Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DAGTypeLegalizer class.  This is a private interface
     11 // shared between the code that implements the SelectionDAG::LegalizeTypes
     12 // method.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
     17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
     18 
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/DenseSet.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Target/TargetLowering.h"
     25 
     26 namespace llvm {
     27 
     28 //===----------------------------------------------------------------------===//
     29 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
     30 /// on it until only value types the target machine can handle are left.  This
     31 /// involves promoting small sizes to large sizes or splitting up large values
     32 /// into small values.
     33 ///
     34 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
     35   const TargetLowering &TLI;
     36   SelectionDAG &DAG;
     37 public:
     38   // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
     39   // about the state of the node.  The enum has all the values.
     40   enum NodeIdFlags {
     41     /// ReadyToProcess - All operands have been processed, so this node is ready
     42     /// to be handled.
     43     ReadyToProcess = 0,
     44 
     45     /// NewNode - This is a new node, not before seen, that was created in the
     46     /// process of legalizing some other node.
     47     NewNode = -1,
     48 
     49     /// Unanalyzed - This node's ID needs to be set to the number of its
     50     /// unprocessed operands.
     51     Unanalyzed = -2,
     52 
     53     /// Processed - This is a node that has already been processed.
     54     Processed = -3
     55 
     56     // 1+ - This is a node which has this many unprocessed operands.
     57   };
     58 private:
     59 
     60   /// ValueTypeActions - This is a bitvector that contains two bits for each
     61   /// simple value type, where the two bits correspond to the LegalizeAction
     62   /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
     63   TargetLowering::ValueTypeActionImpl ValueTypeActions;
     64 
     65   /// getTypeAction - Return how we should legalize values of this type.
     66   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
     67     return TLI.getTypeAction(*DAG.getContext(), VT);
     68   }
     69 
     70   /// isTypeLegal - Return true if this type is legal on this target.
     71   bool isTypeLegal(EVT VT) const {
     72     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
     73   }
     74 
     75   EVT getSetCCResultType(EVT VT) const {
     76     return TLI.getSetCCResultType(*DAG.getContext(), VT);
     77   }
     78 
     79   /// IgnoreNodeResults - Pretend all of this node's results are legal.
     80   bool IgnoreNodeResults(SDNode *N) const {
     81     return N->getOpcode() == ISD::TargetConstant;
     82   }
     83 
     84   /// PromotedIntegers - For integer nodes that are below legal width, this map
     85   /// indicates what promoted value to use.
     86   SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
     87 
     88   /// ExpandedIntegers - For integer nodes that need to be expanded this map
     89   /// indicates which operands are the expanded version of the input.
     90   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
     91 
     92   /// SoftenedFloats - For floating point nodes converted to integers of
     93   /// the same size, this map indicates the converted value to use.
     94   SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
     95 
     96   /// PromotedFloats - For floating point nodes that have a smaller precision
     97   /// than the smallest supported precision, this map indicates what promoted
     98   /// value to use.
     99   SmallDenseMap<SDValue, SDValue, 8> PromotedFloats;
    100 
    101   /// ExpandedFloats - For float nodes that need to be expanded this map
    102   /// indicates which operands are the expanded version of the input.
    103   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
    104 
    105   /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
    106   /// scalar value of type 'ty' to use.
    107   SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
    108 
    109   /// SplitVectors - For nodes that need to be split this map indicates
    110   /// which operands are the expanded version of the input.
    111   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
    112 
    113   /// WidenedVectors - For vector nodes that need to be widened, indicates
    114   /// the widened value to use.
    115   SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
    116 
    117   /// ReplacedValues - For values that have been replaced with another,
    118   /// indicates the replacement value to use.
    119   SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
    120 
    121   /// Worklist - This defines a worklist of nodes to process.  In order to be
    122   /// pushed onto this worklist, all operands of a node must have already been
    123   /// processed.
    124   SmallVector<SDNode*, 128> Worklist;
    125 
    126 public:
    127   explicit DAGTypeLegalizer(SelectionDAG &dag)
    128     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
    129     ValueTypeActions(TLI.getValueTypeActions()) {
    130     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
    131                   "Too many value types for ValueTypeActions to hold!");
    132   }
    133 
    134   /// run - This is the main entry point for the type legalizer.  This does a
    135   /// top-down traversal of the dag, legalizing types as it goes.  Returns
    136   /// "true" if it made any changes.
    137   bool run();
    138 
    139   void NoteDeletion(SDNode *Old, SDNode *New) {
    140     ExpungeNode(Old);
    141     ExpungeNode(New);
    142     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
    143       ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
    144   }
    145 
    146   SelectionDAG &getDAG() const { return DAG; }
    147 
    148 private:
    149   SDNode *AnalyzeNewNode(SDNode *N);
    150   void AnalyzeNewValue(SDValue &Val);
    151   void ExpungeNode(SDNode *N);
    152   void PerformExpensiveChecks();
    153   void RemapValue(SDValue &N);
    154 
    155   // Common routines.
    156   SDValue BitConvertToInteger(SDValue Op);
    157   SDValue BitConvertVectorToIntegerVector(SDValue Op);
    158   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
    159   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
    160   bool CustomWidenLowerNode(SDNode *N, EVT VT);
    161 
    162   /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
    163   /// node with the corresponding input operand, except for the result 'ResNo',
    164   /// for which the corresponding input operand is returned.
    165   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
    166 
    167   SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
    168   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
    169   SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
    170 
    171   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
    172                                                  SDNode *Node, bool isSigned);
    173   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
    174 
    175   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
    176   void ReplaceValueWith(SDValue From, SDValue To);
    177   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    178   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
    179                     SDValue &Lo, SDValue &Hi);
    180 
    181   //===--------------------------------------------------------------------===//
    182   // Integer Promotion Support: LegalizeIntegerTypes.cpp
    183   //===--------------------------------------------------------------------===//
    184 
    185   /// GetPromotedInteger - Given a processed operand Op which was promoted to a
    186   /// larger integer type, this returns the promoted value.  The low bits of the
    187   /// promoted value corresponding to the original type are exactly equal to Op.
    188   /// The extra bits contain rubbish, so the promoted value may need to be zero-
    189   /// or sign-extended from the original type before it is usable (the helpers
    190   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
    191   /// For example, if Op is an i16 and was promoted to an i32, then this method
    192   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
    193   /// 16 bits of which contain rubbish.
    194   SDValue GetPromotedInteger(SDValue Op) {
    195     SDValue &PromotedOp = PromotedIntegers[Op];
    196     RemapValue(PromotedOp);
    197     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    198     return PromotedOp;
    199   }
    200   void SetPromotedInteger(SDValue Op, SDValue Result);
    201 
    202   /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
    203   /// final size.
    204   SDValue SExtPromotedInteger(SDValue Op) {
    205     EVT OldVT = Op.getValueType();
    206     SDLoc dl(Op);
    207     Op = GetPromotedInteger(Op);
    208     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
    209                        DAG.getValueType(OldVT));
    210   }
    211 
    212   /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
    213   /// final size.
    214   SDValue ZExtPromotedInteger(SDValue Op) {
    215     EVT OldVT = Op.getValueType();
    216     SDLoc dl(Op);
    217     Op = GetPromotedInteger(Op);
    218     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
    219   }
    220 
    221   // Integer Result Promotion.
    222   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
    223   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    224   SDValue PromoteIntRes_AssertSext(SDNode *N);
    225   SDValue PromoteIntRes_AssertZext(SDNode *N);
    226   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
    227   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
    228   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
    229   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
    230   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
    231   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
    232   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
    233   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
    234   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
    235   SDValue PromoteIntRes_BITCAST(SDNode *N);
    236   SDValue PromoteIntRes_BSWAP(SDNode *N);
    237   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
    238   SDValue PromoteIntRes_Constant(SDNode *N);
    239   SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
    240   SDValue PromoteIntRes_CTLZ(SDNode *N);
    241   SDValue PromoteIntRes_CTPOP(SDNode *N);
    242   SDValue PromoteIntRes_CTTZ(SDNode *N);
    243   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
    244   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
    245   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
    246   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
    247   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
    248   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
    249   SDValue PromoteIntRes_Overflow(SDNode *N);
    250   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
    251   SDValue PromoteIntRes_SDIV(SDNode *N);
    252   SDValue PromoteIntRes_SELECT(SDNode *N);
    253   SDValue PromoteIntRes_VSELECT(SDNode *N);
    254   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
    255   SDValue PromoteIntRes_SETCC(SDNode *N);
    256   SDValue PromoteIntRes_SHL(SDNode *N);
    257   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
    258   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
    259   SDValue PromoteIntRes_SRA(SDNode *N);
    260   SDValue PromoteIntRes_SRL(SDNode *N);
    261   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
    262   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
    263   SDValue PromoteIntRes_UDIV(SDNode *N);
    264   SDValue PromoteIntRes_UNDEF(SDNode *N);
    265   SDValue PromoteIntRes_VAARG(SDNode *N);
    266   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
    267 
    268   // Integer Operand Promotion.
    269   bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
    270   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
    271   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
    272   SDValue PromoteIntOp_BITCAST(SDNode *N);
    273   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
    274   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
    275   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
    276   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
    277   SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
    278   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
    279   SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
    280   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
    281   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
    282   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
    283   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
    284   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
    285   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
    286   SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
    287   SDValue PromoteIntOp_Shift(SDNode *N);
    288   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
    289   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
    290   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    291   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
    292   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
    293   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
    294   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
    295   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
    296 
    297   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
    298 
    299   //===--------------------------------------------------------------------===//
    300   // Integer Expansion Support: LegalizeIntegerTypes.cpp
    301   //===--------------------------------------------------------------------===//
    302 
    303   /// GetExpandedInteger - Given a processed operand Op which was expanded into
    304   /// two integers of half the size, this returns the two halves.  The low bits
    305   /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
    306   /// For example, if Op is an i64 which was expanded into two i32's, then this
    307   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
    308   /// Op, and Hi being equal to the upper 32 bits.
    309   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    310   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
    311 
    312   // Integer Result Expansion.
    313   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
    314   void ExpandIntRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
    315                                        SDValue &Lo, SDValue &Hi);
    316   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
    317   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    318   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    319   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
    320   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    321   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    322   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    323   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
    324   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    325   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
    326   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
    327   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    328   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    329   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    330 
    331   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
    332   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
    333   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
    334   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
    335   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    336   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
    337   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    338   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    339   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    340   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    341   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
    342 
    343   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    344   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    345   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
    346 
    347   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
    348 
    349   void ExpandShiftByConstant(SDNode *N, unsigned Amt,
    350                              SDValue &Lo, SDValue &Hi);
    351   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    352   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    353 
    354   // Integer Operand Expansion.
    355   bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
    356   SDValue ExpandIntOp_BITCAST(SDNode *N);
    357   SDValue ExpandIntOp_BR_CC(SDNode *N);
    358   SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
    359   SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
    360   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
    361   SDValue ExpandIntOp_SETCC(SDNode *N);
    362   SDValue ExpandIntOp_Shift(SDNode *N);
    363   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
    364   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    365   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
    366   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
    367   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
    368   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
    369 
    370   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    371                                   ISD::CondCode &CCCode, SDLoc dl);
    372 
    373   //===--------------------------------------------------------------------===//
    374   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
    375   //===--------------------------------------------------------------------===//
    376 
    377   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
    378   /// integer of the same size, this returns the integer.  The integer contains
    379   /// exactly the same bits as Op - only the type changed.  For example, if Op
    380   /// is an f32 which was softened to an i32, then this method returns an i32,
    381   /// the bits of which coincide with those of Op.
    382   SDValue GetSoftenedFloat(SDValue Op) {
    383     SDValue &SoftenedOp = SoftenedFloats[Op];
    384     RemapValue(SoftenedOp);
    385     assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
    386     return SoftenedOp;
    387   }
    388   void SetSoftenedFloat(SDValue Op, SDValue Result);
    389 
    390   // Result Float to Integer Conversion.
    391   void SoftenFloatResult(SDNode *N, unsigned OpNo);
    392   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    393   SDValue SoftenFloatRes_BITCAST(SDNode *N);
    394   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
    395   SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
    396   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
    397   SDValue SoftenFloatRes_FABS(SDNode *N);
    398   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
    399   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
    400   SDValue SoftenFloatRes_FADD(SDNode *N);
    401   SDValue SoftenFloatRes_FCEIL(SDNode *N);
    402   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
    403   SDValue SoftenFloatRes_FCOS(SDNode *N);
    404   SDValue SoftenFloatRes_FDIV(SDNode *N);
    405   SDValue SoftenFloatRes_FEXP(SDNode *N);
    406   SDValue SoftenFloatRes_FEXP2(SDNode *N);
    407   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
    408   SDValue SoftenFloatRes_FLOG(SDNode *N);
    409   SDValue SoftenFloatRes_FLOG2(SDNode *N);
    410   SDValue SoftenFloatRes_FLOG10(SDNode *N);
    411   SDValue SoftenFloatRes_FMA(SDNode *N);
    412   SDValue SoftenFloatRes_FMUL(SDNode *N);
    413   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
    414   SDValue SoftenFloatRes_FNEG(SDNode *N);
    415   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
    416   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
    417   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
    418   SDValue SoftenFloatRes_FPOW(SDNode *N);
    419   SDValue SoftenFloatRes_FPOWI(SDNode *N);
    420   SDValue SoftenFloatRes_FREM(SDNode *N);
    421   SDValue SoftenFloatRes_FRINT(SDNode *N);
    422   SDValue SoftenFloatRes_FROUND(SDNode *N);
    423   SDValue SoftenFloatRes_FSIN(SDNode *N);
    424   SDValue SoftenFloatRes_FSQRT(SDNode *N);
    425   SDValue SoftenFloatRes_FSUB(SDNode *N);
    426   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
    427   SDValue SoftenFloatRes_LOAD(SDNode *N);
    428   SDValue SoftenFloatRes_SELECT(SDNode *N);
    429   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
    430   SDValue SoftenFloatRes_UNDEF(SDNode *N);
    431   SDValue SoftenFloatRes_VAARG(SDNode *N);
    432   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
    433 
    434   // Operand Float to Integer Conversion.
    435   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
    436   SDValue SoftenFloatOp_BITCAST(SDNode *N);
    437   SDValue SoftenFloatOp_BR_CC(SDNode *N);
    438   SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
    439   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
    440   SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
    441   SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
    442   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
    443   SDValue SoftenFloatOp_SETCC(SDNode *N);
    444   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
    445 
    446   //===--------------------------------------------------------------------===//
    447   // Float Expansion Support: LegalizeFloatTypes.cpp
    448   //===--------------------------------------------------------------------===//
    449 
    450   /// GetExpandedFloat - Given a processed operand Op which was expanded into
    451   /// two floating point values of half the size, this returns the two halves.
    452   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
    453   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
    454   /// into two f64's, then this method returns the two f64's, with Lo being
    455   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
    456   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
    457   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
    458 
    459   // Float Result Expansion.
    460   void ExpandFloatResult(SDNode *N, unsigned ResNo);
    461   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
    462   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    463   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
    464   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
    465   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    466   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
    467   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
    468   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    469   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
    470   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
    471   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    472   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
    473   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    474   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    475   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
    476   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
    477   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
    478   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
    479   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    480   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
    481   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
    482   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
    483   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
    484   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    485   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
    486   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
    487   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    488   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
    489   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
    490   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    491   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
    492 
    493   // Float Operand Expansion.
    494   bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
    495   SDValue ExpandFloatOp_BR_CC(SDNode *N);
    496   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
    497   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
    498   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
    499   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
    500   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
    501   SDValue ExpandFloatOp_SETCC(SDNode *N);
    502   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
    503 
    504   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    505                                 ISD::CondCode &CCCode, SDLoc dl);
    506 
    507 
    508   //===--------------------------------------------------------------------===//
    509   // Float promotion support: LegalizeFloatTypes.cpp
    510   //===--------------------------------------------------------------------===//
    511 
    512   SDValue GetPromotedFloat(SDValue Op) {
    513     SDValue &PromotedOp = PromotedFloats[Op];
    514     RemapValue(PromotedOp);
    515     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    516     return PromotedOp;
    517   }
    518   void SetPromotedFloat(SDValue Op, SDValue Result);
    519 
    520   void PromoteFloatResult(SDNode *N, unsigned ResNo);
    521   SDValue PromoteFloatRes_BITCAST(SDNode *N);
    522   SDValue PromoteFloatRes_BinOp(SDNode *N);
    523   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
    524   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
    525   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
    526   SDValue PromoteFloatRes_FMAD(SDNode *N);
    527   SDValue PromoteFloatRes_FPOWI(SDNode *N);
    528   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
    529   SDValue PromoteFloatRes_LOAD(SDNode *N);
    530   SDValue PromoteFloatRes_SELECT(SDNode *N);
    531   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
    532   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
    533   SDValue PromoteFloatRes_UNDEF(SDNode *N);
    534   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
    535 
    536   bool PromoteFloatOperand(SDNode *N, unsigned ResNo);
    537   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
    538   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
    539   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
    540   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
    541   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
    542   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
    543   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
    544 
    545   //===--------------------------------------------------------------------===//
    546   // Scalarization Support: LegalizeVectorTypes.cpp
    547   //===--------------------------------------------------------------------===//
    548 
    549   /// GetScalarizedVector - Given a processed one-element vector Op which was
    550   /// scalarized to its element type, this returns the element.  For example,
    551   /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
    552   SDValue GetScalarizedVector(SDValue Op) {
    553     SDValue &ScalarizedOp = ScalarizedVectors[Op];
    554     RemapValue(ScalarizedOp);
    555     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
    556     return ScalarizedOp;
    557   }
    558   void SetScalarizedVector(SDValue Op, SDValue Result);
    559 
    560   // Vector Result Scalarization: <1 x ty> -> ty.
    561   void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
    562   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    563   SDValue ScalarizeVecRes_BinOp(SDNode *N);
    564   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
    565   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
    566   SDValue ScalarizeVecRes_InregOp(SDNode *N);
    567 
    568   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
    569   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
    570   SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
    571   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
    572   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
    573   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
    574   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
    575   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
    576   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
    577   SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
    578   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
    579   SDValue ScalarizeVecRes_SELECT(SDNode *N);
    580   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
    581   SDValue ScalarizeVecRes_SETCC(SDNode *N);
    582   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
    583   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
    584   SDValue ScalarizeVecRes_VSETCC(SDNode *N);
    585 
    586   // Vector Operand Scalarization: <1 x ty> -> ty.
    587   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
    588   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
    589   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
    590   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
    591   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    592   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
    593   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    594   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
    595 
    596   //===--------------------------------------------------------------------===//
    597   // Vector Splitting Support: LegalizeVectorTypes.cpp
    598   //===--------------------------------------------------------------------===//
    599 
    600   /// GetSplitVector - Given a processed vector Op which was split into vectors
    601   /// of half the size, this method returns the halves.  The first elements of
    602   /// Op coincide with the elements of Lo; the remaining elements of Op coincide
    603   /// with the elements of Hi: Op is what you would get by concatenating Lo and
    604   /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
    605   /// this method returns the two v4i32's, with Lo corresponding to the first 4
    606   /// elements of Op, and Hi to the last 4 elements.
    607   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
    608   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
    609 
    610   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
    611   void SplitVectorResult(SDNode *N, unsigned OpNo);
    612   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    613   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    614   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    615   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    616   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    617 
    618   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
    619   void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
    620   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    621   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
    622   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    623   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    624   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
    625   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    626   void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
    627   void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi);
    628   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    629   void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
    630   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
    631   void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
    632   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
    633                                   SDValue &Hi);
    634 
    635   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
    636   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
    637   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
    638   SDValue SplitVecOp_UnaryOp(SDNode *N);
    639   SDValue SplitVecOp_TruncateHelper(SDNode *N);
    640 
    641   SDValue SplitVecOp_BITCAST(SDNode *N);
    642   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    643   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    644   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    645   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
    646   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
    647   SDValue SplitVecOp_VSETCC(SDNode *N);
    648   SDValue SplitVecOp_FP_ROUND(SDNode *N);
    649 
    650   //===--------------------------------------------------------------------===//
    651   // Vector Widening Support: LegalizeVectorTypes.cpp
    652   //===--------------------------------------------------------------------===//
    653 
    654   /// GetWidenedVector - Given a processed vector Op which was widened into a
    655   /// larger vector, this method returns the larger vector.  The elements of
    656   /// the returned vector consist of the elements of Op followed by elements
    657   /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
    658   /// v4i32, then this method returns a v4i32 for which the first two elements
    659   /// are the same as those of Op, while the last two elements contain rubbish.
    660   SDValue GetWidenedVector(SDValue Op) {
    661     SDValue &WidenedOp = WidenedVectors[Op];
    662     RemapValue(WidenedOp);
    663     assert(WidenedOp.getNode() && "Operand wasn't widened?");
    664     return WidenedOp;
    665   }
    666   void SetWidenedVector(SDValue Op, SDValue Result);
    667 
    668   // Widen Vector Result Promotion.
    669   void WidenVectorResult(SDNode *N, unsigned ResNo);
    670   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
    671   SDValue WidenVecRes_BITCAST(SDNode* N);
    672   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
    673   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
    674   SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
    675   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
    676   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
    677   SDValue WidenVecRes_LOAD(SDNode* N);
    678   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
    679   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
    680   SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
    681   SDValue WidenVecRes_SELECT(SDNode* N);
    682   SDValue WidenVecRes_SELECT_CC(SDNode* N);
    683   SDValue WidenVecRes_SETCC(SDNode* N);
    684   SDValue WidenVecRes_UNDEF(SDNode *N);
    685   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
    686   SDValue WidenVecRes_VSETCC(SDNode* N);
    687 
    688   SDValue WidenVecRes_Ternary(SDNode *N);
    689   SDValue WidenVecRes_Binary(SDNode *N);
    690   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
    691   SDValue WidenVecRes_Convert(SDNode *N);
    692   SDValue WidenVecRes_POWI(SDNode *N);
    693   SDValue WidenVecRes_Shift(SDNode *N);
    694   SDValue WidenVecRes_Unary(SDNode *N);
    695   SDValue WidenVecRes_InregOp(SDNode *N);
    696 
    697   // Widen Vector Operand.
    698   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
    699   SDValue WidenVecOp_BITCAST(SDNode *N);
    700   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
    701   SDValue WidenVecOp_EXTEND(SDNode *N);
    702   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    703   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    704   SDValue WidenVecOp_STORE(SDNode* N);
    705   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
    706   SDValue WidenVecOp_SETCC(SDNode* N);
    707 
    708   SDValue WidenVecOp_Convert(SDNode *N);
    709 
    710   //===--------------------------------------------------------------------===//
    711   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
    712   //===--------------------------------------------------------------------===//
    713 
    714   /// Helper GenWidenVectorLoads - Helper function to generate a set of
    715   /// loads to load a vector with a resulting wider type. It takes
    716   ///   LdChain: list of chains for the load to be generated.
    717   ///   Ld:      load to widen
    718   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
    719                               LoadSDNode *LD);
    720 
    721   /// GenWidenVectorExtLoads - Helper function to generate a set of extension
    722   /// loads to load a ector with a resulting wider type.  It takes
    723   ///   LdChain: list of chains for the load to be generated.
    724   ///   Ld:      load to widen
    725   ///   ExtType: extension element type
    726   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
    727                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
    728 
    729   /// Helper genWidenVectorStores - Helper function to generate a set of
    730   /// stores to store a widen vector into non-widen memory
    731   ///   StChain: list of chains for the stores we have generated
    732   ///   ST:      store of a widen value
    733   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
    734 
    735   /// Helper genWidenVectorTruncStores - Helper function to generate a set of
    736   /// stores to store a truncate widen vector into non-widen memory
    737   ///   StChain: list of chains for the stores we have generated
    738   ///   ST:      store of a widen value
    739   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
    740                                  StoreSDNode *ST);
    741 
    742   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
    743   /// input vector must have the same element type as NVT.
    744   SDValue ModifyToType(SDValue InOp, EVT WidenVT);
    745 
    746 
    747   //===--------------------------------------------------------------------===//
    748   // Generic Splitting: LegalizeTypesGeneric.cpp
    749   //===--------------------------------------------------------------------===//
    750 
    751   // Legalization methods which only use that the illegal type is split into two
    752   // not necessarily identical types.  As such they can be used for splitting
    753   // vectors and expanding integers and floats.
    754 
    755   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    756     if (Op.getValueType().isVector())
    757       GetSplitVector(Op, Lo, Hi);
    758     else if (Op.getValueType().isInteger())
    759       GetExpandedInteger(Op, Lo, Hi);
    760     else
    761       GetExpandedFloat(Op, Lo, Hi);
    762   }
    763 
    764   /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
    765   /// high parts of the given value.
    766   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
    767 
    768   // Generic Result Splitting.
    769   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
    770                              SDValue &Lo, SDValue &Hi);
    771   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
    772   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
    773   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
    774 
    775   //===--------------------------------------------------------------------===//
    776   // Generic Expansion: LegalizeTypesGeneric.cpp
    777   //===--------------------------------------------------------------------===//
    778 
    779   // Legalization methods which only use that the illegal type is split into two
    780   // identical types of half the size, and that the Lo/Hi part is stored first
    781   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
    782   // such they can be used for expanding integers and floats.
    783 
    784   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    785     if (Op.getValueType().isInteger())
    786       GetExpandedInteger(Op, Lo, Hi);
    787     else
    788       GetExpandedFloat(Op, Lo, Hi);
    789   }
    790 
    791 
    792   /// This function will split the integer \p Op into \p NumElements
    793   /// operations of type \p EltVT and store them in \p Ops.
    794   void IntegerToVector(SDValue Op, unsigned NumElements,
    795                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
    796 
    797   // Generic Result Expansion.
    798   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
    799                                     SDValue &Lo, SDValue &Hi);
    800   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
    801   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
    802   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
    803   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    804   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
    805   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
    806 
    807   // Generic Operand Expansion.
    808   SDValue ExpandOp_BITCAST          (SDNode *N);
    809   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
    810   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
    811   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
    812   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
    813   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
    814 };
    815 
    816 } // end namespace llvm.
    817 
    818 #endif
    819