Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
     11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
     12 // is common code shared among the LegalizeTypes*.cpp files.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "LegalizeTypes.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/IR/CallingConv.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 #define DEBUG_TYPE "legalize-types"
     26 
     27 static cl::opt<bool>
     28 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
     29 
     30 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
     31 void DAGTypeLegalizer::PerformExpensiveChecks() {
     32   // If a node is not processed, then none of its values should be mapped by any
     33   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     34 
     35   // If a node is processed, then each value with an illegal type must be mapped
     36   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     37   // Values with a legal type may be mapped by ReplacedValues, but not by any of
     38   // the other maps.
     39 
     40   // Note that these invariants may not hold momentarily when processing a node:
     41   // the node being processed may be put in a map before being marked Processed.
     42 
     43   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
     44   // occur in two ways.  Firstly, a node may be created during legalization but
     45   // never passed to the legalization core.  This is usually due to the implicit
     46   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
     47   // node may be passed to the legalization core, but when analyzed may morph
     48   // into a different node, leaving the original node as a NewNode in the DAG.
     49   // A node may morph if one of its operands changes during analysis.  Whether
     50   // it actually morphs or not depends on whether, after updating its operands,
     51   // it is equivalent to an existing node: if so, it morphs into that existing
     52   // node (CSE).  An operand can change during analysis if the operand is a new
     53   // node that morphs, or it is a processed value that was mapped to some other
     54   // value (as recorded in ReplacedValues) in which case the operand is turned
     55   // into that other value.  If a node morphs then the node it morphed into will
     56   // be used instead of it for legalization, however the original node continues
     57   // to live on in the DAG.
     58   // The conclusion is that though there may be nodes marked NewNode in the DAG,
     59   // all uses of such nodes are also marked NewNode: the result is a fungus of
     60   // NewNodes growing on top of the useful nodes, and perhaps using them, but
     61   // not used by them.
     62 
     63   // If a value is mapped by ReplacedValues, then it must have no uses, except
     64   // by nodes marked NewNode (see above).
     65 
     66   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
     67   // Note that ReplacedValues should be applied iteratively.
     68 
     69   // Note that the ReplacedValues map may also map deleted nodes (by iterating
     70   // over the DAG we never dereference deleted nodes).  This means that it may
     71   // also map nodes marked NewNode if the deallocated memory was reallocated as
     72   // another node, and that new node was not seen by the LegalizeTypes machinery
     73   // (for example because it was created but not used).  In general, we cannot
     74   // distinguish between new nodes and deleted nodes.
     75   SmallVector<SDNode*, 16> NewNodes;
     76   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
     77        E = DAG.allnodes_end(); I != E; ++I) {
     78     // Remember nodes marked NewNode - they are subject to extra checking below.
     79     if (I->getNodeId() == NewNode)
     80       NewNodes.push_back(I);
     81 
     82     for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
     83       SDValue Res(I, i);
     84       bool Failed = false;
     85 
     86       unsigned Mapped = 0;
     87       if (ReplacedValues.find(Res) != ReplacedValues.end()) {
     88         Mapped |= 1;
     89         // Check that remapped values are only used by nodes marked NewNode.
     90         for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
     91              UI != UE; ++UI)
     92           if (UI.getUse().getResNo() == i)
     93             assert(UI->getNodeId() == NewNode &&
     94                    "Remapped value has non-trivial use!");
     95 
     96         // Check that the final result of applying ReplacedValues is not
     97         // marked NewNode.
     98         SDValue NewVal = ReplacedValues[Res];
     99         DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
    100         while (I != ReplacedValues.end()) {
    101           NewVal = I->second;
    102           I = ReplacedValues.find(NewVal);
    103         }
    104         assert(NewVal.getNode()->getNodeId() != NewNode &&
    105                "ReplacedValues maps to a new node!");
    106       }
    107       if (PromotedIntegers.find(Res) != PromotedIntegers.end())
    108         Mapped |= 2;
    109       if (SoftenedFloats.find(Res) != SoftenedFloats.end())
    110         Mapped |= 4;
    111       if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
    112         Mapped |= 8;
    113       if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
    114         Mapped |= 16;
    115       if (ExpandedFloats.find(Res) != ExpandedFloats.end())
    116         Mapped |= 32;
    117       if (SplitVectors.find(Res) != SplitVectors.end())
    118         Mapped |= 64;
    119       if (WidenedVectors.find(Res) != WidenedVectors.end())
    120         Mapped |= 128;
    121 
    122       if (I->getNodeId() != Processed) {
    123         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
    124         // marked NewNode too, since a deleted node may have been reallocated as
    125         // another node that has not been seen by the LegalizeTypes machinery.
    126         if ((I->getNodeId() == NewNode && Mapped > 1) ||
    127             (I->getNodeId() != NewNode && Mapped != 0)) {
    128           dbgs() << "Unprocessed value in a map!";
    129           Failed = true;
    130         }
    131       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
    132         if (Mapped > 1) {
    133           dbgs() << "Value with legal type was transformed!";
    134           Failed = true;
    135         }
    136       } else {
    137         if (Mapped == 0) {
    138           dbgs() << "Processed value not in any map!";
    139           Failed = true;
    140         } else if (Mapped & (Mapped - 1)) {
    141           dbgs() << "Value in multiple maps!";
    142           Failed = true;
    143         }
    144       }
    145 
    146       if (Failed) {
    147         if (Mapped & 1)
    148           dbgs() << " ReplacedValues";
    149         if (Mapped & 2)
    150           dbgs() << " PromotedIntegers";
    151         if (Mapped & 4)
    152           dbgs() << " SoftenedFloats";
    153         if (Mapped & 8)
    154           dbgs() << " ScalarizedVectors";
    155         if (Mapped & 16)
    156           dbgs() << " ExpandedIntegers";
    157         if (Mapped & 32)
    158           dbgs() << " ExpandedFloats";
    159         if (Mapped & 64)
    160           dbgs() << " SplitVectors";
    161         if (Mapped & 128)
    162           dbgs() << " WidenedVectors";
    163         dbgs() << "\n";
    164         llvm_unreachable(nullptr);
    165       }
    166     }
    167   }
    168 
    169   // Checked that NewNodes are only used by other NewNodes.
    170   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
    171     SDNode *N = NewNodes[i];
    172     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
    173          UI != UE; ++UI)
    174       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
    175   }
    176 }
    177 
    178 /// run - This is the main entry point for the type legalizer.  This does a
    179 /// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
    180 /// if it made any changes.
    181 bool DAGTypeLegalizer::run() {
    182   bool Changed = false;
    183 
    184   // Create a dummy node (which is not added to allnodes), that adds a reference
    185   // to the root node, preventing it from being deleted, and tracking any
    186   // changes of the root.
    187   HandleSDNode Dummy(DAG.getRoot());
    188   Dummy.setNodeId(Unanalyzed);
    189 
    190   // The root of the dag may dangle to deleted nodes until the type legalizer is
    191   // done.  Set it to null to avoid confusion.
    192   DAG.setRoot(SDValue());
    193 
    194   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
    195   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
    196   // non-leaves.
    197   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    198        E = DAG.allnodes_end(); I != E; ++I) {
    199     if (I->getNumOperands() == 0) {
    200       I->setNodeId(ReadyToProcess);
    201       Worklist.push_back(I);
    202     } else {
    203       I->setNodeId(Unanalyzed);
    204     }
    205   }
    206 
    207   // Now that we have a set of nodes to process, handle them all.
    208   while (!Worklist.empty()) {
    209 #ifndef XDEBUG
    210     if (EnableExpensiveChecks)
    211 #endif
    212       PerformExpensiveChecks();
    213 
    214     SDNode *N = Worklist.back();
    215     Worklist.pop_back();
    216     assert(N->getNodeId() == ReadyToProcess &&
    217            "Node should be ready if on worklist!");
    218 
    219     if (IgnoreNodeResults(N))
    220       goto ScanOperands;
    221 
    222     // Scan the values produced by the node, checking to see if any result
    223     // types are illegal.
    224     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
    225       EVT ResultVT = N->getValueType(i);
    226       switch (getTypeAction(ResultVT)) {
    227       case TargetLowering::TypeLegal:
    228         break;
    229       // The following calls must take care of *all* of the node's results,
    230       // not just the illegal result they were passed (this includes results
    231       // with a legal type).  Results can be remapped using ReplaceValueWith,
    232       // or their promoted/expanded/etc values registered in PromotedIntegers,
    233       // ExpandedIntegers etc.
    234       case TargetLowering::TypePromoteInteger:
    235         PromoteIntegerResult(N, i);
    236         Changed = true;
    237         goto NodeDone;
    238       case TargetLowering::TypeExpandInteger:
    239         ExpandIntegerResult(N, i);
    240         Changed = true;
    241         goto NodeDone;
    242       case TargetLowering::TypeSoftenFloat:
    243         SoftenFloatResult(N, i);
    244         Changed = true;
    245         goto NodeDone;
    246       case TargetLowering::TypeExpandFloat:
    247         ExpandFloatResult(N, i);
    248         Changed = true;
    249         goto NodeDone;
    250       case TargetLowering::TypeScalarizeVector:
    251         ScalarizeVectorResult(N, i);
    252         Changed = true;
    253         goto NodeDone;
    254       case TargetLowering::TypeSplitVector:
    255         SplitVectorResult(N, i);
    256         Changed = true;
    257         goto NodeDone;
    258       case TargetLowering::TypeWidenVector:
    259         WidenVectorResult(N, i);
    260         Changed = true;
    261         goto NodeDone;
    262       case TargetLowering::TypePromoteFloat:
    263         PromoteFloatResult(N, i);
    264         Changed = true;
    265         goto NodeDone;
    266       }
    267     }
    268 
    269 ScanOperands:
    270     // Scan the operand list for the node, handling any nodes with operands that
    271     // are illegal.
    272     {
    273     unsigned NumOperands = N->getNumOperands();
    274     bool NeedsReanalyzing = false;
    275     unsigned i;
    276     for (i = 0; i != NumOperands; ++i) {
    277       if (IgnoreNodeResults(N->getOperand(i).getNode()))
    278         continue;
    279 
    280       EVT OpVT = N->getOperand(i).getValueType();
    281       switch (getTypeAction(OpVT)) {
    282       case TargetLowering::TypeLegal:
    283         continue;
    284       // The following calls must either replace all of the node's results
    285       // using ReplaceValueWith, and return "false"; or update the node's
    286       // operands in place, and return "true".
    287       case TargetLowering::TypePromoteInteger:
    288         NeedsReanalyzing = PromoteIntegerOperand(N, i);
    289         Changed = true;
    290         break;
    291       case TargetLowering::TypeExpandInteger:
    292         NeedsReanalyzing = ExpandIntegerOperand(N, i);
    293         Changed = true;
    294         break;
    295       case TargetLowering::TypeSoftenFloat:
    296         NeedsReanalyzing = SoftenFloatOperand(N, i);
    297         Changed = true;
    298         break;
    299       case TargetLowering::TypeExpandFloat:
    300         NeedsReanalyzing = ExpandFloatOperand(N, i);
    301         Changed = true;
    302         break;
    303       case TargetLowering::TypeScalarizeVector:
    304         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
    305         Changed = true;
    306         break;
    307       case TargetLowering::TypeSplitVector:
    308         NeedsReanalyzing = SplitVectorOperand(N, i);
    309         Changed = true;
    310         break;
    311       case TargetLowering::TypeWidenVector:
    312         NeedsReanalyzing = WidenVectorOperand(N, i);
    313         Changed = true;
    314         break;
    315       case TargetLowering::TypePromoteFloat:
    316         NeedsReanalyzing = PromoteFloatOperand(N, i);
    317         Changed = true;
    318         break;
    319       }
    320       break;
    321     }
    322 
    323     // The sub-method updated N in place.  Check to see if any operands are new,
    324     // and if so, mark them.  If the node needs revisiting, don't add all users
    325     // to the worklist etc.
    326     if (NeedsReanalyzing) {
    327       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    328       N->setNodeId(NewNode);
    329       // Recompute the NodeId and correct processed operands, adding the node to
    330       // the worklist if ready.
    331       SDNode *M = AnalyzeNewNode(N);
    332       if (M == N)
    333         // The node didn't morph - nothing special to do, it will be revisited.
    334         continue;
    335 
    336       // The node morphed - this is equivalent to legalizing by replacing every
    337       // value of N with the corresponding value of M.  So do that now.
    338       assert(N->getNumValues() == M->getNumValues() &&
    339              "Node morphing changed the number of results!");
    340       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    341         // Replacing the value takes care of remapping the new value.
    342         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
    343       assert(N->getNodeId() == NewNode && "Unexpected node state!");
    344       // The node continues to live on as part of the NewNode fungus that
    345       // grows on top of the useful nodes.  Nothing more needs to be done
    346       // with it - move on to the next node.
    347       continue;
    348     }
    349 
    350     if (i == NumOperands) {
    351       DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
    352     }
    353     }
    354 NodeDone:
    355 
    356     // If we reach here, the node was processed, potentially creating new nodes.
    357     // Mark it as processed and add its users to the worklist as appropriate.
    358     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    359     N->setNodeId(Processed);
    360 
    361     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    362          UI != E; ++UI) {
    363       SDNode *User = *UI;
    364       int NodeId = User->getNodeId();
    365 
    366       // This node has two options: it can either be a new node or its Node ID
    367       // may be a count of the number of operands it has that are not ready.
    368       if (NodeId > 0) {
    369         User->setNodeId(NodeId-1);
    370 
    371         // If this was the last use it was waiting on, add it to the ready list.
    372         if (NodeId-1 == ReadyToProcess)
    373           Worklist.push_back(User);
    374         continue;
    375       }
    376 
    377       // If this is an unreachable new node, then ignore it.  If it ever becomes
    378       // reachable by being used by a newly created node then it will be handled
    379       // by AnalyzeNewNode.
    380       if (NodeId == NewNode)
    381         continue;
    382 
    383       // Otherwise, this node is new: this is the first operand of it that
    384       // became ready.  Its new NodeId is the number of operands it has minus 1
    385       // (as this node is now processed).
    386       assert(NodeId == Unanalyzed && "Unknown node ID!");
    387       User->setNodeId(User->getNumOperands() - 1);
    388 
    389       // If the node only has a single operand, it is now ready.
    390       if (User->getNumOperands() == 1)
    391         Worklist.push_back(User);
    392     }
    393   }
    394 
    395 #ifndef XDEBUG
    396   if (EnableExpensiveChecks)
    397 #endif
    398     PerformExpensiveChecks();
    399 
    400   // If the root changed (e.g. it was a dead load) update the root.
    401   DAG.setRoot(Dummy.getValue());
    402 
    403   // Remove dead nodes.  This is important to do for cleanliness but also before
    404   // the checking loop below.  Implicit folding by the DAG.getNode operators and
    405   // node morphing can cause unreachable nodes to be around with their flags set
    406   // to new.
    407   DAG.RemoveDeadNodes();
    408 
    409   // In a debug build, scan all the nodes to make sure we found them all.  This
    410   // ensures that there are no cycles and that everything got processed.
    411 #ifndef NDEBUG
    412   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    413        E = DAG.allnodes_end(); I != E; ++I) {
    414     bool Failed = false;
    415 
    416     // Check that all result types are legal.
    417     if (!IgnoreNodeResults(I))
    418       for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
    419         if (!isTypeLegal(I->getValueType(i))) {
    420           dbgs() << "Result type " << i << " illegal!\n";
    421           Failed = true;
    422         }
    423 
    424     // Check that all operand types are legal.
    425     for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
    426       if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
    427           !isTypeLegal(I->getOperand(i).getValueType())) {
    428         dbgs() << "Operand type " << i << " illegal!\n";
    429         Failed = true;
    430       }
    431 
    432     if (I->getNodeId() != Processed) {
    433        if (I->getNodeId() == NewNode)
    434          dbgs() << "New node not analyzed?\n";
    435        else if (I->getNodeId() == Unanalyzed)
    436          dbgs() << "Unanalyzed node not noticed?\n";
    437        else if (I->getNodeId() > 0)
    438          dbgs() << "Operand not processed?\n";
    439        else if (I->getNodeId() == ReadyToProcess)
    440          dbgs() << "Not added to worklist?\n";
    441        Failed = true;
    442     }
    443 
    444     if (Failed) {
    445       I->dump(&DAG); dbgs() << "\n";
    446       llvm_unreachable(nullptr);
    447     }
    448   }
    449 #endif
    450 
    451   return Changed;
    452 }
    453 
    454 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
    455 /// new nodes.  Correct any processed operands (this may change the node) and
    456 /// calculate the NodeId.  If the node itself changes to a processed node, it
    457 /// is not remapped - the caller needs to take care of this.
    458 /// Returns the potentially changed node.
    459 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
    460   // If this was an existing node that is already done, we're done.
    461   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
    462     return N;
    463 
    464   // Remove any stale map entries.
    465   ExpungeNode(N);
    466 
    467   // Okay, we know that this node is new.  Recursively walk all of its operands
    468   // to see if they are new also.  The depth of this walk is bounded by the size
    469   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
    470   // about revisiting of nodes.
    471   //
    472   // As we walk the operands, keep track of the number of nodes that are
    473   // processed.  If non-zero, this will become the new nodeid of this node.
    474   // Operands may morph when they are analyzed.  If so, the node will be
    475   // updated after all operands have been analyzed.  Since this is rare,
    476   // the code tries to minimize overhead in the non-morphing case.
    477 
    478   SmallVector<SDValue, 8> NewOps;
    479   unsigned NumProcessed = 0;
    480   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    481     SDValue OrigOp = N->getOperand(i);
    482     SDValue Op = OrigOp;
    483 
    484     AnalyzeNewValue(Op); // Op may morph.
    485 
    486     if (Op.getNode()->getNodeId() == Processed)
    487       ++NumProcessed;
    488 
    489     if (!NewOps.empty()) {
    490       // Some previous operand changed.  Add this one to the list.
    491       NewOps.push_back(Op);
    492     } else if (Op != OrigOp) {
    493       // This is the first operand to change - add all operands so far.
    494       NewOps.append(N->op_begin(), N->op_begin() + i);
    495       NewOps.push_back(Op);
    496     }
    497   }
    498 
    499   // Some operands changed - update the node.
    500   if (!NewOps.empty()) {
    501     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
    502     if (M != N) {
    503       // The node morphed into a different node.  Normally for this to happen
    504       // the original node would have to be marked NewNode.  However this can
    505       // in theory momentarily not be the case while ReplaceValueWith is doing
    506       // its stuff.  Mark the original node NewNode to help sanity checking.
    507       N->setNodeId(NewNode);
    508       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
    509         // It morphed into a previously analyzed node - nothing more to do.
    510         return M;
    511 
    512       // It morphed into a different new node.  Do the equivalent of passing
    513       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
    514       // to remap the operands, since they are the same as the operands we
    515       // remapped above.
    516       N = M;
    517       ExpungeNode(N);
    518     }
    519   }
    520 
    521   // Calculate the NodeId.
    522   N->setNodeId(N->getNumOperands() - NumProcessed);
    523   if (N->getNodeId() == ReadyToProcess)
    524     Worklist.push_back(N);
    525 
    526   return N;
    527 }
    528 
    529 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
    530 /// If the node changes to a processed node, then remap it.
    531 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
    532   Val.setNode(AnalyzeNewNode(Val.getNode()));
    533   if (Val.getNode()->getNodeId() == Processed)
    534     // We were passed a processed node, or it morphed into one - remap it.
    535     RemapValue(Val);
    536 }
    537 
    538 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
    539 /// This can occur when a node is deleted then reallocated as a new node -
    540 /// the mapping in ReplacedValues applies to the deleted node, not the new
    541 /// one.
    542 /// The only map that can have a deleted node as a source is ReplacedValues.
    543 /// Other maps can have deleted nodes as targets, but since their looked-up
    544 /// values are always immediately remapped using RemapValue, resulting in a
    545 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
    546 /// always performs correct mappings.  In order to keep the mapping correct,
    547 /// ExpungeNode should be called on any new nodes *before* adding them as
    548 /// either source or target to ReplacedValues (which typically means calling
    549 /// Expunge when a new node is first seen, since it may no longer be marked
    550 /// NewNode by the time it is added to ReplacedValues).
    551 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
    552   if (N->getNodeId() != NewNode)
    553     return;
    554 
    555   // If N is not remapped by ReplacedValues then there is nothing to do.
    556   unsigned i, e;
    557   for (i = 0, e = N->getNumValues(); i != e; ++i)
    558     if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
    559       break;
    560 
    561   if (i == e)
    562     return;
    563 
    564   // Remove N from all maps - this is expensive but rare.
    565 
    566   for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
    567        E = PromotedIntegers.end(); I != E; ++I) {
    568     assert(I->first.getNode() != N);
    569     RemapValue(I->second);
    570   }
    571 
    572   for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
    573        E = SoftenedFloats.end(); I != E; ++I) {
    574     assert(I->first.getNode() != N);
    575     RemapValue(I->second);
    576   }
    577 
    578   for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
    579        E = ScalarizedVectors.end(); I != E; ++I) {
    580     assert(I->first.getNode() != N);
    581     RemapValue(I->second);
    582   }
    583 
    584   for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
    585        E = WidenedVectors.end(); I != E; ++I) {
    586     assert(I->first.getNode() != N);
    587     RemapValue(I->second);
    588   }
    589 
    590   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    591        I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
    592     assert(I->first.getNode() != N);
    593     RemapValue(I->second.first);
    594     RemapValue(I->second.second);
    595   }
    596 
    597   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    598        I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
    599     assert(I->first.getNode() != N);
    600     RemapValue(I->second.first);
    601     RemapValue(I->second.second);
    602   }
    603 
    604   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    605        I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
    606     assert(I->first.getNode() != N);
    607     RemapValue(I->second.first);
    608     RemapValue(I->second.second);
    609   }
    610 
    611   for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
    612        E = ReplacedValues.end(); I != E; ++I)
    613     RemapValue(I->second);
    614 
    615   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    616     ReplacedValues.erase(SDValue(N, i));
    617 }
    618 
    619 /// RemapValue - If the specified value was already legalized to another value,
    620 /// replace it by that value.
    621 void DAGTypeLegalizer::RemapValue(SDValue &N) {
    622   DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
    623   if (I != ReplacedValues.end()) {
    624     // Use path compression to speed up future lookups if values get multiply
    625     // replaced with other values.
    626     RemapValue(I->second);
    627     N = I->second;
    628 
    629     // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
    630     // this point because it is possible for a node to be put in the map before
    631     // being processed.
    632   }
    633 }
    634 
    635 namespace {
    636   /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
    637   /// updates to nodes and recomputes their ready state.
    638   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
    639     DAGTypeLegalizer &DTL;
    640     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
    641   public:
    642     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
    643                                 SmallSetVector<SDNode*, 16> &nta)
    644       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
    645         DTL(dtl), NodesToAnalyze(nta) {}
    646 
    647     void NodeDeleted(SDNode *N, SDNode *E) override {
    648       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    649              N->getNodeId() != DAGTypeLegalizer::Processed &&
    650              "Invalid node ID for RAUW deletion!");
    651       // It is possible, though rare, for the deleted node N to occur as a
    652       // target in a map, so note the replacement N -> E in ReplacedValues.
    653       assert(E && "Node not replaced?");
    654       DTL.NoteDeletion(N, E);
    655 
    656       // In theory the deleted node could also have been scheduled for analysis.
    657       // So remove it from the set of nodes which will be analyzed.
    658       NodesToAnalyze.remove(N);
    659 
    660       // In general nothing needs to be done for E, since it didn't change but
    661       // only gained new uses.  However N -> E was just added to ReplacedValues,
    662       // and the result of a ReplacedValues mapping is not allowed to be marked
    663       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
    664       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
    665         NodesToAnalyze.insert(E);
    666     }
    667 
    668     void NodeUpdated(SDNode *N) override {
    669       // Node updates can mean pretty much anything.  It is possible that an
    670       // operand was set to something already processed (f.e.) in which case
    671       // this node could become ready.  Recompute its flags.
    672       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    673              N->getNodeId() != DAGTypeLegalizer::Processed &&
    674              "Invalid node ID for RAUW deletion!");
    675       N->setNodeId(DAGTypeLegalizer::NewNode);
    676       NodesToAnalyze.insert(N);
    677     }
    678   };
    679 }
    680 
    681 
    682 /// ReplaceValueWith - The specified value was legalized to the specified other
    683 /// value.  Update the DAG and NodeIds replacing any uses of From to use To
    684 /// instead.
    685 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
    686   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
    687 
    688   // If expansion produced new nodes, make sure they are properly marked.
    689   ExpungeNode(From.getNode());
    690   AnalyzeNewValue(To); // Expunges To.
    691 
    692   // Anything that used the old node should now use the new one.  Note that this
    693   // can potentially cause recursive merging.
    694   SmallSetVector<SDNode*, 16> NodesToAnalyze;
    695   NodeUpdateListener NUL(*this, NodesToAnalyze);
    696   do {
    697     DAG.ReplaceAllUsesOfValueWith(From, To);
    698 
    699     // The old node may still be present in a map like ExpandedIntegers or
    700     // PromotedIntegers.  Inform maps about the replacement.
    701     ReplacedValues[From] = To;
    702 
    703     // Process the list of nodes that need to be reanalyzed.
    704     while (!NodesToAnalyze.empty()) {
    705       SDNode *N = NodesToAnalyze.back();
    706       NodesToAnalyze.pop_back();
    707       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
    708         // The node was analyzed while reanalyzing an earlier node - it is safe
    709         // to skip.  Note that this is not a morphing node - otherwise it would
    710         // still be marked NewNode.
    711         continue;
    712 
    713       // Analyze the node's operands and recalculate the node ID.
    714       SDNode *M = AnalyzeNewNode(N);
    715       if (M != N) {
    716         // The node morphed into a different node.  Make everyone use the new
    717         // node instead.
    718         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
    719         assert(N->getNumValues() == M->getNumValues() &&
    720                "Node morphing changed the number of results!");
    721         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    722           SDValue OldVal(N, i);
    723           SDValue NewVal(M, i);
    724           if (M->getNodeId() == Processed)
    725             RemapValue(NewVal);
    726           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
    727           // OldVal may be a target of the ReplacedValues map which was marked
    728           // NewNode to force reanalysis because it was updated.  Ensure that
    729           // anything that ReplacedValues mapped to OldVal will now be mapped
    730           // all the way to NewVal.
    731           ReplacedValues[OldVal] = NewVal;
    732         }
    733         // The original node continues to exist in the DAG, marked NewNode.
    734       }
    735     }
    736     // When recursively update nodes with new nodes, it is possible to have
    737     // new uses of From due to CSE. If this happens, replace the new uses of
    738     // From with To.
    739   } while (!From.use_empty());
    740 }
    741 
    742 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
    743   assert(Result.getValueType() ==
    744          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    745          "Invalid type for promoted integer");
    746   AnalyzeNewValue(Result);
    747 
    748   SDValue &OpEntry = PromotedIntegers[Op];
    749   assert(!OpEntry.getNode() && "Node is already promoted!");
    750   OpEntry = Result;
    751 }
    752 
    753 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
    754   assert(Result.getValueType() ==
    755          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    756          "Invalid type for softened float");
    757   AnalyzeNewValue(Result);
    758 
    759   SDValue &OpEntry = SoftenedFloats[Op];
    760   assert(!OpEntry.getNode() && "Node is already converted to integer!");
    761   OpEntry = Result;
    762 }
    763 
    764 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
    765   assert(Result.getValueType() ==
    766          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    767          "Invalid type for promoted float");
    768   AnalyzeNewValue(Result);
    769 
    770   SDValue &OpEntry = PromotedFloats[Op];
    771   assert(!OpEntry.getNode() && "Node is already promoted!");
    772   OpEntry = Result;
    773 }
    774 
    775 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
    776   // Note that in some cases vector operation operands may be greater than
    777   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
    778   // a constant i8 operand.
    779   assert(Result.getValueType().getSizeInBits() >=
    780          Op.getValueType().getVectorElementType().getSizeInBits() &&
    781          "Invalid type for scalarized vector");
    782   AnalyzeNewValue(Result);
    783 
    784   SDValue &OpEntry = ScalarizedVectors[Op];
    785   assert(!OpEntry.getNode() && "Node is already scalarized!");
    786   OpEntry = Result;
    787 }
    788 
    789 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
    790                                           SDValue &Hi) {
    791   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    792   RemapValue(Entry.first);
    793   RemapValue(Entry.second);
    794   assert(Entry.first.getNode() && "Operand isn't expanded");
    795   Lo = Entry.first;
    796   Hi = Entry.second;
    797 }
    798 
    799 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
    800                                           SDValue Hi) {
    801   assert(Lo.getValueType() ==
    802          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    803          Hi.getValueType() == Lo.getValueType() &&
    804          "Invalid type for expanded integer");
    805   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    806   AnalyzeNewValue(Lo);
    807   AnalyzeNewValue(Hi);
    808 
    809   // Remember that this is the result of the node.
    810   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    811   assert(!Entry.first.getNode() && "Node already expanded");
    812   Entry.first = Lo;
    813   Entry.second = Hi;
    814 }
    815 
    816 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
    817                                         SDValue &Hi) {
    818   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    819   RemapValue(Entry.first);
    820   RemapValue(Entry.second);
    821   assert(Entry.first.getNode() && "Operand isn't expanded");
    822   Lo = Entry.first;
    823   Hi = Entry.second;
    824 }
    825 
    826 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
    827                                         SDValue Hi) {
    828   assert(Lo.getValueType() ==
    829          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    830          Hi.getValueType() == Lo.getValueType() &&
    831          "Invalid type for expanded float");
    832   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    833   AnalyzeNewValue(Lo);
    834   AnalyzeNewValue(Hi);
    835 
    836   // Remember that this is the result of the node.
    837   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    838   assert(!Entry.first.getNode() && "Node already expanded");
    839   Entry.first = Lo;
    840   Entry.second = Hi;
    841 }
    842 
    843 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
    844                                       SDValue &Hi) {
    845   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    846   RemapValue(Entry.first);
    847   RemapValue(Entry.second);
    848   assert(Entry.first.getNode() && "Operand isn't split");
    849   Lo = Entry.first;
    850   Hi = Entry.second;
    851 }
    852 
    853 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
    854                                       SDValue Hi) {
    855   assert(Lo.getValueType().getVectorElementType() ==
    856          Op.getValueType().getVectorElementType() &&
    857          2*Lo.getValueType().getVectorNumElements() ==
    858          Op.getValueType().getVectorNumElements() &&
    859          Hi.getValueType() == Lo.getValueType() &&
    860          "Invalid type for split vector");
    861   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    862   AnalyzeNewValue(Lo);
    863   AnalyzeNewValue(Hi);
    864 
    865   // Remember that this is the result of the node.
    866   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    867   assert(!Entry.first.getNode() && "Node already split");
    868   Entry.first = Lo;
    869   Entry.second = Hi;
    870 }
    871 
    872 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
    873   assert(Result.getValueType() ==
    874          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    875          "Invalid type for widened vector");
    876   AnalyzeNewValue(Result);
    877 
    878   SDValue &OpEntry = WidenedVectors[Op];
    879   assert(!OpEntry.getNode() && "Node already widened!");
    880   OpEntry = Result;
    881 }
    882 
    883 
    884 //===----------------------------------------------------------------------===//
    885 // Utilities.
    886 //===----------------------------------------------------------------------===//
    887 
    888 /// BitConvertToInteger - Convert to an integer of the same size.
    889 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
    890   unsigned BitWidth = Op.getValueType().getSizeInBits();
    891   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    892                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
    893 }
    894 
    895 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
    896 /// same size.
    897 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
    898   assert(Op.getValueType().isVector() && "Only applies to vectors!");
    899   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
    900   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
    901   unsigned NumElts = Op.getValueType().getVectorNumElements();
    902   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    903                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
    904 }
    905 
    906 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
    907                                                EVT DestVT) {
    908   SDLoc dl(Op);
    909   // Create the stack frame object.  Make sure it is aligned for both
    910   // the source and destination types.
    911   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
    912   // Emit a store to the stack slot.
    913   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
    914                                MachinePointerInfo(), false, false, 0);
    915   // Result is a load from the stack slot.
    916   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
    917                      false, false, false, 0);
    918 }
    919 
    920 /// CustomLowerNode - Replace the node's results with custom code provided
    921 /// by the target and return "true", or do nothing and return "false".
    922 /// The last parameter is FALSE if we are dealing with a node with legal
    923 /// result types and illegal operand. The second parameter denotes the type of
    924 /// illegal OperandNo in that case.
    925 /// The last parameter being TRUE means we are dealing with a
    926 /// node with illegal result types. The second parameter denotes the type of
    927 /// illegal ResNo in that case.
    928 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
    929   // See if the target wants to custom lower this node.
    930   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    931     return false;
    932 
    933   SmallVector<SDValue, 8> Results;
    934   if (LegalizeResult)
    935     TLI.ReplaceNodeResults(N, Results, DAG);
    936   else
    937     TLI.LowerOperationWrapper(N, Results, DAG);
    938 
    939   if (Results.empty())
    940     // The target didn't want to custom lower it after all.
    941     return false;
    942 
    943   // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
    944   // provide the same kind of custom splitting behavior.
    945   if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
    946     // We've legalized a return type by splitting it. If there is a chain,
    947     // replace that too.
    948     SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
    949     if (N->getNumValues() > 1)
    950       ReplaceValueWith(SDValue(N, 1), Results[2]);
    951     return true;
    952   }
    953 
    954   // Make everything that once used N's values now use those in Results instead.
    955   assert(Results.size() == N->getNumValues() &&
    956          "Custom lowering returned the wrong number of results!");
    957   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
    958     ReplaceValueWith(SDValue(N, i), Results[i]);
    959   }
    960   return true;
    961 }
    962 
    963 
    964 /// CustomWidenLowerNode - Widen the node's results with custom code provided
    965 /// by the target and return "true", or do nothing and return "false".
    966 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
    967   // See if the target wants to custom lower this node.
    968   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    969     return false;
    970 
    971   SmallVector<SDValue, 8> Results;
    972   TLI.ReplaceNodeResults(N, Results, DAG);
    973 
    974   if (Results.empty())
    975     // The target didn't want to custom widen lower its result  after all.
    976     return false;
    977 
    978   // Update the widening map.
    979   assert(Results.size() == N->getNumValues() &&
    980          "Custom lowering returned the wrong number of results!");
    981   for (unsigned i = 0, e = Results.size(); i != e; ++i)
    982     SetWidenedVector(SDValue(N, i), Results[i]);
    983   return true;
    984 }
    985 
    986 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
    987   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    988     if (i != ResNo)
    989       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
    990   return SDValue(N->getOperand(ResNo));
    991 }
    992 
    993 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
    994 /// high parts of the given value.
    995 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
    996                                        SDValue &Lo, SDValue &Hi) {
    997   SDLoc dl(Pair);
    998   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
    999   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
   1000                    DAG.getIntPtrConstant(0));
   1001   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
   1002                    DAG.getIntPtrConstant(1));
   1003 }
   1004 
   1005 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
   1006                                                   SDValue Index) {
   1007   SDLoc dl(Index);
   1008   // Make sure the index type is big enough to compute in.
   1009   Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy());
   1010 
   1011   // Calculate the element offset and add it to the pointer.
   1012   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
   1013 
   1014   Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
   1015                       DAG.getConstant(EltSize, Index.getValueType()));
   1016   return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
   1017 }
   1018 
   1019 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
   1020 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
   1021   // Arbitrarily use dlHi for result SDLoc
   1022   SDLoc dlHi(Hi);
   1023   SDLoc dlLo(Lo);
   1024   EVT LVT = Lo.getValueType();
   1025   EVT HVT = Hi.getValueType();
   1026   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
   1027                               LVT.getSizeInBits() + HVT.getSizeInBits());
   1028 
   1029   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
   1030   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
   1031   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
   1032                    DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
   1033   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
   1034 }
   1035 
   1036 /// LibCallify - Convert the node into a libcall with the same prototype.
   1037 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
   1038                                      bool isSigned) {
   1039   unsigned NumOps = N->getNumOperands();
   1040   SDLoc dl(N);
   1041   if (NumOps == 0) {
   1042     return TLI.makeLibCall(DAG, LC, N->getValueType(0), nullptr, 0, isSigned,
   1043                            dl).first;
   1044   } else if (NumOps == 1) {
   1045     SDValue Op = N->getOperand(0);
   1046     return TLI.makeLibCall(DAG, LC, N->getValueType(0), &Op, 1, isSigned,
   1047                            dl).first;
   1048   } else if (NumOps == 2) {
   1049     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
   1050     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, 2, isSigned,
   1051                            dl).first;
   1052   }
   1053   SmallVector<SDValue, 8> Ops(NumOps);
   1054   for (unsigned i = 0; i < NumOps; ++i)
   1055     Ops[i] = N->getOperand(i);
   1056 
   1057   return TLI.makeLibCall(DAG, LC, N->getValueType(0),
   1058                          &Ops[0], NumOps, isSigned, dl).first;
   1059 }
   1060 
   1061 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
   1062 // ExpandLibCall except that the first operand is the in-chain.
   1063 std::pair<SDValue, SDValue>
   1064 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
   1065                                          SDNode *Node,
   1066                                          bool isSigned) {
   1067   SDValue InChain = Node->getOperand(0);
   1068 
   1069   TargetLowering::ArgListTy Args;
   1070   TargetLowering::ArgListEntry Entry;
   1071   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1072     EVT ArgVT = Node->getOperand(i).getValueType();
   1073     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1074     Entry.Node = Node->getOperand(i);
   1075     Entry.Ty = ArgTy;
   1076     Entry.isSExt = isSigned;
   1077     Entry.isZExt = !isSigned;
   1078     Args.push_back(Entry);
   1079   }
   1080   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1081                                          TLI.getPointerTy());
   1082 
   1083   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1084 
   1085   TargetLowering::CallLoweringInfo CLI(DAG);
   1086   CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
   1087     .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
   1088     .setSExtResult(isSigned).setZExtResult(!isSigned);
   1089 
   1090   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1091 
   1092   return CallInfo;
   1093 }
   1094 
   1095 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
   1096 /// of the given type.  A target boolean is an integer value, not necessarily of
   1097 /// type i1, the bits of which conform to getBooleanContents.
   1098 ///
   1099 /// ValVT is the type of values that produced the boolean.
   1100 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
   1101   SDLoc dl(Bool);
   1102   EVT BoolVT = getSetCCResultType(ValVT);
   1103   ISD::NodeType ExtendCode =
   1104       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
   1105   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
   1106 }
   1107 
   1108 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
   1109 /// bits in Hi.
   1110 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1111                                     EVT LoVT, EVT HiVT,
   1112                                     SDValue &Lo, SDValue &Hi) {
   1113   SDLoc dl(Op);
   1114   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
   1115          Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
   1116   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
   1117   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
   1118                    DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
   1119   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
   1120 }
   1121 
   1122 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
   1123 /// type half the size of Op's.
   1124 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1125                                     SDValue &Lo, SDValue &Hi) {
   1126   EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
   1127                                  Op.getValueType().getSizeInBits()/2);
   1128   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
   1129 }
   1130 
   1131 
   1132 //===----------------------------------------------------------------------===//
   1133 //  Entry Point
   1134 //===----------------------------------------------------------------------===//
   1135 
   1136 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
   1137 /// only uses types natively supported by the target.  Returns "true" if it made
   1138 /// any changes.
   1139 ///
   1140 /// Note that this is an involved process that may invalidate pointers into
   1141 /// the graph.
   1142 bool SelectionDAG::LegalizeTypes() {
   1143   return DAGTypeLegalizer(*this).run();
   1144 }
   1145