(),
   4815              isa<CXXMethodDecl>(FD) ?
   4816                  diag::err_ovl_no_viable_member_function_in_call :
   4817                  diag::err_ovl_no_viable_function_in_call)
   4818           << FD << FD->getSourceRange();
   4819         Diag(FD->getLocation(),
   4820              diag::note_ovl_candidate_disabled_by_enable_if_attr)
   4821             << Attr->getCond()->getSourceRange() << Attr->getMessage();
   4822       }
   4823     }
   4824   }
   4825 
   4826   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
   4827                                ExecConfig, IsExecConfig);
   4828 }
   4829 
   4830 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
   4831 ///
   4832 /// __builtin_astype( value, dst type )
   4833 ///
   4834 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
   4835                                  SourceLocation BuiltinLoc,
   4836                                  SourceLocation RParenLoc) {
   4837   ExprValueKind VK = VK_RValue;
   4838   ExprObjectKind OK = OK_Ordinary;
   4839   QualType DstTy = GetTypeFromParser(ParsedDestTy);
   4840   QualType SrcTy = E->getType();
   4841   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
   4842     return ExprError(Diag(BuiltinLoc,
   4843                           diag::err_invalid_astype_of_different_size)
   4844                      << DstTy
   4845                      << SrcTy
   4846                      << E->getSourceRange());
   4847   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
   4848 }
   4849 
   4850 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
   4851 /// provided arguments.
   4852 ///
   4853 /// __builtin_convertvector( value, dst type )
   4854 ///
   4855 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
   4856                                         SourceLocation BuiltinLoc,
   4857                                         SourceLocation RParenLoc) {
   4858   TypeSourceInfo *TInfo;
   4859   GetTypeFromParser(ParsedDestTy, &TInfo);
   4860   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
   4861 }
   4862 
   4863 /// BuildResolvedCallExpr - Build a call to a resolved expression,
   4864 /// i.e. an expression not of \p OverloadTy.  The expression should
   4865 /// unary-convert to an expression of function-pointer or
   4866 /// block-pointer type.
   4867 ///
   4868 /// \param NDecl the declaration being called, if available
   4869 ExprResult
   4870 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
   4871                             SourceLocation LParenLoc,
   4872                             ArrayRef<Expr *> Args,
   4873                             SourceLocation RParenLoc,
   4874                             Expr *Config, bool IsExecConfig) {
   4875   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
   4876   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
   4877 
   4878   // Promote the function operand.
   4879   // We special-case function promotion here because we only allow promoting
   4880   // builtin functions to function pointers in the callee of a call.
   4881   ExprResult Result;
   4882   if (BuiltinID &&
   4883       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
   4884     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
   4885                                CK_BuiltinFnToFnPtr).get();
   4886   } else {
   4887     Result = CallExprUnaryConversions(Fn);
   4888   }
   4889   if (Result.isInvalid())
   4890     return ExprError();
   4891   Fn = Result.get();
   4892 
   4893   // Make the call expr early, before semantic checks.  This guarantees cleanup
   4894   // of arguments and function on error.
   4895   CallExpr *TheCall;
   4896   if (Config)
   4897     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
   4898                                                cast<CallExpr>(Config), Args,
   4899                                                Context.BoolTy, VK_RValue,
   4900                                                RParenLoc);
   4901   else
   4902     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
   4903                                      VK_RValue, RParenLoc);
   4904 
   4905   // Bail out early if calling a builtin with custom typechecking.
   4906   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
   4907     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
   4908 
   4909  retry:
   4910   const FunctionType *FuncT;
   4911   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
   4912     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
   4913     // have type pointer to function".
   4914     FuncT = PT->getPointeeType()->getAs<FunctionType>();
   4915     if (!FuncT)
   4916       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4917                          << Fn->getType() << Fn->getSourceRange());
   4918   } else if (const BlockPointerType *BPT =
   4919                Fn->getType()->getAs<BlockPointerType>()) {
   4920     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
   4921   } else {
   4922     // Handle calls to expressions of unknown-any type.
   4923     if (Fn->getType() == Context.UnknownAnyTy) {
   4924       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
   4925       if (rewrite.isInvalid()) return ExprError();
   4926       Fn = rewrite.get();
   4927       TheCall->setCallee(Fn);
   4928       goto retry;
   4929     }
   4930 
   4931     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4932       << Fn->getType() << Fn->getSourceRange());
   4933   }
   4934 
   4935   if (getLangOpts().CUDA) {
   4936     if (Config) {
   4937       // CUDA: Kernel calls must be to global functions
   4938       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
   4939         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
   4940             << FDecl->getName() << Fn->getSourceRange());
   4941 
   4942       // CUDA: Kernel function must have 'void' return type
   4943       if (!FuncT->getReturnType()->isVoidType())
   4944         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
   4945             << Fn->getType() << Fn->getSourceRange());
   4946     } else {
   4947       // CUDA: Calls to global functions must be configured
   4948       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
   4949         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
   4950             << FDecl->getName() << Fn->getSourceRange());
   4951     }
   4952   }
   4953 
   4954   // Check for a valid return type
   4955   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
   4956                           FDecl))
   4957     return ExprError();
   4958 
   4959   // We know the result type of the call, set it.
   4960   TheCall->setType(FuncT->getCallResultType(Context));
   4961   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
   4962 
   4963   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
   4964   if (Proto) {
   4965     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
   4966                                 IsExecConfig))
   4967       return ExprError();
   4968   } else {
   4969     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
   4970 
   4971     if (FDecl) {
   4972       // Check if we have too few/too many template arguments, based
   4973       // on our knowledge of the function definition.
   4974       const FunctionDecl *Def = nullptr;
   4975       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
   4976         Proto = Def->getType()->getAs<FunctionProtoType>();
   4977        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
   4978           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
   4979           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
   4980       }
   4981 
   4982       // If the function we're calling isn't a function prototype, but we have
   4983       // a function prototype from a prior declaratiom, use that prototype.
   4984       if (!FDecl->hasPrototype())
   4985         Proto = FDecl->getType()->getAs<FunctionProtoType>();
   4986     }
   4987 
   4988     // Promote the arguments (C99 6.5.2.2p6).
   4989     for (unsigned i = 0, e = Args.size(); i != e; i++) {
   4990       Expr *Arg = Args[i];
   4991 
   4992       if (Proto && i < Proto->getNumParams()) {
   4993         InitializedEntity Entity = InitializedEntity::InitializeParameter(
   4994             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
   4995         ExprResult ArgE =
   4996             PerformCopyInitialization(Entity, SourceLocation(), Arg);
   4997         if (ArgE.isInvalid())
   4998           return true;
   4999 
   5000         Arg = ArgE.getAs<Expr>();
   5001 
   5002       } else {
   5003         ExprResult ArgE = DefaultArgumentPromotion(Arg);
   5004 
   5005         if (ArgE.isInvalid())
   5006           return true;
   5007 
   5008         Arg = ArgE.getAs<Expr>();
   5009       }
   5010 
   5011       if (RequireCompleteType(Arg->getLocStart(),
   5012                               Arg->getType(),
   5013                               diag::err_call_incomplete_argument, Arg))
   5014         return ExprError();
   5015 
   5016       TheCall->setArg(i, Arg);
   5017     }
   5018   }
   5019 
   5020   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   5021     if (!Method->isStatic())
   5022       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
   5023         << Fn->getSourceRange());
   5024 
   5025   // Check for sentinels
   5026   if (NDecl)
   5027     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
   5028 
   5029   // Do special checking on direct calls to functions.
   5030   if (FDecl) {
   5031     if (CheckFunctionCall(FDecl, TheCall, Proto))
   5032       return ExprError();
   5033 
   5034     if (BuiltinID)
   5035       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
   5036   } else if (NDecl) {
   5037     if (CheckPointerCall(NDecl, TheCall, Proto))
   5038       return ExprError();
   5039   } else {
   5040     if (CheckOtherCall(TheCall, Proto))
   5041       return ExprError();
   5042   }
   5043 
   5044   return MaybeBindToTemporary(TheCall);
   5045 }
   5046 
   5047 ExprResult
   5048 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
   5049                            SourceLocation RParenLoc, Expr *InitExpr) {
   5050   assert(Ty && "ActOnCompoundLiteral(): missing type");
   5051   // FIXME: put back this assert when initializers are worked out.
   5052   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
   5053 
   5054   TypeSourceInfo *TInfo;
   5055   QualType literalType = GetTypeFromParser(Ty, &TInfo);
   5056   if (!TInfo)
   5057     TInfo = Context.getTrivialTypeSourceInfo(literalType);
   5058 
   5059   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
   5060 }
   5061 
   5062 ExprResult
   5063 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
   5064                                SourceLocation RParenLoc, Expr *LiteralExpr) {
   5065   QualType literalType = TInfo->getType();
   5066 
   5067   if (literalType->isArrayType()) {
   5068     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
   5069           diag::err_illegal_decl_array_incomplete_type,
   5070           SourceRange(LParenLoc,
   5071                       LiteralExpr->getSourceRange().getEnd())))
   5072       return ExprError();
   5073     if (literalType->isVariableArrayType())
   5074       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
   5075         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
   5076   } else if (!literalType->isDependentType() &&
   5077              RequireCompleteType(LParenLoc, literalType,
   5078                diag::err_typecheck_decl_incomplete_type,
   5079                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
   5080     return ExprError();
   5081 
   5082   InitializedEntity Entity
   5083     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
   5084   InitializationKind Kind
   5085     = InitializationKind::CreateCStyleCast(LParenLoc,
   5086                                            SourceRange(LParenLoc, RParenLoc),
   5087                                            /*InitList=*/true);
   5088   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
   5089   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
   5090                                       &literalType);
   5091   if (Result.isInvalid())
   5092     return ExprError();
   5093   LiteralExpr = Result.get();
   5094 
   5095   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
   5096   if (isFileScope &&
   5097       !LiteralExpr->isTypeDependent() &&
   5098       !LiteralExpr->isValueDependent() &&
   5099       !literalType->isDependentType()) { // 6.5.2.5p3
   5100     if (CheckForConstantInitializer(LiteralExpr, literalType))
   5101       return ExprError();
   5102   }
   5103 
   5104   // In C, compound literals are l-values for some reason.
   5105   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
   5106 
   5107   return MaybeBindToTemporary(
   5108            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
   5109                                              VK, LiteralExpr, isFileScope));
   5110 }
   5111 
   5112 ExprResult
   5113 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
   5114                     SourceLocation RBraceLoc) {
   5115   // Immediately handle non-overload placeholders.  Overloads can be
   5116   // resolved contextually, but everything else here can't.
   5117   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
   5118     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
   5119       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
   5120 
   5121       // Ignore failures; dropping the entire initializer list because
   5122       // of one failure would be terrible for indexing/etc.
   5123       if (result.isInvalid()) continue;
   5124 
   5125       InitArgList[I] = result.get();
   5126     }
   5127   }
   5128 
   5129   // Semantic analysis for initializers is done by ActOnDeclarator() and
   5130   // CheckInitializer() - it requires knowledge of the object being intialized.
   5131 
   5132   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
   5133                                                RBraceLoc);
   5134   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
   5135   return E;
   5136 }
   5137 
   5138 /// Do an explicit extend of the given block pointer if we're in ARC.
   5139 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
   5140   assert(E.get()->getType()->isBlockPointerType());
   5141   assert(E.get()->isRValue());
   5142 
   5143   // Only do this in an r-value context.
   5144   if (!S.getLangOpts().ObjCAutoRefCount) return;
   5145 
   5146   E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
   5147                                CK_ARCExtendBlockObject, E.get(),
   5148                                /*base path*/ nullptr, VK_RValue);
   5149   S.ExprNeedsCleanups = true;
   5150 }
   5151 
   5152 /// Prepare a conversion of the given expression to an ObjC object
   5153 /// pointer type.
   5154 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
   5155   QualType type = E.get()->getType();
   5156   if (type->isObjCObjectPointerType()) {
   5157     return CK_BitCast;
   5158   } else if (type->isBlockPointerType()) {
   5159     maybeExtendBlockObject(*this, E);
   5160     return CK_BlockPointerToObjCPointerCast;
   5161   } else {
   5162     assert(type->isPointerType());
   5163     return CK_CPointerToObjCPointerCast;
   5164   }
   5165 }
   5166 
   5167 /// Prepares for a scalar cast, performing all the necessary stages
   5168 /// except the final cast and returning the kind required.
   5169 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
   5170   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
   5171   // Also, callers should have filtered out the invalid cases with
   5172   // pointers.  Everything else should be possible.
   5173 
   5174   QualType SrcTy = Src.get()->getType();
   5175   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
   5176     return CK_NoOp;
   5177 
   5178   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
   5179   case Type::STK_MemberPointer:
   5180     llvm_unreachable("member pointer type in C");
   5181 
   5182   case Type::STK_CPointer:
   5183   case Type::STK_BlockPointer:
   5184   case Type::STK_ObjCObjectPointer:
   5185     switch (DestTy->getScalarTypeKind()) {
   5186     case Type::STK_CPointer: {
   5187       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
   5188       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
   5189       if (SrcAS != DestAS)
   5190         return CK_AddressSpaceConversion;
   5191       return CK_BitCast;
   5192     }
   5193     case Type::STK_BlockPointer:
   5194       return (SrcKind == Type::STK_BlockPointer
   5195                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
   5196     case Type::STK_ObjCObjectPointer:
   5197       if (SrcKind == Type::STK_ObjCObjectPointer)
   5198         return CK_BitCast;
   5199       if (SrcKind == Type::STK_CPointer)
   5200         return CK_CPointerToObjCPointerCast;
   5201       maybeExtendBlockObject(*this, Src);
   5202       return CK_BlockPointerToObjCPointerCast;
   5203     case Type::STK_Bool:
   5204       return CK_PointerToBoolean;
   5205     case Type::STK_Integral:
   5206       return CK_PointerToIntegral;
   5207     case Type::STK_Floating:
   5208     case Type::STK_FloatingComplex:
   5209     case Type::STK_IntegralComplex:
   5210     case Type::STK_MemberPointer:
   5211       llvm_unreachable("illegal cast from pointer");
   5212     }
   5213     llvm_unreachable("Should have returned before this");
   5214 
   5215   case Type::STK_Bool: // casting from bool is like casting from an integer
   5216   case Type::STK_Integral:
   5217     switch (DestTy->getScalarTypeKind()) {
   5218     case Type::STK_CPointer:
   5219     case Type::STK_ObjCObjectPointer:
   5220     case Type::STK_BlockPointer:
   5221       if (Src.get()->isNullPointerConstant(Context,
   5222                                            Expr::NPC_ValueDependentIsNull))
   5223         return CK_NullToPointer;
   5224       return CK_IntegralToPointer;
   5225     case Type::STK_Bool:
   5226       return CK_IntegralToBoolean;
   5227     case Type::STK_Integral:
   5228       return CK_IntegralCast;
   5229     case Type::STK_Floating:
   5230       return CK_IntegralToFloating;
   5231     case Type::STK_IntegralComplex:
   5232       Src = ImpCastExprToType(Src.get(),
   5233                               DestTy->castAs<ComplexType>()->getElementType(),
   5234                               CK_IntegralCast);
   5235       return CK_IntegralRealToComplex;
   5236     case Type::STK_FloatingComplex:
   5237       Src = ImpCastExprToType(Src.get(),
   5238                               DestTy->castAs<ComplexType>()->getElementType(),
   5239                               CK_IntegralToFloating);
   5240       return CK_FloatingRealToComplex;
   5241     case Type::STK_MemberPointer:
   5242       llvm_unreachable("member pointer type in C");
   5243     }
   5244     llvm_unreachable("Should have returned before this");
   5245 
   5246   case Type::STK_Floating:
   5247     switch (DestTy->getScalarTypeKind()) {
   5248     case Type::STK_Floating:
   5249       return CK_FloatingCast;
   5250     case Type::STK_Bool:
   5251       return CK_FloatingToBoolean;
   5252     case Type::STK_Integral:
   5253       return CK_FloatingToIntegral;
   5254     case Type::STK_FloatingComplex:
   5255       Src = ImpCastExprToType(Src.get(),
   5256                               DestTy->castAs<ComplexType>()->getElementType(),
   5257                               CK_FloatingCast);
   5258       return CK_FloatingRealToComplex;
   5259     case Type::STK_IntegralComplex:
   5260       Src = ImpCastExprToType(Src.get(),
   5261                               DestTy->castAs<ComplexType>()->getElementType(),
   5262                               CK_FloatingToIntegral);
   5263       return CK_IntegralRealToComplex;
   5264     case Type::STK_CPointer:
   5265     case Type::STK_ObjCObjectPointer:
   5266     case Type::STK_BlockPointer:
   5267       llvm_unreachable("valid float->pointer cast?");
   5268     case Type::STK_MemberPointer:
   5269       llvm_unreachable("member pointer type in C");
   5270     }
   5271     llvm_unreachable("Should have returned before this");
   5272 
   5273   case Type::STK_FloatingComplex:
   5274     switch (DestTy->getScalarTypeKind()) {
   5275     case Type::STK_FloatingComplex:
   5276       return CK_FloatingComplexCast;
   5277     case Type::STK_IntegralComplex:
   5278       return CK_FloatingComplexToIntegralComplex;
   5279     case Type::STK_Floating: {
   5280       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5281       if (Context.hasSameType(ET, DestTy))
   5282         return CK_FloatingComplexToReal;
   5283       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
   5284       return CK_FloatingCast;
   5285     }
   5286     case Type::STK_Bool:
   5287       return CK_FloatingComplexToBoolean;
   5288     case Type::STK_Integral:
   5289       Src = ImpCastExprToType(Src.get(),
   5290                               SrcTy->castAs<ComplexType>()->getElementType(),
   5291                               CK_FloatingComplexToReal);
   5292       return CK_FloatingToIntegral;
   5293     case Type::STK_CPointer:
   5294     case Type::STK_ObjCObjectPointer:
   5295     case Type::STK_BlockPointer:
   5296       llvm_unreachable("valid complex float->pointer cast?");
   5297     case Type::STK_MemberPointer:
   5298       llvm_unreachable("member pointer type in C");
   5299     }
   5300     llvm_unreachable("Should have returned before this");
   5301 
   5302   case Type::STK_IntegralComplex:
   5303     switch (DestTy->getScalarTypeKind()) {
   5304     case Type::STK_FloatingComplex:
   5305       return CK_IntegralComplexToFloatingComplex;
   5306     case Type::STK_IntegralComplex:
   5307       return CK_IntegralComplexCast;
   5308     case Type::STK_Integral: {
   5309       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5310       if (Context.hasSameType(ET, DestTy))
   5311         return CK_IntegralComplexToReal;
   5312       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
   5313       return CK_IntegralCast;
   5314     }
   5315     case Type::STK_Bool:
   5316       return CK_IntegralComplexToBoolean;
   5317     case Type::STK_Floating:
   5318       Src = ImpCastExprToType(Src.get(),
   5319                               SrcTy->castAs<ComplexType>()->getElementType(),
   5320                               CK_IntegralComplexToReal);
   5321       return CK_IntegralToFloating;
   5322     case Type::STK_CPointer:
   5323     case Type::STK_ObjCObjectPointer:
   5324     case Type::STK_BlockPointer:
   5325       llvm_unreachable("valid complex int->pointer cast?");
   5326     case Type::STK_MemberPointer:
   5327       llvm_unreachable("member pointer type in C");
   5328     }
   5329     llvm_unreachable("Should have returned before this");
   5330   }
   5331 
   5332   llvm_unreachable("Unhandled scalar cast");
   5333 }
   5334 
   5335 static bool breakDownVectorType(QualType type, uint64_t &len,
   5336                                 QualType &eltType) {
   5337   // Vectors are simple.
   5338   if (const VectorType *vecType = type->getAs<VectorType>()) {
   5339     len = vecType->getNumElements();
   5340     eltType = vecType->getElementType();
   5341     assert(eltType->isScalarType());
   5342     return true;
   5343   }
   5344 
   5345   // We allow lax conversion to and from non-vector types, but only if
   5346   // they're real types (i.e. non-complex, non-pointer scalar types).
   5347   if (!type->isRealType()) return false;
   5348 
   5349   len = 1;
   5350   eltType = type;
   5351   return true;
   5352 }
   5353 
   5354 static bool VectorTypesMatch(Sema &S, QualType srcTy, QualType destTy) {
   5355   uint64_t srcLen, destLen;
   5356   QualType srcElt, destElt;
   5357   if (!breakDownVectorType(srcTy, srcLen, srcElt)) return false;
   5358   if (!breakDownVectorType(destTy, destLen, destElt)) return false;
   5359 
   5360   // ASTContext::getTypeSize will return the size rounded up to a
   5361   // power of 2, so instead of using that, we need to use the raw
   5362   // element size multiplied by the element count.
   5363   uint64_t srcEltSize = S.Context.getTypeSize(srcElt);
   5364   uint64_t destEltSize = S.Context.getTypeSize(destElt);
   5365 
   5366   return (srcLen * srcEltSize == destLen * destEltSize);
   5367 }
   5368 
   5369 /// Is this a legal conversion between two known vector types?
   5370 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
   5371   assert(destTy->isVectorType() || srcTy->isVectorType());
   5372 
   5373   if (!Context.getLangOpts().LaxVectorConversions)
   5374     return false;
   5375   return VectorTypesMatch(*this, srcTy, destTy);
   5376 }
   5377 
   5378 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
   5379                            CastKind &Kind) {
   5380   assert(VectorTy->isVectorType() && "Not a vector type!");
   5381 
   5382   if (Ty->isVectorType() || Ty->isIntegerType()) {
   5383     if (!VectorTypesMatch(*this, Ty, VectorTy))
   5384       return Diag(R.getBegin(),
   5385                   Ty->isVectorType() ?
   5386                   diag::err_invalid_conversion_between_vectors :
   5387                   diag::err_invalid_conversion_between_vector_and_integer)
   5388         << VectorTy << Ty << R;
   5389   } else
   5390     return Diag(R.getBegin(),
   5391                 diag::err_invalid_conversion_between_vector_and_scalar)
   5392       << VectorTy << Ty << R;
   5393 
   5394   Kind = CK_BitCast;
   5395   return false;
   5396 }
   5397 
   5398 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
   5399                                     Expr *CastExpr, CastKind &Kind) {
   5400   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
   5401 
   5402   QualType SrcTy = CastExpr->getType();
   5403 
   5404   // If SrcTy is a VectorType, the total size must match to explicitly cast to
   5405   // an ExtVectorType.
   5406   // In OpenCL, casts between vectors of different types are not allowed.
   5407   // (See OpenCL 6.2).
   5408   if (SrcTy->isVectorType()) {
   5409     if (!VectorTypesMatch(*this, SrcTy, DestTy)
   5410         || (getLangOpts().OpenCL &&
   5411             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
   5412       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
   5413         << DestTy << SrcTy << R;
   5414       return ExprError();
   5415     }
   5416     Kind = CK_BitCast;
   5417     return CastExpr;
   5418   }
   5419 
   5420   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
   5421   // conversion will take place first from scalar to elt type, and then
   5422   // splat from elt type to vector.
   5423   if (SrcTy->isPointerType())
   5424     return Diag(R.getBegin(),
   5425                 diag::err_invalid_conversion_between_vector_and_scalar)
   5426       << DestTy << SrcTy << R;
   5427 
   5428   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
   5429   ExprResult CastExprRes = CastExpr;
   5430   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
   5431   if (CastExprRes.isInvalid())
   5432     return ExprError();
   5433   CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
   5434 
   5435   Kind = CK_VectorSplat;
   5436   return CastExpr;
   5437 }
   5438 
   5439 ExprResult
   5440 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
   5441                     Declarator &D, ParsedType &Ty,
   5442                     SourceLocation RParenLoc, Expr *CastExpr) {
   5443   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
   5444          "ActOnCastExpr(): missing type or expr");
   5445 
   5446   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
   5447   if (D.isInvalidType())
   5448     return ExprError();
   5449 
   5450   if (getLangOpts().CPlusPlus) {
   5451     // Check that there are no default arguments (C++ only).
   5452     CheckExtraCXXDefaultArguments(D);
   5453   } else {
   5454     // Make sure any TypoExprs have been dealt with.
   5455     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
   5456     if (!Res.isUsable())
   5457       return ExprError();
   5458     CastExpr = Res.get();
   5459   }
   5460 
   5461   checkUnusedDeclAttributes(D);
   5462 
   5463   QualType castType = castTInfo->getType();
   5464   Ty = CreateParsedType(castType, castTInfo);
   5465 
   5466   bool isVectorLiteral = false;
   5467 
   5468   // Check for an altivec or OpenCL literal,
   5469   // i.e. all the elements are integer constants.
   5470   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
   5471   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
   5472   if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
   5473        && castType->isVectorType() && (PE || PLE)) {
   5474     if (PLE && PLE->getNumExprs() == 0) {
   5475       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
   5476       return ExprError();
   5477     }
   5478     if (PE || PLE->getNumExprs() == 1) {
   5479       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
   5480       if (!E->getType()->isVectorType())
   5481         isVectorLiteral = true;
   5482     }
   5483     else
   5484       isVectorLiteral = true;
   5485   }
   5486 
   5487   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
   5488   // then handle it as such.
   5489   if (isVectorLiteral)
   5490     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
   5491 
   5492   // If the Expr being casted is a ParenListExpr, handle it specially.
   5493   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
   5494   // sequence of BinOp comma operators.
   5495   if (isa<ParenListExpr>(CastExpr)) {
   5496     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
   5497     if (Result.isInvalid()) return ExprError();
   5498     CastExpr = Result.get();
   5499   }
   5500 
   5501   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
   5502       !getSourceManager().isInSystemMacro(LParenLoc))
   5503     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
   5504 
   5505   CheckTollFreeBridgeCast(castType, CastExpr);
   5506 
   5507   CheckObjCBridgeRelatedCast(castType, CastExpr);
   5508 
   5509   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
   5510 }
   5511 
   5512 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
   5513                                     SourceLocation RParenLoc, Expr *E,
   5514                                     TypeSourceInfo *TInfo) {
   5515   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
   5516          "Expected paren or paren list expression");
   5517 
   5518   Expr **exprs;
   5519   unsigned numExprs;
   5520   Expr *subExpr;
   5521   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
   5522   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
   5523     LiteralLParenLoc = PE->getLParenLoc();
   5524     LiteralRParenLoc = PE->getRParenLoc();
   5525     exprs = PE->getExprs();
   5526     numExprs = PE->getNumExprs();
   5527   } else { // isa<ParenExpr> by assertion at function entrance
   5528     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
   5529     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
   5530     subExpr = cast<ParenExpr>(E)->getSubExpr();
   5531     exprs = &subExpr;
   5532     numExprs = 1;
   5533   }
   5534 
   5535   QualType Ty = TInfo->getType();
   5536   assert(Ty->isVectorType() && "Expected vector type");
   5537 
   5538   SmallVector<Expr *, 8> initExprs;
   5539   const VectorType *VTy = Ty->getAs<VectorType>();
   5540   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
   5541 
   5542   // '(...)' form of vector initialization in AltiVec: the number of
   5543   // initializers must be one or must match the size of the vector.
   5544   // If a single value is specified in the initializer then it will be
   5545   // replicated to all the components of the vector
   5546   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
   5547     // The number of initializers must be one or must match the size of the
   5548     // vector. If a single value is specified in the initializer then it will
   5549     // be replicated to all the components of the vector
   5550     if (numExprs == 1) {
   5551       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5552       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5553       if (Literal.isInvalid())
   5554         return ExprError();
   5555       Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5556                                   PrepareScalarCast(Literal, ElemTy));
   5557       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5558     }
   5559     else if (numExprs < numElems) {
   5560       Diag(E->getExprLoc(),
   5561            diag::err_incorrect_number_of_vector_initializers);
   5562       return ExprError();
   5563     }
   5564     else
   5565       initExprs.append(exprs, exprs + numExprs);
   5566   }
   5567   else {
   5568     // For OpenCL, when the number of initializers is a single value,
   5569     // it will be replicated to all components of the vector.
   5570     if (getLangOpts().OpenCL &&
   5571         VTy->getVectorKind() == VectorType::GenericVector &&
   5572         numExprs == 1) {
   5573         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5574         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5575         if (Literal.isInvalid())
   5576           return ExprError();
   5577         Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5578                                     PrepareScalarCast(Literal, ElemTy));
   5579         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5580     }
   5581 
   5582     initExprs.append(exprs, exprs + numExprs);
   5583   }
   5584   // FIXME: This means that pretty-printing the final AST will produce curly
   5585   // braces instead of the original commas.
   5586   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
   5587                                                    initExprs, LiteralRParenLoc);
   5588   initE->setType(Ty);
   5589   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
   5590 }
   5591 
   5592 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
   5593 /// the ParenListExpr into a sequence of comma binary operators.
   5594 ExprResult
   5595 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
   5596   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
   5597   if (!E)
   5598     return OrigExpr;
   5599 
   5600   ExprResult Result(E->getExpr(0));
   5601 
   5602   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
   5603     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
   5604                         E->getExpr(i));
   5605 
   5606   if (Result.isInvalid()) return ExprError();
   5607 
   5608   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
   5609 }
   5610 
   5611 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
   5612                                     SourceLocation R,
   5613                                     MultiExprArg Val) {
   5614   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
   5615   return expr;
   5616 }
   5617 
   5618 /// \brief Emit a specialized diagnostic when one expression is a null pointer
   5619 /// constant and the other is not a pointer.  Returns true if a diagnostic is
   5620 /// emitted.
   5621 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
   5622                                       SourceLocation QuestionLoc) {
   5623   Expr *NullExpr = LHSExpr;
   5624   Expr *NonPointerExpr = RHSExpr;
   5625   Expr::NullPointerConstantKind NullKind =
   5626       NullExpr->isNullPointerConstant(Context,
   5627                                       Expr::NPC_ValueDependentIsNotNull);
   5628 
   5629   if (NullKind == Expr::NPCK_NotNull) {
   5630     NullExpr = RHSExpr;
   5631     NonPointerExpr = LHSExpr;
   5632     NullKind =
   5633         NullExpr->isNullPointerConstant(Context,
   5634                                         Expr::NPC_ValueDependentIsNotNull);
   5635   }
   5636 
   5637   if (NullKind == Expr::NPCK_NotNull)
   5638     return false;
   5639 
   5640   if (NullKind == Expr::NPCK_ZeroExpression)
   5641     return false;
   5642 
   5643   if (NullKind == Expr::NPCK_ZeroLiteral) {
   5644     // In this case, check to make sure that we got here from a "NULL"
   5645     // string in the source code.
   5646     NullExpr = NullExpr->IgnoreParenImpCasts();
   5647     SourceLocation loc = NullExpr->getExprLoc();
   5648     if (!findMacroSpelling(loc, "NULL"))
   5649       return false;
   5650   }
   5651 
   5652   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
   5653   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
   5654       << NonPointerExpr->getType() << DiagType
   5655       << NonPointerExpr->getSourceRange();
   5656   return true;
   5657 }
   5658 
   5659 /// \brief Return false if the condition expression is valid, true otherwise.
   5660 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
   5661   QualType CondTy = Cond->getType();
   5662 
   5663   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
   5664   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
   5665     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
   5666       << CondTy << Cond->getSourceRange();
   5667     return true;
   5668   }
   5669 
   5670   // C99 6.5.15p2
   5671   if (CondTy->isScalarType()) return false;
   5672 
   5673   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
   5674     << CondTy << Cond->getSourceRange();
   5675   return true;
   5676 }
   5677 
   5678 /// \brief Handle when one or both operands are void type.
   5679 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
   5680                                          ExprResult &RHS) {
   5681     Expr *LHSExpr = LHS.get();
   5682     Expr *RHSExpr = RHS.get();
   5683 
   5684     if (!LHSExpr->getType()->isVoidType())
   5685       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5686         << RHSExpr->getSourceRange();
   5687     if (!RHSExpr->getType()->isVoidType())
   5688       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5689         << LHSExpr->getSourceRange();
   5690     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
   5691     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
   5692     return S.Context.VoidTy;
   5693 }
   5694 
   5695 /// \brief Return false if the NullExpr can be promoted to PointerTy,
   5696 /// true otherwise.
   5697 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
   5698                                         QualType PointerTy) {
   5699   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
   5700       !NullExpr.get()->isNullPointerConstant(S.Context,
   5701                                             Expr::NPC_ValueDependentIsNull))
   5702     return true;
   5703 
   5704   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
   5705   return false;
   5706 }
   5707 
   5708 /// \brief Checks compatibility between two pointers and return the resulting
   5709 /// type.
   5710 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
   5711                                                      ExprResult &RHS,
   5712                                                      SourceLocation Loc) {
   5713   QualType LHSTy = LHS.get()->getType();
   5714   QualType RHSTy = RHS.get()->getType();
   5715 
   5716   if (S.Context.hasSameType(LHSTy, RHSTy)) {
   5717     // Two identical pointers types are always compatible.
   5718     return LHSTy;
   5719   }
   5720 
   5721   QualType lhptee, rhptee;
   5722 
   5723   // Get the pointee types.
   5724   bool IsBlockPointer = false;
   5725   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
   5726     lhptee = LHSBTy->getPointeeType();
   5727     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
   5728     IsBlockPointer = true;
   5729   } else {
   5730     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
   5731     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
   5732   }
   5733 
   5734   // C99 6.5.15p6: If both operands are pointers to compatible types or to
   5735   // differently qualified versions of compatible types, the result type is
   5736   // a pointer to an appropriately qualified version of the composite
   5737   // type.
   5738 
   5739   // Only CVR-qualifiers exist in the standard, and the differently-qualified
   5740   // clause doesn't make sense for our extensions. E.g. address space 2 should
   5741   // be incompatible with address space 3: they may live on different devices or
   5742   // anything.
   5743   Qualifiers lhQual = lhptee.getQualifiers();
   5744   Qualifiers rhQual = rhptee.getQualifiers();
   5745 
   5746   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
   5747   lhQual.removeCVRQualifiers();
   5748   rhQual.removeCVRQualifiers();
   5749 
   5750   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
   5751   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
   5752 
   5753   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
   5754 
   5755   if (CompositeTy.isNull()) {
   5756     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
   5757       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5758       << RHS.get()->getSourceRange();
   5759     // In this situation, we assume void* type. No especially good
   5760     // reason, but this is what gcc does, and we do have to pick
   5761     // to get a consistent AST.
   5762     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
   5763     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   5764     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   5765     return incompatTy;
   5766   }
   5767 
   5768   // The pointer types are compatible.
   5769   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
   5770   if (IsBlockPointer)
   5771     ResultTy = S.Context.getBlockPointerType(ResultTy);
   5772   else
   5773     ResultTy = S.Context.getPointerType(ResultTy);
   5774 
   5775   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
   5776   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
   5777   return ResultTy;
   5778 }
   5779 
   5780 /// \brief Returns true if QT is quelified-id and implements 'NSObject' and/or
   5781 /// 'NSCopying' protocols (and nothing else); or QT is an NSObject and optionally
   5782 /// implements 'NSObject' and/or NSCopying' protocols (and nothing else).
   5783 static bool isObjCPtrBlockCompatible(Sema &S, ASTContext &C, QualType QT) {
   5784   if (QT->isObjCIdType())
   5785     return true;
   5786 
   5787   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
   5788   if (!OPT)
   5789     return false;
   5790 
   5791   if (ObjCInterfaceDecl *ID = OPT->getInterfaceDecl())
   5792     if (ID->getIdentifier() != &C.Idents.get("NSObject"))
   5793       return false;
   5794 
   5795   ObjCProtocolDecl* PNSCopying =
   5796     S.LookupProtocol(&C.Idents.get("NSCopying"), SourceLocation());
   5797   ObjCProtocolDecl* PNSObject =
   5798     S.LookupProtocol(&C.Idents.get("NSObject"), SourceLocation());
   5799 
   5800   for (auto *Proto : OPT->quals()) {
   5801     if ((PNSCopying && declaresSameEntity(Proto, PNSCopying)) ||
   5802         (PNSObject && declaresSameEntity(Proto, PNSObject)))
   5803       ;
   5804     else
   5805       return false;
   5806   }
   5807   return true;
   5808 }
   5809 
   5810 /// \brief Return the resulting type when the operands are both block pointers.
   5811 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
   5812                                                           ExprResult &LHS,
   5813                                                           ExprResult &RHS,
   5814                                                           SourceLocation Loc) {
   5815   QualType LHSTy = LHS.get()->getType();
   5816   QualType RHSTy = RHS.get()->getType();
   5817 
   5818   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
   5819     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
   5820       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
   5821       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5822       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5823       return destType;
   5824     }
   5825     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
   5826       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5827       << RHS.get()->getSourceRange();
   5828     return QualType();
   5829   }
   5830 
   5831   // We have 2 block pointer types.
   5832   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5833 }
   5834 
   5835 /// \brief Return the resulting type when the operands are both pointers.
   5836 static QualType
   5837 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
   5838                                             ExprResult &RHS,
   5839                                             SourceLocation Loc) {
   5840   // get the pointer types
   5841   QualType LHSTy = LHS.get()->getType();
   5842   QualType RHSTy = RHS.get()->getType();
   5843 
   5844   // get the "pointed to" types
   5845   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   5846   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   5847 
   5848   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
   5849   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
   5850     // Figure out necessary qualifiers (C99 6.5.15p6)
   5851     QualType destPointee
   5852       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   5853     QualType destType = S.Context.getPointerType(destPointee);
   5854     // Add qualifiers if necessary.
   5855     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   5856     // Promote to void*.
   5857     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5858     return destType;
   5859   }
   5860   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
   5861     QualType destPointee
   5862       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   5863     QualType destType = S.Context.getPointerType(destPointee);
   5864     // Add qualifiers if necessary.
   5865     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   5866     // Promote to void*.
   5867     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5868     return destType;
   5869   }
   5870 
   5871   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5872 }
   5873 
   5874 /// \brief Return false if the first expression is not an integer and the second
   5875 /// expression is not a pointer, true otherwise.
   5876 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
   5877                                         Expr* PointerExpr, SourceLocation Loc,
   5878                                         bool IsIntFirstExpr) {
   5879   if (!PointerExpr->getType()->isPointerType() ||
   5880       !Int.get()->getType()->isIntegerType())
   5881     return false;
   5882 
   5883   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
   5884   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
   5885 
   5886   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
   5887     << Expr1->getType() << Expr2->getType()
   5888     << Expr1->getSourceRange() << Expr2->getSourceRange();
   5889   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
   5890                             CK_IntegralToPointer);
   5891   return true;
   5892 }
   5893 
   5894 /// \brief Simple conversion between integer and floating point types.
   5895 ///
   5896 /// Used when handling the OpenCL conditional operator where the
   5897 /// condition is a vector while the other operands are scalar.
   5898 ///
   5899 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
   5900 /// types are either integer or floating type. Between the two
   5901 /// operands, the type with the higher rank is defined as the "result
   5902 /// type". The other operand needs to be promoted to the same type. No
   5903 /// other type promotion is allowed. We cannot use
   5904 /// UsualArithmeticConversions() for this purpose, since it always
   5905 /// promotes promotable types.
   5906 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
   5907                                             ExprResult &RHS,
   5908                                             SourceLocation QuestionLoc) {
   5909   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
   5910   if (LHS.isInvalid())
   5911     return QualType();
   5912   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
   5913   if (RHS.isInvalid())
   5914     return QualType();
   5915 
   5916   // For conversion purposes, we ignore any qualifiers.
   5917   // For example, "const float" and "float" are equivalent.
   5918   QualType LHSType =
   5919     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   5920   QualType RHSType =
   5921     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   5922 
   5923   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
   5924     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
   5925       << LHSType << LHS.get()->getSourceRange();
   5926     return QualType();
   5927   }
   5928 
   5929   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
   5930     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
   5931       << RHSType << RHS.get()->getSourceRange();
   5932     return QualType();
   5933   }
   5934 
   5935   // If both types are identical, no conversion is needed.
   5936   if (LHSType == RHSType)
   5937     return LHSType;
   5938 
   5939   // Now handle "real" floating types (i.e. float, double, long double).
   5940   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   5941     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
   5942                                  /*IsCompAssign = */ false);
   5943 
   5944   // Finally, we have two differing integer types.
   5945   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   5946   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
   5947 }
   5948 
   5949 /// \brief Convert scalar operands to a vector that matches the
   5950 ///        condition in length.
   5951 ///
   5952 /// Used when handling the OpenCL conditional operator where the
   5953 /// condition is a vector while the other operands are scalar.
   5954 ///
   5955 /// We first compute the "result type" for the scalar operands
   5956 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
   5957 /// into a vector of that type where the length matches the condition
   5958 /// vector type. s6.11.6 requires that the element types of the result
   5959 /// and the condition must have the same number of bits.
   5960 static QualType
   5961 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
   5962                               QualType CondTy, SourceLocation QuestionLoc) {
   5963   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
   5964   if (ResTy.isNull()) return QualType();
   5965 
   5966   const VectorType *CV = CondTy->getAs<VectorType>();
   5967   assert(CV);
   5968 
   5969   // Determine the vector result type
   5970   unsigned NumElements = CV->getNumElements();
   5971   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
   5972 
   5973   // Ensure that all types have the same number of bits
   5974   if (S.Context.getTypeSize(CV->getElementType())
   5975       != S.Context.getTypeSize(ResTy)) {
   5976     // Since VectorTy is created internally, it does not pretty print
   5977     // with an OpenCL name. Instead, we just print a description.
   5978     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
   5979     SmallString<64> Str;
   5980     llvm::raw_svector_ostream OS(Str);
   5981     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
   5982     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
   5983       << CondTy << OS.str();
   5984     return QualType();
   5985   }
   5986 
   5987   // Convert operands to the vector result type
   5988   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
   5989   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
   5990 
   5991   return VectorTy;
   5992 }
   5993 
   5994 /// \brief Return false if this is a valid OpenCL condition vector
   5995 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
   5996                                        SourceLocation QuestionLoc) {
   5997   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
   5998   // integral type.
   5999   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
   6000   assert(CondTy);
   6001   QualType EleTy = CondTy->getElementType();
   6002   if (EleTy->isIntegerType()) return false;
   6003 
   6004   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
   6005     << Cond->getType() << Cond->getSourceRange();
   6006   return true;
   6007 }
   6008 
   6009 /// \brief Return false if the vector condition type and the vector
   6010 ///        result type are compatible.
   6011 ///
   6012 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
   6013 /// number of elements, and their element types have the same number
   6014 /// of bits.
   6015 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
   6016                               SourceLocation QuestionLoc) {
   6017   const VectorType *CV = CondTy->getAs<VectorType>();
   6018   const VectorType *RV = VecResTy->getAs<VectorType>();
   6019   assert(CV && RV);
   6020 
   6021   if (CV->getNumElements() != RV->getNumElements()) {
   6022     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
   6023       << CondTy << VecResTy;
   6024     return true;
   6025   }
   6026 
   6027   QualType CVE = CV->getElementType();
   6028   QualType RVE = RV->getElementType();
   6029 
   6030   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
   6031     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
   6032       << CondTy << VecResTy;
   6033     return true;
   6034   }
   6035 
   6036   return false;
   6037 }
   6038 
   6039 /// \brief Return the resulting type for the conditional operator in
   6040 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
   6041 ///        s6.3.i) when the condition is a vector type.
   6042 static QualType
   6043 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
   6044                              ExprResult &LHS, ExprResult &RHS,
   6045                              SourceLocation QuestionLoc) {
   6046   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
   6047   if (Cond.isInvalid())
   6048     return QualType();
   6049   QualType CondTy = Cond.get()->getType();
   6050 
   6051   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
   6052     return QualType();
   6053 
   6054   // If either operand is a vector then find the vector type of the
   6055   // result as specified in OpenCL v1.1 s6.3.i.
   6056   if (LHS.get()->getType()->isVectorType() ||
   6057       RHS.get()->getType()->isVectorType()) {
   6058     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
   6059                                               /*isCompAssign*/false);
   6060     if (VecResTy.isNull()) return QualType();
   6061     // The result type must match the condition type as specified in
   6062     // OpenCL v1.1 s6.11.6.
   6063     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
   6064       return QualType();
   6065     return VecResTy;
   6066   }
   6067 
   6068   // Both operands are scalar.
   6069   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
   6070 }
   6071 
   6072 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
   6073 /// In that case, LHS = cond.
   6074 /// C99 6.5.15
   6075 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   6076                                         ExprResult &RHS, ExprValueKind &VK,
   6077                                         ExprObjectKind &OK,
   6078                                         SourceLocation QuestionLoc) {
   6079 
   6080   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
   6081   if (!LHSResult.isUsable()) return QualType();
   6082   LHS = LHSResult;
   6083 
   6084   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
   6085   if (!RHSResult.isUsable()) return QualType();
   6086   RHS = RHSResult;
   6087 
   6088   // C++ is sufficiently different to merit its own checker.
   6089   if (getLangOpts().CPlusPlus)
   6090     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
   6091 
   6092   VK = VK_RValue;
   6093   OK = OK_Ordinary;
   6094 
   6095   // The OpenCL operator with a vector condition is sufficiently
   6096   // different to merit its own checker.
   6097   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
   6098     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
   6099 
   6100   // First, check the condition.
   6101   Cond = UsualUnaryConversions(Cond.get());
   6102   if (Cond.isInvalid())
   6103     return QualType();
   6104   if (checkCondition(*this, Cond.get(), QuestionLoc))
   6105     return QualType();
   6106 
   6107   // Now check the two expressions.
   6108   if (LHS.get()->getType()->isVectorType() ||
   6109       RHS.get()->getType()->isVectorType())
   6110     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   6111 
   6112   QualType ResTy = UsualArithmeticConversions(LHS, RHS);
   6113   if (LHS.isInvalid() || RHS.isInvalid())
   6114     return QualType();
   6115 
   6116   QualType LHSTy = LHS.get()->getType();
   6117   QualType RHSTy = RHS.get()->getType();
   6118 
   6119   // If both operands have arithmetic type, do the usual arithmetic conversions
   6120   // to find a common type: C99 6.5.15p3,5.
   6121   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
   6122     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
   6123     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
   6124 
   6125     return ResTy;
   6126   }
   6127 
   6128   // If both operands are the same structure or union type, the result is that
   6129   // type.
   6130   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
   6131     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
   6132       if (LHSRT->getDecl() == RHSRT->getDecl())
   6133         // "If both the operands have structure or union type, the result has
   6134         // that type."  This implies that CV qualifiers are dropped.
   6135         return LHSTy.getUnqualifiedType();
   6136     // FIXME: Type of conditional expression must be complete in C mode.
   6137   }
   6138 
   6139   // C99 6.5.15p5: "If both operands have void type, the result has void type."
   6140   // The following || allows only one side to be void (a GCC-ism).
   6141   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
   6142     return checkConditionalVoidType(*this, LHS, RHS);
   6143   }
   6144 
   6145   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
   6146   // the type of the other operand."
   6147   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
   6148   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
   6149 
   6150   // All objective-c pointer type analysis is done here.
   6151   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
   6152                                                         QuestionLoc);
   6153   if (LHS.isInvalid() || RHS.isInvalid())
   6154     return QualType();
   6155   if (!compositeType.isNull())
   6156     return compositeType;
   6157 
   6158 
   6159   // Handle block pointer types.
   6160   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
   6161     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
   6162                                                      QuestionLoc);
   6163 
   6164   // Check constraints for C object pointers types (C99 6.5.15p3,6).
   6165   if (LHSTy->isPointerType() && RHSTy->isPointerType())
   6166     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
   6167                                                        QuestionLoc);
   6168 
   6169   // GCC compatibility: soften pointer/integer mismatch.  Note that
   6170   // null pointers have been filtered out by this point.
   6171   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
   6172       /*isIntFirstExpr=*/true))
   6173     return RHSTy;
   6174   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
   6175       /*isIntFirstExpr=*/false))
   6176     return LHSTy;
   6177 
   6178   // Emit a better diagnostic if one of the expressions is a null pointer
   6179   // constant and the other is not a pointer type. In this case, the user most
   6180   // likely forgot to take the address of the other expression.
   6181   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   6182     return QualType();
   6183 
   6184   // Otherwise, the operands are not compatible.
   6185   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   6186     << LHSTy << RHSTy << LHS.get()->getSourceRange()
   6187     << RHS.get()->getSourceRange();
   6188   return QualType();
   6189 }
   6190 
   6191 /// FindCompositeObjCPointerType - Helper method to find composite type of
   6192 /// two objective-c pointer types of the two input expressions.
   6193 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
   6194                                             SourceLocation QuestionLoc) {
   6195   QualType LHSTy = LHS.get()->getType();
   6196   QualType RHSTy = RHS.get()->getType();
   6197 
   6198   // Handle things like Class and struct objc_class*.  Here we case the result
   6199   // to the pseudo-builtin, because that will be implicitly cast back to the
   6200   // redefinition type if an attempt is made to access its fields.
   6201   if (LHSTy->isObjCClassType() &&
   6202       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
   6203     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   6204     return LHSTy;
   6205   }
   6206   if (RHSTy->isObjCClassType() &&
   6207       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
   6208     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   6209     return RHSTy;
   6210   }
   6211   // And the same for struct objc_object* / id
   6212   if (LHSTy->isObjCIdType() &&
   6213       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
   6214     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   6215     return LHSTy;
   6216   }
   6217   if (RHSTy->isObjCIdType() &&
   6218       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
   6219     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   6220     return RHSTy;
   6221   }
   6222   // And the same for struct objc_selector* / SEL
   6223   if (Context.isObjCSelType(LHSTy) &&
   6224       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
   6225     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
   6226     return LHSTy;
   6227   }
   6228   if (Context.isObjCSelType(RHSTy) &&
   6229       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
   6230     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
   6231     return RHSTy;
   6232   }
   6233   // Check constraints for Objective-C object pointers types.
   6234   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
   6235 
   6236     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   6237       // Two identical object pointer types are always compatible.
   6238       return LHSTy;
   6239     }
   6240     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
   6241     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
   6242     QualType compositeType = LHSTy;
   6243 
   6244     // If both operands are interfaces and either operand can be
   6245     // assigned to the other, use that type as the composite
   6246     // type. This allows
   6247     //   xxx ? (A*) a : (B*) b
   6248     // where B is a subclass of A.
   6249     //
   6250     // Additionally, as for assignment, if either type is 'id'
   6251     // allow silent coercion. Finally, if the types are
   6252     // incompatible then make sure to use 'id' as the composite
   6253     // type so the result is acceptable for sending messages to.
   6254 
   6255     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
   6256     // It could return the composite type.
   6257     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
   6258       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
   6259     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
   6260       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
   6261     } else if ((LHSTy->isObjCQualifiedIdType() ||
   6262                 RHSTy->isObjCQualifiedIdType()) &&
   6263                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
   6264       // Need to handle "id<xx>" explicitly.
   6265       // GCC allows qualified id and any Objective-C type to devolve to
   6266       // id. Currently localizing to here until clear this should be
   6267       // part of ObjCQualifiedIdTypesAreCompatible.
   6268       compositeType = Context.getObjCIdType();
   6269     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
   6270       compositeType = Context.getObjCIdType();
   6271     } else if (!(compositeType =
   6272                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
   6273       ;
   6274     else {
   6275       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
   6276       << LHSTy << RHSTy
   6277       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6278       QualType incompatTy = Context.getObjCIdType();
   6279       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   6280       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   6281       return incompatTy;
   6282     }
   6283     // The object pointer types are compatible.
   6284     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
   6285     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
   6286     return compositeType;
   6287   }
   6288   // Check Objective-C object pointer types and 'void *'
   6289   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
   6290     if (getLangOpts().ObjCAutoRefCount) {
   6291       // ARC forbids the implicit conversion of object pointers to 'void *',
   6292       // so these types are not compatible.
   6293       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   6294           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6295       LHS = RHS = true;
   6296       return QualType();
   6297     }
   6298     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   6299     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   6300     QualType destPointee
   6301     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   6302     QualType destType = Context.getPointerType(destPointee);
   6303     // Add qualifiers if necessary.
   6304     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   6305     // Promote to void*.
   6306     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   6307     return destType;
   6308   }
   6309   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
   6310     if (getLangOpts().ObjCAutoRefCount) {
   6311       // ARC forbids the implicit conversion of object pointers to 'void *',
   6312       // so these types are not compatible.
   6313       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   6314           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6315       LHS = RHS = true;
   6316       return QualType();
   6317     }
   6318     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   6319     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   6320     QualType destPointee
   6321     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   6322     QualType destType = Context.getPointerType(destPointee);
   6323     // Add qualifiers if necessary.
   6324     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   6325     // Promote to void*.
   6326     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   6327     return destType;
   6328   }
   6329   return QualType();
   6330 }
   6331 
   6332 /// SuggestParentheses - Emit a note with a fixit hint that wraps
   6333 /// ParenRange in parentheses.
   6334 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
   6335                                const PartialDiagnostic &Note,
   6336                                SourceRange ParenRange) {
   6337   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
   6338   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
   6339       EndLoc.isValid()) {
   6340     Self.Diag(Loc, Note)
   6341       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
   6342       << FixItHint::CreateInsertion(EndLoc, ")");
   6343   } else {
   6344     // We can't display the parentheses, so just show the bare note.
   6345     Self.Diag(Loc, Note) << ParenRange;
   6346   }
   6347 }
   6348 
   6349 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
   6350   return Opc >= BO_Mul && Opc <= BO_Shr;
   6351 }
   6352 
   6353 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
   6354 /// expression, either using a built-in or overloaded operator,
   6355 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
   6356 /// expression.
   6357 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
   6358                                    Expr **RHSExprs) {
   6359   // Don't strip parenthesis: we should not warn if E is in parenthesis.
   6360   E = E->IgnoreImpCasts();
   6361   E = E->IgnoreConversionOperator();
   6362   E = E->IgnoreImpCasts();
   6363 
   6364   // Built-in binary operator.
   6365   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
   6366     if (IsArithmeticOp(OP->getOpcode())) {
   6367       *Opcode = OP->getOpcode();
   6368       *RHSExprs = OP->getRHS();
   6369       return true;
   6370     }
   6371   }
   6372 
   6373   // Overloaded operator.
   6374   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
   6375     if (Call->getNumArgs() != 2)
   6376       return false;
   6377 
   6378     // Make sure this is really a binary operator that is safe to pass into
   6379     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
   6380     OverloadedOperatorKind OO = Call->getOperator();
   6381     if (OO < OO_Plus || OO > OO_Arrow ||
   6382         OO == OO_PlusPlus || OO == OO_MinusMinus)
   6383       return false;
   6384 
   6385     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
   6386     if (IsArithmeticOp(OpKind)) {
   6387       *Opcode = OpKind;
   6388       *RHSExprs = Call->getArg(1);
   6389       return true;
   6390     }
   6391   }
   6392 
   6393   return false;
   6394 }
   6395 
   6396 static bool IsLogicOp(BinaryOperatorKind Opc) {
   6397   return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
   6398 }
   6399 
   6400 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
   6401 /// or is a logical expression such as (x==y) which has int type, but is
   6402 /// commonly interpreted as boolean.
   6403 static bool ExprLooksBoolean(Expr *E) {
   6404   E = E->IgnoreParenImpCasts();
   6405 
   6406   if (E->getType()->isBooleanType())
   6407     return true;
   6408   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
   6409     return IsLogicOp(OP->getOpcode());
   6410   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
   6411     return OP->getOpcode() == UO_LNot;
   6412   if (E->getType()->isPointerType())
   6413     return true;
   6414 
   6415   return false;
   6416 }
   6417 
   6418 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
   6419 /// and binary operator are mixed in a way that suggests the programmer assumed
   6420 /// the conditional operator has higher precedence, for example:
   6421 /// "int x = a + someBinaryCondition ? 1 : 2".
   6422 static void DiagnoseConditionalPrecedence(Sema &Self,
   6423                                           SourceLocation OpLoc,
   6424                                           Expr *Condition,
   6425                                           Expr *LHSExpr,
   6426                                           Expr *RHSExpr) {
   6427   BinaryOperatorKind CondOpcode;
   6428   Expr *CondRHS;
   6429 
   6430   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
   6431     return;
   6432   if (!ExprLooksBoolean(CondRHS))
   6433     return;
   6434 
   6435   // The condition is an arithmetic binary expression, with a right-
   6436   // hand side that looks boolean, so warn.
   6437 
   6438   Self.Diag(OpLoc, diag::warn_precedence_conditional)
   6439       << Condition->getSourceRange()
   6440       << BinaryOperator::getOpcodeStr(CondOpcode);
   6441 
   6442   SuggestParentheses(Self, OpLoc,
   6443     Self.PDiag(diag::note_precedence_silence)
   6444       << BinaryOperator::getOpcodeStr(CondOpcode),
   6445     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
   6446 
   6447   SuggestParentheses(Self, OpLoc,
   6448     Self.PDiag(diag::note_precedence_conditional_first),
   6449     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
   6450 }
   6451 
   6452 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
   6453 /// in the case of a the GNU conditional expr extension.
   6454 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
   6455                                     SourceLocation ColonLoc,
   6456                                     Expr *CondExpr, Expr *LHSExpr,
   6457                                     Expr *RHSExpr) {
   6458   if (!getLangOpts().CPlusPlus) {
   6459     // C cannot handle TypoExpr nodes in the condition because it
   6460     // doesn't handle dependent types properly, so make sure any TypoExprs have
   6461     // been dealt with before checking the operands.
   6462     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
   6463     if (!CondResult.isUsable()) return ExprError();
   6464     CondExpr = CondResult.get();
   6465   }
   6466 
   6467   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
   6468   // was the condition.
   6469   OpaqueValueExpr *opaqueValue = nullptr;
   6470   Expr *commonExpr = nullptr;
   6471   if (!LHSExpr) {
   6472     commonExpr = CondExpr;
   6473     // Lower out placeholder types first.  This is important so that we don't
   6474     // try to capture a placeholder. This happens in few cases in C++; such
   6475     // as Objective-C++'s dictionary subscripting syntax.
   6476     if (commonExpr->hasPlaceholderType()) {
   6477       ExprResult result = CheckPlaceholderExpr(commonExpr);
   6478       if (!result.isUsable()) return ExprError();
   6479       commonExpr = result.get();
   6480     }
   6481     // We usually want to apply unary conversions *before* saving, except
   6482     // in the special case of a C++ l-value conditional.
   6483     if (!(getLangOpts().CPlusPlus
   6484           && !commonExpr->isTypeDependent()
   6485           && commonExpr->getValueKind() == RHSExpr->getValueKind()
   6486           && commonExpr->isGLValue()
   6487           && commonExpr->isOrdinaryOrBitFieldObject()
   6488           && RHSExpr->isOrdinaryOrBitFieldObject()
   6489           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
   6490       ExprResult commonRes = UsualUnaryConversions(commonExpr);
   6491       if (commonRes.isInvalid())
   6492         return ExprError();
   6493       commonExpr = commonRes.get();
   6494     }
   6495 
   6496     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
   6497                                                 commonExpr->getType(),
   6498                                                 commonExpr->getValueKind(),
   6499                                                 commonExpr->getObjectKind(),
   6500                                                 commonExpr);
   6501     LHSExpr = CondExpr = opaqueValue;
   6502   }
   6503 
   6504   ExprValueKind VK = VK_RValue;
   6505   ExprObjectKind OK = OK_Ordinary;
   6506   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
   6507   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
   6508                                              VK, OK, QuestionLoc);
   6509   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
   6510       RHS.isInvalid())
   6511     return ExprError();
   6512 
   6513   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
   6514                                 RHS.get());
   6515 
   6516   if (!commonExpr)
   6517     return new (Context)
   6518         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
   6519                             RHS.get(), result, VK, OK);
   6520 
   6521   return new (Context) BinaryConditionalOperator(
   6522       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
   6523       ColonLoc, result, VK, OK);
   6524 }
   6525 
   6526 // checkPointerTypesForAssignment - This is a very tricky routine (despite
   6527 // being closely modeled after the C99 spec:-). The odd characteristic of this
   6528 // routine is it effectively iqnores the qualifiers on the top level pointee.
   6529 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
   6530 // FIXME: add a couple examples in this comment.
   6531 static Sema::AssignConvertType
   6532 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
   6533   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   6534   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   6535 
   6536   // get the "pointed to" type (ignoring qualifiers at the top level)
   6537   const Type *lhptee, *rhptee;
   6538   Qualifiers lhq, rhq;
   6539   std::tie(lhptee, lhq) =
   6540       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
   6541   std::tie(rhptee, rhq) =
   6542       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
   6543 
   6544   Sema::AssignConvertType ConvTy = Sema::Compatible;
   6545 
   6546   // C99 6.5.16.1p1: This following citation is common to constraints
   6547   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
   6548   // qualifiers of the type *pointed to* by the right;
   6549 
   6550   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
   6551   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
   6552       lhq.compatiblyIncludesObjCLifetime(rhq)) {
   6553     // Ignore lifetime for further calculation.
   6554     lhq.removeObjCLifetime();
   6555     rhq.removeObjCLifetime();
   6556   }
   6557 
   6558   if (!lhq.compatiblyIncludes(rhq)) {
   6559     // Treat address-space mismatches as fatal.  TODO: address subspaces
   6560     if (!lhq.isAddressSpaceSupersetOf(rhq))
   6561       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   6562 
   6563     // It's okay to add or remove GC or lifetime qualifiers when converting to
   6564     // and from void*.
   6565     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
   6566                         .compatiblyIncludes(
   6567                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
   6568              && (lhptee->isVoidType() || rhptee->isVoidType()))
   6569       ; // keep old
   6570 
   6571     // Treat lifetime mismatches as fatal.
   6572     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
   6573       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   6574 
   6575     // For GCC compatibility, other qualifier mismatches are treated
   6576     // as still compatible in C.
   6577     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   6578   }
   6579 
   6580   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
   6581   // incomplete type and the other is a pointer to a qualified or unqualified
   6582   // version of void...
   6583   if (lhptee->isVoidType()) {
   6584     if (rhptee->isIncompleteOrObjectType())
   6585       return ConvTy;
   6586 
   6587     // As an extension, we allow cast to/from void* to function pointer.
   6588     assert(rhptee->isFunctionType());
   6589     return Sema::FunctionVoidPointer;
   6590   }
   6591 
   6592   if (rhptee->isVoidType()) {
   6593     if (lhptee->isIncompleteOrObjectType())
   6594       return ConvTy;
   6595 
   6596     // As an extension, we allow cast to/from void* to function pointer.
   6597     assert(lhptee->isFunctionType());
   6598     return Sema::FunctionVoidPointer;
   6599   }
   6600 
   6601   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
   6602   // unqualified versions of compatible types, ...
   6603   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
   6604   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
   6605     // Check if the pointee types are compatible ignoring the sign.
   6606     // We explicitly check for char so that we catch "char" vs
   6607     // "unsigned char" on systems where "char" is unsigned.
   6608     if (lhptee->isCharType())
   6609       ltrans = S.Context.UnsignedCharTy;
   6610     else if (lhptee->hasSignedIntegerRepresentation())
   6611       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
   6612 
   6613     if (rhptee->isCharType())
   6614       rtrans = S.Context.UnsignedCharTy;
   6615     else if (rhptee->hasSignedIntegerRepresentation())
   6616       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
   6617 
   6618     if (ltrans == rtrans) {
   6619       // Types are compatible ignoring the sign. Qualifier incompatibility
   6620       // takes priority over sign incompatibility because the sign
   6621       // warning can be disabled.
   6622       if (ConvTy != Sema::Compatible)
   6623         return ConvTy;
   6624 
   6625       return Sema::IncompatiblePointerSign;
   6626     }
   6627 
   6628     // If we are a multi-level pointer, it's possible that our issue is simply
   6629     // one of qualification - e.g. char ** -> const char ** is not allowed. If
   6630     // the eventual target type is the same and the pointers have the same
   6631     // level of indirection, this must be the issue.
   6632     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
   6633       do {
   6634         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
   6635         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
   6636       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
   6637 
   6638       if (lhptee == rhptee)
   6639         return Sema::IncompatibleNestedPointerQualifiers;
   6640     }
   6641 
   6642     // General pointer incompatibility takes priority over qualifiers.
   6643     return Sema::IncompatiblePointer;
   6644   }
   6645   if (!S.getLangOpts().CPlusPlus &&
   6646       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
   6647     return Sema::IncompatiblePointer;
   6648   return ConvTy;
   6649 }
   6650 
   6651 /// checkBlockPointerTypesForAssignment - This routine determines whether two
   6652 /// block pointer types are compatible or whether a block and normal pointer
   6653 /// are compatible. It is more restrict than comparing two function pointer
   6654 // types.
   6655 static Sema::AssignConvertType
   6656 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
   6657                                     QualType RHSType) {
   6658   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   6659   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   6660 
   6661   QualType lhptee, rhptee;
   6662 
   6663   // get the "pointed to" type (ignoring qualifiers at the top level)
   6664   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
   6665   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
   6666 
   6667   // In C++, the types have to match exactly.
   6668   if (S.getLangOpts().CPlusPlus)
   6669     return Sema::IncompatibleBlockPointer;
   6670 
   6671   Sema::AssignConvertType ConvTy = Sema::Compatible;
   6672 
   6673   // For blocks we enforce that qualifiers are identical.
   6674   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
   6675     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   6676 
   6677   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
   6678     return Sema::IncompatibleBlockPointer;
   6679 
   6680   return ConvTy;
   6681 }
   6682 
   6683 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
   6684 /// for assignment compatibility.
   6685 static Sema::AssignConvertType
   6686 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
   6687                                    QualType RHSType) {
   6688   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
   6689   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
   6690 
   6691   if (LHSType->isObjCBuiltinType()) {
   6692     // Class is not compatible with ObjC object pointers.
   6693     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
   6694         !RHSType->isObjCQualifiedClassType())
   6695       return Sema::IncompatiblePointer;
   6696     return Sema::Compatible;
   6697   }
   6698   if (RHSType->isObjCBuiltinType()) {
   6699     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
   6700         !LHSType->isObjCQualifiedClassType())
   6701       return Sema::IncompatiblePointer;
   6702     return Sema::Compatible;
   6703   }
   6704   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   6705   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   6706 
   6707   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
   6708       // make an exception for id<P>
   6709       !LHSType->isObjCQualifiedIdType())
   6710     return Sema::CompatiblePointerDiscardsQualifiers;
   6711 
   6712   if (S.Context.typesAreCompatible(LHSType, RHSType))
   6713     return Sema::Compatible;
   6714   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
   6715     return Sema::IncompatibleObjCQualifiedId;
   6716   return Sema::IncompatiblePointer;
   6717 }
   6718 
   6719 Sema::AssignConvertType
   6720 Sema::CheckAssignmentConstraints(SourceLocation Loc,
   6721                                  QualType LHSType, QualType RHSType) {
   6722   // Fake up an opaque expression.  We don't actually care about what
   6723   // cast operations are required, so if CheckAssignmentConstraints
   6724   // adds casts to this they'll be wasted, but fortunately that doesn't
   6725   // usually happen on valid code.
   6726   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
   6727   ExprResult RHSPtr = &RHSExpr;
   6728   CastKind K = CK_Invalid;
   6729 
   6730   return CheckAssignmentConstraints(LHSType, RHSPtr, K);
   6731 }
   6732 
   6733 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
   6734 /// has code to accommodate several GCC extensions when type checking
   6735 /// pointers. Here are some objectionable examples that GCC considers warnings:
   6736 ///
   6737 ///  int a, *pint;
   6738 ///  short *pshort;
   6739 ///  struct foo *pfoo;
   6740 ///
   6741 ///  pint = pshort; // warning: assignment from incompatible pointer type
   6742 ///  a = pint; // warning: assignment makes integer from pointer without a cast
   6743 ///  pint = a; // warning: assignment makes pointer from integer without a cast
   6744 ///  pint = pfoo; // warning: assignment from incompatible pointer type
   6745 ///
   6746 /// As a result, the code for dealing with pointers is more complex than the
   6747 /// C99 spec dictates.
   6748 ///
   6749 /// Sets 'Kind' for any result kind except Incompatible.
   6750 Sema::AssignConvertType
   6751 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   6752                                  CastKind &Kind) {
   6753   QualType RHSType = RHS.get()->getType();
   6754   QualType OrigLHSType = LHSType;
   6755 
   6756   // Get canonical types.  We're not formatting these types, just comparing
   6757   // them.
   6758   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
   6759   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
   6760 
   6761   // Common case: no conversion required.
   6762   if (LHSType == RHSType) {
   6763     Kind = CK_NoOp;
   6764     return Compatible;
   6765   }
   6766 
   6767   // If we have an atomic type, try a non-atomic assignment, then just add an
   6768   // atomic qualification step.
   6769   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
   6770     Sema::AssignConvertType result =
   6771       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
   6772     if (result != Compatible)
   6773       return result;
   6774     if (Kind != CK_NoOp)
   6775       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
   6776     Kind = CK_NonAtomicToAtomic;
   6777     return Compatible;
   6778   }
   6779 
   6780   // If the left-hand side is a reference type, then we are in a
   6781   // (rare!) case where we've allowed the use of references in C,
   6782   // e.g., as a parameter type in a built-in function. In this case,
   6783   // just make sure that the type referenced is compatible with the
   6784   // right-hand side type. The caller is responsible for adjusting
   6785   // LHSType so that the resulting expression does not have reference
   6786   // type.
   6787   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
   6788     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
   6789       Kind = CK_LValueBitCast;
   6790       return Compatible;
   6791     }
   6792     return Incompatible;
   6793   }
   6794 
   6795   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
   6796   // to the same ExtVector type.
   6797   if (LHSType->isExtVectorType()) {
   6798     if (RHSType->isExtVectorType())
   6799       return Incompatible;
   6800     if (RHSType->isArithmeticType()) {
   6801       // CK_VectorSplat does T -> vector T, so first cast to the
   6802       // element type.
   6803       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
   6804       if (elType != RHSType) {
   6805         Kind = PrepareScalarCast(RHS, elType);
   6806         RHS = ImpCastExprToType(RHS.get(), elType, Kind);
   6807       }
   6808       Kind = CK_VectorSplat;
   6809       return Compatible;
   6810     }
   6811   }
   6812 
   6813   // Conversions to or from vector type.
   6814   if (LHSType->isVectorType() || RHSType->isVectorType()) {
   6815     if (LHSType->isVectorType() && RHSType->isVectorType()) {
   6816       // Allow assignments of an AltiVec vector type to an equivalent GCC
   6817       // vector type and vice versa
   6818       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   6819         Kind = CK_BitCast;
   6820         return Compatible;
   6821       }
   6822 
   6823       // If we are allowing lax vector conversions, and LHS and RHS are both
   6824       // vectors, the total size only needs to be the same. This is a bitcast;
   6825       // no bits are changed but the result type is different.
   6826       if (isLaxVectorConversion(RHSType, LHSType)) {
   6827         Kind = CK_BitCast;
   6828         return IncompatibleVectors;
   6829       }
   6830     }
   6831     return Incompatible;
   6832   }
   6833 
   6834   // Arithmetic conversions.
   6835   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
   6836       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
   6837     Kind = PrepareScalarCast(RHS, LHSType);
   6838     return Compatible;
   6839   }
   6840 
   6841   // Conversions to normal pointers.
   6842   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
   6843     // U* -> T*
   6844     if (isa<PointerType>(RHSType)) {
   6845       unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
   6846       unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
   6847       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
   6848       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
   6849     }
   6850 
   6851     // int -> T*
   6852     if (RHSType->isIntegerType()) {
   6853       Kind = CK_IntegralToPointer; // FIXME: null?
   6854       return IntToPointer;
   6855     }
   6856 
   6857     // C pointers are not compatible with ObjC object pointers,
   6858     // with two exceptions:
   6859     if (isa<ObjCObjectPointerType>(RHSType)) {
   6860       //  - conversions to void*
   6861       if (LHSPointer->getPointeeType()->isVoidType()) {
   6862         Kind = CK_BitCast;
   6863         return Compatible;
   6864       }
   6865 
   6866       //  - conversions from 'Class' to the redefinition type
   6867       if (RHSType->isObjCClassType() &&
   6868           Context.hasSameType(LHSType,
   6869                               Context.getObjCClassRedefinitionType())) {
   6870         Kind = CK_BitCast;
   6871         return Compatible;
   6872       }
   6873 
   6874       Kind = CK_BitCast;
   6875       return IncompatiblePointer;
   6876     }
   6877 
   6878     // U^ -> void*
   6879     if (RHSType->getAs<BlockPointerType>()) {
   6880       if (LHSPointer->getPointeeType()->isVoidType()) {
   6881         Kind = CK_BitCast;
   6882         return Compatible;
   6883       }
   6884     }
   6885 
   6886     return Incompatible;
   6887   }
   6888 
   6889   // Conversions to block pointers.
   6890   if (isa<BlockPointerType>(LHSType)) {
   6891     // U^ -> T^
   6892     if (RHSType->isBlockPointerType()) {
   6893       Kind = CK_BitCast;
   6894       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
   6895     }
   6896 
   6897     // int or null -> T^
   6898     if (RHSType->isIntegerType()) {
   6899       Kind = CK_IntegralToPointer; // FIXME: null
   6900       return IntToBlockPointer;
   6901     }
   6902 
   6903     // id -> T^
   6904     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
   6905       Kind = CK_AnyPointerToBlockPointerCast;
   6906       return Compatible;
   6907     }
   6908 
   6909     // void* -> T^
   6910     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
   6911       if (RHSPT->getPointeeType()->isVoidType()) {
   6912         Kind = CK_AnyPointerToBlockPointerCast;
   6913         return Compatible;
   6914       }
   6915 
   6916     return Incompatible;
   6917   }
   6918 
   6919   // Conversions to Objective-C pointers.
   6920   if (isa<ObjCObjectPointerType>(LHSType)) {
   6921     // A* -> B*
   6922     if (RHSType->isObjCObjectPointerType()) {
   6923       Kind = CK_BitCast;
   6924       Sema::AssignConvertType result =
   6925         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
   6926       if (getLangOpts().ObjCAutoRefCount &&
   6927           result == Compatible &&
   6928           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
   6929         result = IncompatibleObjCWeakRef;
   6930       return result;
   6931     }
   6932 
   6933     // int or null -> A*
   6934     if (RHSType->isIntegerType()) {
   6935       Kind = CK_IntegralToPointer; // FIXME: null
   6936       return IntToPointer;
   6937     }
   6938 
   6939     // In general, C pointers are not compatible with ObjC object pointers,
   6940     // with two exceptions:
   6941     if (isa<PointerType>(RHSType)) {
   6942       Kind = CK_CPointerToObjCPointerCast;
   6943 
   6944       //  - conversions from 'void*'
   6945       if (RHSType->isVoidPointerType()) {
   6946         return Compatible;
   6947       }
   6948 
   6949       //  - conversions to 'Class' from its redefinition type
   6950       if (LHSType->isObjCClassType() &&
   6951           Context.hasSameType(RHSType,
   6952                               Context.getObjCClassRedefinitionType())) {
   6953         return Compatible;
   6954       }
   6955 
   6956       return IncompatiblePointer;
   6957     }
   6958 
   6959     // Only under strict condition T^ is compatible with an Objective-C pointer.
   6960     if (RHSType->isBlockPointerType() &&
   6961         isObjCPtrBlockCompatible(*this, Context, LHSType)) {
   6962       maybeExtendBlockObject(*this, RHS);
   6963       Kind = CK_BlockPointerToObjCPointerCast;
   6964       return Compatible;
   6965     }
   6966 
   6967     return Incompatible;
   6968   }
   6969 
   6970   // Conversions from pointers that are not covered by the above.
   6971   if (isa<PointerType>(RHSType)) {
   6972     // T* -> _Bool
   6973     if (LHSType == Context.BoolTy) {
   6974       Kind = CK_PointerToBoolean;
   6975       return Compatible;
   6976     }
   6977 
   6978     // T* -> int
   6979     if (LHSType->isIntegerType()) {
   6980       Kind = CK_PointerToIntegral;
   6981       return PointerToInt;
   6982     }
   6983 
   6984     return Incompatible;
   6985   }
   6986 
   6987   // Conversions from Objective-C pointers that are not covered by the above.
   6988   if (isa<ObjCObjectPointerType>(RHSType)) {
   6989     // T* -> _Bool
   6990     if (LHSType == Context.BoolTy) {
   6991       Kind = CK_PointerToBoolean;
   6992       return Compatible;
   6993     }
   6994 
   6995     // T* -> int
   6996     if (LHSType->isIntegerType()) {
   6997       Kind = CK_PointerToIntegral;
   6998       return PointerToInt;
   6999     }
   7000 
   7001     return Incompatible;
   7002   }
   7003 
   7004   // struct A -> struct B
   7005   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
   7006     if (Context.typesAreCompatible(LHSType, RHSType)) {
   7007       Kind = CK_NoOp;
   7008       return Compatible;
   7009     }
   7010   }
   7011 
   7012   return Incompatible;
   7013 }
   7014 
   7015 /// \brief Constructs a transparent union from an expression that is
   7016 /// used to initialize the transparent union.
   7017 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
   7018                                       ExprResult &EResult, QualType UnionType,
   7019                                       FieldDecl *Field) {
   7020   // Build an initializer list that designates the appropriate member
   7021   // of the transparent union.
   7022   Expr *E = EResult.get();
   7023   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
   7024                                                    E, SourceLocation());
   7025   Initializer->setType(UnionType);
   7026   Initializer->setInitializedFieldInUnion(Field);
   7027 
   7028   // Build a compound literal constructing a value of the transparent
   7029   // union type from this initializer list.
   7030   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
   7031   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
   7032                                         VK_RValue, Initializer, false);
   7033 }
   7034 
   7035 Sema::AssignConvertType
   7036 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
   7037                                                ExprResult &RHS) {
   7038   QualType RHSType = RHS.get()->getType();
   7039 
   7040   // If the ArgType is a Union type, we want to handle a potential
   7041   // transparent_union GCC extension.
   7042   const RecordType *UT = ArgType->getAsUnionType();
   7043   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   7044     return Incompatible;
   7045 
   7046   // The field to initialize within the transparent union.
   7047   RecordDecl *UD = UT->getDecl();
   7048   FieldDecl *InitField = nullptr;
   7049   // It's compatible if the expression matches any of the fields.
   7050   for (auto *it : UD->fields()) {
   7051     if (it->getType()->isPointerType()) {
   7052       // If the transparent union contains a pointer type, we allow:
   7053       // 1) void pointer
   7054       // 2) null pointer constant
   7055       if (RHSType->isPointerType())
   7056         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
   7057           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
   7058           InitField = it;
   7059           break;
   7060         }
   7061 
   7062       if (RHS.get()->isNullPointerConstant(Context,
   7063                                            Expr::NPC_ValueDependentIsNull)) {
   7064         RHS = ImpCastExprToType(RHS.get(), it->getType(),
   7065                                 CK_NullToPointer);
   7066         InitField = it;
   7067         break;
   7068       }
   7069     }
   7070 
   7071     CastKind Kind = CK_Invalid;
   7072     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
   7073           == Compatible) {
   7074       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
   7075       InitField = it;
   7076       break;
   7077     }
   7078   }
   7079 
   7080   if (!InitField)
   7081     return Incompatible;
   7082 
   7083   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
   7084   return Compatible;
   7085 }
   7086 
   7087 Sema::AssignConvertType
   7088 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   7089                                        bool Diagnose,
   7090                                        bool DiagnoseCFAudited) {
   7091   if (getLangOpts().CPlusPlus) {
   7092     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
   7093       // C++ 5.17p3: If the left operand is not of class type, the
   7094       // expression is implicitly converted (C++ 4) to the
   7095       // cv-unqualified type of the left operand.
   7096       ExprResult Res;
   7097       if (Diagnose) {
   7098         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7099                                         AA_Assigning);
   7100       } else {
   7101         ImplicitConversionSequence ICS =
   7102             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7103                                   /*SuppressUserConversions=*/false,
   7104                                   /*AllowExplicit=*/false,
   7105                                   /*InOverloadResolution=*/false,
   7106                                   /*CStyle=*/false,
   7107                                   /*AllowObjCWritebackConversion=*/false);
   7108         if (ICS.isFailure())
   7109           return Incompatible;
   7110         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7111                                         ICS, AA_Assigning);
   7112       }
   7113       if (Res.isInvalid())
   7114         return Incompatible;
   7115       Sema::AssignConvertType result = Compatible;
   7116       if (getLangOpts().ObjCAutoRefCount &&
   7117           !CheckObjCARCUnavailableWeakConversion(LHSType,
   7118                                                  RHS.get()->getType()))
   7119         result = IncompatibleObjCWeakRef;
   7120       RHS = Res;
   7121       return result;
   7122     }
   7123 
   7124     // FIXME: Currently, we fall through and treat C++ classes like C
   7125     // structures.
   7126     // FIXME: We also fall through for atomics; not sure what should
   7127     // happen there, though.
   7128   }
   7129 
   7130   // C99 6.5.16.1p1: the left operand is a pointer and the right is
   7131   // a null pointer constant.
   7132   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
   7133        LHSType->isBlockPointerType()) &&
   7134       RHS.get()->isNullPointerConstant(Context,
   7135                                        Expr::NPC_ValueDependentIsNull)) {
   7136     CastKind Kind;
   7137     CXXCastPath Path;
   7138     CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
   7139     RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
   7140     return Compatible;
   7141   }
   7142 
   7143   // This check seems unnatural, however it is necessary to ensure the proper
   7144   // conversion of functions/arrays. If the conversion were done for all
   7145   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
   7146   // expressions that suppress this implicit conversion (&, sizeof).
   7147   //
   7148   // Suppress this for references: C++ 8.5.3p5.
   7149   if (!LHSType->isReferenceType()) {
   7150     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   7151     if (RHS.isInvalid())
   7152       return Incompatible;
   7153   }
   7154 
   7155   Expr *PRE = RHS.get()->IgnoreParenCasts();
   7156   if (ObjCProtocolExpr *OPE = dyn_cast<ObjCProtocolExpr>(PRE)) {
   7157     ObjCProtocolDecl *PDecl = OPE->getProtocol();
   7158     if (PDecl && !PDecl->hasDefinition()) {
   7159       Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
   7160       Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
   7161     }
   7162   }
   7163 
   7164   CastKind Kind = CK_Invalid;
   7165   Sema::AssignConvertType result =
   7166     CheckAssignmentConstraints(LHSType, RHS, Kind);
   7167 
   7168   // C99 6.5.16.1p2: The value of the right operand is converted to the
   7169   // type of the assignment expression.
   7170   // CheckAssignmentConstraints allows the left-hand side to be a reference,
   7171   // so that we can use references in built-in functions even in C.
   7172   // The getNonReferenceType() call makes sure that the resulting expression
   7173   // does not have reference type.
   7174   if (result != Incompatible && RHS.get()->getType() != LHSType) {
   7175     QualType Ty = LHSType.getNonLValueExprType(Context);
   7176     Expr *E = RHS.get();
   7177     if (getLangOpts().ObjCAutoRefCount)
   7178       CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
   7179                              DiagnoseCFAudited);
   7180     if (getLangOpts().ObjC1 &&
   7181         (CheckObjCBridgeRelatedConversions(E->getLocStart(),
   7182                                           LHSType, E->getType(), E) ||
   7183          ConversionToObjCStringLiteralCheck(LHSType, E))) {
   7184       RHS = E;
   7185       return Compatible;
   7186     }
   7187 
   7188     RHS = ImpCastExprToType(E, Ty, Kind);
   7189   }
   7190   return result;
   7191 }
   7192 
   7193 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
   7194                                ExprResult &RHS) {
   7195   Diag(Loc, diag::err_typecheck_invalid_operands)
   7196     << LHS.get()->getType() << RHS.get()->getType()
   7197     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7198   return QualType();
   7199 }
   7200 
   7201 /// Try to convert a value of non-vector type to a vector type by converting
   7202 /// the type to the element type of the vector and then performing a splat.
   7203 /// If the language is OpenCL, we only use conversions that promote scalar
   7204 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
   7205 /// for float->int.
   7206 ///
   7207 /// \param scalar - if non-null, actually perform the conversions
   7208 /// \return true if the operation fails (but without diagnosing the failure)
   7209 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
   7210                                      QualType scalarTy,
   7211                                      QualType vectorEltTy,
   7212                                      QualType vectorTy) {
   7213   // The conversion to apply to the scalar before splatting it,
   7214   // if necessary.
   7215   CastKind scalarCast = CK_Invalid;
   7216 
   7217   if (vectorEltTy->isIntegralType(S.Context)) {
   7218     if (!scalarTy->isIntegralType(S.Context))
   7219       return true;
   7220     if (S.getLangOpts().OpenCL &&
   7221         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
   7222       return true;
   7223     scalarCast = CK_IntegralCast;
   7224   } else if (vectorEltTy->isRealFloatingType()) {
   7225     if (scalarTy->isRealFloatingType()) {
   7226       if (S.getLangOpts().OpenCL &&
   7227           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
   7228         return true;
   7229       scalarCast = CK_FloatingCast;
   7230     }
   7231     else if (scalarTy->isIntegralType(S.Context))
   7232       scalarCast = CK_IntegralToFloating;
   7233     else
   7234       return true;
   7235   } else {
   7236     return true;
   7237   }
   7238 
   7239   // Adjust scalar if desired.
   7240   if (scalar) {
   7241     if (scalarCast != CK_Invalid)
   7242       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
   7243     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
   7244   }
   7245   return false;
   7246 }
   7247 
   7248 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
   7249                                    SourceLocation Loc, bool IsCompAssign) {
   7250   if (!IsCompAssign) {
   7251     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
   7252     if (LHS.isInvalid())
   7253       return QualType();
   7254   }
   7255   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   7256   if (RHS.isInvalid())
   7257     return QualType();
   7258 
   7259   // For conversion purposes, we ignore any qualifiers.
   7260   // For example, "const float" and "float" are equivalent.
   7261   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
   7262   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
   7263 
   7264   // If the vector types are identical, return.
   7265   if (Context.hasSameType(LHSType, RHSType))
   7266     return LHSType;
   7267 
   7268   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
   7269   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
   7270   assert(LHSVecType || RHSVecType);
   7271 
   7272   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
   7273   if (LHSVecType && RHSVecType &&
   7274       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   7275     if (isa<ExtVectorType>(LHSVecType)) {
   7276       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   7277       return LHSType;
   7278     }
   7279 
   7280     if (!IsCompAssign)
   7281       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   7282     return RHSType;
   7283   }
   7284 
   7285   // If there's an ext-vector type and a scalar, try to convert the scalar to
   7286   // the vector element type and splat.
   7287   if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
   7288     if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
   7289                                   LHSVecType->getElementType(), LHSType))
   7290       return LHSType;
   7291   }
   7292   if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
   7293     if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
   7294                                   LHSType, RHSVecType->getElementType(),
   7295                                   RHSType))
   7296       return RHSType;
   7297   }
   7298 
   7299   // If we're allowing lax vector conversions, only the total (data) size
   7300   // needs to be the same.
   7301   // FIXME: Should we really be allowing this?
   7302   // FIXME: We really just pick the LHS type arbitrarily?
   7303   if (isLaxVectorConversion(RHSType, LHSType)) {
   7304     QualType resultType = LHSType;
   7305     RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
   7306     return resultType;
   7307   }
   7308 
   7309   // Okay, the expression is invalid.
   7310 
   7311   // If there's a non-vector, non-real operand, diagnose that.
   7312   if ((!RHSVecType && !RHSType->isRealType()) ||
   7313       (!LHSVecType && !LHSType->isRealType())) {
   7314     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
   7315       << LHSType << RHSType
   7316       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7317     return QualType();
   7318   }
   7319 
   7320   // Otherwise, use the generic diagnostic.
   7321   Diag(Loc, diag::err_typecheck_vector_not_convertable)
   7322     << LHSType << RHSType
   7323     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7324   return QualType();
   7325 }
   7326 
   7327 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
   7328 // expression.  These are mainly cases where the null pointer is used as an
   7329 // integer instead of a pointer.
   7330 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
   7331                                 SourceLocation Loc, bool IsCompare) {
   7332   // The canonical way to check for a GNU null is with isNullPointerConstant,
   7333   // but we use a bit of a hack here for speed; this is a relatively
   7334   // hot path, and isNullPointerConstant is slow.
   7335   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
   7336   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
   7337 
   7338   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
   7339 
   7340   // Avoid analyzing cases where the result will either be invalid (and
   7341   // diagnosed as such) or entirely valid and not something to warn about.
   7342   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
   7343       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
   7344     return;
   7345 
   7346   // Comparison operations would not make sense with a null pointer no matter
   7347   // what the other expression is.
   7348   if (!IsCompare) {
   7349     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
   7350         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
   7351         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
   7352     return;
   7353   }
   7354 
   7355   // The rest of the operations only make sense with a null pointer
   7356   // if the other expression is a pointer.
   7357   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
   7358       NonNullType->canDecayToPointerType())
   7359     return;
   7360 
   7361   S.Diag(Loc, diag::warn_null_in_comparison_operation)
   7362       << LHSNull /* LHS is NULL */ << NonNullType
   7363       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7364 }
   7365 
   7366 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
   7367                                            SourceLocation Loc,
   7368                                            bool IsCompAssign, bool IsDiv) {
   7369   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7370 
   7371   if (LHS.get()->getType()->isVectorType() ||
   7372       RHS.get()->getType()->isVectorType())
   7373     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   7374 
   7375   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   7376   if (LHS.isInvalid() || RHS.isInvalid())
   7377     return QualType();
   7378 
   7379 
   7380   if (compType.isNull() || !compType->isArithmeticType())
   7381     return InvalidOperands(Loc, LHS, RHS);
   7382 
   7383   // Check for division by zero.
   7384   llvm::APSInt RHSValue;
   7385   if (IsDiv && !RHS.get()->isValueDependent() &&
   7386       RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
   7387     DiagRuntimeBehavior(Loc, RHS.get(),
   7388                         PDiag(diag::warn_division_by_zero)
   7389                           << RHS.get()->getSourceRange());
   7390 
   7391   return compType;
   7392 }
   7393 
   7394 QualType Sema::CheckRemainderOperands(
   7395   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   7396   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7397 
   7398   if (LHS.get()->getType()->isVectorType() ||
   7399       RHS.get()->getType()->isVectorType()) {
   7400     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   7401         RHS.get()->getType()->hasIntegerRepresentation())
   7402       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   7403     return InvalidOperands(Loc, LHS, RHS);
   7404   }
   7405 
   7406   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   7407   if (LHS.isInvalid() || RHS.isInvalid())
   7408     return QualType();
   7409 
   7410   if (compType.isNull() || !compType->isIntegerType())
   7411     return InvalidOperands(Loc, LHS, RHS);
   7412 
   7413   // Check for remainder by zero.
   7414   llvm::APSInt RHSValue;
   7415   if (!RHS.get()->isValueDependent() &&
   7416       RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
   7417     DiagRuntimeBehavior(Loc, RHS.get(),
   7418                         PDiag(diag::warn_remainder_by_zero)
   7419                           << RHS.get()->getSourceRange());
   7420 
   7421   return compType;
   7422 }
   7423 
   7424 /// \brief Diagnose invalid arithmetic on two void pointers.
   7425 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
   7426                                                 Expr *LHSExpr, Expr *RHSExpr) {
   7427   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7428                 ? diag::err_typecheck_pointer_arith_void_type
   7429                 : diag::ext_gnu_void_ptr)
   7430     << 1 /* two pointers */ << LHSExpr->getSourceRange()
   7431                             << RHSExpr->getSourceRange();
   7432 }
   7433 
   7434 /// \brief Diagnose invalid arithmetic on a void pointer.
   7435 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
   7436                                             Expr *Pointer) {
   7437   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7438                 ? diag::err_typecheck_pointer_arith_void_type
   7439                 : diag::ext_gnu_void_ptr)
   7440     << 0 /* one pointer */ << Pointer->getSourceRange();
   7441 }
   7442 
   7443 /// \brief Diagnose invalid arithmetic on two function pointers.
   7444 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
   7445                                                     Expr *LHS, Expr *RHS) {
   7446   assert(LHS->getType()->isAnyPointerType());
   7447   assert(RHS->getType()->isAnyPointerType());
   7448   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7449                 ? diag::err_typecheck_pointer_arith_function_type
   7450                 : diag::ext_gnu_ptr_func_arith)
   7451     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
   7452     // We only show the second type if it differs from the first.
   7453     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
   7454                                                    RHS->getType())
   7455     << RHS->getType()->getPointeeType()
   7456     << LHS->getSourceRange() << RHS->getSourceRange();
   7457 }
   7458 
   7459 /// \brief Diagnose invalid arithmetic on a function pointer.
   7460 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
   7461                                                 Expr *Pointer) {
   7462   assert(Pointer->getType()->isAnyPointerType());
   7463   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7464                 ? diag::err_typecheck_pointer_arith_function_type
   7465                 : diag::ext_gnu_ptr_func_arith)
   7466     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
   7467     << 0 /* one pointer, so only one type */
   7468     << Pointer->getSourceRange();
   7469 }
   7470 
   7471 /// \brief Emit error if Operand is incomplete pointer type
   7472 ///
   7473 /// \returns True if pointer has incomplete type
   7474 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
   7475                                                  Expr *Operand) {
   7476   QualType ResType = Operand->getType();
   7477   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   7478     ResType = ResAtomicType->getValueType();
   7479 
   7480   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
   7481   QualType PointeeTy = ResType->getPointeeType();
   7482   return S.RequireCompleteType(Loc, PointeeTy,
   7483                                diag::err_typecheck_arithmetic_incomplete_type,
   7484                                PointeeTy, Operand->getSourceRange());
   7485 }
   7486 
   7487 /// \brief Check the validity of an arithmetic pointer operand.
   7488 ///
   7489 /// If the operand has pointer type, this code will check for pointer types
   7490 /// which are invalid in arithmetic operations. These will be diagnosed
   7491 /// appropriately, including whether or not the use is supported as an
   7492 /// extension.
   7493 ///
   7494 /// \returns True when the operand is valid to use (even if as an extension).
   7495 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
   7496                                             Expr *Operand) {
   7497   QualType ResType = Operand->getType();
   7498   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   7499     ResType = ResAtomicType->getValueType();
   7500 
   7501   if (!ResType->isAnyPointerType()) return true;
   7502 
   7503   QualType PointeeTy = ResType->getPointeeType();
   7504   if (PointeeTy->isVoidType()) {
   7505     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
   7506     return !S.getLangOpts().CPlusPlus;
   7507   }
   7508   if (PointeeTy->isFunctionType()) {
   7509     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
   7510     return !S.getLangOpts().CPlusPlus;
   7511   }
   7512 
   7513   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
   7514 
   7515   return true;
   7516 }
   7517 
   7518 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
   7519 /// operands.
   7520 ///
   7521 /// This routine will diagnose any invalid arithmetic on pointer operands much
   7522 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
   7523 /// for emitting a single diagnostic even for operations where both LHS and RHS
   7524 /// are (potentially problematic) pointers.
   7525 ///
   7526 /// \returns True when the operand is valid to use (even if as an extension).
   7527 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
   7528                                                 Expr *LHSExpr, Expr *RHSExpr) {
   7529   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
   7530   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
   7531   if (!isLHSPointer && !isRHSPointer) return true;
   7532 
   7533   QualType LHSPointeeTy, RHSPointeeTy;
   7534   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
   7535   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
   7536 
   7537   // if both are pointers check if operation is valid wrt address spaces
   7538   if (isLHSPointer && isRHSPointer) {
   7539     const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
   7540     const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
   7541     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
   7542       S.Diag(Loc,
   7543              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
   7544           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
   7545           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   7546       return false;
   7547     }
   7548   }
   7549 
   7550   // Check for arithmetic on pointers to incomplete types.
   7551   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
   7552   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
   7553   if (isLHSVoidPtr || isRHSVoidPtr) {
   7554     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
   7555     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
   7556     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
   7557 
   7558     return !S.getLangOpts().CPlusPlus;
   7559   }
   7560 
   7561   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
   7562   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
   7563   if (isLHSFuncPtr || isRHSFuncPtr) {
   7564     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
   7565     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
   7566                                                                 RHSExpr);
   7567     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
   7568 
   7569     return !S.getLangOpts().CPlusPlus;
   7570   }
   7571 
   7572   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
   7573     return false;
   7574   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
   7575     return false;
   7576 
   7577   return true;
   7578 }
   7579 
   7580 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
   7581 /// literal.
   7582 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
   7583                                   Expr *LHSExpr, Expr *RHSExpr) {
   7584   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
   7585   Expr* IndexExpr = RHSExpr;
   7586   if (!StrExpr) {
   7587     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
   7588     IndexExpr = LHSExpr;
   7589   }
   7590 
   7591   bool IsStringPlusInt = StrExpr &&
   7592       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
   7593   if (!IsStringPlusInt || IndexExpr->isValueDependent())
   7594     return;
   7595 
   7596   llvm::APSInt index;
   7597   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
   7598     unsigned StrLenWithNull = StrExpr->getLength() + 1;
   7599     if (index.isNonNegative() &&
   7600         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
   7601                               index.isUnsigned()))
   7602       return;
   7603   }
   7604 
   7605   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   7606   Self.Diag(OpLoc, diag::warn_string_plus_int)
   7607       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
   7608 
   7609   // Only print a fixit for "str" + int, not for int + "str".
   7610   if (IndexExpr == RHSExpr) {
   7611     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
   7612     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   7613         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   7614         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   7615         << FixItHint::CreateInsertion(EndLoc, "]");
   7616   } else
   7617     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   7618 }
   7619 
   7620 /// \brief Emit a warning when adding a char literal to a string.
   7621 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
   7622                                    Expr *LHSExpr, Expr *RHSExpr) {
   7623   const Expr *StringRefExpr = LHSExpr;
   7624   const CharacterLiteral *CharExpr =
   7625       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
   7626 
   7627   if (!CharExpr) {
   7628     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
   7629     StringRefExpr = RHSExpr;
   7630   }
   7631 
   7632   if (!CharExpr || !StringRefExpr)
   7633     return;
   7634 
   7635   const QualType StringType = StringRefExpr->getType();
   7636 
   7637   // Return if not a PointerType.
   7638   if (!StringType->isAnyPointerType())
   7639     return;
   7640 
   7641   // Return if not a CharacterType.
   7642   if (!StringType->getPointeeType()->isAnyCharacterType())
   7643     return;
   7644 
   7645   ASTContext &Ctx = Self.getASTContext();
   7646   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   7647 
   7648   const QualType CharType = CharExpr->getType();
   7649   if (!CharType->isAnyCharacterType() &&
   7650       CharType->isIntegerType() &&
   7651       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
   7652     Self.Diag(OpLoc, diag::warn_string_plus_char)
   7653         << DiagRange << Ctx.CharTy;
   7654   } else {
   7655     Self.Diag(OpLoc, diag::warn_string_plus_char)
   7656         << DiagRange << CharExpr->getType();
   7657   }
   7658 
   7659   // Only print a fixit for str + char, not for char + str.
   7660   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
   7661     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
   7662     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   7663         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   7664         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   7665         << FixItHint::CreateInsertion(EndLoc, "]");
   7666   } else {
   7667     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   7668   }
   7669 }
   7670 
   7671 /// \brief Emit error when two pointers are incompatible.
   7672 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
   7673                                            Expr *LHSExpr, Expr *RHSExpr) {
   7674   assert(LHSExpr->getType()->isAnyPointerType());
   7675   assert(RHSExpr->getType()->isAnyPointerType());
   7676   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
   7677     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
   7678     << RHSExpr->getSourceRange();
   7679 }
   7680 
   7681 QualType Sema::CheckAdditionOperands( // C99 6.5.6
   7682     ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
   7683     QualType* CompLHSTy) {
   7684   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7685 
   7686   if (LHS.get()->getType()->isVectorType() ||
   7687       RHS.get()->getType()->isVectorType()) {
   7688     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
   7689     if (CompLHSTy) *CompLHSTy = compType;
   7690     return compType;
   7691   }
   7692 
   7693   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   7694   if (LHS.isInvalid() || RHS.isInvalid())
   7695     return QualType();
   7696 
   7697   // Diagnose "string literal" '+' int and string '+' "char literal".
   7698   if (Opc == BO_Add) {
   7699     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
   7700     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
   7701   }
   7702 
   7703   // handle the common case first (both operands are arithmetic).
   7704   if (!compType.isNull() && compType->isArithmeticType()) {
   7705     if (CompLHSTy) *CompLHSTy = compType;
   7706     return compType;
   7707   }
   7708 
   7709   // Type-checking.  Ultimately the pointer's going to be in PExp;
   7710   // note that we bias towards the LHS being the pointer.
   7711   Expr *PExp = LHS.get(), *IExp = RHS.get();
   7712 
   7713   bool isObjCPointer;
   7714   if (PExp->getType()->isPointerType()) {
   7715     isObjCPointer = false;
   7716   } else if (PExp->getType()->isObjCObjectPointerType()) {
   7717     isObjCPointer = true;
   7718   } else {
   7719     std::swap(PExp, IExp);
   7720     if (PExp->getType()->isPointerType()) {
   7721       isObjCPointer = false;
   7722     } else if (PExp->getType()->isObjCObjectPointerType()) {
   7723       isObjCPointer = true;
   7724     } else {
   7725       return InvalidOperands(Loc, LHS, RHS);
   7726     }
   7727   }
   7728   assert(PExp->getType()->isAnyPointerType());
   7729 
   7730   if (!IExp->getType()->isIntegerType())
   7731     return InvalidOperands(Loc, LHS, RHS);
   7732 
   7733   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
   7734     return QualType();
   7735 
   7736   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
   7737     return QualType();
   7738 
   7739   // Check array bounds for pointer arithemtic
   7740   CheckArrayAccess(PExp, IExp);
   7741 
   7742   if (CompLHSTy) {
   7743     QualType LHSTy = Context.isPromotableBitField(LHS.get());
   7744     if (LHSTy.isNull()) {
   7745       LHSTy = LHS.get()->getType();
   7746       if (LHSTy->isPromotableIntegerType())
   7747         LHSTy = Context.getPromotedIntegerType(LHSTy);
   7748     }
   7749     *CompLHSTy = LHSTy;
   7750   }
   7751 
   7752   return PExp->getType();
   7753 }
   7754 
   7755 // C99 6.5.6
   7756 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
   7757                                         SourceLocation Loc,
   7758                                         QualType* CompLHSTy) {
   7759   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7760 
   7761   if (LHS.get()->getType()->isVectorType() ||
   7762       RHS.get()->getType()->isVectorType()) {
   7763     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
   7764     if (CompLHSTy) *CompLHSTy = compType;
   7765     return compType;
   7766   }
   7767 
   7768   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   7769   if (LHS.isInvalid() || RHS.isInvalid())
   7770     return QualType();
   7771 
   7772   // Enforce type constraints: C99 6.5.6p3.
   7773 
   7774   // Handle the common case first (both operands are arithmetic).
   7775   if (!compType.isNull() && compType->isArithmeticType()) {
   7776     if (CompLHSTy) *CompLHSTy = compType;
   7777     return compType;
   7778   }
   7779 
   7780   // Either ptr - int   or   ptr - ptr.
   7781   if (LHS.get()->getType()->isAnyPointerType()) {
   7782     QualType lpointee = LHS.get()->getType()->getPointeeType();
   7783 
   7784     // Diagnose bad cases where we step over interface counts.
   7785     if (LHS.get()->getType()->isObjCObjectPointerType() &&
   7786         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
   7787       return QualType();
   7788 
   7789     // The result type of a pointer-int computation is the pointer type.
   7790     if (RHS.get()->getType()->isIntegerType()) {
   7791       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
   7792         return QualType();
   7793 
   7794       // Check array bounds for pointer arithemtic
   7795       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
   7796                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
   7797 
   7798       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   7799       return LHS.get()->getType();
   7800     }
   7801 
   7802     // Handle pointer-pointer subtractions.
   7803     if (const PointerType *RHSPTy
   7804           = RHS.get()->getType()->getAs<PointerType>()) {
   7805       QualType rpointee = RHSPTy->getPointeeType();
   7806 
   7807       if (getLangOpts().CPlusPlus) {
   7808         // Pointee types must be the same: C++ [expr.add]
   7809         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
   7810           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   7811         }
   7812       } else {
   7813         // Pointee types must be compatible C99 6.5.6p3
   7814         if (!Context.typesAreCompatible(
   7815                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
   7816                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
   7817           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   7818           return QualType();
   7819         }
   7820       }
   7821 
   7822       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
   7823                                                LHS.get(), RHS.get()))
   7824         return QualType();
   7825 
   7826       // The pointee type may have zero size.  As an extension, a structure or
   7827       // union may have zero size or an array may have zero length.  In this
   7828       // case subtraction does not make sense.
   7829       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
   7830         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
   7831         if (ElementSize.isZero()) {
   7832           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
   7833             << rpointee.getUnqualifiedType()
   7834             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7835         }
   7836       }
   7837 
   7838       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   7839       return Context.getPointerDiffType();
   7840     }
   7841   }
   7842 
   7843   return InvalidOperands(Loc, LHS, RHS);
   7844 }
   7845 
   7846 static bool isScopedEnumerationType(QualType T) {
   7847   if (const EnumType *ET = T->getAs<EnumType>())
   7848     return ET->getDecl()->isScoped();
   7849   return false;
   7850 }
   7851 
   7852 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
   7853                                    SourceLocation Loc, unsigned Opc,
   7854                                    QualType LHSType) {
   7855   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
   7856   // so skip remaining warnings as we don't want to modify values within Sema.
   7857   if (S.getLangOpts().OpenCL)
   7858     return;
   7859 
   7860   llvm::APSInt Right;
   7861   // Check right/shifter operand
   7862   if (RHS.get()->isValueDependent() ||
   7863       !RHS.get()->EvaluateAsInt(Right, S.Context))
   7864     return;
   7865 
   7866   if (Right.isNegative()) {
   7867     S.DiagRuntimeBehavior(Loc, RHS.get(),
   7868                           S.PDiag(diag::warn_shift_negative)
   7869                             << RHS.get()->getSourceRange());
   7870     return;
   7871   }
   7872   llvm::APInt LeftBits(Right.getBitWidth(),
   7873                        S.Context.getTypeSize(LHS.get()->getType()));
   7874   if (Right.uge(LeftBits)) {
   7875     S.DiagRuntimeBehavior(Loc, RHS.get(),
   7876                           S.PDiag(diag::warn_shift_gt_typewidth)
   7877                             << RHS.get()->getSourceRange());
   7878     return;
   7879   }
   7880   if (Opc != BO_Shl)
   7881     return;
   7882 
   7883   // When left shifting an ICE which is signed, we can check for overflow which
   7884   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
   7885   // integers have defined behavior modulo one more than the maximum value
   7886   // representable in the result type, so never warn for those.
   7887   llvm::APSInt Left;
   7888   if (LHS.get()->isValueDependent() ||
   7889       !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
   7890       LHSType->hasUnsignedIntegerRepresentation())
   7891     return;
   7892   llvm::APInt ResultBits =
   7893       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
   7894   if (LeftBits.uge(ResultBits))
   7895     return;
   7896   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
   7897   Result = Result.shl(Right);
   7898 
   7899   // Print the bit representation of the signed integer as an unsigned
   7900   // hexadecimal number.
   7901   SmallString<40> HexResult;
   7902   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
   7903 
   7904   // If we are only missing a sign bit, this is less likely to result in actual
   7905   // bugs -- if the result is cast back to an unsigned type, it will have the
   7906   // expected value. Thus we place this behind a different warning that can be
   7907   // turned off separately if needed.
   7908   if (LeftBits == ResultBits - 1) {
   7909     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
   7910         << HexResult << LHSType
   7911         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7912     return;
   7913   }
   7914 
   7915   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
   7916     << HexResult.str() << Result.getMinSignedBits() << LHSType
   7917     << Left.getBitWidth() << LHS.get()->getSourceRange()
   7918     << RHS.get()->getSourceRange();
   7919 }
   7920 
   7921 /// \brief Return the resulting type when an OpenCL vector is shifted
   7922 ///        by a scalar or vector shift amount.
   7923 static QualType checkOpenCLVectorShift(Sema &S,
   7924                                        ExprResult &LHS, ExprResult &RHS,
   7925                                        SourceLocation Loc, bool IsCompAssign) {
   7926   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
   7927   if (!LHS.get()->getType()->isVectorType()) {
   7928     S.Diag(Loc, diag::err_shift_rhs_only_vector)
   7929       << RHS.get()->getType() << LHS.get()->getType()
   7930       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7931     return QualType();
   7932   }
   7933 
   7934   if (!IsCompAssign) {
   7935     LHS = S.UsualUnaryConversions(LHS.get());
   7936     if (LHS.isInvalid()) return QualType();
   7937   }
   7938 
   7939   RHS = S.UsualUnaryConversions(RHS.get());
   7940   if (RHS.isInvalid()) return QualType();
   7941 
   7942   QualType LHSType = LHS.get()->getType();
   7943   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
   7944   QualType LHSEleType = LHSVecTy->getElementType();
   7945 
   7946   // Note that RHS might not be a vector.
   7947   QualType RHSType = RHS.get()->getType();
   7948   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
   7949   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
   7950 
   7951   // OpenCL v1.1 s6.3.j says that the operands need to be integers.
   7952   if (!LHSEleType->isIntegerType()) {
   7953     S.Diag(Loc, diag::err_typecheck_expect_int)
   7954       << LHS.get()->getType() << LHS.get()->getSourceRange();
   7955     return QualType();
   7956   }
   7957 
   7958   if (!RHSEleType->isIntegerType()) {
   7959     S.Diag(Loc, diag::err_typecheck_expect_int)
   7960       << RHS.get()->getType() << RHS.get()->getSourceRange();
   7961     return QualType();
   7962   }
   7963 
   7964   if (RHSVecTy) {
   7965     // OpenCL v1.1 s6.3.j says that for vector types, the operators
   7966     // are applied component-wise. So if RHS is a vector, then ensure
   7967     // that the number of elements is the same as LHS...
   7968     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
   7969       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
   7970         << LHS.get()->getType() << RHS.get()->getType()
   7971         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7972       return QualType();
   7973     }
   7974   } else {
   7975     // ...else expand RHS to match the number of elements in LHS.
   7976     QualType VecTy =
   7977       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
   7978     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
   7979   }
   7980 
   7981   return LHSType;
   7982 }
   7983 
   7984 // C99 6.5.7
   7985 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
   7986                                   SourceLocation Loc, unsigned Opc,
   7987                                   bool IsCompAssign) {
   7988   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7989 
   7990   // Vector shifts promote their scalar inputs to vector type.
   7991   if (LHS.get()->getType()->isVectorType() ||
   7992       RHS.get()->getType()->isVectorType()) {
   7993     if (LangOpts.OpenCL)
   7994       return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
   7995     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   7996   }
   7997 
   7998   // Shifts don't perform usual arithmetic conversions, they just do integer
   7999   // promotions on each operand. C99 6.5.7p3
   8000 
   8001   // For the LHS, do usual unary conversions, but then reset them away
   8002   // if this is a compound assignment.
   8003   ExprResult OldLHS = LHS;
   8004   LHS = UsualUnaryConversions(LHS.get());
   8005   if (LHS.isInvalid())
   8006     return QualType();
   8007   QualType LHSType = LHS.get()->getType();
   8008   if (IsCompAssign) LHS = OldLHS;
   8009 
   8010   // The RHS is simpler.
   8011   RHS = UsualUnaryConversions(RHS.get());
   8012   if (RHS.isInvalid())
   8013     return QualType();
   8014   QualType RHSType = RHS.get()->getType();
   8015 
   8016   // C99 6.5.7p2: Each of the operands shall have integer type.
   8017   if (!LHSType->hasIntegerRepresentation() ||
   8018       !RHSType->hasIntegerRepresentation())
   8019     return InvalidOperands(Loc, LHS, RHS);
   8020 
   8021   // C++0x: Don't allow scoped enums. FIXME: Use something better than
   8022   // hasIntegerRepresentation() above instead of this.
   8023   if (isScopedEnumerationType(LHSType) ||
   8024       isScopedEnumerationType(RHSType)) {
   8025     return InvalidOperands(Loc, LHS, RHS);
   8026   }
   8027   // Sanity-check shift operands
   8028   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
   8029 
   8030   // "The type of the result is that of the promoted left operand."
   8031   return LHSType;
   8032 }
   8033 
   8034 static bool IsWithinTemplateSpecialization(Decl *D) {
   8035   if (DeclContext *DC = D->getDeclContext()) {
   8036     if (isa<ClassTemplateSpecializationDecl>(DC))
   8037       return true;
   8038     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
   8039       return FD->isFunctionTemplateSpecialization();
   8040   }
   8041   return false;
   8042 }
   8043 
   8044 /// If two different enums are compared, raise a warning.
   8045 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
   8046                                 Expr *RHS) {
   8047   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
   8048   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
   8049 
   8050   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
   8051   if (!LHSEnumType)
   8052     return;
   8053   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
   8054   if (!RHSEnumType)
   8055     return;
   8056 
   8057   // Ignore anonymous enums.
   8058   if (!LHSEnumType->getDecl()->getIdentifier())
   8059     return;
   8060   if (!RHSEnumType->getDecl()->getIdentifier())
   8061     return;
   8062 
   8063   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
   8064     return;
   8065 
   8066   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
   8067       << LHSStrippedType << RHSStrippedType
   8068       << LHS->getSourceRange() << RHS->getSourceRange();
   8069 }
   8070 
   8071 /// \brief Diagnose bad pointer comparisons.
   8072 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
   8073                                               ExprResult &LHS, ExprResult &RHS,
   8074                                               bool IsError) {
   8075   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
   8076                       : diag::ext_typecheck_comparison_of_distinct_pointers)
   8077     << LHS.get()->getType() << RHS.get()->getType()
   8078     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8079 }
   8080 
   8081 /// \brief Returns false if the pointers are converted to a composite type,
   8082 /// true otherwise.
   8083 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
   8084                                            ExprResult &LHS, ExprResult &RHS) {
   8085   // C++ [expr.rel]p2:
   8086   //   [...] Pointer conversions (4.10) and qualification
   8087   //   conversions (4.4) are performed on pointer operands (or on
   8088   //   a pointer operand and a null pointer constant) to bring
   8089   //   them to their composite pointer type. [...]
   8090   //
   8091   // C++ [expr.eq]p1 uses the same notion for (in)equality
   8092   // comparisons of pointers.
   8093 
   8094   // C++ [expr.eq]p2:
   8095   //   In addition, pointers to members can be compared, or a pointer to
   8096   //   member and a null pointer constant. Pointer to member conversions
   8097   //   (4.11) and qualification conversions (4.4) are performed to bring
   8098   //   them to a common type. If one operand is a null pointer constant,
   8099   //   the common type is the type of the other operand. Otherwise, the
   8100   //   common type is a pointer to member type similar (4.4) to the type
   8101   //   of one of the operands, with a cv-qualification signature (4.4)
   8102   //   that is the union of the cv-qualification signatures of the operand
   8103   //   types.
   8104 
   8105   QualType LHSType = LHS.get()->getType();
   8106   QualType RHSType = RHS.get()->getType();
   8107   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
   8108          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
   8109 
   8110   bool NonStandardCompositeType = false;
   8111   bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
   8112   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
   8113   if (T.isNull()) {
   8114     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
   8115     return true;
   8116   }
   8117 
   8118   if (NonStandardCompositeType)
   8119     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
   8120       << LHSType << RHSType << T << LHS.get()->getSourceRange()
   8121       << RHS.get()->getSourceRange();
   8122 
   8123   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
   8124   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
   8125   return false;
   8126 }
   8127 
   8128 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
   8129                                                     ExprResult &LHS,
   8130                                                     ExprResult &RHS,
   8131                                                     bool IsError) {
   8132   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
   8133                       : diag::ext_typecheck_comparison_of_fptr_to_void)
   8134     << LHS.get()->getType() << RHS.get()->getType()
   8135     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8136 }
   8137 
   8138 static bool isObjCObjectLiteral(ExprResult &E) {
   8139   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
   8140   case Stmt::ObjCArrayLiteralClass:
   8141   case Stmt::ObjCDictionaryLiteralClass:
   8142   case Stmt::ObjCStringLiteralClass:
   8143   case Stmt::ObjCBoxedExprClass:
   8144     return true;
   8145   default:
   8146     // Note that ObjCBoolLiteral is NOT an object literal!
   8147     return false;
   8148   }
   8149 }
   8150 
   8151 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
   8152   const ObjCObjectPointerType *Type =
   8153     LHS->getType()->getAs<ObjCObjectPointerType>();
   8154 
   8155   // If this is not actually an Objective-C object, bail out.
   8156   if (!Type)
   8157     return false;
   8158 
   8159   // Get the LHS object's interface type.
   8160   QualType InterfaceType = Type->getPointeeType();
   8161   if (const ObjCObjectType *iQFaceTy =
   8162       InterfaceType->getAsObjCQualifiedInterfaceType())
   8163     InterfaceType = iQFaceTy->getBaseType();
   8164 
   8165   // If the RHS isn't an Objective-C object, bail out.
   8166   if (!RHS->getType()->isObjCObjectPointerType())
   8167     return false;
   8168 
   8169   // Try to find the -isEqual: method.
   8170   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
   8171   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
   8172                                                       InterfaceType,
   8173                                                       /*instance=*/true);
   8174   if (!Method) {
   8175     if (Type->isObjCIdType()) {
   8176       // For 'id', just check the global pool.
   8177       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
   8178                                                   /*receiverId=*/true);
   8179     } else {
   8180       // Check protocols.
   8181       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
   8182                                              /*instance=*/true);
   8183     }
   8184   }
   8185 
   8186   if (!Method)
   8187     return false;
   8188 
   8189   QualType T = Method->parameters()[0]->getType();
   8190   if (!T->isObjCObjectPointerType())
   8191     return false;
   8192 
   8193   QualType R = Method->getReturnType();
   8194   if (!R->isScalarType())
   8195     return false;
   8196 
   8197   return true;
   8198 }
   8199 
   8200 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
   8201   FromE = FromE->IgnoreParenImpCasts();
   8202   switch (FromE->getStmtClass()) {
   8203     default:
   8204       break;
   8205     case Stmt::ObjCStringLiteralClass:
   8206       // "string literal"
   8207       return LK_String;
   8208     case Stmt::ObjCArrayLiteralClass:
   8209       // "array literal"
   8210       return LK_Array;
   8211     case Stmt::ObjCDictionaryLiteralClass:
   8212       // "dictionary literal"
   8213       return LK_Dictionary;
   8214     case Stmt::BlockExprClass:
   8215       return LK_Block;
   8216     case Stmt::ObjCBoxedExprClass: {
   8217       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
   8218       switch (Inner->getStmtClass()) {
   8219         case Stmt::IntegerLiteralClass:
   8220         case Stmt::FloatingLiteralClass:
   8221         case Stmt::CharacterLiteralClass:
   8222         case Stmt::ObjCBoolLiteralExprClass:
   8223         case Stmt::CXXBoolLiteralExprClass:
   8224           // "numeric literal"
   8225           return LK_Numeric;
   8226         case Stmt::ImplicitCastExprClass: {
   8227           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
   8228           // Boolean literals can be represented by implicit casts.
   8229           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
   8230             return LK_Numeric;
   8231           break;
   8232         }
   8233         default:
   8234           break;
   8235       }
   8236       return LK_Boxed;
   8237     }
   8238   }
   8239   return LK_None;
   8240 }
   8241 
   8242 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
   8243                                           ExprResult &LHS, ExprResult &RHS,
   8244                                           BinaryOperator::Opcode Opc){
   8245   Expr *Literal;
   8246   Expr *Other;
   8247   if (isObjCObjectLiteral(LHS)) {
   8248     Literal = LHS.get();
   8249     Other = RHS.get();
   8250   } else {
   8251     Literal = RHS.get();
   8252     Other = LHS.get();
   8253   }
   8254 
   8255   // Don't warn on comparisons against nil.
   8256   Other = Other->IgnoreParenCasts();
   8257   if (Other->isNullPointerConstant(S.getASTContext(),
   8258                                    Expr::NPC_ValueDependentIsNotNull))
   8259     return;
   8260 
   8261   // This should be kept in sync with warn_objc_literal_comparison.
   8262   // LK_String should always be after the other literals, since it has its own
   8263   // warning flag.
   8264   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
   8265   assert(LiteralKind != Sema::LK_Block);
   8266   if (LiteralKind == Sema::LK_None) {
   8267     llvm_unreachable("Unknown Objective-C object literal kind");
   8268   }
   8269 
   8270   if (LiteralKind == Sema::LK_String)
   8271     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
   8272       << Literal->getSourceRange();
   8273   else
   8274     S.Diag(Loc, diag::warn_objc_literal_comparison)
   8275       << LiteralKind << Literal->getSourceRange();
   8276 
   8277   if (BinaryOperator::isEqualityOp(Opc) &&
   8278       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
   8279     SourceLocation Start = LHS.get()->getLocStart();
   8280     SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
   8281     CharSourceRange OpRange =
   8282       CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
   8283 
   8284     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
   8285       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
   8286       << FixItHint::CreateReplacement(OpRange, " isEqual:")
   8287       << FixItHint::CreateInsertion(End, "]");
   8288   }
   8289 }
   8290 
   8291 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
   8292                                                 ExprResult &RHS,
   8293                                                 SourceLocation Loc,
   8294                                                 unsigned OpaqueOpc) {
   8295   // This checking requires bools.
   8296   if (!S.getLangOpts().Bool) return;
   8297 
   8298   // Check that left hand side is !something.
   8299   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
   8300   if (!UO || UO->getOpcode() != UO_LNot) return;
   8301 
   8302   // Only check if the right hand side is non-bool arithmetic type.
   8303   if (RHS.get()->getType()->isBooleanType()) return;
   8304 
   8305   // Make sure that the something in !something is not bool.
   8306   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
   8307   if (SubExpr->getType()->isBooleanType()) return;
   8308 
   8309   // Emit warning.
   8310   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
   8311       << Loc;
   8312 
   8313   // First note suggest !(x < y)
   8314   SourceLocation FirstOpen = SubExpr->getLocStart();
   8315   SourceLocation FirstClose = RHS.get()->getLocEnd();
   8316   FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
   8317   if (FirstClose.isInvalid())
   8318     FirstOpen = SourceLocation();
   8319   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
   8320       << FixItHint::CreateInsertion(FirstOpen, "(")
   8321       << FixItHint::CreateInsertion(FirstClose, ")");
   8322 
   8323   // Second note suggests (!x) < y
   8324   SourceLocation SecondOpen = LHS.get()->getLocStart();
   8325   SourceLocation SecondClose = LHS.get()->getLocEnd();
   8326   SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
   8327   if (SecondClose.isInvalid())
   8328     SecondOpen = SourceLocation();
   8329   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
   8330       << FixItHint::CreateInsertion(SecondOpen, "(")
   8331       << FixItHint::CreateInsertion(SecondClose, ")");
   8332 }
   8333 
   8334 // Get the decl for a simple expression: a reference to a variable,
   8335 // an implicit C++ field reference, or an implicit ObjC ivar reference.
   8336 static ValueDecl *getCompareDecl(Expr *E) {
   8337   if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
   8338     return DR->getDecl();
   8339   if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
   8340     if (Ivar->isFreeIvar())
   8341       return Ivar->getDecl();
   8342   }
   8343   if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
   8344     if (Mem->isImplicitAccess())
   8345       return Mem->getMemberDecl();
   8346   }
   8347   return nullptr;
   8348 }
   8349 
   8350 // C99 6.5.8, C++ [expr.rel]
   8351 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
   8352                                     SourceLocation Loc, unsigned OpaqueOpc,
   8353                                     bool IsRelational) {
   8354   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
   8355 
   8356   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
   8357 
   8358   // Handle vector comparisons separately.
   8359   if (LHS.get()->getType()->isVectorType() ||
   8360       RHS.get()->getType()->isVectorType())
   8361     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
   8362 
   8363   QualType LHSType = LHS.get()->getType();
   8364   QualType RHSType = RHS.get()->getType();
   8365 
   8366   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
   8367   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
   8368 
   8369   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
   8370   diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
   8371 
   8372   if (!LHSType->hasFloatingRepresentation() &&
   8373       !(LHSType->isBlockPointerType() && IsRelational) &&
   8374       !LHS.get()->getLocStart().isMacroID() &&
   8375       !RHS.get()->getLocStart().isMacroID() &&
   8376       ActiveTemplateInstantiations.empty()) {
   8377     // For non-floating point types, check for self-comparisons of the form
   8378     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   8379     // often indicate logic errors in the program.
   8380     //
   8381     // NOTE: Don't warn about comparison expressions resulting from macro
   8382     // expansion. Also don't warn about comparisons which are only self
   8383     // comparisons within a template specialization. The warnings should catch
   8384     // obvious cases in the definition of the template anyways. The idea is to
   8385     // warn when the typed comparison operator will always evaluate to the same
   8386     // result.
   8387     ValueDecl *DL = getCompareDecl(LHSStripped);
   8388     ValueDecl *DR = getCompareDecl(RHSStripped);
   8389     if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
   8390       DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   8391                           << 0 // self-
   8392                           << (Opc == BO_EQ
   8393                               || Opc == BO_LE
   8394                               || Opc == BO_GE));
   8395     } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
   8396                !DL->getType()->isReferenceType() &&
   8397                !DR->getType()->isReferenceType()) {
   8398         // what is it always going to eval to?
   8399         char always_evals_to;
   8400         switch(Opc) {
   8401         case BO_EQ: // e.g. array1 == array2
   8402           always_evals_to = 0; // false
   8403           break;
   8404         case BO_NE: // e.g. array1 != array2
   8405           always_evals_to = 1; // true
   8406           break;
   8407         default:
   8408           // best we can say is 'a constant'
   8409           always_evals_to = 2; // e.g. array1 <= array2
   8410           break;
   8411         }
   8412         DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   8413                             << 1 // array
   8414                             << always_evals_to);
   8415     }
   8416 
   8417     if (isa<CastExpr>(LHSStripped))
   8418       LHSStripped = LHSStripped->IgnoreParenCasts();
   8419     if (isa<CastExpr>(RHSStripped))
   8420       RHSStripped = RHSStripped->IgnoreParenCasts();
   8421 
   8422     // Warn about comparisons against a string constant (unless the other
   8423     // operand is null), the user probably wants strcmp.
   8424     Expr *literalString = nullptr;
   8425     Expr *literalStringStripped = nullptr;
   8426     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
   8427         !RHSStripped->isNullPointerConstant(Context,
   8428                                             Expr::NPC_ValueDependentIsNull)) {
   8429       literalString = LHS.get();
   8430       literalStringStripped = LHSStripped;
   8431     } else if ((isa<StringLiteral>(RHSStripped) ||
   8432                 isa<ObjCEncodeExpr>(RHSStripped)) &&
   8433                !LHSStripped->isNullPointerConstant(Context,
   8434                                             Expr::NPC_ValueDependentIsNull)) {
   8435       literalString = RHS.get();
   8436       literalStringStripped = RHSStripped;
   8437     }
   8438 
   8439     if (literalString) {
   8440       DiagRuntimeBehavior(Loc, nullptr,
   8441         PDiag(diag::warn_stringcompare)
   8442           << isa<ObjCEncodeExpr>(literalStringStripped)
   8443           << literalString->getSourceRange());
   8444     }
   8445   }
   8446 
   8447   // C99 6.5.8p3 / C99 6.5.9p4
   8448   UsualArithmeticConversions(LHS, RHS);
   8449   if (LHS.isInvalid() || RHS.isInvalid())
   8450     return QualType();
   8451 
   8452   LHSType = LHS.get()->getType();
   8453   RHSType = RHS.get()->getType();
   8454 
   8455   // The result of comparisons is 'bool' in C++, 'int' in C.
   8456   QualType ResultTy = Context.getLogicalOperationType();
   8457 
   8458   if (IsRelational) {
   8459     if (LHSType->isRealType() && RHSType->isRealType())
   8460       return ResultTy;
   8461   } else {
   8462     // Check for comparisons of floating point operands using != and ==.
   8463     if (LHSType->hasFloatingRepresentation())
   8464       CheckFloatComparison(Loc, LHS.get(), RHS.get());
   8465 
   8466     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
   8467       return ResultTy;
   8468   }
   8469 
   8470   const Expr::NullPointerConstantKind LHSNullKind =
   8471       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   8472   const Expr::NullPointerConstantKind RHSNullKind =
   8473       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   8474   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
   8475   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
   8476 
   8477   if (!IsRelational && LHSIsNull != RHSIsNull) {
   8478     bool IsEquality = Opc == BO_EQ;
   8479     if (RHSIsNull)
   8480       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
   8481                                    RHS.get()->getSourceRange());
   8482     else
   8483       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
   8484                                    LHS.get()->getSourceRange());
   8485   }
   8486 
   8487   // All of the following pointer-related warnings are GCC extensions, except
   8488   // when handling null pointer constants.
   8489   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
   8490     QualType LCanPointeeTy =
   8491       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   8492     QualType RCanPointeeTy =
   8493       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   8494 
   8495     if (getLangOpts().CPlusPlus) {
   8496       if (LCanPointeeTy == RCanPointeeTy)
   8497         return ResultTy;
   8498       if (!IsRelational &&
   8499           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   8500         // Valid unless comparison between non-null pointer and function pointer
   8501         // This is a gcc extension compatibility comparison.
   8502         // In a SFINAE context, we treat this as a hard error to maintain
   8503         // conformance with the C++ standard.
   8504         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   8505             && !LHSIsNull && !RHSIsNull) {
   8506           diagnoseFunctionPointerToVoidComparison(
   8507               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
   8508 
   8509           if (isSFINAEContext())
   8510             return QualType();
   8511 
   8512           RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8513           return ResultTy;
   8514         }
   8515       }
   8516 
   8517       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   8518         return QualType();
   8519       else
   8520         return ResultTy;
   8521     }
   8522     // C99 6.5.9p2 and C99 6.5.8p2
   8523     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
   8524                                    RCanPointeeTy.getUnqualifiedType())) {
   8525       // Valid unless a relational comparison of function pointers
   8526       if (IsRelational && LCanPointeeTy->isFunctionType()) {
   8527         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
   8528           << LHSType << RHSType << LHS.get()->getSourceRange()
   8529           << RHS.get()->getSourceRange();
   8530       }
   8531     } else if (!IsRelational &&
   8532                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   8533       // Valid unless comparison between non-null pointer and function pointer
   8534       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   8535           && !LHSIsNull && !RHSIsNull)
   8536         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
   8537                                                 /*isError*/false);
   8538     } else {
   8539       // Invalid
   8540       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
   8541     }
   8542     if (LCanPointeeTy != RCanPointeeTy) {
   8543       const PointerType *lhsPtr = LHSType->getAs<PointerType>();
   8544       if (!lhsPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
   8545         Diag(Loc,
   8546              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
   8547             << LHSType << RHSType << 0 /* comparison */
   8548             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8549       }
   8550       unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
   8551       unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
   8552       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
   8553                                                : CK_BitCast;
   8554       if (LHSIsNull && !RHSIsNull)
   8555         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
   8556       else
   8557         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
   8558     }
   8559     return ResultTy;
   8560   }
   8561 
   8562   if (getLangOpts().CPlusPlus) {
   8563     // Comparison of nullptr_t with itself.
   8564     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
   8565       return ResultTy;
   8566 
   8567     // Comparison of pointers with null pointer constants and equality
   8568     // comparisons of member pointers to null pointer constants.
   8569     if (RHSIsNull &&
   8570         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
   8571          (!IsRelational &&
   8572           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
   8573       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8574                         LHSType->isMemberPointerType()
   8575                           ? CK_NullToMemberPointer
   8576                           : CK_NullToPointer);
   8577       return ResultTy;
   8578     }
   8579     if (LHSIsNull &&
   8580         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
   8581          (!IsRelational &&
   8582           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
   8583       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8584                         RHSType->isMemberPointerType()
   8585                           ? CK_NullToMemberPointer
   8586                           : CK_NullToPointer);
   8587       return ResultTy;
   8588     }
   8589 
   8590     // Comparison of member pointers.
   8591     if (!IsRelational &&
   8592         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
   8593       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   8594         return QualType();
   8595       else
   8596         return ResultTy;
   8597     }
   8598 
   8599     // Handle scoped enumeration types specifically, since they don't promote
   8600     // to integers.
   8601     if (LHS.get()->getType()->isEnumeralType() &&
   8602         Context.hasSameUnqualifiedType(LHS.get()->getType(),
   8603                                        RHS.get()->getType()))
   8604       return ResultTy;
   8605   }
   8606 
   8607   // Handle block pointer types.
   8608   if (!IsRelational && LHSType->isBlockPointerType() &&
   8609       RHSType->isBlockPointerType()) {
   8610     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
   8611     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
   8612 
   8613     if (!LHSIsNull && !RHSIsNull &&
   8614         !Context.typesAreCompatible(lpointee, rpointee)) {
   8615       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   8616         << LHSType << RHSType << LHS.get()->getSourceRange()
   8617         << RHS.get()->getSourceRange();
   8618     }
   8619     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8620     return ResultTy;
   8621   }
   8622 
   8623   // Allow block pointers to be compared with null pointer constants.
   8624   if (!IsRelational
   8625       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
   8626           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
   8627     if (!LHSIsNull && !RHSIsNull) {
   8628       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
   8629              ->getPointeeType()->isVoidType())
   8630             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
   8631                 ->getPointeeType()->isVoidType())))
   8632         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   8633           << LHSType << RHSType << LHS.get()->getSourceRange()
   8634           << RHS.get()->getSourceRange();
   8635     }
   8636     if (LHSIsNull && !RHSIsNull)
   8637       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8638                               RHSType->isPointerType() ? CK_BitCast
   8639                                 : CK_AnyPointerToBlockPointerCast);
   8640     else
   8641       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8642                               LHSType->isPointerType() ? CK_BitCast
   8643                                 : CK_AnyPointerToBlockPointerCast);
   8644     return ResultTy;
   8645   }
   8646 
   8647   if (LHSType->isObjCObjectPointerType() ||
   8648       RHSType->isObjCObjectPointerType()) {
   8649     const PointerType *LPT = LHSType->getAs<PointerType>();
   8650     const PointerType *RPT = RHSType->getAs<PointerType>();
   8651     if (LPT || RPT) {
   8652       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
   8653       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
   8654 
   8655       if (!LPtrToVoid && !RPtrToVoid &&
   8656           !Context.typesAreCompatible(LHSType, RHSType)) {
   8657         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   8658                                           /*isError*/false);
   8659       }
   8660       if (LHSIsNull && !RHSIsNull) {
   8661         Expr *E = LHS.get();
   8662         if (getLangOpts().ObjCAutoRefCount)
   8663           CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
   8664         LHS = ImpCastExprToType(E, RHSType,
   8665                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   8666       }
   8667       else {
   8668         Expr *E = RHS.get();
   8669         if (getLangOpts().ObjCAutoRefCount)
   8670           CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
   8671                                  Opc);
   8672         RHS = ImpCastExprToType(E, LHSType,
   8673                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   8674       }
   8675       return ResultTy;
   8676     }
   8677     if (LHSType->isObjCObjectPointerType() &&
   8678         RHSType->isObjCObjectPointerType()) {
   8679       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
   8680         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   8681                                           /*isError*/false);
   8682       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
   8683         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
   8684 
   8685       if (LHSIsNull && !RHSIsNull)
   8686         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   8687       else
   8688         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8689       return ResultTy;
   8690     }
   8691   }
   8692   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
   8693       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
   8694     unsigned DiagID = 0;
   8695     bool isError = false;
   8696     if (LangOpts.DebuggerSupport) {
   8697       // Under a debugger, allow the comparison of pointers to integers,
   8698       // since users tend to want to compare addresses.
   8699     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
   8700         (RHSIsNull && RHSType->isIntegerType())) {
   8701       if (IsRelational && !getLangOpts().CPlusPlus)
   8702         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
   8703     } else if (IsRelational && !getLangOpts().CPlusPlus)
   8704       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
   8705     else if (getLangOpts().CPlusPlus) {
   8706       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
   8707       isError = true;
   8708     } else
   8709       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
   8710 
   8711     if (DiagID) {
   8712       Diag(Loc, DiagID)
   8713         << LHSType << RHSType << LHS.get()->getSourceRange()
   8714         << RHS.get()->getSourceRange();
   8715       if (isError)
   8716         return QualType();
   8717     }
   8718 
   8719     if (LHSType->isIntegerType())
   8720       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8721                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   8722     else
   8723       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8724                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   8725     return ResultTy;
   8726   }
   8727 
   8728   // Handle block pointers.
   8729   if (!IsRelational && RHSIsNull
   8730       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
   8731     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
   8732     return ResultTy;
   8733   }
   8734   if (!IsRelational && LHSIsNull
   8735       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
   8736     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
   8737     return ResultTy;
   8738   }
   8739 
   8740   return InvalidOperands(Loc, LHS, RHS);
   8741 }
   8742 
   8743 
   8744 // Return a signed type that is of identical size and number of elements.
   8745 // For floating point vectors, return an integer type of identical size
   8746 // and number of elements.
   8747 QualType Sema::GetSignedVectorType(QualType V) {
   8748   const VectorType *VTy = V->getAs<VectorType>();
   8749   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
   8750   if (TypeSize == Context.getTypeSize(Context.CharTy))
   8751     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
   8752   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
   8753     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
   8754   else if (TypeSize == Context.getTypeSize(Context.IntTy))
   8755     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
   8756   else if (TypeSize == Context.getTypeSize(Context.LongTy))
   8757     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
   8758   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
   8759          "Unhandled vector element size in vector compare");
   8760   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
   8761 }
   8762 
   8763 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
   8764 /// operates on extended vector types.  Instead of producing an IntTy result,
   8765 /// like a scalar comparison, a vector comparison produces a vector of integer
   8766 /// types.
   8767 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
   8768                                           SourceLocation Loc,
   8769                                           bool IsRelational) {
   8770   // Check to make sure we're operating on vectors of the same type and width,
   8771   // Allowing one side to be a scalar of element type.
   8772   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
   8773   if (vType.isNull())
   8774     return vType;
   8775 
   8776   QualType LHSType = LHS.get()->getType();
   8777 
   8778   // If AltiVec, the comparison results in a numeric type, i.e.
   8779   // bool for C++, int for C
   8780   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
   8781     return Context.getLogicalOperationType();
   8782 
   8783   // For non-floating point types, check for self-comparisons of the form
   8784   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   8785   // often indicate logic errors in the program.
   8786   if (!LHSType->hasFloatingRepresentation() &&
   8787       ActiveTemplateInstantiations.empty()) {
   8788     if (DeclRefExpr* DRL
   8789           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
   8790       if (DeclRefExpr* DRR
   8791             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
   8792         if (DRL->getDecl() == DRR->getDecl())
   8793           DiagRuntimeBehavior(Loc, nullptr,
   8794                               PDiag(diag::warn_comparison_always)
   8795                                 << 0 // self-
   8796                                 << 2 // "a constant"
   8797                               );
   8798   }
   8799 
   8800   // Check for comparisons of floating point operands using != and ==.
   8801   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
   8802     assert (RHS.get()->getType()->hasFloatingRepresentation());
   8803     CheckFloatComparison(Loc, LHS.get(), RHS.get());
   8804   }
   8805 
   8806   // Return a signed type for the vector.
   8807   return GetSignedVectorType(LHSType);
   8808 }
   8809 
   8810 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   8811                                           SourceLocation Loc) {
   8812   // Ensure that either both operands are of the same vector type, or
   8813   // one operand is of a vector type and the other is of its element type.
   8814   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
   8815   if (vType.isNull())
   8816     return InvalidOperands(Loc, LHS, RHS);
   8817   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
   8818       vType->hasFloatingRepresentation())
   8819     return InvalidOperands(Loc, LHS, RHS);
   8820 
   8821   return GetSignedVectorType(LHS.get()->getType());
   8822 }
   8823 
   8824 inline QualType Sema::CheckBitwiseOperands(
   8825   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   8826   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8827 
   8828   if (LHS.get()->getType()->isVectorType() ||
   8829       RHS.get()->getType()->isVectorType()) {
   8830     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   8831         RHS.get()->getType()->hasIntegerRepresentation())
   8832       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   8833 
   8834     return InvalidOperands(Loc, LHS, RHS);
   8835   }
   8836 
   8837   ExprResult LHSResult = LHS, RHSResult = RHS;
   8838   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
   8839                                                  IsCompAssign);
   8840   if (LHSResult.isInvalid() || RHSResult.isInvalid())
   8841     return QualType();
   8842   LHS = LHSResult.get();
   8843   RHS = RHSResult.get();
   8844 
   8845   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
   8846     return compType;
   8847   return InvalidOperands(Loc, LHS, RHS);
   8848 }
   8849 
   8850 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
   8851   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
   8852 
   8853   // Check vector operands differently.
   8854   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
   8855     return CheckVectorLogicalOperands(LHS, RHS, Loc);
   8856 
   8857   // Diagnose cases where the user write a logical and/or but probably meant a
   8858   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
   8859   // is a constant.
   8860   if (LHS.get()->getType()->isIntegerType() &&
   8861       !LHS.get()->getType()->isBooleanType() &&
   8862       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
   8863       // Don't warn in macros or template instantiations.
   8864       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
   8865     // If the RHS can be constant folded, and if it constant folds to something
   8866     // that isn't 0 or 1 (which indicate a potential logical operation that
   8867     // happened to fold to true/false) then warn.
   8868     // Parens on the RHS are ignored.
   8869     llvm::APSInt Result;
   8870     if (RHS.get()->EvaluateAsInt(Result, Context))
   8871       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
   8872            !RHS.get()->getExprLoc().isMacroID()) ||
   8873           (Result != 0 && Result != 1)) {
   8874         Diag(Loc, diag::warn_logical_instead_of_bitwise)
   8875           << RHS.get()->getSourceRange()
   8876           << (Opc == BO_LAnd ? "&&" : "||");
   8877         // Suggest replacing the logical operator with the bitwise version
   8878         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
   8879             << (Opc == BO_LAnd ? "&" : "|")
   8880             << FixItHint::CreateReplacement(SourceRange(
   8881                 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
   8882                                                 getLangOpts())),
   8883                                             Opc == BO_LAnd ? "&" : "|");
   8884         if (Opc == BO_LAnd)
   8885           // Suggest replacing "Foo() && kNonZero" with "Foo()"
   8886           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
   8887               << FixItHint::CreateRemoval(
   8888                   SourceRange(
   8889                       Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
   8890                                                  0, getSourceManager(),
   8891                                                  getLangOpts()),
   8892                       RHS.get()->getLocEnd()));
   8893       }
   8894   }
   8895 
   8896   if (!Context.getLangOpts().CPlusPlus) {
   8897     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
   8898     // not operate on the built-in scalar and vector float types.
   8899     if (Context.getLangOpts().OpenCL &&
   8900         Context.getLangOpts().OpenCLVersion < 120) {
   8901       if (LHS.get()->getType()->isFloatingType() ||
   8902           RHS.get()->getType()->isFloatingType())
   8903         return InvalidOperands(Loc, LHS, RHS);
   8904     }
   8905 
   8906     LHS = UsualUnaryConversions(LHS.get());
   8907     if (LHS.isInvalid())
   8908       return QualType();
   8909 
   8910     RHS = UsualUnaryConversions(RHS.get());
   8911     if (RHS.isInvalid())
   8912       return QualType();
   8913 
   8914     if (!LHS.get()->getType()->isScalarType() ||
   8915         !RHS.get()->getType()->isScalarType())
   8916       return InvalidOperands(Loc, LHS, RHS);
   8917 
   8918     return Context.IntTy;
   8919   }
   8920 
   8921   // The following is safe because we only use this method for
   8922   // non-overloadable operands.
   8923 
   8924   // C++ [expr.log.and]p1
   8925   // C++ [expr.log.or]p1
   8926   // The operands are both contextually converted to type bool.
   8927   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
   8928   if (LHSRes.isInvalid())
   8929     return InvalidOperands(Loc, LHS, RHS);
   8930   LHS = LHSRes;
   8931 
   8932   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
   8933   if (RHSRes.isInvalid())
   8934     return InvalidOperands(Loc, LHS, RHS);
   8935   RHS = RHSRes;
   8936 
   8937   // C++ [expr.log.and]p2
   8938   // C++ [expr.log.or]p2
   8939   // The result is a bool.
   8940   return Context.BoolTy;
   8941 }
   8942 
   8943 static bool IsReadonlyMessage(Expr *E, Sema &S) {
   8944   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   8945   if (!ME) return false;
   8946   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
   8947   ObjCMessageExpr *Base =
   8948     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
   8949   if (!Base) return false;
   8950   return Base->getMethodDecl() != nullptr;
   8951 }
   8952 
   8953 /// Is the given expression (which must be 'const') a reference to a
   8954 /// variable which was originally non-const, but which has become
   8955 /// 'const' due to being captured within a block?
   8956 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
   8957 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
   8958   assert(E->isLValue() && E->getType().isConstQualified());
   8959   E = E->IgnoreParens();
   8960 
   8961   // Must be a reference to a declaration from an enclosing scope.
   8962   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   8963   if (!DRE) return NCCK_None;
   8964   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
   8965 
   8966   // The declaration must be a variable which is not declared 'const'.
   8967   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
   8968   if (!var) return NCCK_None;
   8969   if (var->getType().isConstQualified()) return NCCK_None;
   8970   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
   8971 
   8972   // Decide whether the first capture was for a block or a lambda.
   8973   DeclContext *DC = S.CurContext, *Prev = nullptr;
   8974   while (DC != var->getDeclContext()) {
   8975     Prev = DC;
   8976     DC = DC->getParent();
   8977   }
   8978   // Unless we have an init-capture, we've gone one step too far.
   8979   if (!var->isInitCapture())
   8980     DC = Prev;
   8981   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
   8982 }
   8983 
   8984 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
   8985   Ty = Ty.getNonReferenceType();
   8986   if (IsDereference && Ty->isPointerType())
   8987     Ty = Ty->getPointeeType();
   8988   return !Ty.isConstQualified();
   8989 }
   8990 
   8991 /// Emit the "read-only variable not assignable" error and print notes to give
   8992 /// more information about why the variable is not assignable, such as pointing
   8993 /// to the declaration of a const variable, showing that a method is const, or
   8994 /// that the function is returning a const reference.
   8995 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
   8996                                     SourceLocation Loc) {
   8997   // Update err_typecheck_assign_const and note_typecheck_assign_const
   8998   // when this enum is changed.
   8999   enum {
   9000     ConstFunction,
   9001     ConstVariable,
   9002     ConstMember,
   9003     ConstMethod,
   9004     ConstUnknown,  // Keep as last element
   9005   };
   9006 
   9007   SourceRange ExprRange = E->getSourceRange();
   9008 
   9009   // Only emit one error on the first const found.  All other consts will emit
   9010   // a note to the error.
   9011   bool DiagnosticEmitted = false;
   9012 
   9013   // Track if the current expression is the result of a derefence, and if the
   9014   // next checked expression is the result of a derefence.
   9015   bool IsDereference = false;
   9016   bool NextIsDereference = false;
   9017 
   9018   // Loop to process MemberExpr chains.
   9019   while (true) {
   9020     IsDereference = NextIsDereference;
   9021     NextIsDereference = false;
   9022 
   9023     E = E->IgnoreParenImpCasts();
   9024     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   9025       NextIsDereference = ME->isArrow();
   9026       const ValueDecl *VD = ME->getMemberDecl();
   9027       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
   9028         // Mutable fields can be modified even if the class is const.
   9029         if (Field->isMutable()) {
   9030           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
   9031           break;
   9032         }
   9033 
   9034         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
   9035           if (!DiagnosticEmitted) {
   9036             S.Diag(Loc, diag::err_typecheck_assign_const)
   9037                 << ExprRange << ConstMember << false /*static*/ << Field
   9038                 << Field->getType();
   9039             DiagnosticEmitted = true;
   9040           }
   9041           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9042               << ConstMember << false /*static*/ << Field << Field->getType()
   9043               << Field->getSourceRange();
   9044         }
   9045         E = ME->getBase();
   9046         continue;
   9047       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
   9048         if (VDecl->getType().isConstQualified()) {
   9049           if (!DiagnosticEmitted) {
   9050             S.Diag(Loc, diag::err_typecheck_assign_const)
   9051                 << ExprRange << ConstMember << true /*static*/ << VDecl
   9052                 << VDecl->getType();
   9053             DiagnosticEmitted = true;
   9054           }
   9055           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9056               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
   9057               << VDecl->getSourceRange();
   9058         }
   9059         // Static fields do not inherit constness from parents.
   9060         break;
   9061       }
   9062       break;
   9063     } // End MemberExpr
   9064     break;
   9065   }
   9066 
   9067   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
   9068     // Function calls
   9069     const FunctionDecl *FD = CE->getDirectCallee();
   9070     if (!IsTypeModifiable(FD->getReturnType(), IsDereference)) {
   9071       if (!DiagnosticEmitted) {
   9072         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
   9073                                                       << ConstFunction << FD;
   9074         DiagnosticEmitted = true;
   9075       }
   9076       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
   9077              diag::note_typecheck_assign_const)
   9078           << ConstFunction << FD << FD->getReturnType()
   9079           << FD->getReturnTypeSourceRange();
   9080     }
   9081   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   9082     // Point to variable declaration.
   9083     if (const ValueDecl *VD = DRE->getDecl()) {
   9084       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
   9085         if (!DiagnosticEmitted) {
   9086           S.Diag(Loc, diag::err_typecheck_assign_const)
   9087               << ExprRange << ConstVariable << VD << VD->getType();
   9088           DiagnosticEmitted = true;
   9089         }
   9090         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9091             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
   9092       }
   9093     }
   9094   } else if (isa<CXXThisExpr>(E)) {
   9095     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
   9096       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
   9097         if (MD->isConst()) {
   9098           if (!DiagnosticEmitted) {
   9099             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
   9100                                                           << ConstMethod << MD;
   9101             DiagnosticEmitted = true;
   9102           }
   9103           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
   9104               << ConstMethod << MD << MD->getSourceRange();
   9105         }
   9106       }
   9107     }
   9108   }
   9109 
   9110   if (DiagnosticEmitted)
   9111     return;
   9112 
   9113   // Can't determine a more specific message, so display the generic error.
   9114   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
   9115 }
   9116 
   9117 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
   9118 /// emit an error and return true.  If so, return false.
   9119 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
   9120   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
   9121   SourceLocation OrigLoc = Loc;
   9122   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
   9123                                                               &Loc);
   9124   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
   9125     IsLV = Expr::MLV_InvalidMessageExpression;
   9126   if (IsLV == Expr::MLV_Valid)
   9127     return false;
   9128 
   9129   unsigned DiagID = 0;
   9130   bool NeedType = false;
   9131   switch (IsLV) { // C99 6.5.16p2
   9132   case Expr::MLV_ConstQualified:
   9133     // Use a specialized diagnostic when we're assigning to an object
   9134     // from an enclosing function or block.
   9135     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
   9136       if (NCCK == NCCK_Block)
   9137         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
   9138       else
   9139         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
   9140       break;
   9141     }
   9142 
   9143     // In ARC, use some specialized diagnostics for occasions where we
   9144     // infer 'const'.  These are always pseudo-strong variables.
   9145     if (S.getLangOpts().ObjCAutoRefCount) {
   9146       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
   9147       if (declRef && isa<VarDecl>(declRef->getDecl())) {
   9148         VarDecl *var = cast<VarDecl>(declRef->getDecl());
   9149 
   9150         // Use the normal diagnostic if it's pseudo-__strong but the
   9151         // user actually wrote 'const'.
   9152         if (var->isARCPseudoStrong() &&
   9153             (!var->getTypeSourceInfo() ||
   9154              !var->getTypeSourceInfo()->getType().isConstQualified())) {
   9155           // There are two pseudo-strong cases:
   9156           //  - self
   9157           ObjCMethodDecl *method = S.getCurMethodDecl();
   9158           if (method && var == method->getSelfDecl())
   9159             DiagID = method->isClassMethod()
   9160               ? diag::err_typecheck_arc_assign_self_class_method
   9161               : diag::err_typecheck_arc_assign_self;
   9162 
   9163           //  - fast enumeration variables
   9164           else
   9165             DiagID = diag::err_typecheck_arr_assign_enumeration;
   9166 
   9167           SourceRange Assign;
   9168           if (Loc != OrigLoc)
   9169             Assign = SourceRange(OrigLoc, OrigLoc);
   9170           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
   9171           // We need to preserve the AST regardless, so migration tool
   9172           // can do its job.
   9173           return false;
   9174         }
   9175       }
   9176     }
   9177 
   9178     // If none of the special cases above are triggered, then this is a
   9179     // simple const assignment.
   9180     if (DiagID == 0) {
   9181       DiagnoseConstAssignment(S, E, Loc);
   9182       return true;
   9183     }
   9184 
   9185     break;
   9186   case Expr::MLV_ArrayType:
   9187   case Expr::MLV_ArrayTemporary:
   9188     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
   9189     NeedType = true;
   9190     break;
   9191   case Expr::MLV_NotObjectType:
   9192     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
   9193     NeedType = true;
   9194     break;
   9195   case Expr::MLV_LValueCast:
   9196     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
   9197     break;
   9198   case Expr::MLV_Valid:
   9199     llvm_unreachable("did not take early return for MLV_Valid");
   9200   case Expr::MLV_InvalidExpression:
   9201   case Expr::MLV_MemberFunction:
   9202   case Expr::MLV_ClassTemporary:
   9203     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
   9204     break;
   9205   case Expr::MLV_IncompleteType:
   9206   case Expr::MLV_IncompleteVoidType:
   9207     return S.RequireCompleteType(Loc, E->getType(),
   9208              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
   9209   case Expr::MLV_DuplicateVectorComponents:
   9210     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
   9211     break;
   9212   case Expr::MLV_NoSetterProperty:
   9213     llvm_unreachable("readonly properties should be processed differently");
   9214   case Expr::MLV_InvalidMessageExpression:
   9215     DiagID = diag::error_readonly_message_assignment;
   9216     break;
   9217   case Expr::MLV_SubObjCPropertySetting:
   9218     DiagID = diag::error_no_subobject_property_setting;
   9219     break;
   9220   }
   9221 
   9222   SourceRange Assign;
   9223   if (Loc != OrigLoc)
   9224     Assign = SourceRange(OrigLoc, OrigLoc);
   9225   if (NeedType)
   9226     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
   9227   else
   9228     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
   9229   return true;
   9230 }
   9231 
   9232 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
   9233                                          SourceLocation Loc,
   9234                                          Sema &Sema) {
   9235   // C / C++ fields
   9236   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
   9237   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
   9238   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
   9239     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
   9240       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
   9241   }
   9242 
   9243   // Objective-C instance variables
   9244   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
   9245   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
   9246   if (OL && OR && OL->getDecl() == OR->getDecl()) {
   9247     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
   9248     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
   9249     if (RL && RR && RL->getDecl() == RR->getDecl())
   9250       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
   9251   }
   9252 }
   9253 
   9254 // C99 6.5.16.1
   9255 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
   9256                                        SourceLocation Loc,
   9257                                        QualType CompoundType) {
   9258   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
   9259 
   9260   // Verify that LHS is a modifiable lvalue, and emit error if not.
   9261   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
   9262     return QualType();
   9263 
   9264   QualType LHSType = LHSExpr->getType();
   9265   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
   9266                                              CompoundType;
   9267   AssignConvertType ConvTy;
   9268   if (CompoundType.isNull()) {
   9269     Expr *RHSCheck = RHS.get();
   9270 
   9271     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
   9272 
   9273     QualType LHSTy(LHSType);
   9274     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
   9275     if (RHS.isInvalid())
   9276       return QualType();
   9277     // Special case of NSObject attributes on c-style pointer types.
   9278     if (ConvTy == IncompatiblePointer &&
   9279         ((Context.isObjCNSObjectType(LHSType) &&
   9280           RHSType->isObjCObjectPointerType()) ||
   9281          (Context.isObjCNSObjectType(RHSType) &&
   9282           LHSType->isObjCObjectPointerType())))
   9283       ConvTy = Compatible;
   9284 
   9285     if (ConvTy == Compatible &&
   9286         LHSType->isObjCObjectType())
   9287         Diag(Loc, diag::err_objc_object_assignment)
   9288           << LHSType;
   9289 
   9290     // If the RHS is a unary plus or minus, check to see if they = and + are
   9291     // right next to each other.  If so, the user may have typo'd "x =+ 4"
   9292     // instead of "x += 4".
   9293     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
   9294       RHSCheck = ICE->getSubExpr();
   9295     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
   9296       if ((UO->getOpcode() == UO_Plus ||
   9297            UO->getOpcode() == UO_Minus) &&
   9298           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
   9299           // Only if the two operators are exactly adjacent.
   9300           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
   9301           // And there is a space or other character before the subexpr of the
   9302           // unary +/-.  We don't want to warn on "x=-1".
   9303           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
   9304           UO->getSubExpr()->getLocStart().isFileID()) {
   9305         Diag(Loc, diag::warn_not_compound_assign)
   9306           << (UO->getOpcode() == UO_Plus ? "+" : "-")
   9307           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
   9308       }
   9309     }
   9310 
   9311     if (ConvTy == Compatible) {
   9312       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
   9313         // Warn about retain cycles where a block captures the LHS, but
   9314         // not if the LHS is a simple variable into which the block is
   9315         // being stored...unless that variable can be captured by reference!
   9316         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
   9317         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
   9318         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
   9319           checkRetainCycles(LHSExpr, RHS.get());
   9320 
   9321         // It is safe to assign a weak reference into a strong variable.
   9322         // Although this code can still have problems:
   9323         //   id x = self.weakProp;
   9324         //   id y = self.weakProp;
   9325         // we do not warn to warn spuriously when 'x' and 'y' are on separate
   9326         // paths through the function. This should be revisited if
   9327         // -Wrepeated-use-of-weak is made flow-sensitive.
   9328         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
   9329                              RHS.get()->getLocStart()))
   9330           getCurFunction()->markSafeWeakUse(RHS.get());
   9331 
   9332       } else if (getLangOpts().ObjCAutoRefCount) {
   9333         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
   9334       }
   9335     }
   9336   } else {
   9337     // Compound assignment "x += y"
   9338     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
   9339   }
   9340 
   9341   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
   9342                                RHS.get(), AA_Assigning))
   9343     return QualType();
   9344 
   9345   CheckForNullPointerDereference(*this, LHSExpr);
   9346 
   9347   // C99 6.5.16p3: The type of an assignment expression is the type of the
   9348   // left operand unless the left operand has qualified type, in which case
   9349   // it is the unqualified version of the type of the left operand.
   9350   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
   9351   // is converted to the type of the assignment expression (above).
   9352   // C++ 5.17p1: the type of the assignment expression is that of its left
   9353   // operand.
   9354   return (getLangOpts().CPlusPlus
   9355           ? LHSType : LHSType.getUnqualifiedType());
   9356 }
   9357 
   9358 // C99 6.5.17
   9359 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
   9360                                    SourceLocation Loc) {
   9361   LHS = S.CheckPlaceholderExpr(LHS.get());
   9362   RHS = S.CheckPlaceholderExpr(RHS.get());
   9363   if (LHS.isInvalid() || RHS.isInvalid())
   9364     return QualType();
   9365 
   9366   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
   9367   // operands, but not unary promotions.
   9368   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
   9369 
   9370   // So we treat the LHS as a ignored value, and in C++ we allow the
   9371   // containing site to determine what should be done with the RHS.
   9372   LHS = S.IgnoredValueConversions(LHS.get());
   9373   if (LHS.isInvalid())
   9374     return QualType();
   9375 
   9376   S.DiagnoseUnusedExprResult(LHS.get());
   9377 
   9378   if (!S.getLangOpts().CPlusPlus) {
   9379     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
   9380     if (RHS.isInvalid())
   9381       return QualType();
   9382     if (!RHS.get()->getType()->isVoidType())
   9383       S.RequireCompleteType(Loc, RHS.get()->getType(),
   9384                             diag::err_incomplete_type);
   9385   }
   9386 
   9387   return RHS.get()->getType();
   9388 }
   9389 
   9390 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
   9391 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
   9392 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
   9393                                                ExprValueKind &VK,
   9394                                                ExprObjectKind &OK,
   9395                                                SourceLocation OpLoc,
   9396                                                bool IsInc, bool IsPrefix) {
   9397   if (Op->isTypeDependent())
   9398     return S.Context.DependentTy;
   9399 
   9400   QualType ResType = Op->getType();
   9401   // Atomic types can be used for increment / decrement where the non-atomic
   9402   // versions can, so ignore the _Atomic() specifier for the purpose of
   9403   // checking.
   9404   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   9405     ResType = ResAtomicType->getValueType();
   9406 
   9407   assert(!ResType.isNull() && "no type for increment/decrement expression");
   9408 
   9409   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
   9410     // Decrement of bool is not allowed.
   9411     if (!IsInc) {
   9412       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
   9413       return QualType();
   9414     }
   9415     // Increment of bool sets it to true, but is deprecated.
   9416     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
   9417   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
   9418     // Error on enum increments and decrements in C++ mode
   9419     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
   9420     return QualType();
   9421   } else if (ResType->isRealType()) {
   9422     // OK!
   9423   } else if (ResType->isPointerType()) {
   9424     // C99 6.5.2.4p2, 6.5.6p2
   9425     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
   9426       return QualType();
   9427   } else if (ResType->isObjCObjectPointerType()) {
   9428     // On modern runtimes, ObjC pointer arithmetic is forbidden.
   9429     // Otherwise, we just need a complete type.
   9430     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
   9431         checkArithmeticOnObjCPointer(S, OpLoc, Op))
   9432       return QualType();
   9433   } else if (ResType->isAnyComplexType()) {
   9434     // C99 does not support ++/-- on complex types, we allow as an extension.
   9435     S.Diag(OpLoc, diag::ext_integer_increment_complex)
   9436       << ResType << Op->getSourceRange();
   9437   } else if (ResType->isPlaceholderType()) {
   9438     ExprResult PR = S.CheckPlaceholderExpr(Op);
   9439     if (PR.isInvalid()) return QualType();
   9440     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
   9441                                           IsInc, IsPrefix);
   9442   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
   9443     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
   9444   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
   9445             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
   9446     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
   9447   } else {
   9448     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
   9449       << ResType << int(IsInc) << Op->getSourceRange();
   9450     return QualType();
   9451   }
   9452   // At this point, we know we have a real, complex or pointer type.
   9453   // Now make sure the operand is a modifiable lvalue.
   9454   if (CheckForModifiableLvalue(Op, OpLoc, S))
   9455     return QualType();
   9456   // In C++, a prefix increment is the same type as the operand. Otherwise
   9457   // (in C or with postfix), the increment is the unqualified type of the
   9458   // operand.
   9459   if (IsPrefix && S.getLangOpts().CPlusPlus) {
   9460     VK = VK_LValue;
   9461     OK = Op->getObjectKind();
   9462     return ResType;
   9463   } else {
   9464     VK = VK_RValue;
   9465     return ResType.getUnqualifiedType();
   9466   }
   9467 }
   9468 
   9469 
   9470 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
   9471 /// This routine allows us to typecheck complex/recursive expressions
   9472 /// where the declaration is needed for type checking. We only need to
   9473 /// handle cases when the expression references a function designator
   9474 /// or is an lvalue. Here are some examples:
   9475 ///  - &(x) => x
   9476 ///  - &*****f => f for f a function designator.
   9477 ///  - &s.xx => s
   9478 ///  - &s.zz[1].yy -> s, if zz is an array
   9479 ///  - *(x + 1) -> x, if x is an array
   9480 ///  - &"123"[2] -> 0
   9481 ///  - & __real__ x -> x
   9482 static ValueDecl *getPrimaryDecl(Expr *E) {
   9483   switch (E->getStmtClass()) {
   9484   case Stmt::DeclRefExprClass:
   9485     return cast<DeclRefExpr>(E)->getDecl();
   9486   case Stmt::MemberExprClass:
   9487     // If this is an arrow operator, the address is an offset from
   9488     // the base's value, so the object the base refers to is
   9489     // irrelevant.
   9490     if (cast<MemberExpr>(E)->isArrow())
   9491       return nullptr;
   9492     // Otherwise, the expression refers to a part of the base
   9493     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
   9494   case Stmt::ArraySubscriptExprClass: {
   9495     // FIXME: This code shouldn't be necessary!  We should catch the implicit
   9496     // promotion of register arrays earlier.
   9497     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
   9498     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
   9499       if (ICE->getSubExpr()->getType()->isArrayType())
   9500         return getPrimaryDecl(ICE->getSubExpr());
   9501     }
   9502     return nullptr;
   9503   }
   9504   case Stmt::UnaryOperatorClass: {
   9505     UnaryOperator *UO = cast<UnaryOperator>(E);
   9506 
   9507     switch(UO->getOpcode()) {
   9508     case UO_Real:
   9509     case UO_Imag:
   9510     case UO_Extension:
   9511       return getPrimaryDecl(UO->getSubExpr());
   9512     default:
   9513       return nullptr;
   9514     }
   9515   }
   9516   case Stmt::ParenExprClass:
   9517     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
   9518   case Stmt::ImplicitCastExprClass:
   9519     // If the result of an implicit cast is an l-value, we care about
   9520     // the sub-expression; otherwise, the result here doesn't matter.
   9521     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
   9522   default:
   9523     return nullptr;
   9524   }
   9525 }
   9526 
   9527 namespace {
   9528   enum {
   9529     AO_Bit_Field = 0,
   9530     AO_Vector_Element = 1,
   9531     AO_Property_Expansion = 2,
   9532     AO_Register_Variable = 3,
   9533     AO_No_Error = 4
   9534   };
   9535 }
   9536 /// \brief Diagnose invalid operand for address of operations.
   9537 ///
   9538 /// \param Type The type of operand which cannot have its address taken.
   9539 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
   9540                                          Expr *E, unsigned Type) {
   9541   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
   9542 }
   9543 
   9544 /// CheckAddressOfOperand - The operand of & must be either a function
   9545 /// designator or an lvalue designating an object. If it is an lvalue, the
   9546 /// object cannot be declared with storage class register or be a bit field.
   9547 /// Note: The usual conversions are *not* applied to the operand of the &
   9548 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
   9549 /// In C++, the operand might be an overloaded function name, in which case
   9550 /// we allow the '&' but retain the overloaded-function type.
   9551 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
   9552   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
   9553     if (PTy->getKind() == BuiltinType::Overload) {
   9554       Expr *E = OrigOp.get()->IgnoreParens();
   9555       if (!isa<OverloadExpr>(E)) {
   9556         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
   9557         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
   9558           << OrigOp.get()->getSourceRange();
   9559         return QualType();
   9560       }
   9561 
   9562       OverloadExpr *Ovl = cast<OverloadExpr>(E);
   9563       if (isa<UnresolvedMemberExpr>(Ovl))
   9564         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
   9565           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   9566             << OrigOp.get()->getSourceRange();
   9567           return QualType();
   9568         }
   9569 
   9570       return Context.OverloadTy;
   9571     }
   9572 
   9573     if (PTy->getKind() == BuiltinType::UnknownAny)
   9574       return Context.UnknownAnyTy;
   9575 
   9576     if (PTy->getKind() == BuiltinType::BoundMember) {
   9577       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   9578         << OrigOp.get()->getSourceRange();
   9579       return QualType();
   9580     }
   9581 
   9582     OrigOp = CheckPlaceholderExpr(OrigOp.get());
   9583     if (OrigOp.isInvalid()) return QualType();
   9584   }
   9585 
   9586   if (OrigOp.get()->isTypeDependent())
   9587     return Context.DependentTy;
   9588 
   9589   assert(!OrigOp.get()->getType()->isPlaceholderType());
   9590 
   9591   // Make sure to ignore parentheses in subsequent checks
   9592   Expr *op = OrigOp.get()->IgnoreParens();
   9593 
   9594   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
   9595   if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
   9596     Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
   9597     return QualType();
   9598   }
   9599 
   9600   if (getLangOpts().C99) {
   9601     // Implement C99-only parts of addressof rules.
   9602     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
   9603       if (uOp->getOpcode() == UO_Deref)
   9604         // Per C99 6.5.3.2, the address of a deref always returns a valid result
   9605         // (assuming the deref expression is valid).
   9606         return uOp->getSubExpr()->getType();
   9607     }
   9608     // Technically, there should be a check for array subscript
   9609     // expressions here, but the result of one is always an lvalue anyway.
   9610   }
   9611   ValueDecl *dcl = getPrimaryDecl(op);
   9612   Expr::LValueClassification lval = op->ClassifyLValue(Context);
   9613   unsigned AddressOfError = AO_No_Error;
   9614 
   9615   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
   9616     bool sfinae = (bool)isSFINAEContext();
   9617     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
   9618                                   : diag::ext_typecheck_addrof_temporary)
   9619       << op->getType() << op->getSourceRange();
   9620     if (sfinae)
   9621       return QualType();
   9622     // Materialize the temporary as an lvalue so that we can take its address.
   9623     OrigOp = op = new (Context)
   9624         MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
   9625   } else if (isa<ObjCSelectorExpr>(op)) {
   9626     return Context.getPointerType(op->getType());
   9627   } else if (lval == Expr::LV_MemberFunction) {
   9628     // If it's an instance method, make a member pointer.
   9629     // The expression must have exactly the form &A::foo.
   9630 
   9631     // If the underlying expression isn't a decl ref, give up.
   9632     if (!isa<DeclRefExpr>(op)) {
   9633       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   9634         << OrigOp.get()->getSourceRange();
   9635       return QualType();
   9636     }
   9637     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
   9638     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
   9639 
   9640     // The id-expression was parenthesized.
   9641     if (OrigOp.get() != DRE) {
   9642       Diag(OpLoc, diag::err_parens_pointer_member_function)
   9643         << OrigOp.get()->getSourceRange();
   9644 
   9645     // The method was named without a qualifier.
   9646     } else if (!DRE->getQualifier()) {
   9647       if (MD->getParent()->getName().empty())
   9648         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   9649           << op->getSourceRange();
   9650       else {
   9651         SmallString<32> Str;
   9652         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
   9653         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   9654           << op->getSourceRange()
   9655           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
   9656       }
   9657     }
   9658 
   9659     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
   9660     if (isa<CXXDestructorDecl>(MD))
   9661       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
   9662 
   9663     QualType MPTy = Context.getMemberPointerType(
   9664         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
   9665     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   9666       RequireCompleteType(OpLoc, MPTy, 0);
   9667     return MPTy;
   9668   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
   9669     // C99 6.5.3.2p1
   9670     // The operand must be either an l-value or a function designator
   9671     if (!op->getType()->isFunctionType()) {
   9672       // Use a special diagnostic for loads from property references.
   9673       if (isa<PseudoObjectExpr>(op)) {
   9674         AddressOfError = AO_Property_Expansion;
   9675       } else {
   9676         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
   9677           << op->getType() << op->getSourceRange();
   9678         return QualType();
   9679       }
   9680     }
   9681   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
   9682     // The operand cannot be a bit-field
   9683     AddressOfError = AO_Bit_Field;
   9684   } else if (op->getObjectKind() == OK_VectorComponent) {
   9685     // The operand cannot be an element of a vector
   9686     AddressOfError = AO_Vector_Element;
   9687   } else if (dcl) { // C99 6.5.3.2p1
   9688     // We have an lvalue with a decl. Make sure the decl is not declared
   9689     // with the register storage-class specifier.
   9690     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
   9691       // in C++ it is not error to take address of a register
   9692       // variable (c++03 7.1.1P3)
   9693       if (vd->getStorageClass() == SC_Register &&
   9694           !getLangOpts().CPlusPlus) {
   9695         AddressOfError = AO_Register_Variable;
   9696       }
   9697     } else if (isa<MSPropertyDecl>(dcl)) {
   9698       AddressOfError = AO_Property_Expansion;
   9699     } else if (isa<FunctionTemplateDecl>(dcl)) {
   9700       return Context.OverloadTy;
   9701     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
   9702       // Okay: we can take the address of a field.
   9703       // Could be a pointer to member, though, if there is an explicit
   9704       // scope qualifier for the class.
   9705       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
   9706         DeclContext *Ctx = dcl->getDeclContext();
   9707         if (Ctx && Ctx->isRecord()) {
   9708           if (dcl->getType()->isReferenceType()) {
   9709             Diag(OpLoc,
   9710                  diag::err_cannot_form_pointer_to_member_of_reference_type)
   9711               << dcl->getDeclName() << dcl->getType();
   9712             return QualType();
   9713           }
   9714 
   9715           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
   9716             Ctx = Ctx->getParent();
   9717 
   9718           QualType MPTy = Context.getMemberPointerType(
   9719               op->getType(),
   9720               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
   9721           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   9722             RequireCompleteType(OpLoc, MPTy, 0);
   9723           return MPTy;
   9724         }
   9725       }
   9726     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
   9727       llvm_unreachable("Unknown/unexpected decl type");
   9728   }
   9729 
   9730   if (AddressOfError != AO_No_Error) {
   9731     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
   9732     return QualType();
   9733   }
   9734 
   9735   if (lval == Expr::LV_IncompleteVoidType) {
   9736     // Taking the address of a void variable is technically illegal, but we
   9737     // allow it in cases which are otherwise valid.
   9738     // Example: "extern void x; void* y = &x;".
   9739     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
   9740   }
   9741 
   9742   // If the operand has type "type", the result has type "pointer to type".
   9743   if (op->getType()->isObjCObjectType())
   9744     return Context.getObjCObjectPointerType(op->getType());
   9745   return Context.getPointerType(op->getType());
   9746 }
   9747 
   9748 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
   9749   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
   9750   if (!DRE)
   9751     return;
   9752   const Decl *D = DRE->getDecl();
   9753   if (!D)
   9754     return;
   9755   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
   9756   if (!Param)
   9757     return;
   9758   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
   9759     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
   9760       return;
   9761   if (FunctionScopeInfo *FD = S.getCurFunction())
   9762     if (!FD->ModifiedNonNullParams.count(Param))
   9763       FD->ModifiedNonNullParams.insert(Param);
   9764 }
   9765 
   9766 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
   9767 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
   9768                                         SourceLocation OpLoc) {
   9769   if (Op->isTypeDependent())
   9770     return S.Context.DependentTy;
   9771 
   9772   ExprResult ConvResult = S.UsualUnaryConversions(Op);
   9773   if (ConvResult.isInvalid())
   9774     return QualType();
   9775   Op = ConvResult.get();
   9776   QualType OpTy = Op->getType();
   9777   QualType Result;
   9778 
   9779   if (isa<CXXReinterpretCastExpr>(Op)) {
   9780     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
   9781     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
   9782                                      Op->getSourceRange());
   9783   }
   9784 
   9785   if (const PointerType *PT = OpTy->getAs<PointerType>())
   9786     Result = PT->getPointeeType();
   9787   else if (const ObjCObjectPointerType *OPT =
   9788              OpTy->getAs<ObjCObjectPointerType>())
   9789     Result = OPT->getPointeeType();
   9790   else {
   9791     ExprResult PR = S.CheckPlaceholderExpr(Op);
   9792     if (PR.isInvalid()) return QualType();
   9793     if (PR.get() != Op)
   9794       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
   9795   }
   9796 
   9797   if (Result.isNull()) {
   9798     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
   9799       << OpTy << Op->getSourceRange();
   9800     return QualType();
   9801   }
   9802 
   9803   // Note that per both C89 and C99, indirection is always legal, even if Result
   9804   // is an incomplete type or void.  It would be possible to warn about
   9805   // dereferencing a void pointer, but it's completely well-defined, and such a
   9806   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
   9807   // for pointers to 'void' but is fine for any other pointer type:
   9808   //
   9809   // C++ [expr.unary.op]p1:
   9810   //   [...] the expression to which [the unary * operator] is applied shall
   9811   //   be a pointer to an object type, or a pointer to a function type
   9812   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
   9813     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
   9814       << OpTy << Op->getSourceRange();
   9815 
   9816   // Dereferences are usually l-values...
   9817   VK = VK_LValue;
   9818 
   9819   // ...except that certain expressions are never l-values in C.
   9820   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
   9821     VK = VK_RValue;
   9822 
   9823   return Result;
   9824 }
   9825 
   9826 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
   9827   BinaryOperatorKind Opc;
   9828   switch (Kind) {
   9829   default: llvm_unreachable("Unknown binop!");
   9830   case tok::periodstar:           Opc = BO_PtrMemD; break;
   9831   case tok::arrowstar:            Opc = BO_PtrMemI; break;
   9832   case tok::star:                 Opc = BO_Mul; break;
   9833   case tok::slash:                Opc = BO_Div; break;
   9834   case tok::percent:              Opc = BO_Rem; break;
   9835   case tok::plus:                 Opc = BO_Add; break;
   9836   case tok::minus:                Opc = BO_Sub; break;
   9837   case tok::lessless:             Opc = BO_Shl; break;
   9838   case tok::greatergreater:       Opc = BO_Shr; break;
   9839   case tok::lessequal:            Opc = BO_LE; break;
   9840   case tok::less:                 Opc = BO_LT; break;
   9841   case tok::greaterequal:         Opc = BO_GE; break;
   9842   case tok::greater:              Opc = BO_GT; break;
   9843   case tok::exclaimequal:         Opc = BO_NE; break;
   9844   case tok::equalequal:           Opc = BO_EQ; break;
   9845   case tok::amp:                  Opc = BO_And; break;
   9846   case tok::caret:                Opc = BO_Xor; break;
   9847   case tok::pipe:                 Opc = BO_Or; break;
   9848   case tok::ampamp:               Opc = BO_LAnd; break;
   9849   case tok::pipepipe:             Opc = BO_LOr; break;
   9850   case tok::equal:                Opc = BO_Assign; break;
   9851   case tok::starequal:            Opc = BO_MulAssign; break;
   9852   case tok::slashequal:           Opc = BO_DivAssign; break;
   9853   case tok::percentequal:         Opc = BO_RemAssign; break;
   9854   case tok::plusequal:            Opc = BO_AddAssign; break;
   9855   case tok::minusequal:           Opc = BO_SubAssign; break;
   9856   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
   9857   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
   9858   case tok::ampequal:             Opc = BO_AndAssign; break;
   9859   case tok::caretequal:           Opc = BO_XorAssign; break;
   9860   case tok::pipeequal:            Opc = BO_OrAssign; break;
   9861   case tok::comma:                Opc = BO_Comma; break;
   9862   }
   9863   return Opc;
   9864 }
   9865 
   9866 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
   9867   tok::TokenKind Kind) {
   9868   UnaryOperatorKind Opc;
   9869   switch (Kind) {
   9870   default: llvm_unreachable("Unknown unary op!");
   9871   case tok::plusplus:     Opc = UO_PreInc; break;
   9872   case tok::minusminus:   Opc = UO_PreDec; break;
   9873   case tok::amp:          Opc = UO_AddrOf; break;
   9874   case tok::star:         Opc = UO_Deref; break;
   9875   case tok::plus:         Opc = UO_Plus; break;
   9876   case tok::minus:        Opc = UO_Minus; break;
   9877   case tok::tilde:        Opc = UO_Not; break;
   9878   case tok::exclaim:      Opc = UO_LNot; break;
   9879   case tok::kw___real:    Opc = UO_Real; break;
   9880   case tok::kw___imag:    Opc = UO_Imag; break;
   9881   case tok::kw___extension__: Opc = UO_Extension; break;
   9882   }
   9883   return Opc;
   9884 }
   9885 
   9886 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
   9887 /// This warning is only emitted for builtin assignment operations. It is also
   9888 /// suppressed in the event of macro expansions.
   9889 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
   9890                                    SourceLocation OpLoc) {
   9891   if (!S.ActiveTemplateInstantiations.empty())
   9892     return;
   9893   if (OpLoc.isInvalid() || OpLoc.isMacroID())
   9894     return;
   9895   LHSExpr = LHSExpr->IgnoreParenImpCasts();
   9896   RHSExpr = RHSExpr->IgnoreParenImpCasts();
   9897   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
   9898   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
   9899   if (!LHSDeclRef || !RHSDeclRef ||
   9900       LHSDeclRef->getLocation().isMacroID() ||
   9901       RHSDeclRef->getLocation().isMacroID())
   9902     return;
   9903   const ValueDecl *LHSDecl =
   9904     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
   9905   const ValueDecl *RHSDecl =
   9906     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
   9907   if (LHSDecl != RHSDecl)
   9908     return;
   9909   if (LHSDecl->getType().isVolatileQualified())
   9910     return;
   9911   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
   9912     if (RefTy->getPointeeType().isVolatileQualified())
   9913       return;
   9914 
   9915   S.Diag(OpLoc, diag::warn_self_assignment)
   9916       << LHSDeclRef->getType()
   9917       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   9918 }
   9919 
   9920 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
   9921 /// is usually indicative of introspection within the Objective-C pointer.
   9922 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
   9923                                           SourceLocation OpLoc) {
   9924   if (!S.getLangOpts().ObjC1)
   9925     return;
   9926 
   9927   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
   9928   const Expr *LHS = L.get();
   9929   const Expr *RHS = R.get();
   9930 
   9931   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   9932     ObjCPointerExpr = LHS;
   9933     OtherExpr = RHS;
   9934   }
   9935   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   9936     ObjCPointerExpr = RHS;
   9937     OtherExpr = LHS;
   9938   }
   9939 
   9940   // This warning is deliberately made very specific to reduce false
   9941   // positives with logic that uses '&' for hashing.  This logic mainly
   9942   // looks for code trying to introspect into tagged pointers, which
   9943   // code should generally never do.
   9944   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
   9945     unsigned Diag = diag::warn_objc_pointer_masking;
   9946     // Determine if we are introspecting the result of performSelectorXXX.
   9947     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
   9948     // Special case messages to -performSelector and friends, which
   9949     // can return non-pointer values boxed in a pointer value.
   9950     // Some clients may wish to silence warnings in this subcase.
   9951     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
   9952       Selector S = ME->getSelector();
   9953       StringRef SelArg0 = S.getNameForSlot(0);
   9954       if (SelArg0.startswith("performSelector"))
   9955         Diag = diag::warn_objc_pointer_masking_performSelector;
   9956     }
   9957 
   9958     S.Diag(OpLoc, Diag)
   9959       << ObjCPointerExpr->getSourceRange();
   9960   }
   9961 }
   9962 
   9963 static NamedDecl *getDeclFromExpr(Expr *E) {
   9964   if (!E)
   9965     return nullptr;
   9966   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
   9967     return DRE->getDecl();
   9968   if (auto *ME = dyn_cast<MemberExpr>(E))
   9969     return ME->getMemberDecl();
   9970   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
   9971     return IRE->getDecl();
   9972   return nullptr;
   9973 }
   9974 
   9975 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
   9976 /// operator @p Opc at location @c TokLoc. This routine only supports
   9977 /// built-in operations; ActOnBinOp handles overloaded operators.
   9978 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
   9979                                     BinaryOperatorKind Opc,
   9980                                     Expr *LHSExpr, Expr *RHSExpr) {
   9981   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
   9982     // The syntax only allows initializer lists on the RHS of assignment,
   9983     // so we don't need to worry about accepting invalid code for
   9984     // non-assignment operators.
   9985     // C++11 5.17p9:
   9986     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
   9987     //   of x = {} is x = T().
   9988     InitializationKind Kind =
   9989         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
   9990     InitializedEntity Entity =
   9991         InitializedEntity::InitializeTemporary(LHSExpr->getType());
   9992     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
   9993     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
   9994     if (Init.isInvalid())
   9995       return Init;
   9996     RHSExpr = Init.get();
   9997   }
   9998 
   9999   ExprResult LHS = LHSExpr, RHS = RHSExpr;
   10000   QualType ResultTy;     // Result type of the binary operator.
   10001   // The following two variables are used for compound assignment operators
   10002   QualType CompLHSTy;    // Type of LHS after promotions for computation
   10003   QualType CompResultTy; // Type of computation result
   10004   ExprValueKind VK = VK_RValue;
   10005   ExprObjectKind OK = OK_Ordinary;
   10006 
   10007   if (!getLangOpts().CPlusPlus) {
   10008     // C cannot handle TypoExpr nodes on either side of a binop because it
   10009     // doesn't handle dependent types properly, so make sure any TypoExprs have
   10010     // been dealt with before checking the operands.
   10011     LHS = CorrectDelayedTyposInExpr(LHSExpr);
   10012     RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
   10013       if (Opc != BO_Assign)
   10014         return ExprResult(E);
   10015       // Avoid correcting the RHS to the same Expr as the LHS.
   10016       Decl *D = getDeclFromExpr(E);
   10017       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
   10018     });
   10019     if (!LHS.isUsable() || !RHS.isUsable())
   10020       return ExprError();
   10021   }
   10022 
   10023   switch (Opc) {
   10024   case BO_Assign:
   10025     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
   10026     if (getLangOpts().CPlusPlus &&
   10027         LHS.get()->getObjectKind() != OK_ObjCProperty) {
   10028       VK = LHS.get()->getValueKind();
   10029       OK = LHS.get()->getObjectKind();
   10030     }
   10031     if (!ResultTy.isNull()) {
   10032       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   10033       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
   10034     }
   10035     RecordModifiableNonNullParam(*this, LHS.get());
   10036     break;
   10037   case BO_PtrMemD:
   10038   case BO_PtrMemI:
   10039     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
   10040                                             Opc == BO_PtrMemI);
   10041     break;
   10042   case BO_Mul:
   10043   case BO_Div:
   10044     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
   10045                                            Opc == BO_Div);
   10046     break;
   10047   case BO_Rem:
   10048     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
   10049     break;
   10050   case BO_Add:
   10051     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
   10052     break;
   10053   case BO_Sub:
   10054     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
   10055     break;
   10056   case BO_Shl:
   10057   case BO_Shr:
   10058     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
   10059     break;
   10060   case BO_LE:
   10061   case BO_LT:
   10062   case BO_GE:
   10063   case BO_GT:
   10064     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
   10065     break;
   10066   case BO_EQ:
   10067   case BO_NE:
   10068     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
   10069     break;
   10070   case BO_And:
   10071     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
   10072   case BO_Xor:
   10073   case BO_Or:
   10074     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
   10075     break;
   10076   case BO_LAnd:
   10077   case BO_LOr:
   10078     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
   10079     break;
   10080   case BO_MulAssign:
   10081   case BO_DivAssign:
   10082     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
   10083                                                Opc == BO_DivAssign);
   10084     CompLHSTy = CompResultTy;
   10085     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10086       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10087     break;
   10088   case BO_RemAssign:
   10089     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
   10090     CompLHSTy = CompResultTy;
   10091     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10092       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10093     break;
   10094   case BO_AddAssign:
   10095     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
   10096     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10097       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10098     break;
   10099   case BO_SubAssign:
   10100     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
   10101     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10102       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10103     break;
   10104   case BO_ShlAssign:
   10105   case BO_ShrAssign:
   10106     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
   10107     CompLHSTy = CompResultTy;
   10108     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10109       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10110     break;
   10111   case BO_AndAssign:
   10112   case BO_OrAssign: // fallthrough
   10113 	  DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   10114   case BO_XorAssign:
   10115     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
   10116     CompLHSTy = CompResultTy;
   10117     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10118       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10119     break;
   10120   case BO_Comma:
   10121     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
   10122     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
   10123       VK = RHS.get()->getValueKind();
   10124       OK = RHS.get()->getObjectKind();
   10125     }
   10126     break;
   10127   }
   10128   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
   10129     return ExprError();
   10130 
   10131   // Check for array bounds violations for both sides of the BinaryOperator
   10132   CheckArrayAccess(LHS.get());
   10133   CheckArrayAccess(RHS.get());
   10134 
   10135   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
   10136     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
   10137                                                  &Context.Idents.get("object_setClass"),
   10138                                                  SourceLocation(), LookupOrdinaryName);
   10139     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
   10140       SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
   10141       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
   10142       FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
   10143       FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
   10144       FixItHint::CreateInsertion(RHSLocEnd, ")");
   10145     }
   10146     else
   10147       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
   10148   }
   10149   else if (const ObjCIvarRefExpr *OIRE =
   10150            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
   10151     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
   10152 
   10153   if (CompResultTy.isNull())
   10154     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
   10155                                         OK, OpLoc, FPFeatures.fp_contract);
   10156   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
   10157       OK_ObjCProperty) {
   10158     VK = VK_LValue;
   10159     OK = LHS.get()->getObjectKind();
   10160   }
   10161   return new (Context) CompoundAssignOperator(
   10162       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
   10163       OpLoc, FPFeatures.fp_contract);
   10164 }
   10165 
   10166 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
   10167 /// operators are mixed in a way that suggests that the programmer forgot that
   10168 /// comparison operators have higher precedence. The most typical example of
   10169 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
   10170 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
   10171                                       SourceLocation OpLoc, Expr *LHSExpr,
   10172                                       Expr *RHSExpr) {
   10173   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
   10174   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
   10175 
   10176   // Check that one of the sides is a comparison operator.
   10177   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
   10178   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
   10179   if (!isLeftComp && !isRightComp)
   10180     return;
   10181 
   10182   // Bitwise operations are sometimes used as eager logical ops.
   10183   // Don't diagnose this.
   10184   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
   10185   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
   10186   if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
   10187     return;
   10188 
   10189   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
   10190                                                    OpLoc)
   10191                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
   10192   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
   10193   SourceRange ParensRange = isLeftComp ?
   10194       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
   10195     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
   10196 
   10197   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
   10198     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
   10199   SuggestParentheses(Self, OpLoc,
   10200     Self.PDiag(diag::note_precedence_silence) << OpStr,
   10201     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
   10202   SuggestParentheses(Self, OpLoc,
   10203     Self.PDiag(diag::note_precedence_bitwise_first)
   10204       << BinaryOperator::getOpcodeStr(Opc),
   10205     ParensRange);
   10206 }
   10207 
   10208 /// \brief It accepts a '&' expr that is inside a '|' one.
   10209 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
   10210 /// in parentheses.
   10211 static void
   10212 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
   10213                                        BinaryOperator *Bop) {
   10214   assert(Bop->getOpcode() == BO_And);
   10215   Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
   10216       << Bop->getSourceRange() << OpLoc;
   10217   SuggestParentheses(Self, Bop->getOperatorLoc(),
   10218     Self.PDiag(diag::note_precedence_silence)
   10219       << Bop->getOpcodeStr(),
   10220     Bop->getSourceRange());
   10221 }
   10222 
   10223 /// \brief It accepts a '&&' expr that is inside a '||' one.
   10224 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
   10225 /// in parentheses.
   10226 static void
   10227 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
   10228                                        BinaryOperator *Bop) {
   10229   assert(Bop->getOpcode() == BO_LAnd);
   10230   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
   10231       << Bop->getSourceRange() << OpLoc;
   10232   SuggestParentheses(Self, Bop->getOperatorLoc(),
   10233     Self.PDiag(diag::note_precedence_silence)
   10234       << Bop->getOpcodeStr(),
   10235     Bop->getSourceRange());
   10236 }
   10237 
   10238 /// \brief Returns true if the given expression can be evaluated as a constant
   10239 /// 'true'.
   10240 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
   10241   bool Res;
   10242   return !E->isValueDependent() &&
   10243          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
   10244 }
   10245 
   10246 /// \brief Returns true if the given expression can be evaluated as a constant
   10247 /// 'false'.
   10248 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
   10249   bool Res;
   10250   return !E->isValueDependent() &&
   10251          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
   10252 }
   10253 
   10254 /// \brief Look for '&&' in the left hand of a '||' expr.
   10255 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
   10256                                              Expr *LHSExpr, Expr *RHSExpr) {
   10257   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
   10258     if (Bop->getOpcode() == BO_LAnd) {
   10259       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
   10260       if (EvaluatesAsFalse(S, RHSExpr))
   10261         return;
   10262       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
   10263       if (!EvaluatesAsTrue(S, Bop->getLHS()))
   10264         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   10265     } else if (Bop->getOpcode() == BO_LOr) {
   10266       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
   10267         // If it's "a || b && 1 || c" we didn't warn earlier for
   10268         // "a || b && 1", but warn now.
   10269         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
   10270           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
   10271       }
   10272     }
   10273   }
   10274 }
   10275 
   10276 /// \brief Look for '&&' in the right hand of a '||' expr.
   10277 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
   10278                                              Expr *LHSExpr, Expr *RHSExpr) {
   10279   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
   10280     if (Bop->getOpcode() == BO_LAnd) {
   10281       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
   10282       if (EvaluatesAsFalse(S, LHSExpr))
   10283         return;
   10284       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
   10285       if (!EvaluatesAsTrue(S, Bop->getRHS()))
   10286         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   10287     }
   10288   }
   10289 }
   10290 
   10291 /// \brief Look for '&' in the left or right hand of a '|' expr.
   10292 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
   10293                                              Expr *OrArg) {
   10294   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
   10295     if (Bop->getOpcode() == BO_And)
   10296       return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
   10297   }
   10298 }
   10299 
   10300 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
   10301                                     Expr *SubExpr, StringRef Shift) {
   10302   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
   10303     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
   10304       StringRef Op = Bop->getOpcodeStr();
   10305       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
   10306           << Bop->getSourceRange() << OpLoc << Shift << Op;
   10307       SuggestParentheses(S, Bop->getOperatorLoc(),
   10308           S.PDiag(diag::note_precedence_silence) << Op,
   10309           Bop->getSourceRange());
   10310     }
   10311   }
   10312 }
   10313 
   10314 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
   10315                                  Expr *LHSExpr, Expr *RHSExpr) {
   10316   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
   10317   if (!OCE)
   10318     return;
   10319 
   10320   FunctionDecl *FD = OCE->getDirectCallee();
   10321   if (!FD || !FD->isOverloadedOperator())
   10322     return;
   10323 
   10324   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
   10325   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
   10326     return;
   10327 
   10328   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
   10329       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
   10330       << (Kind == OO_LessLess);
   10331   SuggestParentheses(S, OCE->getOperatorLoc(),
   10332                      S.PDiag(diag::note_precedence_silence)
   10333                          << (Kind == OO_LessLess ? "<<" : ">>"),
   10334                      OCE->getSourceRange());
   10335   SuggestParentheses(S, OpLoc,
   10336                      S.PDiag(diag::note_evaluate_comparison_first),
   10337                      SourceRange(OCE->getArg(1)->getLocStart(),
   10338                                  RHSExpr->getLocEnd()));
   10339 }
   10340 
   10341 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
   10342 /// precedence.
   10343 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
   10344                                     SourceLocation OpLoc, Expr *LHSExpr,
   10345                                     Expr *RHSExpr){
   10346   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
   10347   if (BinaryOperator::isBitwiseOp(Opc))
   10348     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
   10349 
   10350   // Diagnose "arg1 & arg2 | arg3"
   10351   if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   10352     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
   10353     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
   10354   }
   10355 
   10356   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
   10357   // We don't warn for 'assert(a || b && "bad")' since this is safe.
   10358   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   10359     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
   10360     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
   10361   }
   10362 
   10363   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
   10364       || Opc == BO_Shr) {
   10365     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
   10366     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
   10367     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
   10368   }
   10369 
   10370   // Warn on overloaded shift operators and comparisons, such as:
   10371   // cout << 5 == 4;
   10372   if (BinaryOperator::isComparisonOp(Opc))
   10373     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
   10374 }
   10375 
   10376 // Binary Operators.  'Tok' is the token for the operator.
   10377 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
   10378                             tok::TokenKind Kind,
   10379                             Expr *LHSExpr, Expr *RHSExpr) {
   10380   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
   10381   assert(LHSExpr && "ActOnBinOp(): missing left expression");
   10382   assert(RHSExpr && "ActOnBinOp(): missing right expression");
   10383 
   10384   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
   10385   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
   10386 
   10387   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
   10388 }
   10389 
   10390 /// Build an overloaded binary operator expression in the given scope.
   10391 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
   10392                                        BinaryOperatorKind Opc,
   10393                                        Expr *LHS, Expr *RHS) {
   10394   // Find all of the overloaded operators visible from this
   10395   // point. We perform both an operator-name lookup from the local
   10396   // scope and an argument-dependent lookup based on the types of
   10397   // the arguments.
   10398   UnresolvedSet<16> Functions;
   10399   OverloadedOperatorKind OverOp
   10400     = BinaryOperator::getOverloadedOperator(Opc);
   10401   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
   10402     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
   10403                                    RHS->getType(), Functions);
   10404 
   10405   // Build the (potentially-overloaded, potentially-dependent)
   10406   // binary operation.
   10407   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
   10408 }
   10409 
   10410 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
   10411                             BinaryOperatorKind Opc,
   10412                             Expr *LHSExpr, Expr *RHSExpr) {
   10413   // We want to end up calling one of checkPseudoObjectAssignment
   10414   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
   10415   // both expressions are overloadable or either is type-dependent),
   10416   // or CreateBuiltinBinOp (in any other case).  We also want to get
   10417   // any placeholder types out of the way.
   10418 
   10419   // Handle pseudo-objects in the LHS.
   10420   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
   10421     // Assignments with a pseudo-object l-value need special analysis.
   10422     if (pty->getKind() == BuiltinType::PseudoObject &&
   10423         BinaryOperator::isAssignmentOp(Opc))
   10424       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
   10425 
   10426     // Don't resolve overloads if the other type is overloadable.
   10427     if (pty->getKind() == BuiltinType::Overload) {
   10428       // We can't actually test that if we still have a placeholder,
   10429       // though.  Fortunately, none of the exceptions we see in that
   10430       // code below are valid when the LHS is an overload set.  Note
   10431       // that an overload set can be dependently-typed, but it never
   10432       // instantiates to having an overloadable type.
   10433       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   10434       if (resolvedRHS.isInvalid()) return ExprError();
   10435       RHSExpr = resolvedRHS.get();
   10436 
   10437       if (RHSExpr->isTypeDependent() ||
   10438           RHSExpr->getType()->isOverloadableType())
   10439         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10440     }
   10441 
   10442     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
   10443     if (LHS.isInvalid()) return ExprError();
   10444     LHSExpr = LHS.get();
   10445   }
   10446 
   10447   // Handle pseudo-objects in the RHS.
   10448   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
   10449     // An overload in the RHS can potentially be resolved by the type
   10450     // being assigned to.
   10451     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
   10452       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   10453         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10454 
   10455       if (LHSExpr->getType()->isOverloadableType())
   10456         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10457 
   10458       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   10459     }
   10460 
   10461     // Don't resolve overloads if the other type is overloadable.
   10462     if (pty->getKind() == BuiltinType::Overload &&
   10463         LHSExpr->getType()->isOverloadableType())
   10464       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10465 
   10466     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   10467     if (!resolvedRHS.isUsable()) return ExprError();
   10468     RHSExpr = resolvedRHS.get();
   10469   }
   10470 
   10471   if (getLangOpts().CPlusPlus) {
   10472     // If either expression is type-dependent, always build an
   10473     // overloaded op.
   10474     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   10475       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10476 
   10477     // Otherwise, build an overloaded op if either expression has an
   10478     // overloadable type.
   10479     if (LHSExpr->getType()->isOverloadableType() ||
   10480         RHSExpr->getType()->isOverloadableType())
   10481       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10482   }
   10483 
   10484   // Build a built-in binary operation.
   10485   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   10486 }
   10487 
   10488 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
   10489                                       UnaryOperatorKind Opc,
   10490                                       Expr *InputExpr) {
   10491   ExprResult Input = InputExpr;
   10492   ExprValueKind VK = VK_RValue;
   10493   ExprObjectKind OK = OK_Ordinary;
   10494   QualType resultType;
   10495   switch (Opc) {
   10496   case UO_PreInc:
   10497   case UO_PreDec:
   10498   case UO_PostInc:
   10499   case UO_PostDec:
   10500     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
   10501                                                 OpLoc,
   10502                                                 Opc == UO_PreInc ||
   10503                                                 Opc == UO_PostInc,
   10504                                                 Opc == UO_PreInc ||
   10505                                                 Opc == UO_PreDec);
   10506     break;
   10507   case UO_AddrOf:
   10508     resultType = CheckAddressOfOperand(Input, OpLoc);
   10509     RecordModifiableNonNullParam(*this, InputExpr);
   10510     break;
   10511   case UO_Deref: {
   10512     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   10513     if (Input.isInvalid()) return ExprError();
   10514     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
   10515     break;
   10516   }
   10517   case UO_Plus:
   10518   case UO_Minus:
   10519     Input = UsualUnaryConversions(Input.get());
   10520     if (Input.isInvalid()) return ExprError();
   10521     resultType = Input.get()->getType();
   10522     if (resultType->isDependentType())
   10523       break;
   10524     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
   10525         resultType->isVectorType())
   10526       break;
   10527     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
   10528              Opc == UO_Plus &&
   10529              resultType->isPointerType())
   10530       break;
   10531 
   10532     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10533       << resultType << Input.get()->getSourceRange());
   10534 
   10535   case UO_Not: // bitwise complement
   10536     Input = UsualUnaryConversions(Input.get());
   10537     if (Input.isInvalid())
   10538       return ExprError();
   10539     resultType = Input.get()->getType();
   10540     if (resultType->isDependentType())
   10541       break;
   10542     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
   10543     if (resultType->isComplexType() || resultType->isComplexIntegerType())
   10544       // C99 does not support '~' for complex conjugation.
   10545       Diag(OpLoc, diag::ext_integer_complement_complex)
   10546           << resultType << Input.get()->getSourceRange();
   10547     else if (resultType->hasIntegerRepresentation())
   10548       break;
   10549     else if (resultType->isExtVectorType()) {
   10550       if (Context.getLangOpts().OpenCL) {
   10551         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
   10552         // on vector float types.
   10553         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   10554         if (!T->isIntegerType())
   10555           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10556                            << resultType << Input.get()->getSourceRange());
   10557       }
   10558       break;
   10559     } else {
   10560       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10561                        << resultType << Input.get()->getSourceRange());
   10562     }
   10563     break;
   10564 
   10565   case UO_LNot: // logical negation
   10566     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
   10567     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   10568     if (Input.isInvalid()) return ExprError();
   10569     resultType = Input.get()->getType();
   10570 
   10571     // Though we still have to promote half FP to float...
   10572     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
   10573       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
   10574       resultType = Context.FloatTy;
   10575     }
   10576 
   10577     if (resultType->isDependentType())
   10578       break;
   10579     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
   10580       // C99 6.5.3.3p1: ok, fallthrough;
   10581       if (Context.getLangOpts().CPlusPlus) {
   10582         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
   10583         // operand contextually converted to bool.
   10584         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
   10585                                   ScalarTypeToBooleanCastKind(resultType));
   10586       } else if (Context.getLangOpts().OpenCL &&
   10587                  Context.getLangOpts().OpenCLVersion < 120) {
   10588         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   10589         // operate on scalar float types.
   10590         if (!resultType->isIntegerType())
   10591           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10592                            << resultType << Input.get()->getSourceRange());
   10593       }
   10594     } else if (resultType->isExtVectorType()) {
   10595       if (Context.getLangOpts().OpenCL &&
   10596           Context.getLangOpts().OpenCLVersion < 120) {
   10597         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   10598         // operate on vector float types.
   10599         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   10600         if (!T->isIntegerType())
   10601           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10602                            << resultType << Input.get()->getSourceRange());
   10603       }
   10604       // Vector logical not returns the signed variant of the operand type.
   10605       resultType = GetSignedVectorType(resultType);
   10606       break;
   10607     } else {
   10608       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10609         << resultType << Input.get()->getSourceRange());
   10610     }
   10611 
   10612     // LNot always has type int. C99 6.5.3.3p5.
   10613     // In C++, it's bool. C++ 5.3.1p8
   10614     resultType = Context.getLogicalOperationType();
   10615     break;
   10616   case UO_Real:
   10617   case UO_Imag:
   10618     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
   10619     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
   10620     // complex l-values to ordinary l-values and all other values to r-values.
   10621     if (Input.isInvalid()) return ExprError();
   10622     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
   10623       if (Input.get()->getValueKind() != VK_RValue &&
   10624           Input.get()->getObjectKind() == OK_Ordinary)
   10625         VK = Input.get()->getValueKind();
   10626     } else if (!getLangOpts().CPlusPlus) {
   10627       // In C, a volatile scalar is read by __imag. In C++, it is not.
   10628       Input = DefaultLvalueConversion(Input.get());
   10629     }
   10630     break;
   10631   case UO_Extension:
   10632     resultType = Input.get()->getType();
   10633     VK = Input.get()->getValueKind();
   10634     OK = Input.get()->getObjectKind();
   10635     break;
   10636   }
   10637   if (resultType.isNull() || Input.isInvalid())
   10638     return ExprError();
   10639 
   10640   // Check for array bounds violations in the operand of the UnaryOperator,
   10641   // except for the '*' and '&' operators that have to be handled specially
   10642   // by CheckArrayAccess (as there are special cases like &array[arraysize]
   10643   // that are explicitly defined as valid by the standard).
   10644   if (Opc != UO_AddrOf && Opc != UO_Deref)
   10645     CheckArrayAccess(Input.get());
   10646 
   10647   return new (Context)
   10648       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
   10649 }
   10650 
   10651 /// \brief Determine whether the given expression is a qualified member
   10652 /// access expression, of a form that could be turned into a pointer to member
   10653 /// with the address-of operator.
   10654 static bool isQualifiedMemberAccess(Expr *E) {
   10655   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   10656     if (!DRE->getQualifier())
   10657       return false;
   10658 
   10659     ValueDecl *VD = DRE->getDecl();
   10660     if (!VD->isCXXClassMember())
   10661       return false;
   10662 
   10663     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
   10664       return true;
   10665     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
   10666       return Method->isInstance();
   10667 
   10668     return false;
   10669   }
   10670 
   10671   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   10672     if (!ULE->getQualifier())
   10673       return false;
   10674 
   10675     for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
   10676                                            DEnd = ULE->decls_end();
   10677          D != DEnd; ++D) {
   10678       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
   10679         if (Method->isInstance())
   10680           return true;
   10681       } else {
   10682         // Overload set does not contain methods.
   10683         break;
   10684       }
   10685     }
   10686 
   10687     return false;
   10688   }
   10689 
   10690   return false;
   10691 }
   10692 
   10693 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
   10694                               UnaryOperatorKind Opc, Expr *Input) {
   10695   // First things first: handle placeholders so that the
   10696   // overloaded-operator check considers the right type.
   10697   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
   10698     // Increment and decrement of pseudo-object references.
   10699     if (pty->getKind() == BuiltinType::PseudoObject &&
   10700         UnaryOperator::isIncrementDecrementOp(Opc))
   10701       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
   10702 
   10703     // extension is always a builtin operator.
   10704     if (Opc == UO_Extension)
   10705       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   10706 
   10707     // & gets special logic for several kinds of placeholder.
   10708     // The builtin code knows what to do.
   10709     if (Opc == UO_AddrOf &&
   10710         (pty->getKind() == BuiltinType::Overload ||
   10711          pty->getKind() == BuiltinType::UnknownAny ||
   10712          pty->getKind() == BuiltinType::BoundMember))
   10713       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   10714 
   10715     // Anything else needs to be handled now.
   10716     ExprResult Result = CheckPlaceholderExpr(Input);
   10717     if (Result.isInvalid()) return ExprError();
   10718     Input = Result.get();
   10719   }
   10720 
   10721   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
   10722       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
   10723       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
   10724     // Find all of the overloaded operators visible from this
   10725     // point. We perform both an operator-name lookup from the local
   10726     // scope and an argument-dependent lookup based on the types of
   10727     // the arguments.
   10728     UnresolvedSet<16> Functions;
   10729     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
   10730     if (S && OverOp != OO_None)
   10731       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
   10732                                    Functions);
   10733 
   10734     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
   10735   }
   10736 
   10737   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   10738 }
   10739 
   10740 // Unary Operators.  'Tok' is the token for the operator.
   10741 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
   10742                               tok::TokenKind Op, Expr *Input) {
   10743   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
   10744 }
   10745 
   10746 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
   10747 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
   10748                                 LabelDecl *TheDecl) {
   10749   TheDecl->markUsed(Context);
   10750   // Create the AST node.  The address of a label always has type 'void*'.
   10751   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
   10752                                      Context.getPointerType(Context.VoidTy));
   10753 }
   10754 
   10755 /// Given the last statement in a statement-expression, check whether
   10756 /// the result is a producing expression (like a call to an
   10757 /// ns_returns_retained function) and, if so, rebuild it to hoist the
   10758 /// release out of the full-expression.  Otherwise, return null.
   10759 /// Cannot fail.
   10760 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
   10761   // Should always be wrapped with one of these.
   10762   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
   10763   if (!cleanups) return nullptr;
   10764 
   10765   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
   10766   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
   10767     return nullptr;
   10768 
   10769   // Splice out the cast.  This shouldn't modify any interesting
   10770   // features of the statement.
   10771   Expr *producer = cast->getSubExpr();
   10772   assert(producer->getType() == cast->getType());
   10773   assert(producer->getValueKind() == cast->getValueKind());
   10774   cleanups->setSubExpr(producer);
   10775   return cleanups;
   10776 }
   10777 
   10778 void Sema::ActOnStartStmtExpr() {
   10779   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
   10780 }
   10781 
   10782 void Sema::ActOnStmtExprError() {
   10783   // Note that function is also called by TreeTransform when leaving a
   10784   // StmtExpr scope without rebuilding anything.
   10785 
   10786   DiscardCleanupsInEvaluationContext();
   10787   PopExpressionEvaluationContext();
   10788 }
   10789 
   10790 ExprResult
   10791 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
   10792                     SourceLocation RPLoc) { // "({..})"
   10793   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
   10794   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
   10795 
   10796   if (hasAnyUnrecoverableErrorsInThisFunction())
   10797     DiscardCleanupsInEvaluationContext();
   10798   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
   10799   PopExpressionEvaluationContext();
   10800 
   10801   // FIXME: there are a variety of strange constraints to enforce here, for
   10802   // example, it is not possible to goto into a stmt expression apparently.
   10803   // More semantic analysis is needed.
   10804 
   10805   // If there are sub-stmts in the compound stmt, take the type of the last one
   10806   // as the type of the stmtexpr.
   10807   QualType Ty = Context.VoidTy;
   10808   bool StmtExprMayBindToTemp = false;
   10809   if (!Compound->body_empty()) {
   10810     Stmt *LastStmt = Compound->body_back();
   10811     LabelStmt *LastLabelStmt = nullptr;
   10812     // If LastStmt is a label, skip down through into the body.
   10813     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
   10814       LastLabelStmt = Label;
   10815       LastStmt = Label->getSubStmt();
   10816     }
   10817 
   10818     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
   10819       // Do function/array conversion on the last expression, but not
   10820       // lvalue-to-rvalue.  However, initialize an unqualified type.
   10821       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
   10822       if (LastExpr.isInvalid())
   10823         return ExprError();
   10824       Ty = LastExpr.get()->getType().getUnqualifiedType();
   10825 
   10826       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
   10827         // In ARC, if the final expression ends in a consume, splice
   10828         // the consume out and bind it later.  In the alternate case
   10829         // (when dealing with a retainable type), the result
   10830         // initialization will create a produce.  In both cases the
   10831         // result will be +1, and we'll need to balance that out with
   10832         // a bind.
   10833         if (Expr *rebuiltLastStmt
   10834               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
   10835           LastExpr = rebuiltLastStmt;
   10836         } else {
   10837           LastExpr = PerformCopyInitialization(
   10838                             InitializedEntity::InitializeResult(LPLoc,
   10839                                                                 Ty,
   10840                                                                 false),
   10841                                                    SourceLocation(),
   10842                                                LastExpr);
   10843         }
   10844 
   10845         if (LastExpr.isInvalid())
   10846           return ExprError();
   10847         if (LastExpr.get() != nullptr) {
   10848           if (!LastLabelStmt)
   10849             Compound->setLastStmt(LastExpr.get());
   10850           else
   10851             LastLabelStmt->setSubStmt(LastExpr.get());
   10852           StmtExprMayBindToTemp = true;
   10853         }
   10854       }
   10855     }
   10856   }
   10857 
   10858   // FIXME: Check that expression type is complete/non-abstract; statement
   10859   // expressions are not lvalues.
   10860   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
   10861   if (StmtExprMayBindToTemp)
   10862     return MaybeBindToTemporary(ResStmtExpr);
   10863   return ResStmtExpr;
   10864 }
   10865 
   10866 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
   10867                                       TypeSourceInfo *TInfo,
   10868                                       OffsetOfComponent *CompPtr,
   10869                                       unsigned NumComponents,
   10870                                       SourceLocation RParenLoc) {
   10871   QualType ArgTy = TInfo->getType();
   10872   bool Dependent = ArgTy->isDependentType();
   10873   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
   10874 
   10875   // We must have at least one component that refers to the type, and the first
   10876   // one is known to be a field designator.  Verify that the ArgTy represents
   10877   // a struct/union/class.
   10878   if (!Dependent && !ArgTy->isRecordType())
   10879     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
   10880                        << ArgTy << TypeRange);
   10881 
   10882   // Type must be complete per C99 7.17p3 because a declaring a variable
   10883   // with an incomplete type would be ill-formed.
   10884   if (!Dependent
   10885       && RequireCompleteType(BuiltinLoc, ArgTy,
   10886                              diag::err_offsetof_incomplete_type, TypeRange))
   10887     return ExprError();
   10888 
   10889   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
   10890   // GCC extension, diagnose them.
   10891   // FIXME: This diagnostic isn't actually visible because the location is in
   10892   // a system header!
   10893   if (NumComponents != 1)
   10894     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
   10895       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
   10896 
   10897   bool DidWarnAboutNonPOD = false;
   10898   QualType CurrentType = ArgTy;
   10899   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
   10900   SmallVector<OffsetOfNode, 4> Comps;
   10901   SmallVector<Expr*, 4> Exprs;
   10902   for (unsigned i = 0; i != NumComponents; ++i) {
   10903     const OffsetOfComponent &OC = CompPtr[i];
   10904     if (OC.isBrackets) {
   10905       // Offset of an array sub-field.  TODO: Should we allow vector elements?
   10906       if (!CurrentType->isDependentType()) {
   10907         const ArrayType *AT = Context.getAsArrayType(CurrentType);
   10908         if(!AT)
   10909           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
   10910                            << CurrentType);
   10911         CurrentType = AT->getElementType();
   10912       } else
   10913         CurrentType = Context.DependentTy;
   10914 
   10915       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
   10916       if (IdxRval.isInvalid())
   10917         return ExprError();
   10918       Expr *Idx = IdxRval.get();
   10919 
   10920       // The expression must be an integral expression.
   10921       // FIXME: An integral constant expression?
   10922       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
   10923           !Idx->getType()->isIntegerType())
   10924         return ExprError(Diag(Idx->getLocStart(),
   10925                               diag::err_typecheck_subscript_not_integer)
   10926                          << Idx->getSourceRange());
   10927 
   10928       // Record this array index.
   10929       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
   10930       Exprs.push_back(Idx);
   10931       continue;
   10932     }
   10933 
   10934     // Offset of a field.
   10935     if (CurrentType->isDependentType()) {
   10936       // We have the offset of a field, but we can't look into the dependent
   10937       // type. Just record the identifier of the field.
   10938       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
   10939       CurrentType = Context.DependentTy;
   10940       continue;
   10941     }
   10942 
   10943     // We need to have a complete type to look into.
   10944     if (RequireCompleteType(OC.LocStart, CurrentType,
   10945                             diag::err_offsetof_incomplete_type))
   10946       return ExprError();
   10947 
   10948     // Look for the designated field.
   10949     const RecordType *RC = CurrentType->getAs<RecordType>();
   10950     if (!RC)
   10951       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
   10952                        << CurrentType);
   10953     RecordDecl *RD = RC->getDecl();
   10954 
   10955     // C++ [lib.support.types]p5:
   10956     //   The macro offsetof accepts a restricted set of type arguments in this
   10957     //   International Standard. type shall be a POD structure or a POD union
   10958     //   (clause 9).
   10959     // C++11 [support.types]p4:
   10960     //   If type is not a standard-layout class (Clause 9), the results are
   10961     //   undefined.
   10962     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   10963       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
   10964       unsigned DiagID =
   10965         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
   10966                             : diag::ext_offsetof_non_pod_type;
   10967 
   10968       if (!IsSafe && !DidWarnAboutNonPOD &&
   10969           DiagRuntimeBehavior(BuiltinLoc, nullptr,
   10970                               PDiag(DiagID)
   10971                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
   10972                               << CurrentType))
   10973         DidWarnAboutNonPOD = true;
   10974     }
   10975 
   10976     // Look for the field.
   10977     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
   10978     LookupQualifiedName(R, RD);
   10979     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
   10980     IndirectFieldDecl *IndirectMemberDecl = nullptr;
   10981     if (!MemberDecl) {
   10982       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
   10983         MemberDecl = IndirectMemberDecl->getAnonField();
   10984     }
   10985 
   10986     if (!MemberDecl)
   10987       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
   10988                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
   10989                                                               OC.LocEnd));
   10990 
   10991     // C99 7.17p3:
   10992     //   (If the specified member is a bit-field, the behavior is undefined.)
   10993     //
   10994     // We diagnose this as an error.
   10995     if (MemberDecl->isBitField()) {
   10996       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
   10997         << MemberDecl->getDeclName()
   10998         << SourceRange(BuiltinLoc, RParenLoc);
   10999       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
   11000       return ExprError();
   11001     }
   11002 
   11003     RecordDecl *Parent = MemberDecl->getParent();
   11004     if (IndirectMemberDecl)
   11005       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
   11006 
   11007     // If the member was found in a base class, introduce OffsetOfNodes for
   11008     // the base class indirections.
   11009     CXXBasePaths Paths;
   11010     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
   11011       if (Paths.getDetectedVirtual()) {
   11012         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
   11013           << MemberDecl->getDeclName()
   11014           << SourceRange(BuiltinLoc, RParenLoc);
   11015         return ExprError();
   11016       }
   11017 
   11018       CXXBasePath &Path = Paths.front();
   11019       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
   11020            B != BEnd; ++B)
   11021         Comps.push_back(OffsetOfNode(B->Base));
   11022     }
   11023 
   11024     if (IndirectMemberDecl) {
   11025       for (auto *FI : IndirectMemberDecl->chain()) {
   11026         assert(isa<FieldDecl>(FI));
   11027         Comps.push_back(OffsetOfNode(OC.LocStart,
   11028                                      cast<FieldDecl>(FI), OC.LocEnd));
   11029       }
   11030     } else
   11031       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
   11032 
   11033     CurrentType = MemberDecl->getType().getNonReferenceType();
   11034   }
   11035 
   11036   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
   11037                               Comps, Exprs, RParenLoc);
   11038 }
   11039 
   11040 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
   11041                                       SourceLocation BuiltinLoc,
   11042                                       SourceLocation TypeLoc,
   11043                                       ParsedType ParsedArgTy,
   11044                                       OffsetOfComponent *CompPtr,
   11045                                       unsigned NumComponents,
   11046                                       SourceLocation RParenLoc) {
   11047 
   11048   TypeSourceInfo *ArgTInfo;
   11049   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
   11050   if (ArgTy.isNull())
   11051     return ExprError();
   11052 
   11053   if (!ArgTInfo)
   11054     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
   11055 
   11056   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
   11057                               RParenLoc);
   11058 }
   11059 
   11060 
   11061 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
   11062                                  Expr *CondExpr,
   11063                                  Expr *LHSExpr, Expr *RHSExpr,
   11064                                  SourceLocation RPLoc) {
   11065   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
   11066 
   11067   ExprValueKind VK = VK_RValue;
   11068   ExprObjectKind OK = OK_Ordinary;
   11069   QualType resType;
   11070   bool ValueDependent = false;
   11071   bool CondIsTrue = false;
   11072   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
   11073     resType = Context.DependentTy;
   11074     ValueDependent = true;
   11075   } else {
   11076     // The conditional expression is required to be a constant expression.
   11077     llvm::APSInt condEval(32);
   11078     ExprResult CondICE
   11079       = VerifyIntegerConstantExpression(CondExpr, &condEval,
   11080           diag::err_typecheck_choose_expr_requires_constant, false);
   11081     if (CondICE.isInvalid())
   11082       return ExprError();
   11083     CondExpr = CondICE.get();
   11084     CondIsTrue = condEval.getZExtValue();
   11085 
   11086     // If the condition is > zero, then the AST type is the same as the LSHExpr.
   11087     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
   11088 
   11089     resType = ActiveExpr->getType();
   11090     ValueDependent = ActiveExpr->isValueDependent();
   11091     VK = ActiveExpr->getValueKind();
   11092     OK = ActiveExpr->getObjectKind();
   11093   }
   11094 
   11095   return new (Context)
   11096       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
   11097                  CondIsTrue, resType->isDependentType(), ValueDependent);
   11098 }
   11099 
   11100 //===----------------------------------------------------------------------===//
   11101 // Clang Extensions.
   11102 //===----------------------------------------------------------------------===//
   11103 
   11104 /// ActOnBlockStart - This callback is invoked when a block literal is started.
   11105 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
   11106   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
   11107 
   11108   if (LangOpts.CPlusPlus) {
   11109     Decl *ManglingContextDecl;
   11110     if (MangleNumberingContext *MCtx =
   11111             getCurrentMangleNumberContext(Block->getDeclContext(),
   11112                                           ManglingContextDecl)) {
   11113       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
   11114       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
   11115     }
   11116   }
   11117 
   11118   PushBlockScope(CurScope, Block);
   11119   CurContext->addDecl(Block);
   11120   if (CurScope)
   11121     PushDeclContext(CurScope, Block);
   11122   else
   11123     CurContext = Block;
   11124 
   11125   getCurBlock()->HasImplicitReturnType = true;
   11126 
   11127   // Enter a new evaluation context to insulate the block from any
   11128   // cleanups from the enclosing full-expression.
   11129   PushExpressionEvaluationContext(PotentiallyEvaluated);
   11130 }
   11131 
   11132 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
   11133                                Scope *CurScope) {
   11134   assert(ParamInfo.getIdentifier() == nullptr &&
   11135          "block-id should have no identifier!");
   11136   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
   11137   BlockScopeInfo *CurBlock = getCurBlock();
   11138 
   11139   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
   11140   QualType T = Sig->getType();
   11141 
   11142   // FIXME: We should allow unexpanded parameter packs here, but that would,
   11143   // in turn, make the block expression contain unexpanded parameter packs.
   11144   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
   11145     // Drop the parameters.
   11146     FunctionProtoType::ExtProtoInfo EPI;
   11147     EPI.HasTrailingReturn = false;
   11148     EPI.TypeQuals |= DeclSpec::TQ_const;
   11149     T = Context.getFunctionType(Context.DependentTy, None, EPI);
   11150     Sig = Context.getTrivialTypeSourceInfo(T);
   11151   }
   11152 
   11153   // GetTypeForDeclarator always produces a function type for a block
   11154   // literal signature.  Furthermore, it is always a FunctionProtoType
   11155   // unless the function was written with a typedef.
   11156   assert(T->isFunctionType() &&
   11157          "GetTypeForDeclarator made a non-function block signature");
   11158 
   11159   // Look for an explicit signature in that function type.
   11160   FunctionProtoTypeLoc ExplicitSignature;
   11161 
   11162   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
   11163   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
   11164 
   11165     // Check whether that explicit signature was synthesized by
   11166     // GetTypeForDeclarator.  If so, don't save that as part of the
   11167     // written signature.
   11168     if (ExplicitSignature.getLocalRangeBegin() ==
   11169         ExplicitSignature.getLocalRangeEnd()) {
   11170       // This would be much cheaper if we stored TypeLocs instead of
   11171       // TypeSourceInfos.
   11172       TypeLoc Result = ExplicitSignature.getReturnLoc();
   11173       unsigned Size = Result.getFullDataSize();
   11174       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
   11175       Sig->getTypeLoc().initializeFullCopy(Result, Size);
   11176 
   11177       ExplicitSignature = FunctionProtoTypeLoc();
   11178     }
   11179   }
   11180 
   11181   CurBlock->TheDecl->setSignatureAsWritten(Sig);
   11182   CurBlock->FunctionType = T;
   11183 
   11184   const FunctionType *Fn = T->getAs<FunctionType>();
   11185   QualType RetTy = Fn->getReturnType();
   11186   bool isVariadic =
   11187     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
   11188 
   11189   CurBlock->TheDecl->setIsVariadic(isVariadic);
   11190 
   11191   // Context.DependentTy is used as a placeholder for a missing block
   11192   // return type.  TODO:  what should we do with declarators like:
   11193   //   ^ * { ... }
   11194   // If the answer is "apply template argument deduction"....
   11195   if (RetTy != Context.DependentTy) {
   11196     CurBlock->ReturnType = RetTy;
   11197     CurBlock->TheDecl->setBlockMissingReturnType(false);
   11198     CurBlock->HasImplicitReturnType = false;
   11199   }
   11200 
   11201   // Push block parameters from the declarator if we had them.
   11202   SmallVector<ParmVarDecl*, 8> Params;
   11203   if (ExplicitSignature) {
   11204     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
   11205       ParmVarDecl *Param = ExplicitSignature.getParam(I);
   11206       if (Param->getIdentifier() == nullptr &&
   11207           !Param->isImplicit() &&
   11208           !Param->isInvalidDecl() &&
   11209           !getLangOpts().CPlusPlus)
   11210         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   11211       Params.push_back(Param);
   11212     }
   11213 
   11214   // Fake up parameter variables if we have a typedef, like
   11215   //   ^ fntype { ... }
   11216   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
   11217     for (const auto &I : Fn->param_types()) {
   11218       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
   11219           CurBlock->TheDecl, ParamInfo.getLocStart(), I);
   11220       Params.push_back(Param);
   11221     }
   11222   }
   11223 
   11224   // Set the parameters on the block decl.
   11225   if (!Params.empty()) {
   11226     CurBlock->TheDecl->setParams(Params);
   11227     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
   11228                              CurBlock->TheDecl->param_end(),
   11229                              /*CheckParameterNames=*/false);
   11230   }
   11231 
   11232   // Finally we can process decl attributes.
   11233   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
   11234 
   11235   // Put the parameter variables in scope.
   11236   for (auto AI : CurBlock->TheDecl->params()) {
   11237     AI->setOwningFunction(CurBlock->TheDecl);
   11238 
   11239     // If this has an identifier, add it to the scope stack.
   11240     if (AI->getIdentifier()) {
   11241       CheckShadow(CurBlock->TheScope, AI);
   11242 
   11243       PushOnScopeChains(AI, CurBlock->TheScope);
   11244     }
   11245   }
   11246 }
   11247 
   11248 /// ActOnBlockError - If there is an error parsing a block, this callback
   11249 /// is invoked to pop the information about the block from the action impl.
   11250 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
   11251   // Leave the expression-evaluation context.
   11252   DiscardCleanupsInEvaluationContext();
   11253   PopExpressionEvaluationContext();
   11254 
   11255   // Pop off CurBlock, handle nested blocks.
   11256   PopDeclContext();
   11257   PopFunctionScopeInfo();
   11258 }
   11259 
   11260 /// ActOnBlockStmtExpr - This is called when the body of a block statement
   11261 /// literal was successfully completed.  ^(int x){...}
   11262 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
   11263                                     Stmt *Body, Scope *CurScope) {
   11264   // If blocks are disabled, emit an error.
   11265   if (!LangOpts.Blocks)
   11266     Diag(CaretLoc, diag::err_blocks_disable);
   11267 
   11268   // Leave the expression-evaluation context.
   11269   if (hasAnyUnrecoverableErrorsInThisFunction())
   11270     DiscardCleanupsInEvaluationContext();
   11271   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
   11272   PopExpressionEvaluationContext();
   11273 
   11274   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
   11275 
   11276   if (BSI->HasImplicitReturnType)
   11277     deduceClosureReturnType(*BSI);
   11278 
   11279   PopDeclContext();
   11280 
   11281   QualType RetTy = Context.VoidTy;
   11282   if (!BSI->ReturnType.isNull())
   11283     RetTy = BSI->ReturnType;
   11284 
   11285   bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
   11286   QualType BlockTy;
   11287 
   11288   // Set the captured variables on the block.
   11289   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
   11290   SmallVector<BlockDecl::Capture, 4> Captures;
   11291   for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
   11292     CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
   11293     if (Cap.isThisCapture())
   11294       continue;
   11295     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
   11296                               Cap.isNested(), Cap.getInitExpr());
   11297     Captures.push_back(NewCap);
   11298   }
   11299   BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
   11300                             BSI->CXXThisCaptureIndex != 0);
   11301 
   11302   // If the user wrote a function type in some form, try to use that.
   11303   if (!BSI->FunctionType.isNull()) {
   11304     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
   11305 
   11306     FunctionType::ExtInfo Ext = FTy->getExtInfo();
   11307     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
   11308 
   11309     // Turn protoless block types into nullary block types.
   11310     if (isa<FunctionNoProtoType>(FTy)) {
   11311       FunctionProtoType::ExtProtoInfo EPI;
   11312       EPI.ExtInfo = Ext;
   11313       BlockTy = Context.getFunctionType(RetTy, None, EPI);
   11314 
   11315     // Otherwise, if we don't need to change anything about the function type,
   11316     // preserve its sugar structure.
   11317     } else if (FTy->getReturnType() == RetTy &&
   11318                (!NoReturn || FTy->getNoReturnAttr())) {
   11319       BlockTy = BSI->FunctionType;
   11320 
   11321     // Otherwise, make the minimal modifications to the function type.
   11322     } else {
   11323       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
   11324       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   11325       EPI.TypeQuals = 0; // FIXME: silently?
   11326       EPI.ExtInfo = Ext;
   11327       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
   11328     }
   11329 
   11330   // If we don't have a function type, just build one from nothing.
   11331   } else {
   11332     FunctionProtoType::ExtProtoInfo EPI;
   11333     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
   11334     BlockTy = Context.getFunctionType(RetTy, None, EPI);
   11335   }
   11336 
   11337   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
   11338                            BSI->TheDecl->param_end());
   11339   BlockTy = Context.getBlockPointerType(BlockTy);
   11340 
   11341   // If needed, diagnose invalid gotos and switches in the block.
   11342   if (getCurFunction()->NeedsScopeChecking() &&
   11343       !PP.isCodeCompletionEnabled())
   11344     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
   11345 
   11346   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
   11347 
   11348   // Try to apply the named return value optimization. We have to check again
   11349   // if we can do this, though, because blocks keep return statements around
   11350   // to deduce an implicit return type.
   11351   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
   11352       !BSI->TheDecl->isDependentContext())
   11353     computeNRVO(Body, BSI);
   11354 
   11355   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
   11356   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   11357   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
   11358 
   11359   // If the block isn't obviously global, i.e. it captures anything at
   11360   // all, then we need to do a few things in the surrounding context:
   11361   if (Result->getBlockDecl()->hasCaptures()) {
   11362     // First, this expression has a new cleanup object.
   11363     ExprCleanupObjects.push_back(Result->getBlockDecl());
   11364     ExprNeedsCleanups = true;
   11365 
   11366     // It also gets a branch-protected scope if any of the captured
   11367     // variables needs destruction.
   11368     for (const auto &CI : Result->getBlockDecl()->captures()) {
   11369       const VarDecl *var = CI.getVariable();
   11370       if (var->getType().isDestructedType() != QualType::DK_none) {
   11371         getCurFunction()->setHasBranchProtectedScope();
   11372         break;
   11373       }
   11374     }
   11375   }
   11376 
   11377   return Result;
   11378 }
   11379 
   11380 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
   11381                                         Expr *E, ParsedType Ty,
   11382                                         SourceLocation RPLoc) {
   11383   TypeSourceInfo *TInfo;
   11384   GetTypeFromParser(Ty, &TInfo);
   11385   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
   11386 }
   11387 
   11388 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
   11389                                 Expr *E, TypeSourceInfo *TInfo,
   11390                                 SourceLocation RPLoc) {
   11391   Expr *OrigExpr = E;
   11392 
   11393   // Get the va_list type
   11394   QualType VaListType = Context.getBuiltinVaListType();
   11395   if (VaListType->isArrayType()) {
   11396     // Deal with implicit array decay; for example, on x86-64,
   11397     // va_list is an array, but it's supposed to decay to
   11398     // a pointer for va_arg.
   11399     VaListType = Context.getArrayDecayedType(VaListType);
   11400     // Make sure the input expression also decays appropriately.
   11401     ExprResult Result = UsualUnaryConversions(E);
   11402     if (Result.isInvalid())
   11403       return ExprError();
   11404     E = Result.get();
   11405   } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
   11406     // If va_list is a record type and we are compiling in C++ mode,
   11407     // check the argument using reference binding.
   11408     InitializedEntity Entity
   11409       = InitializedEntity::InitializeParameter(Context,
   11410           Context.getLValueReferenceType(VaListType), false);
   11411     ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
   11412     if (Init.isInvalid())
   11413       return ExprError();
   11414     E = Init.getAs<Expr>();
   11415   } else {
   11416     // Otherwise, the va_list argument must be an l-value because
   11417     // it is modified by va_arg.
   11418     if (!E->isTypeDependent() &&
   11419         CheckForModifiableLvalue(E, BuiltinLoc, *this))
   11420       return ExprError();
   11421   }
   11422 
   11423   if (!E->isTypeDependent() &&
   11424       !Context.hasSameType(VaListType, E->getType())) {
   11425     return ExprError(Diag(E->getLocStart(),
   11426                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
   11427       << OrigExpr->getType() << E->getSourceRange());
   11428   }
   11429 
   11430   if (!TInfo->getType()->isDependentType()) {
   11431     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
   11432                             diag::err_second_parameter_to_va_arg_incomplete,
   11433                             TInfo->getTypeLoc()))
   11434       return ExprError();
   11435 
   11436     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
   11437                                TInfo->getType(),
   11438                                diag::err_second_parameter_to_va_arg_abstract,
   11439                                TInfo->getTypeLoc()))
   11440       return ExprError();
   11441 
   11442     if (!TInfo->getType().isPODType(Context)) {
   11443       Diag(TInfo->getTypeLoc().getBeginLoc(),
   11444            TInfo->getType()->isObjCLifetimeType()
   11445              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
   11446              : diag::warn_second_parameter_to_va_arg_not_pod)
   11447         << TInfo->getType()
   11448         << TInfo->getTypeLoc().getSourceRange();
   11449     }
   11450 
   11451     // Check for va_arg where arguments of the given type will be promoted
   11452     // (i.e. this va_arg is guaranteed to have undefined behavior).
   11453     QualType PromoteType;
   11454     if (TInfo->getType()->isPromotableIntegerType()) {
   11455       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
   11456       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
   11457         PromoteType = QualType();
   11458     }
   11459     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
   11460       PromoteType = Context.DoubleTy;
   11461     if (!PromoteType.isNull())
   11462       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
   11463                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
   11464                           << TInfo->getType()
   11465                           << PromoteType
   11466                           << TInfo->getTypeLoc().getSourceRange());
   11467   }
   11468 
   11469   QualType T = TInfo->getType().getNonLValueExprType(Context);
   11470   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T);
   11471 }
   11472 
   11473 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
   11474   // The type of __null will be int or long, depending on the size of
   11475   // pointers on the target.
   11476   QualType Ty;
   11477   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
   11478   if (pw == Context.getTargetInfo().getIntWidth())
   11479     Ty = Context.IntTy;
   11480   else if (pw == Context.getTargetInfo().getLongWidth())
   11481     Ty = Context.LongTy;
   11482   else if (pw == Context.getTargetInfo().getLongLongWidth())
   11483     Ty = Context.LongLongTy;
   11484   else {
   11485     llvm_unreachable("I don't know size of pointer!");
   11486   }
   11487 
   11488   return new (Context) GNUNullExpr(Ty, TokenLoc);
   11489 }
   11490 
   11491 bool
   11492 Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
   11493   if (!getLangOpts().ObjC1)
   11494     return false;
   11495 
   11496   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
   11497   if (!PT)
   11498     return false;
   11499 
   11500   if (!PT->isObjCIdType()) {
   11501     // Check if the destination is the 'NSString' interface.
   11502     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
   11503     if (!ID || !ID->getIdentifier()->isStr("NSString"))
   11504       return false;
   11505   }
   11506 
   11507   // Ignore any parens, implicit casts (should only be
   11508   // array-to-pointer decays), and not-so-opaque values.  The last is
   11509   // important for making this trigger for property assignments.
   11510   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
   11511   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
   11512     if (OV->getSourceExpr())
   11513       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
   11514 
   11515   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
   11516   if (!SL || !SL->isAscii())
   11517     return false;
   11518   Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
   11519     << FixItHint::CreateInsertion(SL->getLocStart(), "@");
   11520   Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
   11521   return true;
   11522 }
   11523 
   11524 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
   11525                                     SourceLocation Loc,
   11526                                     QualType DstType, QualType SrcType,
   11527                                     Expr *SrcExpr, AssignmentAction Action,
   11528                                     bool *Complained) {
   11529   if (Complained)
   11530     *Complained = false;
   11531 
   11532   // Decode the result (notice that AST's are still created for extensions).
   11533   bool CheckInferredResultType = false;
   11534   bool isInvalid = false;
   11535   unsigned DiagKind = 0;
   11536   FixItHint Hint;
   11537   ConversionFixItGenerator ConvHints;
   11538   bool MayHaveConvFixit = false;
   11539   bool MayHaveFunctionDiff = false;
   11540   const ObjCInterfaceDecl *IFace = nullptr;
   11541   const ObjCProtocolDecl *PDecl = nullptr;
   11542 
   11543   switch (ConvTy) {
   11544   case Compatible:
   11545       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
   11546       return false;
   11547 
   11548   case PointerToInt:
   11549     DiagKind = diag::ext_typecheck_convert_pointer_int;
   11550     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11551     MayHaveConvFixit = true;
   11552     break;
   11553   case IntToPointer:
   11554     DiagKind = diag::ext_typecheck_convert_int_pointer;
   11555     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11556     MayHaveConvFixit = true;
   11557     break;
   11558   case IncompatiblePointer:
   11559       DiagKind =
   11560         (Action == AA_Passing_CFAudited ?
   11561           diag::err_arc_typecheck_convert_incompatible_pointer :
   11562           diag::ext_typecheck_convert_incompatible_pointer);
   11563     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
   11564       SrcType->isObjCObjectPointerType();
   11565     if (Hint.isNull() && !CheckInferredResultType) {
   11566       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11567     }
   11568     else if (CheckInferredResultType) {
   11569       SrcType = SrcType.getUnqualifiedType();
   11570       DstType = DstType.getUnqualifiedType();
   11571     }
   11572     MayHaveConvFixit = true;
   11573     break;
   11574   case IncompatiblePointerSign:
   11575     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
   11576     break;
   11577   case FunctionVoidPointer:
   11578     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
   11579     break;
   11580   case IncompatiblePointerDiscardsQualifiers: {
   11581     // Perform array-to-pointer decay if necessary.
   11582     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
   11583 
   11584     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
   11585     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
   11586     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
   11587       DiagKind = diag::err_typecheck_incompatible_address_space;
   11588       break;
   11589 
   11590 
   11591     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
   11592       DiagKind = diag::err_typecheck_incompatible_ownership;
   11593       break;
   11594     }
   11595 
   11596     llvm_unreachable("unknown error case for discarding qualifiers!");
   11597     // fallthrough
   11598   }
   11599   case CompatiblePointerDiscardsQualifiers:
   11600     // If the qualifiers lost were because we were applying the
   11601     // (deprecated) C++ conversion from a string literal to a char*
   11602     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
   11603     // Ideally, this check would be performed in
   11604     // checkPointerTypesForAssignment. However, that would require a
   11605     // bit of refactoring (so that the second argument is an
   11606     // expression, rather than a type), which should be done as part
   11607     // of a larger effort to fix checkPointerTypesForAssignment for
   11608     // C++ semantics.
   11609     if (getLangOpts().CPlusPlus &&
   11610         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
   11611       return false;
   11612     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
   11613     break;
   11614   case IncompatibleNestedPointerQualifiers:
   11615     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
   11616     break;
   11617   case IntToBlockPointer:
   11618     DiagKind = diag::err_int_to_block_pointer;
   11619     break;
   11620   case IncompatibleBlockPointer:
   11621     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
   11622     break;
   11623   case IncompatibleObjCQualifiedId: {
   11624     if (SrcType->isObjCQualifiedIdType()) {
   11625       const ObjCObjectPointerType *srcOPT =
   11626                 SrcType->getAs<ObjCObjectPointerType>();
   11627       for (auto *srcProto : srcOPT->quals()) {
   11628         PDecl = srcProto;
   11629         break;
   11630       }
   11631       if (const ObjCInterfaceType *IFaceT =
   11632             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   11633         IFace = IFaceT->getDecl();
   11634     }
   11635     else if (DstType->isObjCQualifiedIdType()) {
   11636       const ObjCObjectPointerType *dstOPT =
   11637         DstType->getAs<ObjCObjectPointerType>();
   11638       for (auto *dstProto : dstOPT->quals()) {
   11639         PDecl = dstProto;
   11640         break;
   11641       }
   11642       if (const ObjCInterfaceType *IFaceT =
   11643             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   11644         IFace = IFaceT->getDecl();
   11645     }
   11646     DiagKind = diag::warn_incompatible_qualified_id;
   11647     break;
   11648   }
   11649   case IncompatibleVectors:
   11650     DiagKind = diag::warn_incompatible_vectors;
   11651     break;
   11652   case IncompatibleObjCWeakRef:
   11653     DiagKind = diag::err_arc_weak_unavailable_assign;
   11654     break;
   11655   case Incompatible:
   11656     DiagKind = diag::err_typecheck_convert_incompatible;
   11657     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11658     MayHaveConvFixit = true;
   11659     isInvalid = true;
   11660     MayHaveFunctionDiff = true;
   11661     break;
   11662   }
   11663 
   11664   QualType FirstType, SecondType;
   11665   switch (Action) {
   11666   case AA_Assigning:
   11667   case AA_Initializing:
   11668     // The destination type comes first.
   11669     FirstType = DstType;
   11670     SecondType = SrcType;
   11671     break;
   11672 
   11673   case AA_Returning:
   11674   case AA_Passing:
   11675   case AA_Passing_CFAudited:
   11676   case AA_Converting:
   11677   case AA_Sending:
   11678   case AA_Casting:
   11679     // The source type comes first.
   11680     FirstType = SrcType;
   11681     SecondType = DstType;
   11682     break;
   11683   }
   11684 
   11685   PartialDiagnostic FDiag = PDiag(DiagKind);
   11686   if (Action == AA_Passing_CFAudited)
   11687     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
   11688   else
   11689     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
   11690 
   11691   // If we can fix the conversion, suggest the FixIts.
   11692   assert(ConvHints.isNull() || Hint.isNull());
   11693   if (!ConvHints.isNull()) {
   11694     for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
   11695          HE = ConvHints.Hints.end(); HI != HE; ++HI)
   11696       FDiag << *HI;
   11697   } else {
   11698     FDiag << Hint;
   11699   }
   11700   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
   11701 
   11702   if (MayHaveFunctionDiff)
   11703     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
   11704 
   11705   Diag(Loc, FDiag);
   11706   if (DiagKind == diag::warn_incompatible_qualified_id &&
   11707       PDecl && IFace && !IFace->hasDefinition())
   11708       Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
   11709         << IFace->getName() << PDecl->getName();
   11710 
   11711   if (SecondType == Context.OverloadTy)
   11712     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
   11713                               FirstType);
   11714 
   11715   if (CheckInferredResultType)
   11716     EmitRelatedResultTypeNote(SrcExpr);
   11717 
   11718   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
   11719     EmitRelatedResultTypeNoteForReturn(DstType);
   11720 
   11721   if (Complained)
   11722     *Complained = true;
   11723   return isInvalid;
   11724 }
   11725 
   11726 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   11727                                                  llvm::APSInt *Result) {
   11728   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
   11729   public:
   11730     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   11731       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
   11732     }
   11733   } Diagnoser;
   11734 
   11735   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
   11736 }
   11737 
   11738 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   11739                                                  llvm::APSInt *Result,
   11740                                                  unsigned DiagID,
   11741                                                  bool AllowFold) {
   11742   class IDDiagnoser : public VerifyICEDiagnoser {
   11743     unsigned DiagID;
   11744 
   11745   public:
   11746     IDDiagnoser(unsigned DiagID)
   11747       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
   11748 
   11749     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   11750       S.Diag(Loc, DiagID) << SR;
   11751     }
   11752   } Diagnoser(DiagID);
   11753 
   11754   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
   11755 }
   11756 
   11757 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
   11758                                             SourceRange SR) {
   11759   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
   11760 }
   11761 
   11762 ExprResult
   11763 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
   11764                                       VerifyICEDiagnoser &Diagnoser,
   11765                                       bool AllowFold) {
   11766   SourceLocation DiagLoc = E->getLocStart();
   11767 
   11768   if (getLangOpts().CPlusPlus11) {
   11769     // C++11 [expr.const]p5:
   11770     //   If an expression of literal class type is used in a context where an
   11771     //   integral constant expression is required, then that class type shall
   11772     //   have a single non-explicit conversion function to an integral or
   11773     //   unscoped enumeration type
   11774     ExprResult Converted;
   11775     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
   11776     public:
   11777       CXX11ConvertDiagnoser(bool Silent)
   11778           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
   11779                                 Silent, true) {}
   11780 
   11781       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   11782                                            QualType T) override {
   11783         return S.Diag(Loc, diag::err_ice_not_integral) << T;
   11784       }
   11785 
   11786       SemaDiagnosticBuilder diagnoseIncomplete(
   11787           Sema &S, SourceLocation Loc, QualType T) override {
   11788         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
   11789       }
   11790 
   11791       SemaDiagnosticBuilder diagnoseExplicitConv(
   11792           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   11793         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
   11794       }
   11795 
   11796       SemaDiagnosticBuilder noteExplicitConv(
   11797           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   11798         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   11799                  << ConvTy->isEnumeralType() << ConvTy;
   11800       }
   11801 
   11802       SemaDiagnosticBuilder diagnoseAmbiguous(
   11803           Sema &S, SourceLocation Loc, QualType T) override {
   11804         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
   11805       }
   11806 
   11807       SemaDiagnosticBuilder noteAmbiguous(
   11808           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   11809         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   11810                  << ConvTy->isEnumeralType() << ConvTy;
   11811       }
   11812 
   11813       SemaDiagnosticBuilder diagnoseConversion(
   11814           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   11815         llvm_unreachable("conversion functions are permitted");
   11816       }
   11817     } ConvertDiagnoser(Diagnoser.Suppress);
   11818 
   11819     Converted = PerformContextualImplicitConversion(DiagLoc, E,
   11820                                                     ConvertDiagnoser);
   11821     if (Converted.isInvalid())
   11822       return Converted;
   11823     E = Converted.get();
   11824     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
   11825       return ExprError();
   11826   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
   11827     // An ICE must be of integral or unscoped enumeration type.
   11828     if (!Diagnoser.Suppress)
   11829       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   11830     return ExprError();
   11831   }
   11832 
   11833   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
   11834   // in the non-ICE case.
   11835   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
   11836     if (Result)
   11837       *Result = E->EvaluateKnownConstInt(Context);
   11838     return E;
   11839   }
   11840 
   11841   Expr::EvalResult EvalResult;
   11842   SmallVector<PartialDiagnosticAt, 8> Notes;
   11843   EvalResult.Diag = &Notes;
   11844 
   11845   // Try to evaluate the expression, and produce diagnostics explaining why it's
   11846   // not a constant expression as a side-effect.
   11847   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
   11848                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
   11849 
   11850   // In C++11, we can rely on diagnostics being produced for any expression
   11851   // which is not a constant expression. If no diagnostics were produced, then
   11852   // this is a constant expression.
   11853   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
   11854     if (Result)
   11855       *Result = EvalResult.Val.getInt();
   11856     return E;
   11857   }
   11858 
   11859   // If our only note is the usual "invalid subexpression" note, just point
   11860   // the caret at its location rather than producing an essentially
   11861   // redundant note.
   11862   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   11863         diag::note_invalid_subexpr_in_const_expr) {
   11864     DiagLoc = Notes[0].first;
   11865     Notes.clear();
   11866   }
   11867 
   11868   if (!Folded || !AllowFold) {
   11869     if (!Diagnoser.Suppress) {
   11870       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   11871       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   11872         Diag(Notes[I].first, Notes[I].second);
   11873     }
   11874 
   11875     return ExprError();
   11876   }
   11877 
   11878   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
   11879   for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   11880     Diag(Notes[I].first, Notes[I].second);
   11881 
   11882   if (Result)
   11883     *Result = EvalResult.Val.getInt();
   11884   return E;
   11885 }
   11886 
   11887 namespace {
   11888   // Handle the case where we conclude a expression which we speculatively
   11889   // considered to be unevaluated is actually evaluated.
   11890   class TransformToPE : public TreeTransform<TransformToPE> {
   11891     typedef TreeTransform<TransformToPE> BaseTransform;
   11892 
   11893   public:
   11894     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
   11895 
   11896     // Make sure we redo semantic analysis
   11897     bool AlwaysRebuild() { return true; }
   11898 
   11899     // Make sure we handle LabelStmts correctly.
   11900     // FIXME: This does the right thing, but maybe we need a more general
   11901     // fix to TreeTransform?
   11902     StmtResult TransformLabelStmt(LabelStmt *S) {
   11903       S->getDecl()->setStmt(nullptr);
   11904       return BaseTransform::TransformLabelStmt(S);
   11905     }
   11906 
   11907     // We need to special-case DeclRefExprs referring to FieldDecls which
   11908     // are not part of a member pointer formation; normal TreeTransforming
   11909     // doesn't catch this case because of the way we represent them in the AST.
   11910     // FIXME: This is a bit ugly; is it really the best way to handle this
   11911     // case?
   11912     //
   11913     // Error on DeclRefExprs referring to FieldDecls.
   11914     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
   11915       if (isa<FieldDecl>(E->getDecl()) &&
   11916           !SemaRef.isUnevaluatedContext())
   11917         return SemaRef.Diag(E->getLocation(),
   11918                             diag::err_invalid_non_static_member_use)
   11919             << E->getDecl() << E->getSourceRange();
   11920 
   11921       return BaseTransform::TransformDeclRefExpr(E);
   11922     }
   11923 
   11924     // Exception: filter out member pointer formation
   11925     ExprResult TransformUnaryOperator(UnaryOperator *E) {
   11926       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
   11927         return E;
   11928 
   11929       return BaseTransform::TransformUnaryOperator(E);
   11930     }
   11931 
   11932     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   11933       // Lambdas never need to be transformed.
   11934       return E;
   11935     }
   11936   };
   11937 }
   11938 
   11939 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
   11940   assert(isUnevaluatedContext() &&
   11941          "Should only transform unevaluated expressions");
   11942   ExprEvalContexts.back().Context =
   11943       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
   11944   if (isUnevaluatedContext())
   11945     return E;
   11946   return TransformToPE(*this).TransformExpr(E);
   11947 }
   11948 
   11949 void
   11950 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   11951                                       Decl *LambdaContextDecl,
   11952                                       bool IsDecltype) {
   11953   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(),
   11954                                 ExprNeedsCleanups, LambdaContextDecl,
   11955                                 IsDecltype);
   11956   ExprNeedsCleanups = false;
   11957   if (!MaybeODRUseExprs.empty())
   11958     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
   11959 }
   11960 
   11961 void
   11962 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   11963                                       ReuseLambdaContextDecl_t,
   11964                                       bool IsDecltype) {
   11965   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
   11966   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
   11967 }
   11968 
   11969 void Sema::PopExpressionEvaluationContext() {
   11970   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
   11971   unsigned NumTypos = Rec.NumTypos;
   11972 
   11973   if (!Rec.Lambdas.empty()) {
   11974     if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   11975       unsigned D;
   11976       if (Rec.isUnevaluated()) {
   11977         // C++11 [expr.prim.lambda]p2:
   11978         //   A lambda-expression shall not appear in an unevaluated operand
   11979         //   (Clause 5).
   11980         D = diag::err_lambda_unevaluated_operand;
   11981       } else {
   11982         // C++1y [expr.const]p2:
   11983         //   A conditional-expression e is a core constant expression unless the
   11984         //   evaluation of e, following the rules of the abstract machine, would
   11985         //   evaluate [...] a lambda-expression.
   11986         D = diag::err_lambda_in_constant_expression;
   11987       }
   11988       for (const auto *L : Rec.Lambdas)
   11989         Diag(L->getLocStart(), D);
   11990     } else {
   11991       // Mark the capture expressions odr-used. This was deferred
   11992       // during lambda expression creation.
   11993       for (auto *Lambda : Rec.Lambdas) {
   11994         for (auto *C : Lambda->capture_inits())
   11995           MarkDeclarationsReferencedInExpr(C);
   11996       }
   11997     }
   11998   }
   11999 
   12000   // When are coming out of an unevaluated context, clear out any
   12001   // temporaries that we may have created as part of the evaluation of
   12002   // the expression in that context: they aren't relevant because they
   12003   // will never be constructed.
   12004   if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   12005     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
   12006                              ExprCleanupObjects.end());
   12007     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
   12008     CleanupVarDeclMarking();
   12009     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
   12010   // Otherwise, merge the contexts together.
   12011   } else {
   12012     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
   12013     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
   12014                             Rec.SavedMaybeODRUseExprs.end());
   12015   }
   12016 
   12017   // Pop the current expression evaluation context off the stack.
   12018   ExprEvalContexts.pop_back();
   12019 
   12020   if (!ExprEvalContexts.empty())
   12021     ExprEvalContexts.back().NumTypos += NumTypos;
   12022   else
   12023     assert(NumTypos == 0 && "There are outstanding typos after popping the "
   12024                             "last ExpressionEvaluationContextRecord");
   12025 }
   12026 
   12027 void Sema::DiscardCleanupsInEvaluationContext() {
   12028   ExprCleanupObjects.erase(
   12029          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
   12030          ExprCleanupObjects.end());
   12031   ExprNeedsCleanups = false;
   12032   MaybeODRUseExprs.clear();
   12033 }
   12034 
   12035 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
   12036   if (!E->getType()->isVariablyModifiedType())
   12037     return E;
   12038   return TransformToPotentiallyEvaluated(E);
   12039 }
   12040 
   12041 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
   12042   // Do not mark anything as "used" within a dependent context; wait for
   12043   // an instantiation.
   12044   if (SemaRef.CurContext->isDependentContext())
   12045     return false;
   12046 
   12047   switch (SemaRef.ExprEvalContexts.back().Context) {
   12048     case Sema::Unevaluated:
   12049     case Sema::UnevaluatedAbstract:
   12050       // We are in an expression that is not potentially evaluated; do nothing.
   12051       // (Depending on how you read the standard, we actually do need to do
   12052       // something here for null pointer constants, but the standard's
   12053       // definition of a null pointer constant is completely crazy.)
   12054       return false;
   12055 
   12056     case Sema::ConstantEvaluated:
   12057     case Sema::PotentiallyEvaluated:
   12058       // We are in a potentially evaluated expression (or a constant-expression
   12059       // in C++03); we need to do implicit template instantiation, implicitly
   12060       // define class members, and mark most declarations as used.
   12061       return true;
   12062 
   12063     case Sema::PotentiallyEvaluatedIfUsed:
   12064       // Referenced declarations will only be used if the construct in the
   12065       // containing expression is used.
   12066       return false;
   12067   }
   12068   llvm_unreachable("Invalid context");
   12069 }
   12070 
   12071 /// \brief Mark a function referenced, and check whether it is odr-used
   12072 /// (C++ [basic.def.odr]p2, C99 6.9p3)
   12073 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
   12074                                   bool OdrUse) {
   12075   assert(Func && "No function?");
   12076 
   12077   Func->setReferenced();
   12078 
   12079   // C++11 [basic.def.odr]p3:
   12080   //   A function whose name appears as a potentially-evaluated expression is
   12081   //   odr-used if it is the unique lookup result or the selected member of a
   12082   //   set of overloaded functions [...].
   12083   //
   12084   // We (incorrectly) mark overload resolution as an unevaluated context, so we
   12085   // can just check that here. Skip the rest of this function if we've already
   12086   // marked the function as used.
   12087   if (Func->isUsed(/*CheckUsedAttr=*/false) ||
   12088       !IsPotentiallyEvaluatedContext(*this)) {
   12089     // C++11 [temp.inst]p3:
   12090     //   Unless a function template specialization has been explicitly
   12091     //   instantiated or explicitly specialized, the function template
   12092     //   specialization is implicitly instantiated when the specialization is
   12093     //   referenced in a context that requires a function definition to exist.
   12094     //
   12095     // We consider constexpr function templates to be referenced in a context
   12096     // that requires a definition to exist whenever they are referenced.
   12097     //
   12098     // FIXME: This instantiates constexpr functions too frequently. If this is
   12099     // really an unevaluated context (and we're not just in the definition of a
   12100     // function template or overload resolution or other cases which we
   12101     // incorrectly consider to be unevaluated contexts), and we're not in a
   12102     // subexpression which we actually need to evaluate (for instance, a
   12103     // template argument, array bound or an expression in a braced-init-list),
   12104     // we are not permitted to instantiate this constexpr function definition.
   12105     //
   12106     // FIXME: This also implicitly defines special members too frequently. They
   12107     // are only supposed to be implicitly defined if they are odr-used, but they
   12108     // are not odr-used from constant expressions in unevaluated contexts.
   12109     // However, they cannot be referenced if they are deleted, and they are
   12110     // deleted whenever the implicit definition of the special member would
   12111     // fail.
   12112     if (!Func->isConstexpr() || Func->getBody())
   12113       return;
   12114     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
   12115     if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
   12116       return;
   12117   }
   12118 
   12119   // Note that this declaration has been used.
   12120   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
   12121     Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
   12122     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
   12123       if (Constructor->isDefaultConstructor()) {
   12124         if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
   12125           return;
   12126         DefineImplicitDefaultConstructor(Loc, Constructor);
   12127       } else if (Constructor->isCopyConstructor()) {
   12128         DefineImplicitCopyConstructor(Loc, Constructor);
   12129       } else if (Constructor->isMoveConstructor()) {
   12130         DefineImplicitMoveConstructor(Loc, Constructor);
   12131       }
   12132     } else if (Constructor->getInheritedConstructor()) {
   12133       DefineInheritingConstructor(Loc, Constructor);
   12134     }
   12135   } else if (CXXDestructorDecl *Destructor =
   12136                  dyn_cast<CXXDestructorDecl>(Func)) {
   12137     Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
   12138     if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
   12139       if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
   12140         return;
   12141       DefineImplicitDestructor(Loc, Destructor);
   12142     }
   12143     if (Destructor->isVirtual() && getLangOpts().AppleKext)
   12144       MarkVTableUsed(Loc, Destructor->getParent());
   12145   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
   12146     if (MethodDecl->isOverloadedOperator() &&
   12147         MethodDecl->getOverloadedOperator() == OO_Equal) {
   12148       MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
   12149       if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
   12150         if (MethodDecl->isCopyAssignmentOperator())
   12151           DefineImplicitCopyAssignment(Loc, MethodDecl);
   12152         else
   12153           DefineImplicitMoveAssignment(Loc, MethodDecl);
   12154       }
   12155     } else if (isa<CXXConversionDecl>(MethodDecl) &&
   12156                MethodDecl->getParent()->isLambda()) {
   12157       CXXConversionDecl *Conversion =
   12158           cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
   12159       if (Conversion->isLambdaToBlockPointerConversion())
   12160         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
   12161       else
   12162         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
   12163     } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
   12164       MarkVTableUsed(Loc, MethodDecl->getParent());
   12165   }
   12166 
   12167   // Recursive functions should be marked when used from another function.
   12168   // FIXME: Is this really right?
   12169   if (CurContext == Func) return;
   12170 
   12171   // Resolve the exception specification for any function which is
   12172   // used: CodeGen will need it.
   12173   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
   12174   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
   12175     ResolveExceptionSpec(Loc, FPT);
   12176 
   12177   if (!OdrUse) return;
   12178 
   12179   // Implicit instantiation of function templates and member functions of
   12180   // class templates.
   12181   if (Func->isImplicitlyInstantiable()) {
   12182     bool AlreadyInstantiated = false;
   12183     SourceLocation PointOfInstantiation = Loc;
   12184     if (FunctionTemplateSpecializationInfo *SpecInfo
   12185                               = Func->getTemplateSpecializationInfo()) {
   12186       if (SpecInfo->getPointOfInstantiation().isInvalid())
   12187         SpecInfo->setPointOfInstantiation(Loc);
   12188       else if (SpecInfo->getTemplateSpecializationKind()
   12189                  == TSK_ImplicitInstantiation) {
   12190         AlreadyInstantiated = true;
   12191         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
   12192       }
   12193     } else if (MemberSpecializationInfo *MSInfo
   12194                                 = Func->getMemberSpecializationInfo()) {
   12195       if (MSInfo->getPointOfInstantiation().isInvalid())
   12196         MSInfo->setPointOfInstantiation(Loc);
   12197       else if (MSInfo->getTemplateSpecializationKind()
   12198                  == TSK_ImplicitInstantiation) {
   12199         AlreadyInstantiated = true;
   12200         PointOfInstantiation = MSInfo->getPointOfInstantiation();
   12201       }
   12202     }
   12203 
   12204     if (!AlreadyInstantiated || Func->isConstexpr()) {
   12205       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
   12206           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
   12207           ActiveTemplateInstantiations.size())
   12208         PendingLocalImplicitInstantiations.push_back(
   12209             std::make_pair(Func, PointOfInstantiation));
   12210       else if (Func->isConstexpr())
   12211         // Do not defer instantiations of constexpr functions, to avoid the
   12212         // expression evaluator needing to call back into Sema if it sees a
   12213         // call to such a function.
   12214         InstantiateFunctionDefinition(PointOfInstantiation, Func);
   12215       else {
   12216         PendingInstantiations.push_back(std::make_pair(Func,
   12217                                                        PointOfInstantiation));
   12218         // Notify the consumer that a function was implicitly instantiated.
   12219         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
   12220       }
   12221     }
   12222   } else {
   12223     // Walk redefinitions, as some of them may be instantiable.
   12224     for (auto i : Func->redecls()) {
   12225       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
   12226         MarkFunctionReferenced(Loc, i);
   12227     }
   12228   }
   12229 
   12230   // Keep track of used but undefined functions.
   12231   if (!Func->isDefined()) {
   12232     if (mightHaveNonExternalLinkage(Func))
   12233       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   12234     else if (Func->getMostRecentDecl()->isInlined() &&
   12235              (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
   12236              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
   12237       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   12238   }
   12239 
   12240   // Normally the most current decl is marked used while processing the use and
   12241   // any subsequent decls are marked used by decl merging. This fails with
   12242   // template instantiation since marking can happen at the end of the file
   12243   // and, because of the two phase lookup, this function is called with at
   12244   // decl in the middle of a decl chain. We loop to maintain the invariant
   12245   // that once a decl is used, all decls after it are also used.
   12246   for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
   12247     F->markUsed(Context);
   12248     if (F == Func)
   12249       break;
   12250   }
   12251 }
   12252 
   12253 static void
   12254 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
   12255                                    VarDecl *var, DeclContext *DC) {
   12256   DeclContext *VarDC = var->getDeclContext();
   12257 
   12258   //  If the parameter still belongs to the translation unit, then
   12259   //  we're actually just using one parameter in the declaration of
   12260   //  the next.
   12261   if (isa<ParmVarDecl>(var) &&
   12262       isa<TranslationUnitDecl>(VarDC))
   12263     return;
   12264 
   12265   // For C code, don't diagnose about capture if we're not actually in code
   12266   // right now; it's impossible to write a non-constant expression outside of
   12267   // function context, so we'll get other (more useful) diagnostics later.
   12268   //
   12269   // For C++, things get a bit more nasty... it would be nice to suppress this
   12270   // diagnostic for certain cases like using a local variable in an array bound
   12271   // for a member of a local class, but the correct predicate is not obvious.
   12272   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
   12273     return;
   12274 
   12275   if (isa<CXXMethodDecl>(VarDC) &&
   12276       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
   12277     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
   12278       << var->getIdentifier();
   12279   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
   12280     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
   12281       << var->getIdentifier() << fn->getDeclName();
   12282   } else if (isa<BlockDecl>(VarDC)) {
   12283     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
   12284       << var->getIdentifier();
   12285   } else {
   12286     // FIXME: Is there any other context where a local variable can be
   12287     // declared?
   12288     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
   12289       << var->getIdentifier();
   12290   }
   12291 
   12292   S.Diag(var->getLocation(), diag::note_entity_declared_at)
   12293       << var->getIdentifier();
   12294 
   12295   // FIXME: Add additional diagnostic info about class etc. which prevents
   12296   // capture.
   12297 }
   12298 
   12299 
   12300 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
   12301                                       bool &SubCapturesAreNested,
   12302                                       QualType &CaptureType,
   12303                                       QualType &DeclRefType) {
   12304    // Check whether we've already captured it.
   12305   if (CSI->CaptureMap.count(Var)) {
   12306     // If we found a capture, any subcaptures are nested.
   12307     SubCapturesAreNested = true;
   12308 
   12309     // Retrieve the capture type for this variable.
   12310     CaptureType = CSI->getCapture(Var).getCaptureType();
   12311 
   12312     // Compute the type of an expression that refers to this variable.
   12313     DeclRefType = CaptureType.getNonReferenceType();
   12314 
   12315     const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
   12316     if (Cap.isCopyCapture() &&
   12317         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
   12318       DeclRefType.addConst();
   12319     return true;
   12320   }
   12321   return false;
   12322 }
   12323 
   12324 // Only block literals, captured statements, and lambda expressions can
   12325 // capture; other scopes don't work.
   12326 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
   12327                                  SourceLocation Loc,
   12328                                  const bool Diagnose, Sema &S) {
   12329   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
   12330     return getLambdaAwareParentOfDeclContext(DC);
   12331   else if (Var->hasLocalStorage()) {
   12332     if (Diagnose)
   12333        diagnoseUncapturableValueReference(S, Loc, Var, DC);
   12334   }
   12335   return nullptr;
   12336 }
   12337 
   12338 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   12339 // certain types of variables (unnamed, variably modified types etc.)
   12340 // so check for eligibility.
   12341 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
   12342                                  SourceLocation Loc,
   12343                                  const bool Diagnose, Sema &S) {
   12344 
   12345   bool IsBlock = isa<BlockScopeInfo>(CSI);
   12346   bool IsLambda = isa<LambdaScopeInfo>(CSI);
   12347 
   12348   // Lambdas are not allowed to capture unnamed variables
   12349   // (e.g. anonymous unions).
   12350   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
   12351   // assuming that's the intent.
   12352   if (IsLambda && !Var->getDeclName()) {
   12353     if (Diagnose) {
   12354       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
   12355       S.Diag(Var->getLocation(), diag::note_declared_at);
   12356     }
   12357     return false;
   12358   }
   12359 
   12360   // Prohibit variably-modified types in blocks; they're difficult to deal with.
   12361   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
   12362     if (Diagnose) {
   12363       S.Diag(Loc, diag::err_ref_vm_type);
   12364       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12365         << Var->getDeclName();
   12366     }
   12367     return false;
   12368   }
   12369   // Prohibit structs with flexible array members too.
   12370   // We cannot capture what is in the tail end of the struct.
   12371   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
   12372     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
   12373       if (Diagnose) {
   12374         if (IsBlock)
   12375           S.Diag(Loc, diag::err_ref_flexarray_type);
   12376         else
   12377           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
   12378             << Var->getDeclName();
   12379         S.Diag(Var->getLocation(), diag::note_previous_decl)
   12380           << Var->getDeclName();
   12381       }
   12382       return false;
   12383     }
   12384   }
   12385   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   12386   // Lambdas and captured statements are not allowed to capture __block
   12387   // variables; they don't support the expected semantics.
   12388   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
   12389     if (Diagnose) {
   12390       S.Diag(Loc, diag::err_capture_block_variable)
   12391         << Var->getDeclName() << !IsLambda;
   12392       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12393         << Var->getDeclName();
   12394     }
   12395     return false;
   12396   }
   12397 
   12398   return true;
   12399 }
   12400 
   12401 // Returns true if the capture by block was successful.
   12402 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
   12403                                  SourceLocation Loc,
   12404                                  const bool BuildAndDiagnose,
   12405                                  QualType &CaptureType,
   12406                                  QualType &DeclRefType,
   12407                                  const bool Nested,
   12408                                  Sema &S) {
   12409   Expr *CopyExpr = nullptr;
   12410   bool ByRef = false;
   12411 
   12412   // Blocks are not allowed to capture arrays.
   12413   if (CaptureType->isArrayType()) {
   12414     if (BuildAndDiagnose) {
   12415       S.Diag(Loc, diag::err_ref_array_type);
   12416       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12417       << Var->getDeclName();
   12418     }
   12419     return false;
   12420   }
   12421 
   12422   // Forbid the block-capture of autoreleasing variables.
   12423   if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   12424     if (BuildAndDiagnose) {
   12425       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
   12426         << /*block*/ 0;
   12427       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12428         << Var->getDeclName();
   12429     }
   12430     return false;
   12431   }
   12432   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   12433   if (HasBlocksAttr || CaptureType->isReferenceType()) {
   12434     // Block capture by reference does not change the capture or
   12435     // declaration reference types.
   12436     ByRef = true;
   12437   } else {
   12438     // Block capture by copy introduces 'const'.
   12439     CaptureType = CaptureType.getNonReferenceType().withConst();
   12440     DeclRefType = CaptureType;
   12441 
   12442     if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
   12443       if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
   12444         // The capture logic needs the destructor, so make sure we mark it.
   12445         // Usually this is unnecessary because most local variables have
   12446         // their destructors marked at declaration time, but parameters are
   12447         // an exception because it's technically only the call site that
   12448         // actually requires the destructor.
   12449         if (isa<ParmVarDecl>(Var))
   12450           S.FinalizeVarWithDestructor(Var, Record);
   12451 
   12452         // Enter a new evaluation context to insulate the copy
   12453         // full-expression.
   12454         EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
   12455 
   12456         // According to the blocks spec, the capture of a variable from
   12457         // the stack requires a const copy constructor.  This is not true
   12458         // of the copy/move done to move a __block variable to the heap.
   12459         Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
   12460                                                   DeclRefType.withConst(),
   12461                                                   VK_LValue, Loc);
   12462 
   12463         ExprResult Result
   12464           = S.PerformCopyInitialization(
   12465               InitializedEntity::InitializeBlock(Var->getLocation(),
   12466                                                   CaptureType, false),
   12467               Loc, DeclRef);
   12468 
   12469         // Build a full-expression copy expression if initialization
   12470         // succeeded and used a non-trivial constructor.  Recover from
   12471         // errors by pretending that the copy isn't necessary.
   12472         if (!Result.isInvalid() &&
   12473             !cast<CXXConstructExpr>(Result.get())->getConstructor()
   12474                 ->isTrivial()) {
   12475           Result = S.MaybeCreateExprWithCleanups(Result);
   12476           CopyExpr = Result.get();
   12477         }
   12478       }
   12479     }
   12480   }
   12481 
   12482   // Actually capture the variable.
   12483   if (BuildAndDiagnose)
   12484     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
   12485                     SourceLocation(), CaptureType, CopyExpr);
   12486 
   12487   return true;
   12488 
   12489 }
   12490 
   12491 
   12492 /// \brief Capture the given variable in the captured region.
   12493 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
   12494                                     VarDecl *Var,
   12495                                     SourceLocation Loc,
   12496                                     const bool BuildAndDiagnose,
   12497                                     QualType &CaptureType,
   12498                                     QualType &DeclRefType,
   12499                                     const bool RefersToCapturedVariable,
   12500                                     Sema &S) {
   12501 
   12502   // By default, capture variables by reference.
   12503   bool ByRef = true;
   12504   // Using an LValue reference type is consistent with Lambdas (see below).
   12505   CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   12506   Expr *CopyExpr = nullptr;
   12507   if (BuildAndDiagnose) {
   12508     // The current implementation assumes that all variables are captured
   12509     // by references. Since there is no capture by copy, no expression
   12510     // evaluation will be needed.
   12511     RecordDecl *RD = RSI->TheRecordDecl;
   12512 
   12513     FieldDecl *Field
   12514       = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
   12515                           S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
   12516                           nullptr, false, ICIS_NoInit);
   12517     Field->setImplicit(true);
   12518     Field->setAccess(AS_private);
   12519     RD->addDecl(Field);
   12520 
   12521     CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
   12522                                             DeclRefType, VK_LValue, Loc);
   12523     Var->setReferenced(true);
   12524     Var->markUsed(S.Context);
   12525   }
   12526 
   12527   // Actually capture the variable.
   12528   if (BuildAndDiagnose)
   12529     RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
   12530                     SourceLocation(), CaptureType, CopyExpr);
   12531 
   12532 
   12533   return true;
   12534 }
   12535 
   12536 /// \brief Create a field within the lambda class for the variable
   12537 ///  being captured.  Handle Array captures.
   12538 static ExprResult addAsFieldToClosureType(Sema &S,
   12539                                  LambdaScopeInfo *LSI,
   12540                                   VarDecl *Var, QualType FieldType,
   12541                                   QualType DeclRefType,
   12542                                   SourceLocation Loc,
   12543                                   bool RefersToCapturedVariable) {
   12544   CXXRecordDecl *Lambda = LSI->Lambda;
   12545 
   12546   // Build the non-static data member.
   12547   FieldDecl *Field
   12548     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
   12549                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
   12550                         nullptr, false, ICIS_NoInit);
   12551   Field->setImplicit(true);
   12552   Field->setAccess(AS_private);
   12553   Lambda->addDecl(Field);
   12554 
   12555   // C++11 [expr.prim.lambda]p21:
   12556   //   When the lambda-expression is evaluated, the entities that
   12557   //   are captured by copy are used to direct-initialize each
   12558   //   corresponding non-static data member of the resulting closure
   12559   //   object. (For array members, the array elements are
   12560   //   direct-initialized in increasing subscript order.) These
   12561   //   initializations are performed in the (unspecified) order in
   12562   //   which the non-static data members are declared.
   12563 
   12564   // Introduce a new evaluation context for the initialization, so
   12565   // that temporaries introduced as part of the capture are retained
   12566   // to be re-"exported" from the lambda expression itself.
   12567   EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
   12568 
   12569   // C++ [expr.prim.labda]p12:
   12570   //   An entity captured by a lambda-expression is odr-used (3.2) in
   12571   //   the scope containing the lambda-expression.
   12572   Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
   12573                                           DeclRefType, VK_LValue, Loc);
   12574   Var->setReferenced(true);
   12575   Var->markUsed(S.Context);
   12576 
   12577   // When the field has array type, create index variables for each
   12578   // dimension of the array. We use these index variables to subscript
   12579   // the source array, and other clients (e.g., CodeGen) will perform
   12580   // the necessary iteration with these index variables.
   12581   SmallVector<VarDecl *, 4> IndexVariables;
   12582   QualType BaseType = FieldType;
   12583   QualType SizeType = S.Context.getSizeType();
   12584   LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
   12585   while (const ConstantArrayType *Array
   12586                         = S.Context.getAsConstantArrayType(BaseType)) {
   12587     // Create the iteration variable for this array index.
   12588     IdentifierInfo *IterationVarName = nullptr;
   12589     {
   12590       SmallString<8> Str;
   12591       llvm::raw_svector_ostream OS(Str);
   12592       OS << "__i" << IndexVariables.size();
   12593       IterationVarName = &S.Context.Idents.get(OS.str());
   12594     }
   12595     VarDecl *IterationVar
   12596       = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
   12597                         IterationVarName, SizeType,
   12598                         S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   12599                         SC_None);
   12600     IndexVariables.push_back(IterationVar);
   12601     LSI->ArrayIndexVars.push_back(IterationVar);
   12602 
   12603     // Create a reference to the iteration variable.
   12604     ExprResult IterationVarRef
   12605       = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
   12606     assert(!IterationVarRef.isInvalid() &&
   12607            "Reference to invented variable cannot fail!");
   12608     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
   12609     assert(!IterationVarRef.isInvalid() &&
   12610            "Conversion of invented variable cannot fail!");
   12611 
   12612     // Subscript the array with this iteration variable.
   12613     ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
   12614                              Ref, Loc, IterationVarRef.get(), Loc);
   12615     if (Subscript.isInvalid()) {
   12616       S.CleanupVarDeclMarking();
   12617       S.DiscardCleanupsInEvaluationContext();
   12618       return ExprError();
   12619     }
   12620 
   12621     Ref = Subscript.get();
   12622     BaseType = Array->getElementType();
   12623   }
   12624 
   12625   // Construct the entity that we will be initializing. For an array, this
   12626   // will be first element in the array, which may require several levels
   12627   // of array-subscript entities.
   12628   SmallVector<InitializedEntity, 4> Entities;
   12629   Entities.reserve(1 + IndexVariables.size());
   12630   Entities.push_back(
   12631     InitializedEntity::InitializeLambdaCapture(Var->getIdentifier(),
   12632         Field->getType(), Loc));
   12633   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
   12634     Entities.push_back(InitializedEntity::InitializeElement(S.Context,
   12635                                                             0,
   12636                                                             Entities.back()));
   12637 
   12638   InitializationKind InitKind
   12639     = InitializationKind::CreateDirect(Loc, Loc, Loc);
   12640   InitializationSequence Init(S, Entities.back(), InitKind, Ref);
   12641   ExprResult Result(true);
   12642   if (!Init.Diagnose(S, Entities.back(), InitKind, Ref))
   12643     Result = Init.Perform(S, Entities.back(), InitKind, Ref);
   12644 
   12645   // If this initialization requires any cleanups (e.g., due to a
   12646   // default argument to a copy constructor), note that for the
   12647   // lambda.
   12648   if (S.ExprNeedsCleanups)
   12649     LSI->ExprNeedsCleanups = true;
   12650 
   12651   // Exit the expression evaluation context used for the capture.
   12652   S.CleanupVarDeclMarking();
   12653   S.DiscardCleanupsInEvaluationContext();
   12654   return Result;
   12655 }
   12656 
   12657 
   12658 
   12659 /// \brief Capture the given variable in the lambda.
   12660 static bool captureInLambda(LambdaScopeInfo *LSI,
   12661                             VarDecl *Var,
   12662                             SourceLocation Loc,
   12663                             const bool BuildAndDiagnose,
   12664                             QualType &CaptureType,
   12665                             QualType &DeclRefType,
   12666                             const bool RefersToCapturedVariable,
   12667                             const Sema::TryCaptureKind Kind,
   12668                             SourceLocation EllipsisLoc,
   12669                             const bool IsTopScope,
   12670                             Sema &S) {
   12671 
   12672   // Determine whether we are capturing by reference or by value.
   12673   bool ByRef = false;
   12674   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
   12675     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
   12676   } else {
   12677     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
   12678   }
   12679 
   12680   // Compute the type of the field that will capture this variable.
   12681   if (ByRef) {
   12682     // C++11 [expr.prim.lambda]p15:
   12683     //   An entity is captured by reference if it is implicitly or
   12684     //   explicitly captured but not captured by copy. It is
   12685     //   unspecified whether additional unnamed non-static data
   12686     //   members are declared in the closure type for entities
   12687     //   captured by reference.
   12688     //
   12689     // FIXME: It is not clear whether we want to build an lvalue reference
   12690     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
   12691     // to do the former, while EDG does the latter. Core issue 1249 will
   12692     // clarify, but for now we follow GCC because it's a more permissive and
   12693     // easily defensible position.
   12694     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   12695   } else {
   12696     // C++11 [expr.prim.lambda]p14:
   12697     //   For each entity captured by copy, an unnamed non-static
   12698     //   data member is declared in the closure type. The
   12699     //   declaration order of these members is unspecified. The type
   12700     //   of such a data member is the type of the corresponding
   12701     //   captured entity if the entity is not a reference to an
   12702     //   object, or the referenced type otherwise. [Note: If the
   12703     //   captured entity is a reference to a function, the
   12704     //   corresponding data member is also a reference to a
   12705     //   function. - end note ]
   12706     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
   12707       if (!RefType->getPointeeType()->isFunctionType())
   12708         CaptureType = RefType->getPointeeType();
   12709     }
   12710 
   12711     // Forbid the lambda copy-capture of autoreleasing variables.
   12712     if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   12713       if (BuildAndDiagnose) {
   12714         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
   12715         S.Diag(Var->getLocation(), diag::note_previous_decl)
   12716           << Var->getDeclName();
   12717       }
   12718       return false;
   12719     }
   12720 
   12721     // Make sure that by-copy captures are of a complete and non-abstract type.
   12722     if (BuildAndDiagnose) {
   12723       if (!CaptureType->isDependentType() &&
   12724           S.RequireCompleteType(Loc, CaptureType,
   12725                                 diag::err_capture_of_incomplete_type,
   12726                                 Var->getDeclName()))
   12727         return false;
   12728 
   12729       if (S.RequireNonAbstractType(Loc, CaptureType,
   12730                                    diag::err_capture_of_abstract_type))
   12731         return false;
   12732     }
   12733   }
   12734 
   12735   // Capture this variable in the lambda.
   12736   Expr *CopyExpr = nullptr;
   12737   if (BuildAndDiagnose) {
   12738     ExprResult Result = addAsFieldToClosureType(S, LSI, Var,
   12739                                         CaptureType, DeclRefType, Loc,
   12740                                         RefersToCapturedVariable);
   12741     if (!Result.isInvalid())
   12742       CopyExpr = Result.get();
   12743   }
   12744 
   12745   // Compute the type of a reference to this captured variable.
   12746   if (ByRef)
   12747     DeclRefType = CaptureType.getNonReferenceType();
   12748   else {
   12749     // C++ [expr.prim.lambda]p5:
   12750     //   The closure type for a lambda-expression has a public inline
   12751     //   function call operator [...]. This function call operator is
   12752     //   declared const (9.3.1) if and only if the lambda-expressions
   12753     //   parameter-declaration-clause is not followed by mutable.
   12754     DeclRefType = CaptureType.getNonReferenceType();
   12755     if (!LSI->Mutable && !CaptureType->isReferenceType())
   12756       DeclRefType.addConst();
   12757   }
   12758 
   12759   // Add the capture.
   12760   if (BuildAndDiagnose)
   12761     LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
   12762                     Loc, EllipsisLoc, CaptureType, CopyExpr);
   12763 
   12764   return true;
   12765 }
   12766 
   12767 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation ExprLoc,
   12768                               TryCaptureKind Kind, SourceLocation EllipsisLoc,
   12769                               bool BuildAndDiagnose,
   12770                               QualType &CaptureType,
   12771                               QualType &DeclRefType,
   12772 						                const unsigned *const FunctionScopeIndexToStopAt) {
   12773   bool Nested = Var->isInitCapture();
   12774 
   12775   DeclContext *DC = CurContext;
   12776   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
   12777       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
   12778   // We need to sync up the Declaration Context with the
   12779   // FunctionScopeIndexToStopAt
   12780   if (FunctionScopeIndexToStopAt) {
   12781     unsigned FSIndex = FunctionScopes.size() - 1;
   12782     while (FSIndex != MaxFunctionScopesIndex) {
   12783       DC = getLambdaAwareParentOfDeclContext(DC);
   12784       --FSIndex;
   12785     }
   12786   }
   12787 
   12788 
   12789   // If the variable is declared in the current context (and is not an
   12790   // init-capture), there is no need to capture it.
   12791   if (!Nested && Var->getDeclContext() == DC) return true;
   12792 
   12793   // Capture global variables if it is required to use private copy of this
   12794   // variable.
   12795   bool IsGlobal = !Var->hasLocalStorage();
   12796   if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedVar(Var)))
   12797     return true;
   12798 
   12799   // Walk up the stack to determine whether we can capture the variable,
   12800   // performing the "simple" checks that don't depend on type. We stop when
   12801   // we've either hit the declared scope of the variable or find an existing
   12802   // capture of that variable.  We start from the innermost capturing-entity
   12803   // (the DC) and ensure that all intervening capturing-entities
   12804   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
   12805   // declcontext can either capture the variable or have already captured
   12806   // the variable.
   12807   CaptureType = Var->getType();
   12808   DeclRefType = CaptureType.getNonReferenceType();
   12809   bool Explicit = (Kind != TryCapture_Implicit);
   12810   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
   12811   do {
   12812     // Only block literals, captured statements, and lambda expressions can
   12813     // capture; other scopes don't work.
   12814     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
   12815                                                               ExprLoc,
   12816                                                               BuildAndDiagnose,
   12817                                                               *this);
   12818     // We need to check for the parent *first* because, if we *have*
   12819     // private-captured a global variable, we need to recursively capture it in
   12820     // intermediate blocks, lambdas, etc.
   12821     if (!ParentDC) {
   12822       if (IsGlobal) {
   12823         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
   12824         break;
   12825       }
   12826       return true;
   12827     }
   12828 
   12829     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
   12830     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
   12831 
   12832 
   12833     // Check whether we've already captured it.
   12834     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
   12835                                              DeclRefType))
   12836       break;
   12837     // If we are instantiating a generic lambda call operator body,
   12838     // we do not want to capture new variables.  What was captured
   12839     // during either a lambdas transformation or initial parsing
   12840     // should be used.
   12841     if (isGenericLambdaCallOperatorSpecialization(DC)) {
   12842       if (BuildAndDiagnose) {
   12843         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   12844         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
   12845           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   12846           Diag(Var->getLocation(), diag::note_previous_decl)
   12847              << Var->getDeclName();
   12848           Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
   12849         } else
   12850           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
   12851       }
   12852       return true;
   12853     }
   12854     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   12855     // certain types of variables (unnamed, variably modified types etc.)
   12856     // so check for eligibility.
   12857     if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
   12858        return true;
   12859 
   12860     // Try to capture variable-length arrays types.
   12861     if (Var->getType()->isVariablyModifiedType()) {
   12862       // We're going to walk down into the type and look for VLA
   12863       // expressions.
   12864       QualType QTy = Var->getType();
   12865       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
   12866         QTy = PVD->getOriginalType();
   12867       do {
   12868         const Type *Ty = QTy.getTypePtr();
   12869         switch (Ty->getTypeClass()) {
   12870 #define TYPE(Class, Base)
   12871 #define ABSTRACT_TYPE(Class, Base)
   12872 #define NON_CANONICAL_TYPE(Class, Base)
   12873 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   12874 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   12875 #include "clang/AST/TypeNodes.def"
   12876           QTy = QualType();
   12877           break;
   12878         // These types are never variably-modified.
   12879         case Type::Builtin:
   12880         case Type::Complex:
   12881         case Type::Vector:
   12882         case Type::ExtVector:
   12883         case Type::Record:
   12884         case Type::Enum:
   12885         case Type::Elaborated:
   12886         case Type::TemplateSpecialization:
   12887         case Type::ObjCObject:
   12888         case Type::ObjCInterface:
   12889         case Type::ObjCObjectPointer:
   12890           llvm_unreachable("type class is never variably-modified!");
   12891         case Type::Adjusted:
   12892           QTy = cast<AdjustedType>(Ty)->getOriginalType();
   12893           break;
   12894         case Type::Decayed:
   12895           QTy = cast<DecayedType>(Ty)->getPointeeType();
   12896           break;
   12897         case Type::Pointer:
   12898           QTy = cast<PointerType>(Ty)->getPointeeType();
   12899           break;
   12900         case Type::BlockPointer:
   12901           QTy = cast<BlockPointerType>(Ty)->getPointeeType();
   12902           break;
   12903         case Type::LValueReference:
   12904         case Type::RValueReference:
   12905           QTy = cast<ReferenceType>(Ty)->getPointeeType();
   12906           break;
   12907         case Type::MemberPointer:
   12908           QTy = cast<MemberPointerType>(Ty)->getPointeeType();
   12909           break;
   12910         case Type::ConstantArray:
   12911         case Type::IncompleteArray:
   12912           // Losing element qualification here is fine.
   12913           QTy = cast<ArrayType>(Ty)->getElementType();
   12914           break;
   12915         case Type::VariableArray: {
   12916           // Losing element qualification here is fine.
   12917           const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
   12918 
   12919           // Unknown size indication requires no size computation.
   12920           // Otherwise, evaluate and record it.
   12921           if (auto Size = VAT->getSizeExpr()) {
   12922             if (!CSI->isVLATypeCaptured(VAT)) {
   12923               RecordDecl *CapRecord = nullptr;
   12924               if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
   12925                 CapRecord = LSI->Lambda;
   12926               } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   12927                 CapRecord = CRSI->TheRecordDecl;
   12928               }
   12929               if (CapRecord) {
   12930                 auto ExprLoc = Size->getExprLoc();
   12931                 auto SizeType = Context.getSizeType();
   12932                 // Build the non-static data member.
   12933                 auto Field = FieldDecl::Create(
   12934                     Context, CapRecord, ExprLoc, ExprLoc,
   12935                     /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
   12936                     /*BW*/ nullptr, /*Mutable*/ false,
   12937                     /*InitStyle*/ ICIS_NoInit);
   12938                 Field->setImplicit(true);
   12939                 Field->setAccess(AS_private);
   12940                 Field->setCapturedVLAType(VAT);
   12941                 CapRecord->addDecl(Field);
   12942 
   12943                 CSI->addVLATypeCapture(ExprLoc, SizeType);
   12944               }
   12945             }
   12946           }
   12947           QTy = VAT->getElementType();
   12948           break;
   12949         }
   12950         case Type::FunctionProto:
   12951         case Type::FunctionNoProto:
   12952           QTy = cast<FunctionType>(Ty)->getReturnType();
   12953           break;
   12954         case Type::Paren:
   12955         case Type::TypeOf:
   12956         case Type::UnaryTransform:
   12957         case Type::Attributed:
   12958         case Type::SubstTemplateTypeParm:
   12959         case Type::PackExpansion:
   12960           // Keep walking after single level desugaring.
   12961           QTy = QTy.getSingleStepDesugaredType(getASTContext());
   12962           break;
   12963         case Type::Typedef:
   12964           QTy = cast<TypedefType>(Ty)->desugar();
   12965           break;
   12966         case Type::Decltype:
   12967           QTy = cast<DecltypeType>(Ty)->desugar();
   12968           break;
   12969         case Type::Auto:
   12970           QTy = cast<AutoType>(Ty)->getDeducedType();
   12971           break;
   12972         case Type::TypeOfExpr:
   12973           QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
   12974           break;
   12975         case Type::Atomic:
   12976           QTy = cast<AtomicType>(Ty)->getValueType();
   12977           break;
   12978         }
   12979       } while (!QTy.isNull() && QTy->isVariablyModifiedType());
   12980     }
   12981 
   12982     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
   12983       // No capture-default, and this is not an explicit capture
   12984       // so cannot capture this variable.
   12985       if (BuildAndDiagnose) {
   12986         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   12987         Diag(Var->getLocation(), diag::note_previous_decl)
   12988           << Var->getDeclName();
   12989         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
   12990              diag::note_lambda_decl);
   12991         // FIXME: If we error out because an outer lambda can not implicitly
   12992         // capture a variable that an inner lambda explicitly captures, we
   12993         // should have the inner lambda do the explicit capture - because
   12994         // it makes for cleaner diagnostics later.  This would purely be done
   12995         // so that the diagnostic does not misleadingly claim that a variable
   12996         // can not be captured by a lambda implicitly even though it is captured
   12997         // explicitly.  Suggestion:
   12998         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
   12999         //    at the function head
   13000         //  - cache the StartingDeclContext - this must be a lambda
   13001         //  - captureInLambda in the innermost lambda the variable.
   13002       }
   13003       return true;
   13004     }
   13005 
   13006     FunctionScopesIndex--;
   13007     DC = ParentDC;
   13008     Explicit = false;
   13009   } while (!Var->getDeclContext()->Equals(DC));
   13010 
   13011   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
   13012   // computing the type of the capture at each step, checking type-specific
   13013   // requirements, and adding captures if requested.
   13014   // If the variable had already been captured previously, we start capturing
   13015   // at the lambda nested within that one.
   13016   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
   13017        ++I) {
   13018     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
   13019 
   13020     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
   13021       if (!captureInBlock(BSI, Var, ExprLoc,
   13022                           BuildAndDiagnose, CaptureType,
   13023                           DeclRefType, Nested, *this))
   13024         return true;
   13025       Nested = true;
   13026     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   13027       if (!captureInCapturedRegion(RSI, Var, ExprLoc,
   13028                                    BuildAndDiagnose, CaptureType,
   13029                                    DeclRefType, Nested, *this))
   13030         return true;
   13031       Nested = true;
   13032     } else {
   13033       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   13034       if (!captureInLambda(LSI, Var, ExprLoc,
   13035                            BuildAndDiagnose, CaptureType,
   13036                            DeclRefType, Nested, Kind, EllipsisLoc,
   13037                             /*IsTopScope*/I == N - 1, *this))
   13038         return true;
   13039       Nested = true;
   13040     }
   13041   }
   13042   return false;
   13043 }
   13044 
   13045 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
   13046                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
   13047   QualType CaptureType;
   13048   QualType DeclRefType;
   13049   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
   13050                             /*BuildAndDiagnose=*/true, CaptureType,
   13051                             DeclRefType, nullptr);
   13052 }
   13053 
   13054 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
   13055   QualType CaptureType;
   13056   QualType DeclRefType;
   13057   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   13058                              /*BuildAndDiagnose=*/false, CaptureType,
   13059                              DeclRefType, nullptr);
   13060 }
   13061 
   13062 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
   13063   QualType CaptureType;
   13064   QualType DeclRefType;
   13065 
   13066   // Determine whether we can capture this variable.
   13067   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   13068                          /*BuildAndDiagnose=*/false, CaptureType,
   13069                          DeclRefType, nullptr))
   13070     return QualType();
   13071 
   13072   return DeclRefType;
   13073 }
   13074 
   13075 
   13076 
   13077 // If either the type of the variable or the initializer is dependent,
   13078 // return false. Otherwise, determine whether the variable is a constant
   13079 // expression. Use this if you need to know if a variable that might or
   13080 // might not be dependent is truly a constant expression.
   13081 static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
   13082     ASTContext &Context) {
   13083 
   13084   if (Var->getType()->isDependentType())
   13085     return false;
   13086   const VarDecl *DefVD = nullptr;
   13087   Var->getAnyInitializer(DefVD);
   13088   if (!DefVD)
   13089     return false;
   13090   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
   13091   Expr *Init = cast<Expr>(Eval->Value);
   13092   if (Init->isValueDependent())
   13093     return false;
   13094   return IsVariableAConstantExpression(Var, Context);
   13095 }
   13096 
   13097 
   13098 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
   13099   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
   13100   // an object that satisfies the requirements for appearing in a
   13101   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
   13102   // is immediately applied."  This function handles the lvalue-to-rvalue
   13103   // conversion part.
   13104   MaybeODRUseExprs.erase(E->IgnoreParens());
   13105 
   13106   // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
   13107   // to a variable that is a constant expression, and if so, identify it as
   13108   // a reference to a variable that does not involve an odr-use of that
   13109   // variable.
   13110   if (LambdaScopeInfo *LSI = getCurLambda()) {
   13111     Expr *SansParensExpr = E->IgnoreParens();
   13112     VarDecl *Var = nullptr;
   13113     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
   13114       Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
   13115     else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
   13116       Var = dyn_cast<VarDecl>(ME->getMemberDecl());
   13117 
   13118     if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
   13119       LSI->markVariableExprAsNonODRUsed(SansParensExpr);
   13120   }
   13121 }
   13122 
   13123 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
   13124   Res = CorrectDelayedTyposInExpr(Res);
   13125 
   13126   if (!Res.isUsable())
   13127     return Res;
   13128 
   13129   // If a constant-expression is a reference to a variable where we delay
   13130   // deciding whether it is an odr-use, just assume we will apply the
   13131   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
   13132   // (a non-type template argument), we have special handling anyway.
   13133   UpdateMarkingForLValueToRValue(Res.get());
   13134   return Res;
   13135 }
   13136 
   13137 void Sema::CleanupVarDeclMarking() {
   13138   for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
   13139                                         e = MaybeODRUseExprs.end();
   13140        i != e; ++i) {
   13141     VarDecl *Var;
   13142     SourceLocation Loc;
   13143     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
   13144       Var = cast<VarDecl>(DRE->getDecl());
   13145       Loc = DRE->getLocation();
   13146     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
   13147       Var = cast<VarDecl>(ME->getMemberDecl());
   13148       Loc = ME->getMemberLoc();
   13149     } else {
   13150       llvm_unreachable("Unexpected expression");
   13151     }
   13152 
   13153     MarkVarDeclODRUsed(Var, Loc, *this,
   13154                        /*MaxFunctionScopeIndex Pointer*/ nullptr);
   13155   }
   13156 
   13157   MaybeODRUseExprs.clear();
   13158 }
   13159 
   13160 
   13161 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
   13162                                     VarDecl *Var, Expr *E) {
   13163   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
   13164          "Invalid Expr argument to DoMarkVarDeclReferenced");
   13165   Var->setReferenced();
   13166 
   13167   TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
   13168   bool MarkODRUsed = true;
   13169 
   13170   // If the context is not potentially evaluated, this is not an odr-use and
   13171   // does not trigger instantiation.
   13172   if (!IsPotentiallyEvaluatedContext(SemaRef)) {
   13173     if (SemaRef.isUnevaluatedContext())
   13174       return;
   13175 
   13176     // If we don't yet know whether this context is going to end up being an
   13177     // evaluated context, and we're referencing a variable from an enclosing
   13178     // scope, add a potential capture.
   13179     //
   13180     // FIXME: Is this necessary? These contexts are only used for default
   13181     // arguments, where local variables can't be used.
   13182     const bool RefersToEnclosingScope =
   13183         (SemaRef.CurContext != Var->getDeclContext() &&
   13184          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
   13185     if (RefersToEnclosingScope) {
   13186       if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
   13187         // If a variable could potentially be odr-used, defer marking it so
   13188         // until we finish analyzing the full expression for any
   13189         // lvalue-to-rvalue
   13190         // or discarded value conversions that would obviate odr-use.
   13191         // Add it to the list of potential captures that will be analyzed
   13192         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
   13193         // unless the variable is a reference that was initialized by a constant
   13194         // expression (this will never need to be captured or odr-used).
   13195         assert(E && "Capture variable should be used in an expression.");
   13196         if (!Var->getType()->isReferenceType() ||
   13197             !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
   13198           LSI->addPotentialCapture(E->IgnoreParens());
   13199       }
   13200     }
   13201 
   13202     if (!isTemplateInstantiation(TSK))
   13203     	return;
   13204 
   13205     // Instantiate, but do not mark as odr-used, variable templates.
   13206     MarkODRUsed = false;
   13207   }
   13208 
   13209   VarTemplateSpecializationDecl *VarSpec =
   13210       dyn_cast<VarTemplateSpecializationDecl>(Var);
   13211   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
   13212          "Can't instantiate a partial template specialization.");
   13213 
   13214   // Perform implicit instantiation of static data members, static data member
   13215   // templates of class templates, and variable template specializations. Delay
   13216   // instantiations of variable templates, except for those that could be used
   13217   // in a constant expression.
   13218   if (isTemplateInstantiation(TSK)) {
   13219     bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
   13220 
   13221     if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
   13222       if (Var->getPointOfInstantiation().isInvalid()) {
   13223         // This is a modification of an existing AST node. Notify listeners.
   13224         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
   13225           L->StaticDataMemberInstantiated(Var);
   13226       } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
   13227         // Don't bother trying to instantiate it again, unless we might need
   13228         // its initializer before we get to the end of the TU.
   13229         TryInstantiating = false;
   13230     }
   13231 
   13232     if (Var->getPointOfInstantiation().isInvalid())
   13233       Var->setTemplateSpecializationKind(TSK, Loc);
   13234 
   13235     if (TryInstantiating) {
   13236       SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
   13237       bool InstantiationDependent = false;
   13238       bool IsNonDependent =
   13239           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
   13240                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
   13241                   : true;
   13242 
   13243       // Do not instantiate specializations that are still type-dependent.
   13244       if (IsNonDependent) {
   13245         if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
   13246           // Do not defer instantiations of variables which could be used in a
   13247           // constant expression.
   13248           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
   13249         } else {
   13250           SemaRef.PendingInstantiations
   13251               .push_back(std::make_pair(Var, PointOfInstantiation));
   13252         }
   13253       }
   13254     }
   13255   }
   13256 
   13257   if(!MarkODRUsed) return;
   13258 
   13259   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
   13260   // the requirements for appearing in a constant expression (5.19) and, if
   13261   // it is an object, the lvalue-to-rvalue conversion (4.1)
   13262   // is immediately applied."  We check the first part here, and
   13263   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
   13264   // Note that we use the C++11 definition everywhere because nothing in
   13265   // C++03 depends on whether we get the C++03 version correct. The second
   13266   // part does not apply to references, since they are not objects.
   13267   if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
   13268     // A reference initialized by a constant expression can never be
   13269     // odr-used, so simply ignore it.
   13270     if (!Var->getType()->isReferenceType())
   13271       SemaRef.MaybeODRUseExprs.insert(E);
   13272   } else
   13273     MarkVarDeclODRUsed(Var, Loc, SemaRef,
   13274                        /*MaxFunctionScopeIndex ptr*/ nullptr);
   13275 }
   13276 
   13277 /// \brief Mark a variable referenced, and check whether it is odr-used
   13278 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
   13279 /// used directly for normal expressions referring to VarDecl.
   13280 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
   13281   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
   13282 }
   13283 
   13284 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
   13285                                Decl *D, Expr *E, bool OdrUse) {
   13286   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
   13287     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
   13288     return;
   13289   }
   13290 
   13291   SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
   13292 
   13293   // If this is a call to a method via a cast, also mark the method in the
   13294   // derived class used in case codegen can devirtualize the call.
   13295   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   13296   if (!ME)
   13297     return;
   13298   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
   13299   if (!MD)
   13300     return;
   13301   // Only attempt to devirtualize if this is truly a virtual call.
   13302   bool IsVirtualCall = MD->isVirtual() && !ME->hasQualifier();
   13303   if (!IsVirtualCall)
   13304     return;
   13305   const Expr *Base = ME->getBase();
   13306   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   13307   if (!MostDerivedClassDecl)
   13308     return;
   13309   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
   13310   if (!DM || DM->isPure())
   13311     return;
   13312   SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
   13313 }
   13314 
   13315 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
   13316 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
   13317   // TODO: update this with DR# once a defect report is filed.
   13318   // C++11 defect. The address of a pure member should not be an ODR use, even
   13319   // if it's a qualified reference.
   13320   bool OdrUse = true;
   13321   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
   13322     if (Method->isVirtual())
   13323       OdrUse = false;
   13324   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
   13325 }
   13326 
   13327 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
   13328 void Sema::MarkMemberReferenced(MemberExpr *E) {
   13329   // C++11 [basic.def.odr]p2:
   13330   //   A non-overloaded function whose name appears as a potentially-evaluated
   13331   //   expression or a member of a set of candidate functions, if selected by
   13332   //   overload resolution when referred to from a potentially-evaluated
   13333   //   expression, is odr-used, unless it is a pure virtual function and its
   13334   //   name is not explicitly qualified.
   13335   bool OdrUse = true;
   13336   if (!E->hasQualifier()) {
   13337     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
   13338       if (Method->isPure())
   13339         OdrUse = false;
   13340   }
   13341   SourceLocation Loc = E->getMemberLoc().isValid() ?
   13342                             E->getMemberLoc() : E->getLocStart();
   13343   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
   13344 }
   13345 
   13346 /// \brief Perform marking for a reference to an arbitrary declaration.  It
   13347 /// marks the declaration referenced, and performs odr-use checking for
   13348 /// functions and variables. This method should not be used when building a
   13349 /// normal expression which refers to a variable.
   13350 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
   13351   if (OdrUse) {
   13352     if (auto *VD = dyn_cast<VarDecl>(D)) {
   13353       MarkVariableReferenced(Loc, VD);
   13354       return;
   13355     }
   13356   }
   13357   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
   13358     MarkFunctionReferenced(Loc, FD, OdrUse);
   13359     return;
   13360   }
   13361   D->setReferenced();
   13362 }
   13363 
   13364 namespace {
   13365   // Mark all of the declarations referenced
   13366   // FIXME: Not fully implemented yet! We need to have a better understanding
   13367   // of when we're entering
   13368   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
   13369     Sema &S;
   13370     SourceLocation Loc;
   13371 
   13372   public:
   13373     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
   13374 
   13375     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
   13376 
   13377     bool TraverseTemplateArgument(const TemplateArgument &Arg);
   13378     bool TraverseRecordType(RecordType *T);
   13379   };
   13380 }
   13381 
   13382 bool MarkReferencedDecls::TraverseTemplateArgument(
   13383     const TemplateArgument &Arg) {
   13384   if (Arg.getKind() == TemplateArgument::Declaration) {
   13385     if (Decl *D = Arg.getAsDecl())
   13386       S.MarkAnyDeclReferenced(Loc, D, true);
   13387   }
   13388 
   13389   return Inherited::TraverseTemplateArgument(Arg);
   13390 }
   13391 
   13392 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
   13393   if (ClassTemplateSpecializationDecl *Spec
   13394                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
   13395     const TemplateArgumentList &Args = Spec->getTemplateArgs();
   13396     return TraverseTemplateArguments(Args.data(), Args.size());
   13397   }
   13398 
   13399   return true;
   13400 }
   13401 
   13402 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
   13403   MarkReferencedDecls Marker(*this, Loc);
   13404   Marker.TraverseType(Context.getCanonicalType(T));
   13405 }
   13406 
   13407 namespace {
   13408   /// \brief Helper class that marks all of the declarations referenced by
   13409   /// potentially-evaluated subexpressions as "referenced".
   13410   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
   13411     Sema &S;
   13412     bool SkipLocalVariables;
   13413 
   13414   public:
   13415     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
   13416 
   13417     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
   13418       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
   13419 
   13420     void VisitDeclRefExpr(DeclRefExpr *E) {
   13421       // If we were asked not to visit local variables, don't.
   13422       if (SkipLocalVariables) {
   13423         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   13424           if (VD->hasLocalStorage())
   13425             return;
   13426       }
   13427 
   13428       S.MarkDeclRefReferenced(E);
   13429     }
   13430 
   13431     void VisitMemberExpr(MemberExpr *E) {
   13432       S.MarkMemberReferenced(E);
   13433       Inherited::VisitMemberExpr(E);
   13434     }
   13435 
   13436     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
   13437       S.MarkFunctionReferenced(E->getLocStart(),
   13438             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
   13439       Visit(E->getSubExpr());
   13440     }
   13441 
   13442     void VisitCXXNewExpr(CXXNewExpr *E) {
   13443       if (E->getOperatorNew())
   13444         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
   13445       if (E->getOperatorDelete())
   13446         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   13447       Inherited::VisitCXXNewExpr(E);
   13448     }
   13449 
   13450     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
   13451       if (E->getOperatorDelete())
   13452         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   13453       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
   13454       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
   13455         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
   13456         S.MarkFunctionReferenced(E->getLocStart(),
   13457                                     S.LookupDestructor(Record));
   13458       }
   13459 
   13460       Inherited::VisitCXXDeleteExpr(E);
   13461     }
   13462 
   13463     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   13464       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
   13465       Inherited::VisitCXXConstructExpr(E);
   13466     }
   13467 
   13468     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
   13469       Visit(E->getExpr());
   13470     }
   13471 
   13472     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   13473       Inherited::VisitImplicitCastExpr(E);
   13474 
   13475       if (E->getCastKind() == CK_LValueToRValue)
   13476         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
   13477     }
   13478   };
   13479 }
   13480 
   13481 /// \brief Mark any declarations that appear within this expression or any
   13482 /// potentially-evaluated subexpressions as "referenced".
   13483 ///
   13484 /// \param SkipLocalVariables If true, don't mark local variables as
   13485 /// 'referenced'.
   13486 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
   13487                                             bool SkipLocalVariables) {
   13488   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
   13489 }
   13490 
   13491 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
   13492 /// of the program being compiled.
   13493 ///
   13494 /// This routine emits the given diagnostic when the code currently being
   13495 /// type-checked is "potentially evaluated", meaning that there is a
   13496 /// possibility that the code will actually be executable. Code in sizeof()
   13497 /// expressions, code used only during overload resolution, etc., are not
   13498 /// potentially evaluated. This routine will suppress such diagnostics or,
   13499 /// in the absolutely nutty case of potentially potentially evaluated
   13500 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
   13501 /// later.
   13502 ///
   13503 /// This routine should be used for all diagnostics that describe the run-time
   13504 /// behavior of a program, such as passing a non-POD value through an ellipsis.
   13505 /// Failure to do so will likely result in spurious diagnostics or failures
   13506 /// during overload resolution or within sizeof/alignof/typeof/typeid.
   13507 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
   13508                                const PartialDiagnostic &PD) {
   13509   switch (ExprEvalContexts.back().Context) {
   13510   case Unevaluated:
   13511   case UnevaluatedAbstract:
   13512     // The argument will never be evaluated, so don't complain.
   13513     break;
   13514 
   13515   case ConstantEvaluated:
   13516     // Relevant diagnostics should be produced by constant evaluation.
   13517     break;
   13518 
   13519   case PotentiallyEvaluated:
   13520   case PotentiallyEvaluatedIfUsed:
   13521     if (Statement && getCurFunctionOrMethodDecl()) {
   13522       FunctionScopes.back()->PossiblyUnreachableDiags.
   13523         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
   13524     }
   13525     else
   13526       Diag(Loc, PD);
   13527 
   13528     return true;
   13529   }
   13530 
   13531   return false;
   13532 }
   13533 
   13534 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
   13535                                CallExpr *CE, FunctionDecl *FD) {
   13536   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
   13537     return false;
   13538 
   13539   // If we're inside a decltype's expression, don't check for a valid return
   13540   // type or construct temporaries until we know whether this is the last call.
   13541   if (ExprEvalContexts.back().IsDecltype) {
   13542     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
   13543     return false;
   13544   }
   13545 
   13546   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
   13547     FunctionDecl *FD;
   13548     CallExpr *CE;
   13549 
   13550   public:
   13551     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
   13552       : FD(FD), CE(CE) { }
   13553 
   13554     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   13555       if (!FD) {
   13556         S.Diag(Loc, diag::err_call_incomplete_return)
   13557           << T << CE->getSourceRange();
   13558         return;
   13559       }
   13560 
   13561       S.Diag(Loc, diag::err_call_function_incomplete_return)
   13562         << CE->getSourceRange() << FD->getDeclName() << T;
   13563       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
   13564           << FD->getDeclName();
   13565     }
   13566   } Diagnoser(FD, CE);
   13567 
   13568   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
   13569     return true;
   13570 
   13571   return false;
   13572 }
   13573 
   13574 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
   13575 // will prevent this condition from triggering, which is what we want.
   13576 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
   13577   SourceLocation Loc;
   13578 
   13579   unsigned diagnostic = diag::warn_condition_is_assignment;
   13580   bool IsOrAssign = false;
   13581 
   13582   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
   13583     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
   13584       return;
   13585 
   13586     IsOrAssign = Op->getOpcode() == BO_OrAssign;
   13587 
   13588     // Greylist some idioms by putting them into a warning subcategory.
   13589     if (ObjCMessageExpr *ME
   13590           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
   13591       Selector Sel = ME->getSelector();
   13592 
   13593       // self = [<foo> init...]
   13594       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
   13595         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   13596 
   13597       // <foo> = [<bar> nextObject]
   13598       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
   13599         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   13600     }
   13601 
   13602     Loc = Op->getOperatorLoc();
   13603   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
   13604     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
   13605       return;
   13606 
   13607     IsOrAssign = Op->getOperator() == OO_PipeEqual;
   13608     Loc = Op->getOperatorLoc();
   13609   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
   13610     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
   13611   else {
   13612     // Not an assignment.
   13613     return;
   13614   }
   13615 
   13616   Diag(Loc, diagnostic) << E->getSourceRange();
   13617 
   13618   SourceLocation Open = E->getLocStart();
   13619   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
   13620   Diag(Loc, diag::note_condition_assign_silence)
   13621         << FixItHint::CreateInsertion(Open, "(")
   13622         << FixItHint::CreateInsertion(Close, ")");
   13623 
   13624   if (IsOrAssign)
   13625     Diag(Loc, diag::note_condition_or_assign_to_comparison)
   13626       << FixItHint::CreateReplacement(Loc, "!=");
   13627   else
   13628     Diag(Loc, diag::note_condition_assign_to_comparison)
   13629       << FixItHint::CreateReplacement(Loc, "==");
   13630 }
   13631 
   13632 /// \brief Redundant parentheses over an equality comparison can indicate
   13633 /// that the user intended an assignment used as condition.
   13634 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
   13635   // Don't warn if the parens came from a macro.
   13636   SourceLocation parenLoc = ParenE->getLocStart();
   13637   if (parenLoc.isInvalid() || parenLoc.isMacroID())
   13638     return;
   13639   // Don't warn for dependent expressions.
   13640   if (ParenE->isTypeDependent())
   13641     return;
   13642 
   13643   Expr *E = ParenE->IgnoreParens();
   13644 
   13645   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
   13646     if (opE->getOpcode() == BO_EQ &&
   13647         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
   13648                                                            == Expr::MLV_Valid) {
   13649       SourceLocation Loc = opE->getOperatorLoc();
   13650 
   13651       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
   13652       SourceRange ParenERange = ParenE->getSourceRange();
   13653       Diag(Loc, diag::note_equality_comparison_silence)
   13654         << FixItHint::CreateRemoval(ParenERange.getBegin())
   13655         << FixItHint::CreateRemoval(ParenERange.getEnd());
   13656       Diag(Loc, diag::note_equality_comparison_to_assign)
   13657         << FixItHint::CreateReplacement(Loc, "=");
   13658     }
   13659 }
   13660 
   13661 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
   13662   DiagnoseAssignmentAsCondition(E);
   13663   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
   13664     DiagnoseEqualityWithExtraParens(parenE);
   13665 
   13666   ExprResult result = CheckPlaceholderExpr(E);
   13667   if (result.isInvalid()) return ExprError();
   13668   E = result.get();
   13669 
   13670   if (!E->isTypeDependent()) {
   13671     if (getLangOpts().CPlusPlus)
   13672       return CheckCXXBooleanCondition(E); // C++ 6.4p4
   13673 
   13674     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
   13675     if (ERes.isInvalid())
   13676       return ExprError();
   13677     E = ERes.get();
   13678 
   13679     QualType T = E->getType();
   13680     if (!T->isScalarType()) { // C99 6.8.4.1p1
   13681       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
   13682         << T << E->getSourceRange();
   13683       return ExprError();
   13684     }
   13685     CheckBoolLikeConversion(E, Loc);
   13686   }
   13687 
   13688   return E;
   13689 }
   13690 
   13691 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
   13692                                        Expr *SubExpr) {
   13693   if (!SubExpr)
   13694     return ExprError();
   13695 
   13696   return CheckBooleanCondition(SubExpr, Loc);
   13697 }
   13698 
   13699 namespace {
   13700   /// A visitor for rebuilding a call to an __unknown_any expression
   13701   /// to have an appropriate type.
   13702   struct RebuildUnknownAnyFunction
   13703     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
   13704 
   13705     Sema &S;
   13706 
   13707     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
   13708 
   13709     ExprResult VisitStmt(Stmt *S) {
   13710       llvm_unreachable("unexpected statement!");
   13711     }
   13712 
   13713     ExprResult VisitExpr(Expr *E) {
   13714       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
   13715         << E->getSourceRange();
   13716       return ExprError();
   13717     }
   13718 
   13719     /// Rebuild an expression which simply semantically wraps another
   13720     /// expression which it shares the type and value kind of.
   13721     template <class T> ExprResult rebuildSugarExpr(T *E) {
   13722       ExprResult SubResult = Visit(E->getSubExpr());
   13723       if (SubResult.isInvalid()) return ExprError();
   13724 
   13725       Expr *SubExpr = SubResult.get();
   13726       E->setSubExpr(SubExpr);
   13727       E->setType(SubExpr->getType());
   13728       E->setValueKind(SubExpr->getValueKind());
   13729       assert(E->getObjectKind() == OK_Ordinary);
   13730       return E;
   13731     }
   13732 
   13733     ExprResult VisitParenExpr(ParenExpr *E) {
   13734       return rebuildSugarExpr(E);
   13735     }
   13736 
   13737     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   13738       return rebuildSugarExpr(E);
   13739     }
   13740 
   13741     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   13742       ExprResult SubResult = Visit(E->getSubExpr());
   13743       if (SubResult.isInvalid()) return ExprError();
   13744 
   13745       Expr *SubExpr = SubResult.get();
   13746       E->setSubExpr(SubExpr);
   13747       E->setType(S.Context.getPointerType(SubExpr->getType()));
   13748       assert(E->getValueKind() == VK_RValue);
   13749       assert(E->getObjectKind() == OK_Ordinary);
   13750       return E;
   13751     }
   13752 
   13753     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
   13754       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
   13755 
   13756       E->setType(VD->getType());
   13757 
   13758       assert(E->getValueKind() == VK_RValue);
   13759       if (S.getLangOpts().CPlusPlus &&
   13760           !(isa<CXXMethodDecl>(VD) &&
   13761             cast<CXXMethodDecl>(VD)->isInstance()))
   13762         E->setValueKind(VK_LValue);
   13763 
   13764       return E;
   13765     }
   13766 
   13767     ExprResult VisitMemberExpr(MemberExpr *E) {
   13768       return resolveDecl(E, E->getMemberDecl());
   13769     }
   13770 
   13771     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   13772       return resolveDecl(E, E->getDecl());
   13773     }
   13774   };
   13775 }
   13776 
   13777 /// Given a function expression of unknown-any type, try to rebuild it
   13778 /// to have a function type.
   13779 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
   13780   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
   13781   if (Result.isInvalid()) return ExprError();
   13782   return S.DefaultFunctionArrayConversion(Result.get());
   13783 }
   13784 
   13785 namespace {
   13786   /// A visitor for rebuilding an expression of type __unknown_anytype
   13787   /// into one which resolves the type directly on the referring
   13788   /// expression.  Strict preservation of the original source
   13789   /// structure is not a goal.
   13790   struct RebuildUnknownAnyExpr
   13791     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
   13792 
   13793     Sema &S;
   13794 
   13795     /// The current destination type.
   13796     QualType DestType;
   13797 
   13798     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
   13799       : S(S), DestType(CastType) {}
   13800 
   13801     ExprResult VisitStmt(Stmt *S) {
   13802       llvm_unreachable("unexpected statement!");
   13803     }
   13804 
   13805     ExprResult VisitExpr(Expr *E) {
   13806       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   13807         << E->getSourceRange();
   13808       return ExprError();
   13809     }
   13810 
   13811     ExprResult VisitCallExpr(CallExpr *E);
   13812     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
   13813 
   13814     /// Rebuild an expression which simply semantically wraps another
   13815     /// expression which it shares the type and value kind of.
   13816     template <class T> ExprResult rebuildSugarExpr(T *E) {
   13817       ExprResult SubResult = Visit(E->getSubExpr());
   13818       if (SubResult.isInvalid()) return ExprError();
   13819       Expr *SubExpr = SubResult.get();
   13820       E->setSubExpr(SubExpr);
   13821       E->setType(SubExpr->getType());
   13822       E->setValueKind(SubExpr->getValueKind());
   13823       assert(E->getObjectKind() == OK_Ordinary);
   13824       return E;
   13825     }
   13826 
   13827     ExprResult VisitParenExpr(ParenExpr *E) {
   13828       return rebuildSugarExpr(E);
   13829     }
   13830 
   13831     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   13832       return rebuildSugarExpr(E);
   13833     }
   13834 
   13835     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   13836       const PointerType *Ptr = DestType->getAs<PointerType>();
   13837       if (!Ptr) {
   13838         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
   13839           << E->getSourceRange();
   13840         return ExprError();
   13841       }
   13842       assert(E->getValueKind() == VK_RValue);
   13843       assert(E->getObjectKind() == OK_Ordinary);
   13844       E->setType(DestType);
   13845 
   13846       // Build the sub-expression as if it were an object of the pointee type.
   13847       DestType = Ptr->getPointeeType();
   13848       ExprResult SubResult = Visit(E->getSubExpr());
   13849       if (SubResult.isInvalid()) return ExprError();
   13850       E->setSubExpr(SubResult.get());
   13851       return E;
   13852     }
   13853 
   13854     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
   13855 
   13856     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
   13857 
   13858     ExprResult VisitMemberExpr(MemberExpr *E) {
   13859       return resolveDecl(E, E->getMemberDecl());
   13860     }
   13861 
   13862     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   13863       return resolveDecl(E, E->getDecl());
   13864     }
   13865   };
   13866 }
   13867 
   13868 /// Rebuilds a call expression which yielded __unknown_anytype.
   13869 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
   13870   Expr *CalleeExpr = E->getCallee();
   13871 
   13872   enum FnKind {
   13873     FK_MemberFunction,
   13874     FK_FunctionPointer,
   13875     FK_BlockPointer
   13876   };
   13877 
   13878   FnKind Kind;
   13879   QualType CalleeType = CalleeExpr->getType();
   13880   if (CalleeType == S.Context.BoundMemberTy) {
   13881     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
   13882     Kind = FK_MemberFunction;
   13883     CalleeType = Expr::findBoundMemberType(CalleeExpr);
   13884   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
   13885     CalleeType = Ptr->getPointeeType();
   13886     Kind = FK_FunctionPointer;
   13887   } else {
   13888     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
   13889     Kind = FK_BlockPointer;
   13890   }
   13891   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   13892 
   13893   // Verify that this is a legal result type of a function.
   13894   if (DestType->isArrayType() || DestType->isFunctionType()) {
   13895     unsigned diagID = diag::err_func_returning_array_function;
   13896     if (Kind == FK_BlockPointer)
   13897       diagID = diag::err_block_returning_array_function;
   13898 
   13899     S.Diag(E->getExprLoc(), diagID)
   13900       << DestType->isFunctionType() << DestType;
   13901     return ExprError();
   13902   }
   13903 
   13904   // Otherwise, go ahead and set DestType as the call's result.
   13905   E->setType(DestType.getNonLValueExprType(S.Context));
   13906   E->setValueKind(Expr::getValueKindForType(DestType));
   13907   assert(E->getObjectKind() == OK_Ordinary);
   13908 
   13909   // Rebuild the function type, replacing the result type with DestType.
   13910   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
   13911   if (Proto) {
   13912     // __unknown_anytype(...) is a special case used by the debugger when
   13913     // it has no idea what a function's signature is.
   13914     //
   13915     // We want to build this call essentially under the K&R
   13916     // unprototyped rules, but making a FunctionNoProtoType in C++
   13917     // would foul up all sorts of assumptions.  However, we cannot
   13918     // simply pass all arguments as variadic arguments, nor can we
   13919     // portably just call the function under a non-variadic type; see
   13920     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
   13921     // However, it turns out that in practice it is generally safe to
   13922     // call a function declared as "A foo(B,C,D);" under the prototype
   13923     // "A foo(B,C,D,...);".  The only known exception is with the
   13924     // Windows ABI, where any variadic function is implicitly cdecl
   13925     // regardless of its normal CC.  Therefore we change the parameter
   13926     // types to match the types of the arguments.
   13927     //
   13928     // This is a hack, but it is far superior to moving the
   13929     // corresponding target-specific code from IR-gen to Sema/AST.
   13930 
   13931     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
   13932     SmallVector<QualType, 8> ArgTypes;
   13933     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
   13934       ArgTypes.reserve(E->getNumArgs());
   13935       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
   13936         Expr *Arg = E->getArg(i);
   13937         QualType ArgType = Arg->getType();
   13938         if (E->isLValue()) {
   13939           ArgType = S.Context.getLValueReferenceType(ArgType);
   13940         } else if (E->isXValue()) {
   13941           ArgType = S.Context.getRValueReferenceType(ArgType);
   13942         }
   13943         ArgTypes.push_back(ArgType);
   13944       }
   13945       ParamTypes = ArgTypes;
   13946     }
   13947     DestType = S.Context.getFunctionType(DestType, ParamTypes,
   13948                                          Proto->getExtProtoInfo());
   13949   } else {
   13950     DestType = S.Context.getFunctionNoProtoType(DestType,
   13951                                                 FnType->getExtInfo());
   13952   }
   13953 
   13954   // Rebuild the appropriate pointer-to-function type.
   13955   switch (Kind) {
   13956   case FK_MemberFunction:
   13957     // Nothing to do.
   13958     break;
   13959 
   13960   case FK_FunctionPointer:
   13961     DestType = S.Context.getPointerType(DestType);
   13962     break;
   13963 
   13964   case FK_BlockPointer:
   13965     DestType = S.Context.getBlockPointerType(DestType);
   13966     break;
   13967   }
   13968 
   13969   // Finally, we can recurse.
   13970   ExprResult CalleeResult = Visit(CalleeExpr);
   13971   if (!CalleeResult.isUsable()) return ExprError();
   13972   E->setCallee(CalleeResult.get());
   13973 
   13974   // Bind a temporary if necessary.
   13975   return S.MaybeBindToTemporary(E);
   13976 }
   13977 
   13978 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
   13979   // Verify that this is a legal result type of a call.
   13980   if (DestType->isArrayType() || DestType->isFunctionType()) {
   13981     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
   13982       << DestType->isFunctionType() << DestType;
   13983     return ExprError();
   13984   }
   13985 
   13986   // Rewrite the method result type if available.
   13987   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
   13988     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
   13989     Method->setReturnType(DestType);
   13990   }
   13991 
   13992   // Change the type of the message.
   13993   E->setType(DestType.getNonReferenceType());
   13994   E->setValueKind(Expr::getValueKindForType(DestType));
   13995 
   13996   return S.MaybeBindToTemporary(E);
   13997 }
   13998 
   13999 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
   14000   // The only case we should ever see here is a function-to-pointer decay.
   14001   if (E->getCastKind() == CK_FunctionToPointerDecay) {
   14002     assert(E->getValueKind() == VK_RValue);
   14003     assert(E->getObjectKind() == OK_Ordinary);
   14004 
   14005     E->setType(DestType);
   14006 
   14007     // Rebuild the sub-expression as the pointee (function) type.
   14008     DestType = DestType->castAs<PointerType>()->getPointeeType();
   14009 
   14010     ExprResult Result = Visit(E->getSubExpr());
   14011     if (!Result.isUsable()) return ExprError();
   14012 
   14013     E->setSubExpr(Result.get());
   14014     return E;
   14015   } else if (E->getCastKind() == CK_LValueToRValue) {
   14016     assert(E->getValueKind() == VK_RValue);
   14017     assert(E->getObjectKind() == OK_Ordinary);
   14018 
   14019     assert(isa<BlockPointerType>(E->getType()));
   14020 
   14021     E->setType(DestType);
   14022 
   14023     // The sub-expression has to be a lvalue reference, so rebuild it as such.
   14024     DestType = S.Context.getLValueReferenceType(DestType);
   14025 
   14026     ExprResult Result = Visit(E->getSubExpr());
   14027     if (!Result.isUsable()) return ExprError();
   14028 
   14029     E->setSubExpr(Result.get());
   14030     return E;
   14031   } else {
   14032     llvm_unreachable("Unhandled cast type!");
   14033   }
   14034 }
   14035 
   14036 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
   14037   ExprValueKind ValueKind = VK_LValue;
   14038   QualType Type = DestType;
   14039 
   14040   // We know how to make this work for certain kinds of decls:
   14041 
   14042   //  - functions
   14043   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
   14044     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
   14045       DestType = Ptr->getPointeeType();
   14046       ExprResult Result = resolveDecl(E, VD);
   14047       if (Result.isInvalid()) return ExprError();
   14048       return S.ImpCastExprToType(Result.get(), Type,
   14049                                  CK_FunctionToPointerDecay, VK_RValue);
   14050     }
   14051 
   14052     if (!Type->isFunctionType()) {
   14053       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
   14054         << VD << E->getSourceRange();
   14055       return ExprError();
   14056     }
   14057     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
   14058       // We must match the FunctionDecl's type to the hack introduced in
   14059       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
   14060       // type. See the lengthy commentary in that routine.
   14061       QualType FDT = FD->getType();
   14062       const FunctionType *FnType = FDT->castAs<FunctionType>();
   14063       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
   14064       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   14065       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
   14066         SourceLocation Loc = FD->getLocation();
   14067         FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
   14068                                       FD->getDeclContext(),
   14069                                       Loc, Loc, FD->getNameInfo().getName(),
   14070                                       DestType, FD->getTypeSourceInfo(),
   14071                                       SC_None, false/*isInlineSpecified*/,
   14072                                       FD->hasPrototype(),
   14073                                       false/*isConstexprSpecified*/);
   14074 
   14075         if (FD->getQualifier())
   14076           NewFD->setQualifierInfo(FD->getQualifierLoc());
   14077 
   14078         SmallVector<ParmVarDecl*, 16> Params;
   14079         for (const auto &AI : FT->param_types()) {
   14080           ParmVarDecl *Param =
   14081             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
   14082           Param->setScopeInfo(0, Params.size());
   14083           Params.push_back(Param);
   14084         }
   14085         NewFD->setParams(Params);
   14086         DRE->setDecl(NewFD);
   14087         VD = DRE->getDecl();
   14088       }
   14089     }
   14090 
   14091     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   14092       if (MD->isInstance()) {
   14093         ValueKind = VK_RValue;
   14094         Type = S.Context.BoundMemberTy;
   14095       }
   14096 
   14097     // Function references aren't l-values in C.
   14098     if (!S.getLangOpts().CPlusPlus)
   14099       ValueKind = VK_RValue;
   14100 
   14101   //  - variables
   14102   } else if (isa<VarDecl>(VD)) {
   14103     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
   14104       Type = RefTy->getPointeeType();
   14105     } else if (Type->isFunctionType()) {
   14106       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
   14107         << VD << E->getSourceRange();
   14108       return ExprError();
   14109     }
   14110 
   14111   //  - nothing else
   14112   } else {
   14113     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
   14114       << VD << E->getSourceRange();
   14115     return ExprError();
   14116   }
   14117 
   14118   // Modifying the declaration like this is friendly to IR-gen but
   14119   // also really dangerous.
   14120   VD->setType(DestType);
   14121   E->setType(Type);
   14122   E->setValueKind(ValueKind);
   14123   return E;
   14124 }
   14125 
   14126 /// Check a cast of an unknown-any type.  We intentionally only
   14127 /// trigger this for C-style casts.
   14128 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
   14129                                      Expr *CastExpr, CastKind &CastKind,
   14130                                      ExprValueKind &VK, CXXCastPath &Path) {
   14131   // Rewrite the casted expression from scratch.
   14132   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
   14133   if (!result.isUsable()) return ExprError();
   14134 
   14135   CastExpr = result.get();
   14136   VK = CastExpr->getValueKind();
   14137   CastKind = CK_NoOp;
   14138 
   14139   return CastExpr;
   14140 }
   14141 
   14142 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
   14143   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
   14144 }
   14145 
   14146 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
   14147                                     Expr *arg, QualType &paramType) {
   14148   // If the syntactic form of the argument is not an explicit cast of
   14149   // any sort, just do default argument promotion.
   14150   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
   14151   if (!castArg) {
   14152     ExprResult result = DefaultArgumentPromotion(arg);
   14153     if (result.isInvalid()) return ExprError();
   14154     paramType = result.get()->getType();
   14155     return result;
   14156   }
   14157 
   14158   // Otherwise, use the type that was written in the explicit cast.
   14159   assert(!arg->hasPlaceholderType());
   14160   paramType = castArg->getTypeAsWritten();
   14161 
   14162   // Copy-initialize a parameter of that type.
   14163   InitializedEntity entity =
   14164     InitializedEntity::InitializeParameter(Context, paramType,
   14165                                            /*consumed*/ false);
   14166   return PerformCopyInitialization(entity, callLoc, arg);
   14167 }
   14168 
   14169 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
   14170   Expr *orig = E;
   14171   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
   14172   while (true) {
   14173     E = E->IgnoreParenImpCasts();
   14174     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
   14175       E = call->getCallee();
   14176       diagID = diag::err_uncasted_call_of_unknown_any;
   14177     } else {
   14178       break;
   14179     }
   14180   }
   14181 
   14182   SourceLocation loc;
   14183   NamedDecl *d;
   14184   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
   14185     loc = ref->getLocation();
   14186     d = ref->getDecl();
   14187   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
   14188     loc = mem->getMemberLoc();
   14189     d = mem->getMemberDecl();
   14190   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
   14191     diagID = diag::err_uncasted_call_of_unknown_any;
   14192     loc = msg->getSelectorStartLoc();
   14193     d = msg->getMethodDecl();
   14194     if (!d) {
   14195       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
   14196         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
   14197         << orig->getSourceRange();
   14198       return ExprError();
   14199     }
   14200   } else {
   14201     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   14202       << E->getSourceRange();
   14203     return ExprError();
   14204   }
   14205 
   14206   S.Diag(loc, diagID) << d << orig->getSourceRange();
   14207 
   14208   // Never recoverable.
   14209   return ExprError();
   14210 }
   14211 
   14212 /// Check for operands with placeholder types and complain if found.
   14213 /// Returns true if there was an error and no recovery was possible.
   14214 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
   14215   if (!getLangOpts().CPlusPlus) {
   14216     // C cannot handle TypoExpr nodes on either side of a binop because it
   14217     // doesn't handle dependent types properly, so make sure any TypoExprs have
   14218     // been dealt with before checking the operands.
   14219     ExprResult Result = CorrectDelayedTyposInExpr(E);
   14220     if (!Result.isUsable()) return ExprError();
   14221     E = Result.get();
   14222   }
   14223 
   14224   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
   14225   if (!placeholderType) return E;
   14226 
   14227   switch (placeholderType->getKind()) {
   14228 
   14229   // Overloaded expressions.
   14230   case BuiltinType::Overload: {
   14231     // Try to resolve a single function template specialization.
   14232     // This is obligatory.
   14233     ExprResult result = E;
   14234     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
   14235       return result;
   14236 
   14237     // If that failed, try to recover with a call.
   14238     } else {
   14239       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
   14240                            /*complain*/ true);
   14241       return result;
   14242     }
   14243   }
   14244 
   14245   // Bound member functions.
   14246   case BuiltinType::BoundMember: {
   14247     ExprResult result = E;
   14248     const Expr *BME = E->IgnoreParens();
   14249     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
   14250     // Try to give a nicer diagnostic if it is a bound member that we recognize.
   14251     if (isa<CXXPseudoDestructorExpr>(BME)) {
   14252       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
   14253     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
   14254       if (ME->getMemberNameInfo().getName().getNameKind() ==
   14255           DeclarationName::CXXDestructorName)
   14256         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
   14257     }
   14258     tryToRecoverWithCall(result, PD,
   14259                          /*complain*/ true);
   14260     return result;
   14261   }
   14262 
   14263   // ARC unbridged casts.
   14264   case BuiltinType::ARCUnbridgedCast: {
   14265     Expr *realCast = stripARCUnbridgedCast(E);
   14266     diagnoseARCUnbridgedCast(realCast);
   14267     return realCast;
   14268   }
   14269 
   14270   // Expressions of unknown type.
   14271   case BuiltinType::UnknownAny:
   14272     return diagnoseUnknownAnyExpr(*this, E);
   14273 
   14274   // Pseudo-objects.
   14275   case BuiltinType::PseudoObject:
   14276     return checkPseudoObjectRValue(E);
   14277 
   14278   case BuiltinType::BuiltinFn: {
   14279     // Accept __noop without parens by implicitly converting it to a call expr.
   14280     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
   14281     if (DRE) {
   14282       auto *FD = cast<FunctionDecl>(DRE->getDecl());
   14283       if (FD->getBuiltinID() == Builtin::BI__noop) {
   14284         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
   14285                               CK_BuiltinFnToFnPtr).get();
   14286         return new (Context) CallExpr(Context, E, None, Context.IntTy,
   14287                                       VK_RValue, SourceLocation());
   14288       }
   14289     }
   14290 
   14291     Diag(E->getLocStart(), diag::err_builtin_fn_use);
   14292     return ExprError();
   14293   }
   14294 
   14295   // Everything else should be impossible.
   14296 #define BUILTIN_TYPE(Id, SingletonId) \
   14297   case BuiltinType::Id:
   14298 #define PLACEHOLDER_TYPE(Id, SingletonId)
   14299 #include "clang/AST/BuiltinTypes.def"
   14300     break;
   14301   }
   14302 
   14303   llvm_unreachable("invalid placeholder type!");
   14304 }
   14305 
   14306 bool Sema::CheckCaseExpression(Expr *E) {
   14307   if (E->isTypeDependent())
   14308     return true;
   14309   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
   14310     return E->getType()->isIntegralOrEnumerationType();
   14311   return false;
   14312 }
   14313 
   14314 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
   14315 ExprResult
   14316 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
   14317   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
   14318          "Unknown Objective-C Boolean value!");
   14319   QualType BoolT = Context.ObjCBuiltinBoolTy;
   14320   if (!Context.getBOOLDecl()) {
   14321     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
   14322                         Sema::LookupOrdinaryName);
   14323     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
   14324       NamedDecl *ND = Result.getFoundDecl();
   14325       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
   14326         Context.setBOOLDecl(TD);
   14327     }
   14328   }
   14329   if (Context.getBOOLDecl())
   14330     BoolT = Context.getBOOLType();
   14331   return new (Context)
   14332       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
   14333 }
   14334