Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SDNode class and derived classes, which are used to
     11 // represent the nodes and operations present in a SelectionDAG.  These nodes
     12 // and operations are machine code level operations, with some similarities to
     13 // the GCC RTL representation.
     14 //
     15 // Clients should include the SelectionDAG.h file instead of this file directly.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
     20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
     21 
     22 #include "llvm/ADT/BitVector.h"
     23 #include "llvm/ADT/FoldingSet.h"
     24 #include "llvm/ADT/GraphTraits.h"
     25 #include "llvm/ADT/STLExtras.h"
     26 #include "llvm/ADT/SmallPtrSet.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/ADT/ilist_node.h"
     29 #include "llvm/ADT/iterator_range.h"
     30 #include "llvm/CodeGen/ISDOpcodes.h"
     31 #include "llvm/CodeGen/MachineMemOperand.h"
     32 #include "llvm/CodeGen/ValueTypes.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DebugLoc.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/Support/DataTypes.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include <cassert>
     39 
     40 namespace llvm {
     41 
     42 class SelectionDAG;
     43 class GlobalValue;
     44 class MachineBasicBlock;
     45 class MachineConstantPoolValue;
     46 class SDNode;
     47 class Value;
     48 class MCSymbol;
     49 template <typename T> struct DenseMapInfo;
     50 template <typename T> struct simplify_type;
     51 template <typename T> struct ilist_traits;
     52 
     53 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
     54                     bool force = false);
     55 
     56 /// This represents a list of ValueType's that has been intern'd by
     57 /// a SelectionDAG.  Instances of this simple value class are returned by
     58 /// SelectionDAG::getVTList(...).
     59 ///
     60 struct SDVTList {
     61   const EVT *VTs;
     62   unsigned int NumVTs;
     63 };
     64 
     65 namespace ISD {
     66   /// Node predicates
     67 
     68   /// Return true if the specified node is a
     69   /// BUILD_VECTOR where all of the elements are ~0 or undef.
     70   bool isBuildVectorAllOnes(const SDNode *N);
     71 
     72   /// Return true if the specified node is a
     73   /// BUILD_VECTOR where all of the elements are 0 or undef.
     74   bool isBuildVectorAllZeros(const SDNode *N);
     75 
     76   /// \brief Return true if the specified node is a BUILD_VECTOR node of
     77   /// all ConstantSDNode or undef.
     78   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
     79 
     80   /// \brief Return true if the specified node is a BUILD_VECTOR node of
     81   /// all ConstantFPSDNode or undef.
     82   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
     83 
     84   /// Return true if the specified node is a
     85   /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
     86   /// element is not an undef.
     87   bool isScalarToVector(const SDNode *N);
     88 
     89   /// Return true if the node has at least one operand
     90   /// and all operands of the specified node are ISD::UNDEF.
     91   bool allOperandsUndef(const SDNode *N);
     92 }  // end llvm:ISD namespace
     93 
     94 //===----------------------------------------------------------------------===//
     95 /// Unlike LLVM values, Selection DAG nodes may return multiple
     96 /// values as the result of a computation.  Many nodes return multiple values,
     97 /// from loads (which define a token and a return value) to ADDC (which returns
     98 /// a result and a carry value), to calls (which may return an arbitrary number
     99 /// of values).
    100 ///
    101 /// As such, each use of a SelectionDAG computation must indicate the node that
    102 /// computes it as well as which return value to use from that node.  This pair
    103 /// of information is represented with the SDValue value type.
    104 ///
    105 class SDValue {
    106   friend struct DenseMapInfo<SDValue>;
    107 
    108   SDNode *Node;       // The node defining the value we are using.
    109   unsigned ResNo;     // Which return value of the node we are using.
    110 public:
    111   SDValue() : Node(nullptr), ResNo(0) {}
    112   SDValue(SDNode *node, unsigned resno);
    113 
    114   /// get the index which selects a specific result in the SDNode
    115   unsigned getResNo() const { return ResNo; }
    116 
    117   /// get the SDNode which holds the desired result
    118   SDNode *getNode() const { return Node; }
    119 
    120   /// set the SDNode
    121   void setNode(SDNode *N) { Node = N; }
    122 
    123   inline SDNode *operator->() const { return Node; }
    124 
    125   bool operator==(const SDValue &O) const {
    126     return Node == O.Node && ResNo == O.ResNo;
    127   }
    128   bool operator!=(const SDValue &O) const {
    129     return !operator==(O);
    130   }
    131   bool operator<(const SDValue &O) const {
    132     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
    133   }
    134   explicit operator bool() const {
    135     return Node != nullptr;
    136   }
    137 
    138   SDValue getValue(unsigned R) const {
    139     return SDValue(Node, R);
    140   }
    141 
    142   // Return true if this node is an operand of N.
    143   bool isOperandOf(SDNode *N) const;
    144 
    145   /// Return the ValueType of the referenced return value.
    146   inline EVT getValueType() const;
    147 
    148   /// Return the simple ValueType of the referenced return value.
    149   MVT getSimpleValueType() const {
    150     return getValueType().getSimpleVT();
    151   }
    152 
    153   /// Returns the size of the value in bits.
    154   unsigned getValueSizeInBits() const {
    155     return getValueType().getSizeInBits();
    156   }
    157 
    158   unsigned getScalarValueSizeInBits() const {
    159     return getValueType().getScalarType().getSizeInBits();
    160   }
    161 
    162   // Forwarding methods - These forward to the corresponding methods in SDNode.
    163   inline unsigned getOpcode() const;
    164   inline unsigned getNumOperands() const;
    165   inline const SDValue &getOperand(unsigned i) const;
    166   inline uint64_t getConstantOperandVal(unsigned i) const;
    167   inline bool isTargetMemoryOpcode() const;
    168   inline bool isTargetOpcode() const;
    169   inline bool isMachineOpcode() const;
    170   inline unsigned getMachineOpcode() const;
    171   inline const DebugLoc &getDebugLoc() const;
    172   inline void dump() const;
    173   inline void dumpr() const;
    174 
    175   /// Return true if this operand (which must be a chain) reaches the
    176   /// specified operand without crossing any side-effecting instructions.
    177   /// In practice, this looks through token factors and non-volatile loads.
    178   /// In order to remain efficient, this only
    179   /// looks a couple of nodes in, it does not do an exhaustive search.
    180   bool reachesChainWithoutSideEffects(SDValue Dest,
    181                                       unsigned Depth = 2) const;
    182 
    183   /// Return true if there are no nodes using value ResNo of Node.
    184   inline bool use_empty() const;
    185 
    186   /// Return true if there is exactly one node using value ResNo of Node.
    187   inline bool hasOneUse() const;
    188 };
    189 
    190 
    191 template<> struct DenseMapInfo<SDValue> {
    192   static inline SDValue getEmptyKey() {
    193     SDValue V;
    194     V.ResNo = -1U;
    195     return V;
    196   }
    197   static inline SDValue getTombstoneKey() {
    198     SDValue V;
    199     V.ResNo = -2U;
    200     return V;
    201   }
    202   static unsigned getHashValue(const SDValue &Val) {
    203     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
    204             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
    205   }
    206   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
    207     return LHS == RHS;
    208   }
    209 };
    210 template <> struct isPodLike<SDValue> { static const bool value = true; };
    211 
    212 
    213 /// Allow casting operators to work directly on
    214 /// SDValues as if they were SDNode*'s.
    215 template<> struct simplify_type<SDValue> {
    216   typedef SDNode* SimpleType;
    217   static SimpleType getSimplifiedValue(SDValue &Val) {
    218     return Val.getNode();
    219   }
    220 };
    221 template<> struct simplify_type<const SDValue> {
    222   typedef /*const*/ SDNode* SimpleType;
    223   static SimpleType getSimplifiedValue(const SDValue &Val) {
    224     return Val.getNode();
    225   }
    226 };
    227 
    228 /// Represents a use of a SDNode. This class holds an SDValue,
    229 /// which records the SDNode being used and the result number, a
    230 /// pointer to the SDNode using the value, and Next and Prev pointers,
    231 /// which link together all the uses of an SDNode.
    232 ///
    233 class SDUse {
    234   /// Val - The value being used.
    235   SDValue Val;
    236   /// User - The user of this value.
    237   SDNode *User;
    238   /// Prev, Next - Pointers to the uses list of the SDNode referred by
    239   /// this operand.
    240   SDUse **Prev, *Next;
    241 
    242   SDUse(const SDUse &U) = delete;
    243   void operator=(const SDUse &U) = delete;
    244 
    245 public:
    246   SDUse() : Val(), User(nullptr), Prev(nullptr), Next(nullptr) {}
    247 
    248   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
    249   operator const SDValue&() const { return Val; }
    250 
    251   /// If implicit conversion to SDValue doesn't work, the get() method returns
    252   /// the SDValue.
    253   const SDValue &get() const { return Val; }
    254 
    255   /// This returns the SDNode that contains this Use.
    256   SDNode *getUser() { return User; }
    257 
    258   /// Get the next SDUse in the use list.
    259   SDUse *getNext() const { return Next; }
    260 
    261   /// Convenience function for get().getNode().
    262   SDNode *getNode() const { return Val.getNode(); }
    263   /// Convenience function for get().getResNo().
    264   unsigned getResNo() const { return Val.getResNo(); }
    265   /// Convenience function for get().getValueType().
    266   EVT getValueType() const { return Val.getValueType(); }
    267 
    268   /// Convenience function for get().operator==
    269   bool operator==(const SDValue &V) const {
    270     return Val == V;
    271   }
    272 
    273   /// Convenience function for get().operator!=
    274   bool operator!=(const SDValue &V) const {
    275     return Val != V;
    276   }
    277 
    278   /// Convenience function for get().operator<
    279   bool operator<(const SDValue &V) const {
    280     return Val < V;
    281   }
    282 
    283 private:
    284   friend class SelectionDAG;
    285   friend class SDNode;
    286 
    287   void setUser(SDNode *p) { User = p; }
    288 
    289   /// Remove this use from its existing use list, assign it the
    290   /// given value, and add it to the new value's node's use list.
    291   inline void set(const SDValue &V);
    292   /// Like set, but only supports initializing a newly-allocated
    293   /// SDUse with a non-null value.
    294   inline void setInitial(const SDValue &V);
    295   /// Like set, but only sets the Node portion of the value,
    296   /// leaving the ResNo portion unmodified.
    297   inline void setNode(SDNode *N);
    298 
    299   void addToList(SDUse **List) {
    300     Next = *List;
    301     if (Next) Next->Prev = &Next;
    302     Prev = List;
    303     *List = this;
    304   }
    305 
    306   void removeFromList() {
    307     *Prev = Next;
    308     if (Next) Next->Prev = Prev;
    309   }
    310 };
    311 
    312 /// simplify_type specializations - Allow casting operators to work directly on
    313 /// SDValues as if they were SDNode*'s.
    314 template<> struct simplify_type<SDUse> {
    315   typedef SDNode* SimpleType;
    316   static SimpleType getSimplifiedValue(SDUse &Val) {
    317     return Val.getNode();
    318   }
    319 };
    320 
    321 
    322 /// Represents one node in the SelectionDAG.
    323 ///
    324 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
    325 private:
    326   /// The operation that this node performs.
    327   int16_t NodeType;
    328 
    329   /// This is true if OperandList was new[]'d.  If true,
    330   /// then they will be delete[]'d when the node is destroyed.
    331   uint16_t OperandsNeedDelete : 1;
    332 
    333   /// This tracks whether this node has one or more dbg_value
    334   /// nodes corresponding to it.
    335   uint16_t HasDebugValue : 1;
    336 
    337 protected:
    338   /// This member is defined by this class, but is not used for
    339   /// anything.  Subclasses can use it to hold whatever state they find useful.
    340   /// This field is initialized to zero by the ctor.
    341   uint16_t SubclassData : 14;
    342 
    343 private:
    344   /// Unique id per SDNode in the DAG.
    345   int NodeId;
    346 
    347   /// The values that are used by this operation.
    348   SDUse *OperandList;
    349 
    350   /// The types of the values this node defines.  SDNode's may
    351   /// define multiple values simultaneously.
    352   const EVT *ValueList;
    353 
    354   /// List of uses for this SDNode.
    355   SDUse *UseList;
    356 
    357   /// The number of entries in the Operand/Value list.
    358   unsigned short NumOperands, NumValues;
    359 
    360   /// Source line information.
    361   DebugLoc debugLoc;
    362 
    363   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
    364   // original LLVM instructions.
    365   // This is used for turning off scheduling, because we'll forgo
    366   // the normal scheduling algorithms and output the instructions according to
    367   // this ordering.
    368   unsigned IROrder;
    369 
    370   /// Return a pointer to the specified value type.
    371   static const EVT *getValueTypeList(EVT VT);
    372 
    373   friend class SelectionDAG;
    374   friend struct ilist_traits<SDNode>;
    375 
    376 public:
    377   //===--------------------------------------------------------------------===//
    378   //  Accessors
    379   //
    380 
    381   /// Return the SelectionDAG opcode value for this node. For
    382   /// pre-isel nodes (those for which isMachineOpcode returns false), these
    383   /// are the opcode values in the ISD and <target>ISD namespaces. For
    384   /// post-isel opcodes, see getMachineOpcode.
    385   unsigned getOpcode()  const { return (unsigned short)NodeType; }
    386 
    387   /// Test if this node has a target-specific opcode (in the
    388   /// \<target\>ISD namespace).
    389   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
    390 
    391   /// Test if this node has a target-specific
    392   /// memory-referencing opcode (in the \<target\>ISD namespace and
    393   /// greater than FIRST_TARGET_MEMORY_OPCODE).
    394   bool isTargetMemoryOpcode() const {
    395     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
    396   }
    397 
    398   /// Test if this node is a memory intrinsic (with valid pointer information).
    399   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
    400   /// non-memory intrinsics (with chains) that are not really instances of
    401   /// MemSDNode. For such nodes, we need some extra state to determine the
    402   /// proper classof relationship.
    403   bool isMemIntrinsic() const {
    404     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
    405             NodeType == ISD::INTRINSIC_VOID) && ((SubclassData >> 13) & 1);
    406   }
    407 
    408   /// Test if this node has a post-isel opcode, directly
    409   /// corresponding to a MachineInstr opcode.
    410   bool isMachineOpcode() const { return NodeType < 0; }
    411 
    412   /// This may only be called if isMachineOpcode returns
    413   /// true. It returns the MachineInstr opcode value that the node's opcode
    414   /// corresponds to.
    415   unsigned getMachineOpcode() const {
    416     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
    417     return ~NodeType;
    418   }
    419 
    420   /// Get this bit.
    421   bool getHasDebugValue() const { return HasDebugValue; }
    422 
    423   /// Set this bit.
    424   void setHasDebugValue(bool b) { HasDebugValue = b; }
    425 
    426   /// Return true if there are no uses of this node.
    427   bool use_empty() const { return UseList == nullptr; }
    428 
    429   /// Return true if there is exactly one use of this node.
    430   bool hasOneUse() const {
    431     return !use_empty() && std::next(use_begin()) == use_end();
    432   }
    433 
    434   /// Return the number of uses of this node. This method takes
    435   /// time proportional to the number of uses.
    436   size_t use_size() const { return std::distance(use_begin(), use_end()); }
    437 
    438   /// Return the unique node id.
    439   int getNodeId() const { return NodeId; }
    440 
    441   /// Set unique node id.
    442   void setNodeId(int Id) { NodeId = Id; }
    443 
    444   /// Return the node ordering.
    445   unsigned getIROrder() const { return IROrder; }
    446 
    447   /// Set the node ordering.
    448   void setIROrder(unsigned Order) { IROrder = Order; }
    449 
    450   /// Return the source location info.
    451   const DebugLoc &getDebugLoc() const { return debugLoc; }
    452 
    453   /// Set source location info.  Try to avoid this, putting
    454   /// it in the constructor is preferable.
    455   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
    456 
    457   /// This class provides iterator support for SDUse
    458   /// operands that use a specific SDNode.
    459   class use_iterator
    460     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
    461     SDUse *Op;
    462     explicit use_iterator(SDUse *op) : Op(op) {
    463     }
    464     friend class SDNode;
    465   public:
    466     typedef std::iterator<std::forward_iterator_tag,
    467                           SDUse, ptrdiff_t>::reference reference;
    468     typedef std::iterator<std::forward_iterator_tag,
    469                           SDUse, ptrdiff_t>::pointer pointer;
    470 
    471     use_iterator(const use_iterator &I) : Op(I.Op) {}
    472     use_iterator() : Op(nullptr) {}
    473 
    474     bool operator==(const use_iterator &x) const {
    475       return Op == x.Op;
    476     }
    477     bool operator!=(const use_iterator &x) const {
    478       return !operator==(x);
    479     }
    480 
    481     /// Return true if this iterator is at the end of uses list.
    482     bool atEnd() const { return Op == nullptr; }
    483 
    484     // Iterator traversal: forward iteration only.
    485     use_iterator &operator++() {          // Preincrement
    486       assert(Op && "Cannot increment end iterator!");
    487       Op = Op->getNext();
    488       return *this;
    489     }
    490 
    491     use_iterator operator++(int) {        // Postincrement
    492       use_iterator tmp = *this; ++*this; return tmp;
    493     }
    494 
    495     /// Retrieve a pointer to the current user node.
    496     SDNode *operator*() const {
    497       assert(Op && "Cannot dereference end iterator!");
    498       return Op->getUser();
    499     }
    500 
    501     SDNode *operator->() const { return operator*(); }
    502 
    503     SDUse &getUse() const { return *Op; }
    504 
    505     /// Retrieve the operand # of this use in its user.
    506     unsigned getOperandNo() const {
    507       assert(Op && "Cannot dereference end iterator!");
    508       return (unsigned)(Op - Op->getUser()->OperandList);
    509     }
    510   };
    511 
    512   /// Provide iteration support to walk over all uses of an SDNode.
    513   use_iterator use_begin() const {
    514     return use_iterator(UseList);
    515   }
    516 
    517   static use_iterator use_end() { return use_iterator(nullptr); }
    518 
    519   inline iterator_range<use_iterator> uses() {
    520     return iterator_range<use_iterator>(use_begin(), use_end());
    521   }
    522   inline iterator_range<use_iterator> uses() const {
    523     return iterator_range<use_iterator>(use_begin(), use_end());
    524   }
    525 
    526   /// Return true if there are exactly NUSES uses of the indicated value.
    527   /// This method ignores uses of other values defined by this operation.
    528   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
    529 
    530   /// Return true if there are any use of the indicated value.
    531   /// This method ignores uses of other values defined by this operation.
    532   bool hasAnyUseOfValue(unsigned Value) const;
    533 
    534   /// Return true if this node is the only use of N.
    535   bool isOnlyUserOf(SDNode *N) const;
    536 
    537   /// Return true if this node is an operand of N.
    538   bool isOperandOf(SDNode *N) const;
    539 
    540   /// Return true if this node is a predecessor of N.
    541   /// NOTE: Implemented on top of hasPredecessor and every bit as
    542   /// expensive. Use carefully.
    543   bool isPredecessorOf(const SDNode *N) const {
    544     return N->hasPredecessor(this);
    545   }
    546 
    547   /// Return true if N is a predecessor of this node.
    548   /// N is either an operand of this node, or can be reached by recursively
    549   /// traversing up the operands.
    550   /// NOTE: This is an expensive method. Use it carefully.
    551   bool hasPredecessor(const SDNode *N) const;
    552 
    553   /// Return true if N is a predecessor of this node.
    554   /// N is either an operand of this node, or can be reached by recursively
    555   /// traversing up the operands.
    556   /// In this helper the Visited and worklist sets are held externally to
    557   /// cache predecessors over multiple invocations. If you want to test for
    558   /// multiple predecessors this method is preferable to multiple calls to
    559   /// hasPredecessor. Be sure to clear Visited and Worklist if the DAG
    560   /// changes.
    561   /// NOTE: This is still very expensive. Use carefully.
    562   bool hasPredecessorHelper(const SDNode *N,
    563                             SmallPtrSetImpl<const SDNode *> &Visited,
    564                             SmallVectorImpl<const SDNode *> &Worklist) const;
    565 
    566   /// Return the number of values used by this operation.
    567   unsigned getNumOperands() const { return NumOperands; }
    568 
    569   /// Helper method returns the integer value of a ConstantSDNode operand.
    570   uint64_t getConstantOperandVal(unsigned Num) const;
    571 
    572   const SDValue &getOperand(unsigned Num) const {
    573     assert(Num < NumOperands && "Invalid child # of SDNode!");
    574     return OperandList[Num];
    575   }
    576 
    577   typedef SDUse* op_iterator;
    578   op_iterator op_begin() const { return OperandList; }
    579   op_iterator op_end() const { return OperandList+NumOperands; }
    580   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
    581 
    582   SDVTList getVTList() const {
    583     SDVTList X = { ValueList, NumValues };
    584     return X;
    585   }
    586 
    587   /// If this node has a glue operand, return the node
    588   /// to which the glue operand points. Otherwise return NULL.
    589   SDNode *getGluedNode() const {
    590     if (getNumOperands() != 0 &&
    591       getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
    592       return getOperand(getNumOperands()-1).getNode();
    593     return nullptr;
    594   }
    595 
    596   // If this is a pseudo op, like copyfromreg, look to see if there is a
    597   // real target node glued to it.  If so, return the target node.
    598   const SDNode *getGluedMachineNode() const {
    599     const SDNode *FoundNode = this;
    600 
    601     // Climb up glue edges until a machine-opcode node is found, or the
    602     // end of the chain is reached.
    603     while (!FoundNode->isMachineOpcode()) {
    604       const SDNode *N = FoundNode->getGluedNode();
    605       if (!N) break;
    606       FoundNode = N;
    607     }
    608 
    609     return FoundNode;
    610   }
    611 
    612   /// If this node has a glue value with a user, return
    613   /// the user (there is at most one). Otherwise return NULL.
    614   SDNode *getGluedUser() const {
    615     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
    616       if (UI.getUse().get().getValueType() == MVT::Glue)
    617         return *UI;
    618     return nullptr;
    619   }
    620 
    621   /// Return the number of values defined/returned by this operator.
    622   unsigned getNumValues() const { return NumValues; }
    623 
    624   /// Return the type of a specified result.
    625   EVT getValueType(unsigned ResNo) const {
    626     assert(ResNo < NumValues && "Illegal result number!");
    627     return ValueList[ResNo];
    628   }
    629 
    630   /// Return the type of a specified result as a simple type.
    631   MVT getSimpleValueType(unsigned ResNo) const {
    632     return getValueType(ResNo).getSimpleVT();
    633   }
    634 
    635   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
    636   unsigned getValueSizeInBits(unsigned ResNo) const {
    637     return getValueType(ResNo).getSizeInBits();
    638   }
    639 
    640   typedef const EVT* value_iterator;
    641   value_iterator value_begin() const { return ValueList; }
    642   value_iterator value_end() const { return ValueList+NumValues; }
    643 
    644   /// Return the opcode of this operation for printing.
    645   std::string getOperationName(const SelectionDAG *G = nullptr) const;
    646   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
    647   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
    648   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
    649   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    650   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    651 
    652   /// Print a SelectionDAG node and all children down to
    653   /// the leaves.  The given SelectionDAG allows target-specific nodes
    654   /// to be printed in human-readable form.  Unlike printr, this will
    655   /// print the whole DAG, including children that appear multiple
    656   /// times.
    657   ///
    658   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
    659 
    660   /// Print a SelectionDAG node and children up to
    661   /// depth "depth."  The given SelectionDAG allows target-specific
    662   /// nodes to be printed in human-readable form.  Unlike printr, this
    663   /// will print children that appear multiple times wherever they are
    664   /// used.
    665   ///
    666   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
    667                        unsigned depth = 100) const;
    668 
    669 
    670   /// Dump this node, for debugging.
    671   void dump() const;
    672 
    673   /// Dump (recursively) this node and its use-def subgraph.
    674   void dumpr() const;
    675 
    676   /// Dump this node, for debugging.
    677   /// The given SelectionDAG allows target-specific nodes to be printed
    678   /// in human-readable form.
    679   void dump(const SelectionDAG *G) const;
    680 
    681   /// Dump (recursively) this node and its use-def subgraph.
    682   /// The given SelectionDAG allows target-specific nodes to be printed
    683   /// in human-readable form.
    684   void dumpr(const SelectionDAG *G) const;
    685 
    686   /// printrFull to dbgs().  The given SelectionDAG allows
    687   /// target-specific nodes to be printed in human-readable form.
    688   /// Unlike dumpr, this will print the whole DAG, including children
    689   /// that appear multiple times.
    690   void dumprFull(const SelectionDAG *G = nullptr) const;
    691 
    692   /// printrWithDepth to dbgs().  The given
    693   /// SelectionDAG allows target-specific nodes to be printed in
    694   /// human-readable form.  Unlike dumpr, this will print children
    695   /// that appear multiple times wherever they are used.
    696   ///
    697   void dumprWithDepth(const SelectionDAG *G = nullptr,
    698                       unsigned depth = 100) const;
    699 
    700   /// Gather unique data for the node.
    701   void Profile(FoldingSetNodeID &ID) const;
    702 
    703   /// This method should only be used by the SDUse class.
    704   void addUse(SDUse &U) { U.addToList(&UseList); }
    705 
    706 protected:
    707   static SDVTList getSDVTList(EVT VT) {
    708     SDVTList Ret = { getValueTypeList(VT), 1 };
    709     return Ret;
    710   }
    711 
    712   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
    713          ArrayRef<SDValue> Ops)
    714       : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
    715         SubclassData(0), NodeId(-1),
    716         OperandList(Ops.size() ? new SDUse[Ops.size()] : nullptr),
    717         ValueList(VTs.VTs), UseList(nullptr), NumOperands(Ops.size()),
    718         NumValues(VTs.NumVTs), debugLoc(std::move(dl)), IROrder(Order) {
    719     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    720     assert(NumOperands == Ops.size() &&
    721            "NumOperands wasn't wide enough for its operands!");
    722     assert(NumValues == VTs.NumVTs &&
    723            "NumValues wasn't wide enough for its operands!");
    724     for (unsigned i = 0; i != Ops.size(); ++i) {
    725       assert(OperandList && "no operands available");
    726       OperandList[i].setUser(this);
    727       OperandList[i].setInitial(Ops[i]);
    728     }
    729     checkForCycles(this);
    730   }
    731 
    732   /// This constructor adds no operands itself; operands can be
    733   /// set later with InitOperands.
    734   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
    735       : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
    736         SubclassData(0), NodeId(-1), OperandList(nullptr), ValueList(VTs.VTs),
    737         UseList(nullptr), NumOperands(0), NumValues(VTs.NumVTs),
    738         debugLoc(std::move(dl)), IROrder(Order) {
    739     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    740     assert(NumValues == VTs.NumVTs &&
    741            "NumValues wasn't wide enough for its operands!");
    742   }
    743 
    744   /// Initialize the operands list of this with 1 operand.
    745   void InitOperands(SDUse *Ops, const SDValue &Op0) {
    746     Ops[0].setUser(this);
    747     Ops[0].setInitial(Op0);
    748     NumOperands = 1;
    749     OperandList = Ops;
    750     checkForCycles(this);
    751   }
    752 
    753   /// Initialize the operands list of this with 2 operands.
    754   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
    755     Ops[0].setUser(this);
    756     Ops[0].setInitial(Op0);
    757     Ops[1].setUser(this);
    758     Ops[1].setInitial(Op1);
    759     NumOperands = 2;
    760     OperandList = Ops;
    761     checkForCycles(this);
    762   }
    763 
    764   /// Initialize the operands list of this with 3 operands.
    765   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
    766                     const SDValue &Op2) {
    767     Ops[0].setUser(this);
    768     Ops[0].setInitial(Op0);
    769     Ops[1].setUser(this);
    770     Ops[1].setInitial(Op1);
    771     Ops[2].setUser(this);
    772     Ops[2].setInitial(Op2);
    773     NumOperands = 3;
    774     OperandList = Ops;
    775     checkForCycles(this);
    776   }
    777 
    778   /// Initialize the operands list of this with 4 operands.
    779   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
    780                     const SDValue &Op2, const SDValue &Op3) {
    781     Ops[0].setUser(this);
    782     Ops[0].setInitial(Op0);
    783     Ops[1].setUser(this);
    784     Ops[1].setInitial(Op1);
    785     Ops[2].setUser(this);
    786     Ops[2].setInitial(Op2);
    787     Ops[3].setUser(this);
    788     Ops[3].setInitial(Op3);
    789     NumOperands = 4;
    790     OperandList = Ops;
    791     checkForCycles(this);
    792   }
    793 
    794   /// Initialize the operands list of this with N operands.
    795   void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
    796     for (unsigned i = 0; i != N; ++i) {
    797       Ops[i].setUser(this);
    798       Ops[i].setInitial(Vals[i]);
    799     }
    800     NumOperands = N;
    801     assert(NumOperands == N &&
    802            "NumOperands wasn't wide enough for its operands!");
    803     OperandList = Ops;
    804     checkForCycles(this);
    805   }
    806 
    807   /// Release the operands and set this node to have zero operands.
    808   void DropOperands();
    809 };
    810 
    811 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
    812 /// into SDNode creation functions.
    813 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
    814 /// from the original Instruction, and IROrder is the ordinal position of
    815 /// the instruction.
    816 /// When an SDNode is created after the DAG is being built, both DebugLoc and
    817 /// the IROrder are propagated from the original SDNode.
    818 /// So SDLoc class provides two constructors besides the default one, one to
    819 /// be used by the DAGBuilder, the other to be used by others.
    820 class SDLoc {
    821 private:
    822   // Ptr could be used for either Instruction* or SDNode*. It is used for
    823   // Instruction* if IROrder is not -1.
    824   const void *Ptr;
    825   int IROrder;
    826 
    827 public:
    828   SDLoc() : Ptr(nullptr), IROrder(0) {}
    829   SDLoc(const SDNode *N) : Ptr(N), IROrder(-1) {
    830     assert(N && "null SDNode");
    831   }
    832   SDLoc(const SDValue V) : Ptr(V.getNode()), IROrder(-1) {
    833     assert(Ptr && "null SDNode");
    834   }
    835   SDLoc(const Instruction *I, int Order) : Ptr(I), IROrder(Order) {
    836     assert(Order >= 0 && "bad IROrder");
    837   }
    838   unsigned getIROrder() {
    839     if (IROrder >= 0 || Ptr == nullptr) {
    840       return (unsigned)IROrder;
    841     }
    842     const SDNode *N = (const SDNode*)(Ptr);
    843     return N->getIROrder();
    844   }
    845   DebugLoc getDebugLoc() {
    846     if (!Ptr) {
    847       return DebugLoc();
    848     }
    849     if (IROrder >= 0) {
    850       const Instruction *I = (const Instruction*)(Ptr);
    851       return I->getDebugLoc();
    852     }
    853     const SDNode *N = (const SDNode*)(Ptr);
    854     return N->getDebugLoc();
    855   }
    856 };
    857 
    858 
    859 // Define inline functions from the SDValue class.
    860 
    861 inline SDValue::SDValue(SDNode *node, unsigned resno)
    862     : Node(node), ResNo(resno) {
    863   assert((!Node || ResNo < Node->getNumValues()) &&
    864          "Invalid result number for the given node!");
    865   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
    866 }
    867 
    868 inline unsigned SDValue::getOpcode() const {
    869   return Node->getOpcode();
    870 }
    871 inline EVT SDValue::getValueType() const {
    872   return Node->getValueType(ResNo);
    873 }
    874 inline unsigned SDValue::getNumOperands() const {
    875   return Node->getNumOperands();
    876 }
    877 inline const SDValue &SDValue::getOperand(unsigned i) const {
    878   return Node->getOperand(i);
    879 }
    880 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
    881   return Node->getConstantOperandVal(i);
    882 }
    883 inline bool SDValue::isTargetOpcode() const {
    884   return Node->isTargetOpcode();
    885 }
    886 inline bool SDValue::isTargetMemoryOpcode() const {
    887   return Node->isTargetMemoryOpcode();
    888 }
    889 inline bool SDValue::isMachineOpcode() const {
    890   return Node->isMachineOpcode();
    891 }
    892 inline unsigned SDValue::getMachineOpcode() const {
    893   return Node->getMachineOpcode();
    894 }
    895 inline bool SDValue::use_empty() const {
    896   return !Node->hasAnyUseOfValue(ResNo);
    897 }
    898 inline bool SDValue::hasOneUse() const {
    899   return Node->hasNUsesOfValue(1, ResNo);
    900 }
    901 inline const DebugLoc &SDValue::getDebugLoc() const {
    902   return Node->getDebugLoc();
    903 }
    904 inline void SDValue::dump() const {
    905   return Node->dump();
    906 }
    907 inline void SDValue::dumpr() const {
    908   return Node->dumpr();
    909 }
    910 // Define inline functions from the SDUse class.
    911 
    912 inline void SDUse::set(const SDValue &V) {
    913   if (Val.getNode()) removeFromList();
    914   Val = V;
    915   if (V.getNode()) V.getNode()->addUse(*this);
    916 }
    917 
    918 inline void SDUse::setInitial(const SDValue &V) {
    919   Val = V;
    920   V.getNode()->addUse(*this);
    921 }
    922 
    923 inline void SDUse::setNode(SDNode *N) {
    924   if (Val.getNode()) removeFromList();
    925   Val.setNode(N);
    926   if (N) N->addUse(*this);
    927 }
    928 
    929 /// This class is used for single-operand SDNodes.  This is solely
    930 /// to allow co-allocation of node operands with the node itself.
    931 class UnarySDNode : public SDNode {
    932   SDUse Op;
    933 public:
    934   UnarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
    935               SDValue X)
    936     : SDNode(Opc, Order, dl, VTs) {
    937     InitOperands(&Op, X);
    938   }
    939 };
    940 
    941 /// This class is used for two-operand SDNodes.  This is solely
    942 /// to allow co-allocation of node operands with the node itself.
    943 class BinarySDNode : public SDNode {
    944   SDUse Ops[2];
    945 public:
    946   BinarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
    947                SDValue X, SDValue Y)
    948     : SDNode(Opc, Order, dl, VTs) {
    949     InitOperands(Ops, X, Y);
    950   }
    951 };
    952 
    953 /// Returns true if the opcode is a binary operation with flags.
    954 static bool isBinOpWithFlags(unsigned Opcode) {
    955   switch (Opcode) {
    956   case ISD::SDIV:
    957   case ISD::UDIV:
    958   case ISD::SRA:
    959   case ISD::SRL:
    960   case ISD::MUL:
    961   case ISD::ADD:
    962   case ISD::SUB:
    963   case ISD::SHL:
    964     return true;
    965   default:
    966     return false;
    967   }
    968 }
    969 
    970 /// This class is an extension of BinarySDNode
    971 /// used from those opcodes that have associated extra flags.
    972 class BinaryWithFlagsSDNode : public BinarySDNode {
    973   enum { NUW = (1 << 0), NSW = (1 << 1), EXACT = (1 << 2) };
    974 
    975 public:
    976   BinaryWithFlagsSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
    977                         SDValue X, SDValue Y)
    978       : BinarySDNode(Opc, Order, dl, VTs, X, Y) {}
    979   /// Return the SubclassData value, which contains an encoding of the flags.
    980   /// This function should be used to add subclass data to the NodeID value.
    981   unsigned getRawSubclassData() const { return SubclassData; }
    982   void setHasNoUnsignedWrap(bool b) {
    983     SubclassData = (SubclassData & ~NUW) | (b ? NUW : 0);
    984   }
    985   void setHasNoSignedWrap(bool b) {
    986     SubclassData = (SubclassData & ~NSW) | (b ? NSW : 0);
    987   }
    988   void setIsExact(bool b) {
    989     SubclassData = (SubclassData & ~EXACT) | (b ? EXACT : 0);
    990   }
    991   bool hasNoUnsignedWrap() const { return SubclassData & NUW; }
    992   bool hasNoSignedWrap() const { return SubclassData & NSW; }
    993   bool isExact() const { return SubclassData & EXACT; }
    994   static bool classof(const SDNode *N) {
    995     return isBinOpWithFlags(N->getOpcode());
    996   }
    997 };
    998 
    999 /// This class is used for three-operand SDNodes. This is solely
   1000 /// to allow co-allocation of node operands with the node itself.
   1001 class TernarySDNode : public SDNode {
   1002   SDUse Ops[3];
   1003 public:
   1004   TernarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1005                 SDValue X, SDValue Y, SDValue Z)
   1006     : SDNode(Opc, Order, dl, VTs) {
   1007     InitOperands(Ops, X, Y, Z);
   1008   }
   1009 };
   1010 
   1011 
   1012 /// This class is used to form a handle around another node that
   1013 /// is persistent and is updated across invocations of replaceAllUsesWith on its
   1014 /// operand.  This node should be directly created by end-users and not added to
   1015 /// the AllNodes list.
   1016 class HandleSDNode : public SDNode {
   1017   SDUse Op;
   1018 public:
   1019   explicit HandleSDNode(SDValue X)
   1020     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
   1021     InitOperands(&Op, X);
   1022   }
   1023   ~HandleSDNode();
   1024   const SDValue &getValue() const { return Op; }
   1025 };
   1026 
   1027 class AddrSpaceCastSDNode : public UnarySDNode {
   1028 private:
   1029   unsigned SrcAddrSpace;
   1030   unsigned DestAddrSpace;
   1031 
   1032 public:
   1033   AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT, SDValue X,
   1034                       unsigned SrcAS, unsigned DestAS);
   1035 
   1036   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
   1037   unsigned getDestAddressSpace() const { return DestAddrSpace; }
   1038 
   1039   static bool classof(const SDNode *N) {
   1040     return N->getOpcode() == ISD::ADDRSPACECAST;
   1041   }
   1042 };
   1043 
   1044 /// Abstact virtual class for operations for memory operations
   1045 class MemSDNode : public SDNode {
   1046 private:
   1047   // VT of in-memory value.
   1048   EVT MemoryVT;
   1049 
   1050 protected:
   1051   /// Memory reference information.
   1052   MachineMemOperand *MMO;
   1053 
   1054 public:
   1055   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1056             EVT MemoryVT, MachineMemOperand *MMO);
   1057 
   1058   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1059             ArrayRef<SDValue> Ops, EVT MemoryVT, MachineMemOperand *MMO);
   1060 
   1061   bool readMem() const { return MMO->isLoad(); }
   1062   bool writeMem() const { return MMO->isStore(); }
   1063 
   1064   /// Returns alignment and volatility of the memory access
   1065   unsigned getOriginalAlignment() const {
   1066     return MMO->getBaseAlignment();
   1067   }
   1068   unsigned getAlignment() const {
   1069     return MMO->getAlignment();
   1070   }
   1071 
   1072   /// Return the SubclassData value, which contains an
   1073   /// encoding of the volatile flag, as well as bits used by subclasses. This
   1074   /// function should only be used to compute a FoldingSetNodeID value.
   1075   unsigned getRawSubclassData() const {
   1076     return SubclassData;
   1077   }
   1078 
   1079   // We access subclass data here so that we can check consistency
   1080   // with MachineMemOperand information.
   1081   bool isVolatile() const { return (SubclassData >> 5) & 1; }
   1082   bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
   1083   bool isInvariant() const { return (SubclassData >> 7) & 1; }
   1084 
   1085   AtomicOrdering getOrdering() const {
   1086     return AtomicOrdering((SubclassData >> 8) & 15);
   1087   }
   1088   SynchronizationScope getSynchScope() const {
   1089     return SynchronizationScope((SubclassData >> 12) & 1);
   1090   }
   1091 
   1092   // Returns the offset from the location of the access.
   1093   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
   1094 
   1095   /// Returns the AA info that describes the dereference.
   1096   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
   1097 
   1098   /// Returns the Ranges that describes the dereference.
   1099   const MDNode *getRanges() const { return MMO->getRanges(); }
   1100 
   1101   /// Return the type of the in-memory value.
   1102   EVT getMemoryVT() const { return MemoryVT; }
   1103 
   1104   /// Return a MachineMemOperand object describing the memory
   1105   /// reference performed by operation.
   1106   MachineMemOperand *getMemOperand() const { return MMO; }
   1107 
   1108   const MachinePointerInfo &getPointerInfo() const {
   1109     return MMO->getPointerInfo();
   1110   }
   1111 
   1112   /// Return the address space for the associated pointer
   1113   unsigned getAddressSpace() const {
   1114     return getPointerInfo().getAddrSpace();
   1115   }
   1116 
   1117   /// Update this MemSDNode's MachineMemOperand information
   1118   /// to reflect the alignment of NewMMO, if it has a greater alignment.
   1119   /// This must only be used when the new alignment applies to all users of
   1120   /// this MachineMemOperand.
   1121   void refineAlignment(const MachineMemOperand *NewMMO) {
   1122     MMO->refineAlignment(NewMMO);
   1123   }
   1124 
   1125   const SDValue &getChain() const { return getOperand(0); }
   1126   const SDValue &getBasePtr() const {
   1127     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
   1128   }
   1129 
   1130   // Methods to support isa and dyn_cast
   1131   static bool classof(const SDNode *N) {
   1132     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
   1133     // with either an intrinsic or a target opcode.
   1134     return N->getOpcode() == ISD::LOAD                ||
   1135            N->getOpcode() == ISD::STORE               ||
   1136            N->getOpcode() == ISD::PREFETCH            ||
   1137            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1138            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1139            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1140            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1141            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1142            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1143            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1144            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1145            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1146            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1147            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1148            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1149            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1150            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1151            N->getOpcode() == ISD::ATOMIC_STORE        ||
   1152            N->getOpcode() == ISD::MLOAD               ||
   1153            N->getOpcode() == ISD::MSTORE              ||
   1154            N->isMemIntrinsic()                        ||
   1155            N->isTargetMemoryOpcode();
   1156   }
   1157 };
   1158 
   1159 /// A SDNode reprenting atomic operations.
   1160 class AtomicSDNode : public MemSDNode {
   1161   SDUse Ops[4];
   1162 
   1163   /// For cmpxchg instructions, the ordering requirements when a store does not
   1164   /// occur.
   1165   AtomicOrdering FailureOrdering;
   1166 
   1167   void InitAtomic(AtomicOrdering SuccessOrdering,
   1168                   AtomicOrdering FailureOrdering,
   1169                   SynchronizationScope SynchScope) {
   1170     // This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
   1171     assert((SuccessOrdering & 15) == SuccessOrdering &&
   1172            "Ordering may not require more than 4 bits!");
   1173     assert((FailureOrdering & 15) == FailureOrdering &&
   1174            "Ordering may not require more than 4 bits!");
   1175     assert((SynchScope & 1) == SynchScope &&
   1176            "SynchScope may not require more than 1 bit!");
   1177     SubclassData |= SuccessOrdering << 8;
   1178     SubclassData |= SynchScope << 12;
   1179     this->FailureOrdering = FailureOrdering;
   1180     assert(getSuccessOrdering() == SuccessOrdering &&
   1181            "Ordering encoding error!");
   1182     assert(getFailureOrdering() == FailureOrdering &&
   1183            "Ordering encoding error!");
   1184     assert(getSynchScope() == SynchScope && "Synch-scope encoding error!");
   1185   }
   1186 
   1187 public:
   1188   // Opc:   opcode for atomic
   1189   // VTL:    value type list
   1190   // Chain:  memory chain for operaand
   1191   // Ptr:    address to update as a SDValue
   1192   // Cmp:    compare value
   1193   // Swp:    swap value
   1194   // SrcVal: address to update as a Value (used for MemOperand)
   1195   // Align:  alignment of memory
   1196   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
   1197                EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp,
   1198                MachineMemOperand *MMO, AtomicOrdering Ordering,
   1199                SynchronizationScope SynchScope)
   1200       : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1201     InitAtomic(Ordering, Ordering, SynchScope);
   1202     InitOperands(Ops, Chain, Ptr, Cmp, Swp);
   1203   }
   1204   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
   1205                EVT MemVT,
   1206                SDValue Chain, SDValue Ptr,
   1207                SDValue Val, MachineMemOperand *MMO,
   1208                AtomicOrdering Ordering, SynchronizationScope SynchScope)
   1209     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1210     InitAtomic(Ordering, Ordering, SynchScope);
   1211     InitOperands(Ops, Chain, Ptr, Val);
   1212   }
   1213   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
   1214                EVT MemVT,
   1215                SDValue Chain, SDValue Ptr,
   1216                MachineMemOperand *MMO,
   1217                AtomicOrdering Ordering, SynchronizationScope SynchScope)
   1218     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1219     InitAtomic(Ordering, Ordering, SynchScope);
   1220     InitOperands(Ops, Chain, Ptr);
   1221   }
   1222   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL, EVT MemVT,
   1223                const SDValue* AllOps, SDUse *DynOps, unsigned NumOps,
   1224                MachineMemOperand *MMO,
   1225                AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
   1226                SynchronizationScope SynchScope)
   1227     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1228     InitAtomic(SuccessOrdering, FailureOrdering, SynchScope);
   1229     assert((DynOps || NumOps <= array_lengthof(Ops)) &&
   1230            "Too many ops for internal storage!");
   1231     InitOperands(DynOps ? DynOps : Ops, AllOps, NumOps);
   1232   }
   1233 
   1234   const SDValue &getBasePtr() const { return getOperand(1); }
   1235   const SDValue &getVal() const { return getOperand(2); }
   1236 
   1237   AtomicOrdering getSuccessOrdering() const {
   1238     return getOrdering();
   1239   }
   1240 
   1241   // Not quite enough room in SubclassData for everything, so failure gets its
   1242   // own field.
   1243   AtomicOrdering getFailureOrdering() const {
   1244     return FailureOrdering;
   1245   }
   1246 
   1247   bool isCompareAndSwap() const {
   1248     unsigned Op = getOpcode();
   1249     return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
   1250   }
   1251 
   1252   // Methods to support isa and dyn_cast
   1253   static bool classof(const SDNode *N) {
   1254     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1255            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1256            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1257            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1258            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1259            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1260            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1261            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1262            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1263            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1264            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1265            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1266            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1267            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1268            N->getOpcode() == ISD::ATOMIC_STORE;
   1269   }
   1270 };
   1271 
   1272 /// This SDNode is used for target intrinsics that touch
   1273 /// memory and need an associated MachineMemOperand. Its opcode may be
   1274 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
   1275 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
   1276 class MemIntrinsicSDNode : public MemSDNode {
   1277 public:
   1278   MemIntrinsicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1279                      ArrayRef<SDValue> Ops, EVT MemoryVT,
   1280                      MachineMemOperand *MMO)
   1281     : MemSDNode(Opc, Order, dl, VTs, Ops, MemoryVT, MMO) {
   1282     SubclassData |= 1u << 13;
   1283   }
   1284 
   1285   // Methods to support isa and dyn_cast
   1286   static bool classof(const SDNode *N) {
   1287     // We lower some target intrinsics to their target opcode
   1288     // early a node with a target opcode can be of this class
   1289     return N->isMemIntrinsic()             ||
   1290            N->getOpcode() == ISD::PREFETCH ||
   1291            N->isTargetMemoryOpcode();
   1292   }
   1293 };
   1294 
   1295 /// This SDNode is used to implement the code generator
   1296 /// support for the llvm IR shufflevector instruction.  It combines elements
   1297 /// from two input vectors into a new input vector, with the selection and
   1298 /// ordering of elements determined by an array of integers, referred to as
   1299 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
   1300 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
   1301 /// An index of -1 is treated as undef, such that the code generator may put
   1302 /// any value in the corresponding element of the result.
   1303 class ShuffleVectorSDNode : public SDNode {
   1304   SDUse Ops[2];
   1305 
   1306   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
   1307   // is freed when the SelectionDAG object is destroyed.
   1308   const int *Mask;
   1309 protected:
   1310   friend class SelectionDAG;
   1311   ShuffleVectorSDNode(EVT VT, unsigned Order, DebugLoc dl, SDValue N1,
   1312                       SDValue N2, const int *M)
   1313     : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {
   1314     InitOperands(Ops, N1, N2);
   1315   }
   1316 public:
   1317 
   1318   ArrayRef<int> getMask() const {
   1319     EVT VT = getValueType(0);
   1320     return makeArrayRef(Mask, VT.getVectorNumElements());
   1321   }
   1322   int getMaskElt(unsigned Idx) const {
   1323     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
   1324     return Mask[Idx];
   1325   }
   1326 
   1327   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
   1328   int  getSplatIndex() const {
   1329     assert(isSplat() && "Cannot get splat index for non-splat!");
   1330     EVT VT = getValueType(0);
   1331     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   1332       if (Mask[i] >= 0)
   1333         return Mask[i];
   1334     }
   1335     llvm_unreachable("Splat with all undef indices?");
   1336   }
   1337   static bool isSplatMask(const int *Mask, EVT VT);
   1338 
   1339   /// Change values in a shuffle permute mask assuming
   1340   /// the two vector operands have swapped position.
   1341   static void commuteMask(SmallVectorImpl<int> &Mask) {
   1342     unsigned NumElems = Mask.size();
   1343     for (unsigned i = 0; i != NumElems; ++i) {
   1344       int idx = Mask[i];
   1345       if (idx < 0)
   1346         continue;
   1347       else if (idx < (int)NumElems)
   1348         Mask[i] = idx + NumElems;
   1349       else
   1350         Mask[i] = idx - NumElems;
   1351     }
   1352   }
   1353 
   1354   static bool classof(const SDNode *N) {
   1355     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
   1356   }
   1357 };
   1358 
   1359 class ConstantSDNode : public SDNode {
   1360   const ConstantInt *Value;
   1361   friend class SelectionDAG;
   1362   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
   1363     : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
   1364              0, DebugLoc(), getSDVTList(VT)), Value(val) {
   1365     SubclassData |= (uint16_t)isOpaque;
   1366   }
   1367 public:
   1368 
   1369   const ConstantInt *getConstantIntValue() const { return Value; }
   1370   const APInt &getAPIntValue() const { return Value->getValue(); }
   1371   uint64_t getZExtValue() const { return Value->getZExtValue(); }
   1372   int64_t getSExtValue() const { return Value->getSExtValue(); }
   1373 
   1374   bool isOne() const { return Value->isOne(); }
   1375   bool isNullValue() const { return Value->isNullValue(); }
   1376   bool isAllOnesValue() const { return Value->isAllOnesValue(); }
   1377 
   1378   bool isOpaque() const { return SubclassData & 1; }
   1379 
   1380   static bool classof(const SDNode *N) {
   1381     return N->getOpcode() == ISD::Constant ||
   1382            N->getOpcode() == ISD::TargetConstant;
   1383   }
   1384 };
   1385 
   1386 class ConstantFPSDNode : public SDNode {
   1387   const ConstantFP *Value;
   1388   friend class SelectionDAG;
   1389   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
   1390     : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
   1391              0, DebugLoc(), getSDVTList(VT)), Value(val) {
   1392   }
   1393 public:
   1394 
   1395   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
   1396   const ConstantFP *getConstantFPValue() const { return Value; }
   1397 
   1398   /// Return true if the value is positive or negative zero.
   1399   bool isZero() const { return Value->isZero(); }
   1400 
   1401   /// Return true if the value is a NaN.
   1402   bool isNaN() const { return Value->isNaN(); }
   1403 
   1404   /// Return true if the value is an infinity
   1405   bool isInfinity() const { return Value->isInfinity(); }
   1406 
   1407   /// Return true if the value is negative.
   1408   bool isNegative() const { return Value->isNegative(); }
   1409 
   1410   /// We don't rely on operator== working on double values, as
   1411   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
   1412   /// As such, this method can be used to do an exact bit-for-bit comparison of
   1413   /// two floating point values.
   1414 
   1415   /// We leave the version with the double argument here because it's just so
   1416   /// convenient to write "2.0" and the like.  Without this function we'd
   1417   /// have to duplicate its logic everywhere it's called.
   1418   bool isExactlyValue(double V) const {
   1419     bool ignored;
   1420     APFloat Tmp(V);
   1421     Tmp.convert(Value->getValueAPF().getSemantics(),
   1422                 APFloat::rmNearestTiesToEven, &ignored);
   1423     return isExactlyValue(Tmp);
   1424   }
   1425   bool isExactlyValue(const APFloat& V) const;
   1426 
   1427   static bool isValueValidForType(EVT VT, const APFloat& Val);
   1428 
   1429   static bool classof(const SDNode *N) {
   1430     return N->getOpcode() == ISD::ConstantFP ||
   1431            N->getOpcode() == ISD::TargetConstantFP;
   1432   }
   1433 };
   1434 
   1435 class GlobalAddressSDNode : public SDNode {
   1436   const GlobalValue *TheGlobal;
   1437   int64_t Offset;
   1438   unsigned char TargetFlags;
   1439   friend class SelectionDAG;
   1440   GlobalAddressSDNode(unsigned Opc, unsigned Order, DebugLoc DL,
   1441                       const GlobalValue *GA, EVT VT, int64_t o,
   1442                       unsigned char TargetFlags);
   1443 public:
   1444 
   1445   const GlobalValue *getGlobal() const { return TheGlobal; }
   1446   int64_t getOffset() const { return Offset; }
   1447   unsigned char getTargetFlags() const { return TargetFlags; }
   1448   // Return the address space this GlobalAddress belongs to.
   1449   unsigned getAddressSpace() const;
   1450 
   1451   static bool classof(const SDNode *N) {
   1452     return N->getOpcode() == ISD::GlobalAddress ||
   1453            N->getOpcode() == ISD::TargetGlobalAddress ||
   1454            N->getOpcode() == ISD::GlobalTLSAddress ||
   1455            N->getOpcode() == ISD::TargetGlobalTLSAddress;
   1456   }
   1457 };
   1458 
   1459 class FrameIndexSDNode : public SDNode {
   1460   int FI;
   1461   friend class SelectionDAG;
   1462   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
   1463     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
   1464       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
   1465   }
   1466 public:
   1467 
   1468   int getIndex() const { return FI; }
   1469 
   1470   static bool classof(const SDNode *N) {
   1471     return N->getOpcode() == ISD::FrameIndex ||
   1472            N->getOpcode() == ISD::TargetFrameIndex;
   1473   }
   1474 };
   1475 
   1476 class JumpTableSDNode : public SDNode {
   1477   int JTI;
   1478   unsigned char TargetFlags;
   1479   friend class SelectionDAG;
   1480   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
   1481     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
   1482       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
   1483   }
   1484 public:
   1485 
   1486   int getIndex() const { return JTI; }
   1487   unsigned char getTargetFlags() const { return TargetFlags; }
   1488 
   1489   static bool classof(const SDNode *N) {
   1490     return N->getOpcode() == ISD::JumpTable ||
   1491            N->getOpcode() == ISD::TargetJumpTable;
   1492   }
   1493 };
   1494 
   1495 class ConstantPoolSDNode : public SDNode {
   1496   union {
   1497     const Constant *ConstVal;
   1498     MachineConstantPoolValue *MachineCPVal;
   1499   } Val;
   1500   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
   1501   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
   1502   unsigned char TargetFlags;
   1503   friend class SelectionDAG;
   1504   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
   1505                      unsigned Align, unsigned char TF)
   1506     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1507              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1508              TargetFlags(TF) {
   1509     assert(Offset >= 0 && "Offset is too large");
   1510     Val.ConstVal = c;
   1511   }
   1512   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
   1513                      EVT VT, int o, unsigned Align, unsigned char TF)
   1514     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1515              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1516              TargetFlags(TF) {
   1517     assert(Offset >= 0 && "Offset is too large");
   1518     Val.MachineCPVal = v;
   1519     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
   1520   }
   1521 public:
   1522 
   1523   bool isMachineConstantPoolEntry() const {
   1524     return Offset < 0;
   1525   }
   1526 
   1527   const Constant *getConstVal() const {
   1528     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
   1529     return Val.ConstVal;
   1530   }
   1531 
   1532   MachineConstantPoolValue *getMachineCPVal() const {
   1533     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
   1534     return Val.MachineCPVal;
   1535   }
   1536 
   1537   int getOffset() const {
   1538     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
   1539   }
   1540 
   1541   // Return the alignment of this constant pool object, which is either 0 (for
   1542   // default alignment) or the desired value.
   1543   unsigned getAlignment() const { return Alignment; }
   1544   unsigned char getTargetFlags() const { return TargetFlags; }
   1545 
   1546   Type *getType() const;
   1547 
   1548   static bool classof(const SDNode *N) {
   1549     return N->getOpcode() == ISD::ConstantPool ||
   1550            N->getOpcode() == ISD::TargetConstantPool;
   1551   }
   1552 };
   1553 
   1554 /// Completely target-dependent object reference.
   1555 class TargetIndexSDNode : public SDNode {
   1556   unsigned char TargetFlags;
   1557   int Index;
   1558   int64_t Offset;
   1559   friend class SelectionDAG;
   1560 public:
   1561 
   1562   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
   1563     : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
   1564       TargetFlags(TF), Index(Idx), Offset(Ofs) {}
   1565 public:
   1566 
   1567   unsigned char getTargetFlags() const { return TargetFlags; }
   1568   int getIndex() const { return Index; }
   1569   int64_t getOffset() const { return Offset; }
   1570 
   1571   static bool classof(const SDNode *N) {
   1572     return N->getOpcode() == ISD::TargetIndex;
   1573   }
   1574 };
   1575 
   1576 class BasicBlockSDNode : public SDNode {
   1577   MachineBasicBlock *MBB;
   1578   friend class SelectionDAG;
   1579   /// Debug info is meaningful and potentially useful here, but we create
   1580   /// blocks out of order when they're jumped to, which makes it a bit
   1581   /// harder.  Let's see if we need it first.
   1582   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
   1583     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
   1584   {}
   1585 public:
   1586 
   1587   MachineBasicBlock *getBasicBlock() const { return MBB; }
   1588 
   1589   static bool classof(const SDNode *N) {
   1590     return N->getOpcode() == ISD::BasicBlock;
   1591   }
   1592 };
   1593 
   1594 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
   1595 class BuildVectorSDNode : public SDNode {
   1596   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
   1597   explicit BuildVectorSDNode() = delete;
   1598 public:
   1599   /// Check if this is a constant splat, and if so, find the
   1600   /// smallest element size that splats the vector.  If MinSplatBits is
   1601   /// nonzero, the element size must be at least that large.  Note that the
   1602   /// splat element may be the entire vector (i.e., a one element vector).
   1603   /// Returns the splat element value in SplatValue.  Any undefined bits in
   1604   /// that value are zero, and the corresponding bits in the SplatUndef mask
   1605   /// are set.  The SplatBitSize value is set to the splat element size in
   1606   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
   1607   /// undefined.  isBigEndian describes the endianness of the target.
   1608   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
   1609                        unsigned &SplatBitSize, bool &HasAnyUndefs,
   1610                        unsigned MinSplatBits = 0,
   1611                        bool isBigEndian = false) const;
   1612 
   1613   /// \brief Returns the splatted value or a null value if this is not a splat.
   1614   ///
   1615   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1616   /// the vector width and set the bits where elements are undef.
   1617   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
   1618 
   1619   /// \brief Returns the splatted constant or null if this is not a constant
   1620   /// splat.
   1621   ///
   1622   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1623   /// the vector width and set the bits where elements are undef.
   1624   ConstantSDNode *
   1625   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
   1626 
   1627   /// \brief Returns the splatted constant FP or null if this is not a constant
   1628   /// FP splat.
   1629   ///
   1630   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1631   /// the vector width and set the bits where elements are undef.
   1632   ConstantFPSDNode *
   1633   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
   1634 
   1635   bool isConstant() const;
   1636 
   1637   static inline bool classof(const SDNode *N) {
   1638     return N->getOpcode() == ISD::BUILD_VECTOR;
   1639   }
   1640 };
   1641 
   1642 /// An SDNode that holds an arbitrary LLVM IR Value. This is
   1643 /// used when the SelectionDAG needs to make a simple reference to something
   1644 /// in the LLVM IR representation.
   1645 ///
   1646 class SrcValueSDNode : public SDNode {
   1647   const Value *V;
   1648   friend class SelectionDAG;
   1649   /// Create a SrcValue for a general value.
   1650   explicit SrcValueSDNode(const Value *v)
   1651     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
   1652 
   1653 public:
   1654   /// Return the contained Value.
   1655   const Value *getValue() const { return V; }
   1656 
   1657   static bool classof(const SDNode *N) {
   1658     return N->getOpcode() == ISD::SRCVALUE;
   1659   }
   1660 };
   1661 
   1662 class MDNodeSDNode : public SDNode {
   1663   const MDNode *MD;
   1664   friend class SelectionDAG;
   1665   explicit MDNodeSDNode(const MDNode *md)
   1666   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
   1667   {}
   1668 public:
   1669 
   1670   const MDNode *getMD() const { return MD; }
   1671 
   1672   static bool classof(const SDNode *N) {
   1673     return N->getOpcode() == ISD::MDNODE_SDNODE;
   1674   }
   1675 };
   1676 
   1677 class RegisterSDNode : public SDNode {
   1678   unsigned Reg;
   1679   friend class SelectionDAG;
   1680   RegisterSDNode(unsigned reg, EVT VT)
   1681     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {
   1682   }
   1683 public:
   1684 
   1685   unsigned getReg() const { return Reg; }
   1686 
   1687   static bool classof(const SDNode *N) {
   1688     return N->getOpcode() == ISD::Register;
   1689   }
   1690 };
   1691 
   1692 class RegisterMaskSDNode : public SDNode {
   1693   // The memory for RegMask is not owned by the node.
   1694   const uint32_t *RegMask;
   1695   friend class SelectionDAG;
   1696   RegisterMaskSDNode(const uint32_t *mask)
   1697     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
   1698       RegMask(mask) {}
   1699 public:
   1700 
   1701   const uint32_t *getRegMask() const { return RegMask; }
   1702 
   1703   static bool classof(const SDNode *N) {
   1704     return N->getOpcode() == ISD::RegisterMask;
   1705   }
   1706 };
   1707 
   1708 class BlockAddressSDNode : public SDNode {
   1709   const BlockAddress *BA;
   1710   int64_t Offset;
   1711   unsigned char TargetFlags;
   1712   friend class SelectionDAG;
   1713   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
   1714                      int64_t o, unsigned char Flags)
   1715     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
   1716              BA(ba), Offset(o), TargetFlags(Flags) {
   1717   }
   1718 public:
   1719   const BlockAddress *getBlockAddress() const { return BA; }
   1720   int64_t getOffset() const { return Offset; }
   1721   unsigned char getTargetFlags() const { return TargetFlags; }
   1722 
   1723   static bool classof(const SDNode *N) {
   1724     return N->getOpcode() == ISD::BlockAddress ||
   1725            N->getOpcode() == ISD::TargetBlockAddress;
   1726   }
   1727 };
   1728 
   1729 class EHLabelSDNode : public SDNode {
   1730   SDUse Chain;
   1731   MCSymbol *Label;
   1732   friend class SelectionDAG;
   1733   EHLabelSDNode(unsigned Order, DebugLoc dl, SDValue ch, MCSymbol *L)
   1734     : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {
   1735     InitOperands(&Chain, ch);
   1736   }
   1737 public:
   1738   MCSymbol *getLabel() const { return Label; }
   1739 
   1740   static bool classof(const SDNode *N) {
   1741     return N->getOpcode() == ISD::EH_LABEL;
   1742   }
   1743 };
   1744 
   1745 class ExternalSymbolSDNode : public SDNode {
   1746   const char *Symbol;
   1747   unsigned char TargetFlags;
   1748 
   1749   friend class SelectionDAG;
   1750   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
   1751     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
   1752              0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
   1753   }
   1754 public:
   1755 
   1756   const char *getSymbol() const { return Symbol; }
   1757   unsigned char getTargetFlags() const { return TargetFlags; }
   1758 
   1759   static bool classof(const SDNode *N) {
   1760     return N->getOpcode() == ISD::ExternalSymbol ||
   1761            N->getOpcode() == ISD::TargetExternalSymbol;
   1762   }
   1763 };
   1764 
   1765 class CondCodeSDNode : public SDNode {
   1766   ISD::CondCode Condition;
   1767   friend class SelectionDAG;
   1768   explicit CondCodeSDNode(ISD::CondCode Cond)
   1769     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   1770       Condition(Cond) {
   1771   }
   1772 public:
   1773 
   1774   ISD::CondCode get() const { return Condition; }
   1775 
   1776   static bool classof(const SDNode *N) {
   1777     return N->getOpcode() == ISD::CONDCODE;
   1778   }
   1779 };
   1780 
   1781 /// NOTE: avoid using this node as this may disappear in the
   1782 /// future and most targets don't support it.
   1783 class CvtRndSatSDNode : public SDNode {
   1784   ISD::CvtCode CvtCode;
   1785   friend class SelectionDAG;
   1786   explicit CvtRndSatSDNode(EVT VT, unsigned Order, DebugLoc dl,
   1787                            ArrayRef<SDValue> Ops, ISD::CvtCode Code)
   1788     : SDNode(ISD::CONVERT_RNDSAT, Order, dl, getSDVTList(VT), Ops),
   1789       CvtCode(Code) {
   1790     assert(Ops.size() == 5 && "wrong number of operations");
   1791   }
   1792 public:
   1793   ISD::CvtCode getCvtCode() const { return CvtCode; }
   1794 
   1795   static bool classof(const SDNode *N) {
   1796     return N->getOpcode() == ISD::CONVERT_RNDSAT;
   1797   }
   1798 };
   1799 
   1800 /// This class is used to represent EVT's, which are used
   1801 /// to parameterize some operations.
   1802 class VTSDNode : public SDNode {
   1803   EVT ValueType;
   1804   friend class SelectionDAG;
   1805   explicit VTSDNode(EVT VT)
   1806     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   1807       ValueType(VT) {
   1808   }
   1809 public:
   1810 
   1811   EVT getVT() const { return ValueType; }
   1812 
   1813   static bool classof(const SDNode *N) {
   1814     return N->getOpcode() == ISD::VALUETYPE;
   1815   }
   1816 };
   1817 
   1818 /// Base class for LoadSDNode and StoreSDNode
   1819 class LSBaseSDNode : public MemSDNode {
   1820   //! Operand array for load and store
   1821   /*!
   1822     \note Moving this array to the base class captures more
   1823     common functionality shared between LoadSDNode and
   1824     StoreSDNode
   1825    */
   1826   SDUse Ops[4];
   1827 public:
   1828   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
   1829                SDValue *Operands, unsigned numOperands,
   1830                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
   1831                MachineMemOperand *MMO)
   1832     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
   1833     SubclassData |= AM << 2;
   1834     assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
   1835     InitOperands(Ops, Operands, numOperands);
   1836     assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
   1837            "Only indexed loads and stores have a non-undef offset operand");
   1838   }
   1839 
   1840   const SDValue &getOffset() const {
   1841     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
   1842   }
   1843 
   1844   /// Return the addressing mode for this load or store:
   1845   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
   1846   ISD::MemIndexedMode getAddressingMode() const {
   1847     return ISD::MemIndexedMode((SubclassData >> 2) & 7);
   1848   }
   1849 
   1850   /// Return true if this is a pre/post inc/dec load/store.
   1851   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
   1852 
   1853   /// Return true if this is NOT a pre/post inc/dec load/store.
   1854   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
   1855 
   1856   static bool classof(const SDNode *N) {
   1857     return N->getOpcode() == ISD::LOAD ||
   1858            N->getOpcode() == ISD::STORE;
   1859   }
   1860 };
   1861 
   1862 /// This class is used to represent ISD::LOAD nodes.
   1863 class LoadSDNode : public LSBaseSDNode {
   1864   friend class SelectionDAG;
   1865   LoadSDNode(SDValue *ChainPtrOff, unsigned Order, DebugLoc dl, SDVTList VTs,
   1866              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
   1867              MachineMemOperand *MMO)
   1868     : LSBaseSDNode(ISD::LOAD, Order, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) {
   1869     SubclassData |= (unsigned short)ETy;
   1870     assert(getExtensionType() == ETy && "LoadExtType encoding error!");
   1871     assert(readMem() && "Load MachineMemOperand is not a load!");
   1872     assert(!writeMem() && "Load MachineMemOperand is a store!");
   1873   }
   1874 public:
   1875 
   1876   /// Return whether this is a plain node,
   1877   /// or one of the varieties of value-extending loads.
   1878   ISD::LoadExtType getExtensionType() const {
   1879     return ISD::LoadExtType(SubclassData & 3);
   1880   }
   1881 
   1882   const SDValue &getBasePtr() const { return getOperand(1); }
   1883   const SDValue &getOffset() const { return getOperand(2); }
   1884 
   1885   static bool classof(const SDNode *N) {
   1886     return N->getOpcode() == ISD::LOAD;
   1887   }
   1888 };
   1889 
   1890 /// This class is used to represent ISD::STORE nodes.
   1891 class StoreSDNode : public LSBaseSDNode {
   1892   friend class SelectionDAG;
   1893   StoreSDNode(SDValue *ChainValuePtrOff, unsigned Order, DebugLoc dl,
   1894               SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
   1895               MachineMemOperand *MMO)
   1896     : LSBaseSDNode(ISD::STORE, Order, dl, ChainValuePtrOff, 4,
   1897                    VTs, AM, MemVT, MMO) {
   1898     SubclassData |= (unsigned short)isTrunc;
   1899     assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
   1900     assert(!readMem() && "Store MachineMemOperand is a load!");
   1901     assert(writeMem() && "Store MachineMemOperand is not a store!");
   1902   }
   1903 public:
   1904 
   1905   /// Return true if the op does a truncation before store.
   1906   /// For integers this is the same as doing a TRUNCATE and storing the result.
   1907   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   1908   bool isTruncatingStore() const { return SubclassData & 1; }
   1909 
   1910   const SDValue &getValue() const { return getOperand(1); }
   1911   const SDValue &getBasePtr() const { return getOperand(2); }
   1912   const SDValue &getOffset() const { return getOperand(3); }
   1913 
   1914   static bool classof(const SDNode *N) {
   1915     return N->getOpcode() == ISD::STORE;
   1916   }
   1917 };
   1918 
   1919 /// This base class is used to represent MLOAD and MSTORE nodes
   1920 class MaskedLoadStoreSDNode : public MemSDNode {
   1921   // Operands
   1922   SDUse Ops[4];
   1923 public:
   1924   friend class SelectionDAG;
   1925   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
   1926                    SDValue *Operands, unsigned numOperands,
   1927                    SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
   1928     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
   1929     InitOperands(Ops, Operands, numOperands);
   1930   }
   1931 
   1932   // In the both nodes address is Op1, mask is Op2:
   1933   // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
   1934   // MaskedStoreSDNode (Chain, ptr, mask, data)
   1935   // Mask is a vector of i1 elements
   1936   const SDValue &getBasePtr() const { return getOperand(1); }
   1937   const SDValue &getMask() const    { return getOperand(2); }
   1938 
   1939   static bool classof(const SDNode *N) {
   1940     return N->getOpcode() == ISD::MLOAD ||
   1941            N->getOpcode() == ISD::MSTORE;
   1942   }
   1943 };
   1944 
   1945 /// This class is used to represent an MLOAD node
   1946 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
   1947 public:
   1948   friend class SelectionDAG;
   1949   MaskedLoadSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
   1950                    unsigned numOperands, SDVTList VTs, ISD::LoadExtType ETy,
   1951                    EVT MemVT, MachineMemOperand *MMO)
   1952     : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, Operands, numOperands,
   1953                             VTs, MemVT, MMO) {
   1954     SubclassData |= (unsigned short)ETy;
   1955   }
   1956 
   1957   ISD::LoadExtType getExtensionType() const {
   1958     return ISD::LoadExtType(SubclassData & 3);
   1959   }
   1960   const SDValue &getSrc0() const { return getOperand(3); }
   1961   static bool classof(const SDNode *N) {
   1962     return N->getOpcode() == ISD::MLOAD;
   1963   }
   1964 };
   1965 
   1966 /// This class is used to represent an MSTORE node
   1967 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
   1968 
   1969 public:
   1970   friend class SelectionDAG;
   1971   MaskedStoreSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
   1972                     unsigned numOperands, SDVTList VTs, bool isTrunc, EVT MemVT,
   1973                     MachineMemOperand *MMO)
   1974     : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, Operands, numOperands,
   1975                             VTs, MemVT, MMO) {
   1976       SubclassData |= (unsigned short)isTrunc;
   1977   }
   1978   /// Return true if the op does a truncation before store.
   1979   /// For integers this is the same as doing a TRUNCATE and storing the result.
   1980   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   1981   bool isTruncatingStore() const { return SubclassData & 1; }
   1982 
   1983   const SDValue &getValue() const { return getOperand(3); }
   1984 
   1985   static bool classof(const SDNode *N) {
   1986     return N->getOpcode() == ISD::MSTORE;
   1987   }
   1988 };
   1989 
   1990 /// An SDNode that represents everything that will be needed
   1991 /// to construct a MachineInstr. These nodes are created during the
   1992 /// instruction selection proper phase.
   1993 class MachineSDNode : public SDNode {
   1994 public:
   1995   typedef MachineMemOperand **mmo_iterator;
   1996 
   1997 private:
   1998   friend class SelectionDAG;
   1999   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc DL, SDVTList VTs)
   2000     : SDNode(Opc, Order, DL, VTs), MemRefs(nullptr), MemRefsEnd(nullptr) {}
   2001 
   2002   /// Operands for this instruction, if they fit here. If
   2003   /// they don't, this field is unused.
   2004   SDUse LocalOperands[4];
   2005 
   2006   /// Memory reference descriptions for this instruction.
   2007   mmo_iterator MemRefs;
   2008   mmo_iterator MemRefsEnd;
   2009 
   2010 public:
   2011   mmo_iterator memoperands_begin() const { return MemRefs; }
   2012   mmo_iterator memoperands_end() const { return MemRefsEnd; }
   2013   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
   2014 
   2015   /// Assign this MachineSDNodes's memory reference descriptor
   2016   /// list. This does not transfer ownership.
   2017   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   2018     for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
   2019       assert(*MMI && "Null mem ref detected!");
   2020     MemRefs = NewMemRefs;
   2021     MemRefsEnd = NewMemRefsEnd;
   2022   }
   2023 
   2024   static bool classof(const SDNode *N) {
   2025     return N->isMachineOpcode();
   2026   }
   2027 };
   2028 
   2029 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
   2030                                             SDNode, ptrdiff_t> {
   2031   const SDNode *Node;
   2032   unsigned Operand;
   2033 
   2034   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
   2035 public:
   2036   bool operator==(const SDNodeIterator& x) const {
   2037     return Operand == x.Operand;
   2038   }
   2039   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
   2040 
   2041   pointer operator*() const {
   2042     return Node->getOperand(Operand).getNode();
   2043   }
   2044   pointer operator->() const { return operator*(); }
   2045 
   2046   SDNodeIterator& operator++() {                // Preincrement
   2047     ++Operand;
   2048     return *this;
   2049   }
   2050   SDNodeIterator operator++(int) { // Postincrement
   2051     SDNodeIterator tmp = *this; ++*this; return tmp;
   2052   }
   2053   size_t operator-(SDNodeIterator Other) const {
   2054     assert(Node == Other.Node &&
   2055            "Cannot compare iterators of two different nodes!");
   2056     return Operand - Other.Operand;
   2057   }
   2058 
   2059   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
   2060   static SDNodeIterator end  (const SDNode *N) {
   2061     return SDNodeIterator(N, N->getNumOperands());
   2062   }
   2063 
   2064   unsigned getOperand() const { return Operand; }
   2065   const SDNode *getNode() const { return Node; }
   2066 };
   2067 
   2068 template <> struct GraphTraits<SDNode*> {
   2069   typedef SDNode NodeType;
   2070   typedef SDNodeIterator ChildIteratorType;
   2071   static inline NodeType *getEntryNode(SDNode *N) { return N; }
   2072   static inline ChildIteratorType child_begin(NodeType *N) {
   2073     return SDNodeIterator::begin(N);
   2074   }
   2075   static inline ChildIteratorType child_end(NodeType *N) {
   2076     return SDNodeIterator::end(N);
   2077   }
   2078 };
   2079 
   2080 /// The largest SDNode class.
   2081 typedef AtomicSDNode LargestSDNode;
   2082 
   2083 /// The SDNode class with the greatest alignment requirement.
   2084 typedef GlobalAddressSDNode MostAlignedSDNode;
   2085 
   2086 namespace ISD {
   2087   /// Returns true if the specified node is a non-extending and unindexed load.
   2088   inline bool isNormalLoad(const SDNode *N) {
   2089     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
   2090     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
   2091       Ld->getAddressingMode() == ISD::UNINDEXED;
   2092   }
   2093 
   2094   /// Returns true if the specified node is a non-extending load.
   2095   inline bool isNON_EXTLoad(const SDNode *N) {
   2096     return isa<LoadSDNode>(N) &&
   2097       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
   2098   }
   2099 
   2100   /// Returns true if the specified node is a EXTLOAD.
   2101   inline bool isEXTLoad(const SDNode *N) {
   2102     return isa<LoadSDNode>(N) &&
   2103       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
   2104   }
   2105 
   2106   /// Returns true if the specified node is a SEXTLOAD.
   2107   inline bool isSEXTLoad(const SDNode *N) {
   2108     return isa<LoadSDNode>(N) &&
   2109       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
   2110   }
   2111 
   2112   /// Returns true if the specified node is a ZEXTLOAD.
   2113   inline bool isZEXTLoad(const SDNode *N) {
   2114     return isa<LoadSDNode>(N) &&
   2115       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
   2116   }
   2117 
   2118   /// Returns true if the specified node is an unindexed load.
   2119   inline bool isUNINDEXEDLoad(const SDNode *N) {
   2120     return isa<LoadSDNode>(N) &&
   2121       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2122   }
   2123 
   2124   /// Returns true if the specified node is a non-truncating
   2125   /// and unindexed store.
   2126   inline bool isNormalStore(const SDNode *N) {
   2127     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
   2128     return St && !St->isTruncatingStore() &&
   2129       St->getAddressingMode() == ISD::UNINDEXED;
   2130   }
   2131 
   2132   /// Returns true if the specified node is a non-truncating store.
   2133   inline bool isNON_TRUNCStore(const SDNode *N) {
   2134     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
   2135   }
   2136 
   2137   /// Returns true if the specified node is a truncating store.
   2138   inline bool isTRUNCStore(const SDNode *N) {
   2139     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
   2140   }
   2141 
   2142   /// Returns true if the specified node is an unindexed store.
   2143   inline bool isUNINDEXEDStore(const SDNode *N) {
   2144     return isa<StoreSDNode>(N) &&
   2145       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2146   }
   2147 }
   2148 
   2149 } // end llvm namespace
   2150 
   2151 #endif
   2152