Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file describes how to lower LLVM code to machine code.  This has two
     12 /// main components:
     13 ///
     14 ///  1. Which ValueTypes are natively supported by the target.
     15 ///  2. Which operations are supported for supported ValueTypes.
     16 ///  3. Cost thresholds for alternative implementations of certain operations.
     17 ///
     18 /// In addition it has a few other components, like information about FP
     19 /// immediates.
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #ifndef LLVM_TARGET_TARGETLOWERING_H
     24 #define LLVM_TARGET_TARGETLOWERING_H
     25 
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/CodeGen/DAGCombine.h"
     28 #include "llvm/CodeGen/RuntimeLibcalls.h"
     29 #include "llvm/CodeGen/SelectionDAGNodes.h"
     30 #include "llvm/IR/Attributes.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/InlineAsm.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/MC/MCRegisterInfo.h"
     37 #include "llvm/Target/TargetCallingConv.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include <climits>
     40 #include <map>
     41 #include <vector>
     42 
     43 namespace llvm {
     44   class CallInst;
     45   class CCState;
     46   class FastISel;
     47   class FunctionLoweringInfo;
     48   class ImmutableCallSite;
     49   class IntrinsicInst;
     50   class MachineBasicBlock;
     51   class MachineFunction;
     52   class MachineInstr;
     53   class MachineJumpTableInfo;
     54   class MachineLoop;
     55   class Mangler;
     56   class MCContext;
     57   class MCExpr;
     58   class MCSymbol;
     59   template<typename T> class SmallVectorImpl;
     60   class DataLayout;
     61   class TargetRegisterClass;
     62   class TargetLibraryInfo;
     63   class TargetLoweringObjectFile;
     64   class Value;
     65 
     66   namespace Sched {
     67     enum Preference {
     68       None,             // No preference
     69       Source,           // Follow source order.
     70       RegPressure,      // Scheduling for lowest register pressure.
     71       Hybrid,           // Scheduling for both latency and register pressure.
     72       ILP,              // Scheduling for ILP in low register pressure mode.
     73       VLIW              // Scheduling for VLIW targets.
     74     };
     75   }
     76 
     77 /// This base class for TargetLowering contains the SelectionDAG-independent
     78 /// parts that can be used from the rest of CodeGen.
     79 class TargetLoweringBase {
     80   TargetLoweringBase(const TargetLoweringBase&) = delete;
     81   void operator=(const TargetLoweringBase&) = delete;
     82 
     83 public:
     84   /// This enum indicates whether operations are valid for a target, and if not,
     85   /// what action should be used to make them valid.
     86   enum LegalizeAction {
     87     Legal,      // The target natively supports this operation.
     88     Promote,    // This operation should be executed in a larger type.
     89     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     90     Custom      // Use the LowerOperation hook to implement custom lowering.
     91   };
     92 
     93   /// This enum indicates whether a types are legal for a target, and if not,
     94   /// what action should be used to make them valid.
     95   enum LegalizeTypeAction {
     96     TypeLegal,           // The target natively supports this type.
     97     TypePromoteInteger,  // Replace this integer with a larger one.
     98     TypeExpandInteger,   // Split this integer into two of half the size.
     99     TypeSoftenFloat,     // Convert this float to a same size integer type.
    100     TypeExpandFloat,     // Split this float into two of half the size.
    101     TypeScalarizeVector, // Replace this one-element vector with its element.
    102     TypeSplitVector,     // Split this vector into two of half the size.
    103     TypeWidenVector,     // This vector should be widened into a larger vector.
    104     TypePromoteFloat     // Replace this float with a larger one.
    105   };
    106 
    107   /// LegalizeKind holds the legalization kind that needs to happen to EVT
    108   /// in order to type-legalize it.
    109   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
    110 
    111   /// Enum that describes how the target represents true/false values.
    112   enum BooleanContent {
    113     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    114     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    115     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    116   };
    117 
    118   /// Enum that describes what type of support for selects the target has.
    119   enum SelectSupportKind {
    120     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
    121     ScalarCondVectorVal,  // The target supports selects with a scalar condition
    122                           // and vector values (ex: cmov).
    123     VectorMaskSelect      // The target supports vector selects with a vector
    124                           // mask (ex: x86 blends).
    125   };
    126 
    127   /// Enum that specifies what a AtomicRMWInst is expanded to, if at all. Exists
    128   /// because different targets have different levels of support for these
    129   /// atomic RMW instructions, and also have different options w.r.t. what they should
    130   /// expand to.
    131   enum class AtomicRMWExpansionKind {
    132     None,      // Don't expand the instruction.
    133     LLSC,      // Expand the instruction into loadlinked/storeconditional; used
    134                // by ARM/AArch64. Implies `hasLoadLinkedStoreConditional`
    135                // returns true.
    136     CmpXChg,   // Expand the instruction into cmpxchg; used by at least X86.
    137   };
    138 
    139   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    140     switch (Content) {
    141     case UndefinedBooleanContent:
    142       // Extend by adding rubbish bits.
    143       return ISD::ANY_EXTEND;
    144     case ZeroOrOneBooleanContent:
    145       // Extend by adding zero bits.
    146       return ISD::ZERO_EXTEND;
    147     case ZeroOrNegativeOneBooleanContent:
    148       // Extend by copying the sign bit.
    149       return ISD::SIGN_EXTEND;
    150     }
    151     llvm_unreachable("Invalid content kind");
    152   }
    153 
    154   /// NOTE: The TargetMachine owns TLOF.
    155   explicit TargetLoweringBase(const TargetMachine &TM);
    156   virtual ~TargetLoweringBase() {}
    157 
    158 protected:
    159   /// \brief Initialize all of the actions to default values.
    160   void initActions();
    161 
    162 public:
    163   const TargetMachine &getTargetMachine() const { return TM; }
    164   const DataLayout *getDataLayout() const { return TM.getDataLayout(); }
    165 
    166   bool isBigEndian() const { return !IsLittleEndian; }
    167   bool isLittleEndian() const { return IsLittleEndian; }
    168 
    169   /// Return the pointer type for the given address space, defaults to
    170   /// the pointer type from the data layout.
    171   /// FIXME: The default needs to be removed once all the code is updated.
    172   virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
    173   unsigned getPointerSizeInBits(uint32_t AS = 0) const;
    174   unsigned getPointerTypeSizeInBits(Type *Ty) const;
    175   virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
    176 
    177   EVT getShiftAmountTy(EVT LHSTy) const;
    178 
    179   /// Returns the type to be used for the index operand of:
    180   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
    181   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
    182   virtual MVT getVectorIdxTy() const {
    183     return getPointerTy();
    184   }
    185 
    186   /// Return true if the select operation is expensive for this target.
    187   bool isSelectExpensive() const { return SelectIsExpensive; }
    188 
    189   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
    190     return true;
    191   }
    192 
    193   /// Return true if multiple condition registers are available.
    194   bool hasMultipleConditionRegisters() const {
    195     return HasMultipleConditionRegisters;
    196   }
    197 
    198   /// Return true if the target has BitExtract instructions.
    199   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
    200 
    201   /// Return the preferred vector type legalization action.
    202   virtual TargetLoweringBase::LegalizeTypeAction
    203   getPreferredVectorAction(EVT VT) const {
    204     // The default action for one element vectors is to scalarize
    205     if (VT.getVectorNumElements() == 1)
    206       return TypeScalarizeVector;
    207     // The default action for other vectors is to promote
    208     return TypePromoteInteger;
    209   }
    210 
    211   // There are two general methods for expanding a BUILD_VECTOR node:
    212   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
    213   //     them together.
    214   //  2. Build the vector on the stack and then load it.
    215   // If this function returns true, then method (1) will be used, subject to
    216   // the constraint that all of the necessary shuffles are legal (as determined
    217   // by isShuffleMaskLegal). If this function returns false, then method (2) is
    218   // always used. The vector type, and the number of defined values, are
    219   // provided.
    220   virtual bool
    221   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
    222                                       unsigned DefinedValues) const {
    223     return DefinedValues < 3;
    224   }
    225 
    226   /// Return true if integer divide is usually cheaper than a sequence of
    227   /// several shifts, adds, and multiplies for this target.
    228   bool isIntDivCheap() const { return IntDivIsCheap; }
    229 
    230   /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
    231   bool isFsqrtCheap() const {
    232     return FsqrtIsCheap;
    233   }
    234 
    235   /// Returns true if target has indicated at least one type should be bypassed.
    236   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
    237 
    238   /// Returns map of slow types for division or remainder with corresponding
    239   /// fast types
    240   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
    241     return BypassSlowDivWidths;
    242   }
    243 
    244   /// Return true if pow2 sdiv is cheaper than a chain of sra/srl/add/sra.
    245   bool isPow2SDivCheap() const { return Pow2SDivIsCheap; }
    246 
    247   /// Return true if Flow Control is an expensive operation that should be
    248   /// avoided.
    249   bool isJumpExpensive() const { return JumpIsExpensive; }
    250 
    251   /// Return true if selects are only cheaper than branches if the branch is
    252   /// unlikely to be predicted right.
    253   bool isPredictableSelectExpensive() const {
    254     return PredictableSelectIsExpensive;
    255   }
    256 
    257   /// isLoadBitCastBeneficial() - Return true if the following transform
    258   /// is beneficial.
    259   /// fold (conv (load x)) -> (load (conv*)x)
    260   /// On architectures that don't natively support some vector loads efficiently,
    261   /// casting the load to a smaller vector of larger types and loading
    262   /// is more efficient, however, this can be undone by optimizations in
    263   /// dag combiner.
    264   virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const {
    265     return true;
    266   }
    267 
    268   /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
    269   virtual bool isCheapToSpeculateCttz() const {
    270     return false;
    271   }
    272 
    273   /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
    274   virtual bool isCheapToSpeculateCtlz() const {
    275     return false;
    276   }
    277 
    278   /// \brief Return if the target supports combining a
    279   /// chain like:
    280   /// \code
    281   ///   %andResult = and %val1, #imm-with-one-bit-set;
    282   ///   %icmpResult = icmp %andResult, 0
    283   ///   br i1 %icmpResult, label %dest1, label %dest2
    284   /// \endcode
    285   /// into a single machine instruction of a form like:
    286   /// \code
    287   ///   brOnBitSet %register, #bitNumber, dest
    288   /// \endcode
    289   bool isMaskAndBranchFoldingLegal() const {
    290     return MaskAndBranchFoldingIsLegal;
    291   }
    292 
    293   /// \brief Return true if the target wants to use the optimization that
    294   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
    295   /// promotedInst1(...(promotedInstN(ext(load)))).
    296   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
    297 
    298   /// Return true if the target can combine store(extractelement VectorTy,
    299   /// Idx).
    300   /// \p Cost[out] gives the cost of that transformation when this is true.
    301   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
    302                                          unsigned &Cost) const {
    303     return false;
    304   }
    305 
    306   /// Return true if target supports floating point exceptions.
    307   bool hasFloatingPointExceptions() const {
    308     return HasFloatingPointExceptions;
    309   }
    310 
    311   /// Return true if target always beneficiates from combining into FMA for a
    312   /// given value type. This must typically return false on targets where FMA
    313   /// takes more cycles to execute than FADD.
    314   virtual bool enableAggressiveFMAFusion(EVT VT) const {
    315     return false;
    316   }
    317 
    318   /// Return the ValueType of the result of SETCC operations.
    319   virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
    320 
    321   /// Return the ValueType for comparison libcalls. Comparions libcalls include
    322   /// floating point comparion calls, and Ordered/Unordered check calls on
    323   /// floating point numbers.
    324   virtual
    325   MVT::SimpleValueType getCmpLibcallReturnType() const;
    326 
    327   /// For targets without i1 registers, this gives the nature of the high-bits
    328   /// of boolean values held in types wider than i1.
    329   ///
    330   /// "Boolean values" are special true/false values produced by nodes like
    331   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    332   /// Not to be confused with general values promoted from i1.  Some cpus
    333   /// distinguish between vectors of boolean and scalars; the isVec parameter
    334   /// selects between the two kinds.  For example on X86 a scalar boolean should
    335   /// be zero extended from i1, while the elements of a vector of booleans
    336   /// should be sign extended from i1.
    337   ///
    338   /// Some cpus also treat floating point types the same way as they treat
    339   /// vectors instead of the way they treat scalars.
    340   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
    341     if (isVec)
    342       return BooleanVectorContents;
    343     return isFloat ? BooleanFloatContents : BooleanContents;
    344   }
    345 
    346   BooleanContent getBooleanContents(EVT Type) const {
    347     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
    348   }
    349 
    350   /// Return target scheduling preference.
    351   Sched::Preference getSchedulingPreference() const {
    352     return SchedPreferenceInfo;
    353   }
    354 
    355   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
    356   /// for different nodes. This function returns the preference (or none) for
    357   /// the given node.
    358   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    359     return Sched::None;
    360   }
    361 
    362   /// Return the register class that should be used for the specified value
    363   /// type.
    364   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
    365     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    366     assert(RC && "This value type is not natively supported!");
    367     return RC;
    368   }
    369 
    370   /// Return the 'representative' register class for the specified value
    371   /// type.
    372   ///
    373   /// The 'representative' register class is the largest legal super-reg
    374   /// register class for the register class of the value type.  For example, on
    375   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
    376   /// register class is GR64 on x86_64.
    377   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
    378     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
    379     return RC;
    380   }
    381 
    382   /// Return the cost of the 'representative' register class for the specified
    383   /// value type.
    384   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
    385     return RepRegClassCostForVT[VT.SimpleTy];
    386   }
    387 
    388   /// Return true if the target has native support for the specified value type.
    389   /// This means that it has a register that directly holds it without
    390   /// promotions or expansions.
    391   bool isTypeLegal(EVT VT) const {
    392     assert(!VT.isSimple() ||
    393            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    394     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
    395   }
    396 
    397   class ValueTypeActionImpl {
    398     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    399     /// that indicates how instruction selection should deal with the type.
    400     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
    401 
    402   public:
    403     ValueTypeActionImpl() {
    404       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
    405     }
    406 
    407     LegalizeTypeAction getTypeAction(MVT VT) const {
    408       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
    409     }
    410 
    411     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
    412       unsigned I = VT.SimpleTy;
    413       ValueTypeActions[I] = Action;
    414     }
    415   };
    416 
    417   const ValueTypeActionImpl &getValueTypeActions() const {
    418     return ValueTypeActions;
    419   }
    420 
    421   /// Return how we should legalize values of this type, either it is already
    422   /// legal (return 'Legal') or we need to promote it to a larger type (return
    423   /// 'Promote'), or we need to expand it into multiple registers of smaller
    424   /// integer type (return 'Expand').  'Custom' is not an option.
    425   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    426     return getTypeConversion(Context, VT).first;
    427   }
    428   LegalizeTypeAction getTypeAction(MVT VT) const {
    429     return ValueTypeActions.getTypeAction(VT);
    430   }
    431 
    432   /// For types supported by the target, this is an identity function.  For
    433   /// types that must be promoted to larger types, this returns the larger type
    434   /// to promote to.  For integer types that are larger than the largest integer
    435   /// register, this contains one step in the expansion to get to the smaller
    436   /// register. For illegal floating point types, this returns the integer type
    437   /// to transform to.
    438   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    439     return getTypeConversion(Context, VT).second;
    440   }
    441 
    442   /// For types supported by the target, this is an identity function.  For
    443   /// types that must be expanded (i.e. integer types that are larger than the
    444   /// largest integer register or illegal floating point types), this returns
    445   /// the largest legal type it will be expanded to.
    446   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    447     assert(!VT.isVector());
    448     while (true) {
    449       switch (getTypeAction(Context, VT)) {
    450       case TypeLegal:
    451         return VT;
    452       case TypeExpandInteger:
    453         VT = getTypeToTransformTo(Context, VT);
    454         break;
    455       default:
    456         llvm_unreachable("Type is not legal nor is it to be expanded!");
    457       }
    458     }
    459   }
    460 
    461   /// Vector types are broken down into some number of legal first class types.
    462   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
    463   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
    464   /// turns into 4 EVT::i32 values with both PPC and X86.
    465   ///
    466   /// This method returns the number of registers needed, and the VT for each
    467   /// register.  It also returns the VT and quantity of the intermediate values
    468   /// before they are promoted/expanded.
    469   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    470                                   EVT &IntermediateVT,
    471                                   unsigned &NumIntermediates,
    472                                   MVT &RegisterVT) const;
    473 
    474   struct IntrinsicInfo {
    475     unsigned     opc;         // target opcode
    476     EVT          memVT;       // memory VT
    477     const Value* ptrVal;      // value representing memory location
    478     int          offset;      // offset off of ptrVal
    479     unsigned     size;        // the size of the memory location
    480                               // (taken from memVT if zero)
    481     unsigned     align;       // alignment
    482     bool         vol;         // is volatile?
    483     bool         readMem;     // reads memory?
    484     bool         writeMem;    // writes memory?
    485 
    486     IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
    487                       vol(false), readMem(false), writeMem(false) {}
    488   };
    489 
    490   /// Given an intrinsic, checks if on the target the intrinsic will need to map
    491   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    492   /// true and store the intrinsic information into the IntrinsicInfo that was
    493   /// passed to the function.
    494   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
    495                                   unsigned /*Intrinsic*/) const {
    496     return false;
    497   }
    498 
    499   /// Returns true if the target can instruction select the specified FP
    500   /// immediate natively. If false, the legalizer will materialize the FP
    501   /// immediate as a load from a constant pool.
    502   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    503     return false;
    504   }
    505 
    506   /// Targets can use this to indicate that they only support *some*
    507   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
    508   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
    509   /// legal.
    510   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    511                                   EVT /*VT*/) const {
    512     return true;
    513   }
    514 
    515   /// Returns true if the operation can trap for the value type.
    516   ///
    517   /// VT must be a legal type. By default, we optimistically assume most
    518   /// operations don't trap except for divide and remainder.
    519   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    520 
    521   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
    522   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
    523   /// a VAND with a constant pool entry.
    524   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    525                                       EVT /*VT*/) const {
    526     return false;
    527   }
    528 
    529   /// Return how this operation should be treated: either it is legal, needs to
    530   /// be promoted to a larger size, needs to be expanded to some other code
    531   /// sequence, or the target has a custom expander for it.
    532   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    533     if (VT.isExtended()) return Expand;
    534     // If a target-specific SDNode requires legalization, require the target
    535     // to provide custom legalization for it.
    536     if (Op > array_lengthof(OpActions[0])) return Custom;
    537     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
    538     return (LegalizeAction)OpActions[I][Op];
    539   }
    540 
    541   /// Return true if the specified operation is legal on this target or can be
    542   /// made legal with custom lowering. This is used to help guide high-level
    543   /// lowering decisions.
    544   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    545     return (VT == MVT::Other || isTypeLegal(VT)) &&
    546       (getOperationAction(Op, VT) == Legal ||
    547        getOperationAction(Op, VT) == Custom);
    548   }
    549 
    550   /// Return true if the specified operation is legal on this target or can be
    551   /// made legal using promotion. This is used to help guide high-level lowering
    552   /// decisions.
    553   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
    554     return (VT == MVT::Other || isTypeLegal(VT)) &&
    555       (getOperationAction(Op, VT) == Legal ||
    556        getOperationAction(Op, VT) == Promote);
    557   }
    558 
    559   /// Return true if the specified operation is illegal on this target or
    560   /// unlikely to be made legal with custom lowering. This is used to help guide
    561   /// high-level lowering decisions.
    562   bool isOperationExpand(unsigned Op, EVT VT) const {
    563     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
    564   }
    565 
    566   /// Return true if the specified operation is legal on this target.
    567   bool isOperationLegal(unsigned Op, EVT VT) const {
    568     return (VT == MVT::Other || isTypeLegal(VT)) &&
    569            getOperationAction(Op, VT) == Legal;
    570   }
    571 
    572   /// Return how this load with extension should be treated: either it is legal,
    573   /// needs to be promoted to a larger size, needs to be expanded to some other
    574   /// code sequence, or the target has a custom expander for it.
    575   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    576     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    577     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    578     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    579     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
    580            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
    581     return (LegalizeAction)LoadExtActions[ValI][MemI][ExtType];
    582   }
    583 
    584   /// Return true if the specified load with extension is legal on this target.
    585   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    586     return ValVT.isSimple() && MemVT.isSimple() &&
    587       getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
    588   }
    589 
    590   /// Return true if the specified load with extension is legal or custom
    591   /// on this target.
    592   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    593     return ValVT.isSimple() && MemVT.isSimple() &&
    594       (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
    595        getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
    596   }
    597 
    598   /// Return how this store with truncation should be treated: either it is
    599   /// legal, needs to be promoted to a larger size, needs to be expanded to some
    600   /// other code sequence, or the target has a custom expander for it.
    601   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    602     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    603     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    604     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    605     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
    606            "Table isn't big enough!");
    607     return (LegalizeAction)TruncStoreActions[ValI][MemI];
    608   }
    609 
    610   /// Return true if the specified store with truncation is legal on this
    611   /// target.
    612   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    613     return isTypeLegal(ValVT) && MemVT.isSimple() &&
    614       getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
    615   }
    616 
    617   /// Return how the indexed load should be treated: either it is legal, needs
    618   /// to be promoted to a larger size, needs to be expanded to some other code
    619   /// sequence, or the target has a custom expander for it.
    620   LegalizeAction
    621   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
    622     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
    623            "Table isn't big enough!");
    624     unsigned Ty = (unsigned)VT.SimpleTy;
    625     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    626   }
    627 
    628   /// Return true if the specified indexed load is legal on this target.
    629   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    630     return VT.isSimple() &&
    631       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
    632        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
    633   }
    634 
    635   /// Return how the indexed store should be treated: either it is legal, needs
    636   /// to be promoted to a larger size, needs to be expanded to some other code
    637   /// sequence, or the target has a custom expander for it.
    638   LegalizeAction
    639   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
    640     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
    641            "Table isn't big enough!");
    642     unsigned Ty = (unsigned)VT.SimpleTy;
    643     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    644   }
    645 
    646   /// Return true if the specified indexed load is legal on this target.
    647   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    648     return VT.isSimple() &&
    649       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
    650        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
    651   }
    652 
    653   /// Return how the condition code should be treated: either it is legal, needs
    654   /// to be expanded to some other code sequence, or the target has a custom
    655   /// expander for it.
    656   LegalizeAction
    657   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
    658     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    659            ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
    660            "Table isn't big enough!");
    661     // See setCondCodeAction for how this is encoded.
    662     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
    663     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
    664     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
    665     assert(Action != Promote && "Can't promote condition code!");
    666     return Action;
    667   }
    668 
    669   /// Return true if the specified condition code is legal on this target.
    670   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
    671     return
    672       getCondCodeAction(CC, VT) == Legal ||
    673       getCondCodeAction(CC, VT) == Custom;
    674   }
    675 
    676 
    677   /// If the action for this operation is to promote, this method returns the
    678   /// ValueType to promote to.
    679   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
    680     assert(getOperationAction(Op, VT) == Promote &&
    681            "This operation isn't promoted!");
    682 
    683     // See if this has an explicit type specified.
    684     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    685              MVT::SimpleValueType>::const_iterator PTTI =
    686       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
    687     if (PTTI != PromoteToType.end()) return PTTI->second;
    688 
    689     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    690            "Cannot autopromote this type, add it with AddPromotedToType.");
    691 
    692     MVT NVT = VT;
    693     do {
    694       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
    695       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    696              "Didn't find type to promote to!");
    697     } while (!isTypeLegal(NVT) ||
    698               getOperationAction(Op, NVT) == Promote);
    699     return NVT;
    700   }
    701 
    702   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
    703   /// operations except for the pointer size.  If AllowUnknown is true, this
    704   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
    705   /// otherwise it will assert.
    706   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
    707     // Lower scalar pointers to native pointer types.
    708     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    709       return getPointerTy(PTy->getAddressSpace());
    710 
    711     if (Ty->isVectorTy()) {
    712       VectorType *VTy = cast<VectorType>(Ty);
    713       Type *Elm = VTy->getElementType();
    714       // Lower vectors of pointers to native pointer types.
    715       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
    716         EVT PointerTy(getPointerTy(PT->getAddressSpace()));
    717         Elm = PointerTy.getTypeForEVT(Ty->getContext());
    718       }
    719 
    720       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
    721                        VTy->getNumElements());
    722     }
    723     return EVT::getEVT(Ty, AllowUnknown);
    724   }
    725 
    726   /// Return the MVT corresponding to this LLVM type. See getValueType.
    727   MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
    728     return getValueType(Ty, AllowUnknown).getSimpleVT();
    729   }
    730 
    731   /// Return the desired alignment for ByVal or InAlloca aggregate function
    732   /// arguments in the caller parameter area.  This is the actual alignment, not
    733   /// its logarithm.
    734   virtual unsigned getByValTypeAlignment(Type *Ty) const;
    735 
    736   /// Return the type of registers that this ValueType will eventually require.
    737   MVT getRegisterType(MVT VT) const {
    738     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    739     return RegisterTypeForVT[VT.SimpleTy];
    740   }
    741 
    742   /// Return the type of registers that this ValueType will eventually require.
    743   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
    744     if (VT.isSimple()) {
    745       assert((unsigned)VT.getSimpleVT().SimpleTy <
    746                 array_lengthof(RegisterTypeForVT));
    747       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    748     }
    749     if (VT.isVector()) {
    750       EVT VT1;
    751       MVT RegisterVT;
    752       unsigned NumIntermediates;
    753       (void)getVectorTypeBreakdown(Context, VT, VT1,
    754                                    NumIntermediates, RegisterVT);
    755       return RegisterVT;
    756     }
    757     if (VT.isInteger()) {
    758       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    759     }
    760     llvm_unreachable("Unsupported extended type!");
    761   }
    762 
    763   /// Return the number of registers that this ValueType will eventually
    764   /// require.
    765   ///
    766   /// This is one for any types promoted to live in larger registers, but may be
    767   /// more than one for types (like i64) that are split into pieces.  For types
    768   /// like i140, which are first promoted then expanded, it is the number of
    769   /// registers needed to hold all the bits of the original type.  For an i140
    770   /// on a 32 bit machine this means 5 registers.
    771   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    772     if (VT.isSimple()) {
    773       assert((unsigned)VT.getSimpleVT().SimpleTy <
    774                 array_lengthof(NumRegistersForVT));
    775       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    776     }
    777     if (VT.isVector()) {
    778       EVT VT1;
    779       MVT VT2;
    780       unsigned NumIntermediates;
    781       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    782     }
    783     if (VT.isInteger()) {
    784       unsigned BitWidth = VT.getSizeInBits();
    785       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    786       return (BitWidth + RegWidth - 1) / RegWidth;
    787     }
    788     llvm_unreachable("Unsupported extended type!");
    789   }
    790 
    791   /// If true, then instruction selection should seek to shrink the FP constant
    792   /// of the specified type to a smaller type in order to save space and / or
    793   /// reduce runtime.
    794   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
    795 
    796   // Return true if it is profitable to reduce the given load node to a smaller
    797   // type.
    798   //
    799   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
    800   virtual bool shouldReduceLoadWidth(SDNode *Load,
    801                                      ISD::LoadExtType ExtTy,
    802                                      EVT NewVT) const {
    803     return true;
    804   }
    805 
    806   /// When splitting a value of the specified type into parts, does the Lo
    807   /// or Hi part come first?  This usually follows the endianness, except
    808   /// for ppcf128, where the Hi part always comes first.
    809   bool hasBigEndianPartOrdering(EVT VT) const {
    810     return isBigEndian() || VT == MVT::ppcf128;
    811   }
    812 
    813   /// If true, the target has custom DAG combine transformations that it can
    814   /// perform for the specified node.
    815   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    816     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    817     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    818   }
    819 
    820   /// \brief Get maximum # of store operations permitted for llvm.memset
    821   ///
    822   /// This function returns the maximum number of store operations permitted
    823   /// to replace a call to llvm.memset. The value is set by the target at the
    824   /// performance threshold for such a replacement. If OptSize is true,
    825   /// return the limit for functions that have OptSize attribute.
    826   unsigned getMaxStoresPerMemset(bool OptSize) const {
    827     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
    828   }
    829 
    830   /// \brief Get maximum # of store operations permitted for llvm.memcpy
    831   ///
    832   /// This function returns the maximum number of store operations permitted
    833   /// to replace a call to llvm.memcpy. The value is set by the target at the
    834   /// performance threshold for such a replacement. If OptSize is true,
    835   /// return the limit for functions that have OptSize attribute.
    836   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    837     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
    838   }
    839 
    840   /// \brief Get maximum # of store operations permitted for llvm.memmove
    841   ///
    842   /// This function returns the maximum number of store operations permitted
    843   /// to replace a call to llvm.memmove. The value is set by the target at the
    844   /// performance threshold for such a replacement. If OptSize is true,
    845   /// return the limit for functions that have OptSize attribute.
    846   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    847     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
    848   }
    849 
    850   /// \brief Determine if the target supports unaligned memory accesses.
    851   ///
    852   /// This function returns true if the target allows unaligned memory accesses
    853   /// of the specified type in the given address space. If true, it also returns
    854   /// whether the unaligned memory access is "fast" in the last argument by
    855   /// reference. This is used, for example, in situations where an array
    856   /// copy/move/set is converted to a sequence of store operations. Its use
    857   /// helps to ensure that such replacements don't generate code that causes an
    858   /// alignment error (trap) on the target machine.
    859   virtual bool allowsMisalignedMemoryAccesses(EVT,
    860                                               unsigned AddrSpace = 0,
    861                                               unsigned Align = 1,
    862                                               bool * /*Fast*/ = nullptr) const {
    863     return false;
    864   }
    865 
    866   /// Returns the target specific optimal type for load and store operations as
    867   /// a result of memset, memcpy, and memmove lowering.
    868   ///
    869   /// If DstAlign is zero that means it's safe to destination alignment can
    870   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
    871   /// a need to check it against alignment requirement, probably because the
    872   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
    873   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
    874   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
    875   /// does not need to be loaded.  It returns EVT::Other if the type should be
    876   /// determined using generic target-independent logic.
    877   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
    878                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
    879                                   bool /*IsMemset*/,
    880                                   bool /*ZeroMemset*/,
    881                                   bool /*MemcpyStrSrc*/,
    882                                   MachineFunction &/*MF*/) const {
    883     return MVT::Other;
    884   }
    885 
    886   /// Returns true if it's safe to use load / store of the specified type to
    887   /// expand memcpy / memset inline.
    888   ///
    889   /// This is mostly true for all types except for some special cases. For
    890   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
    891   /// fstpl which also does type conversion. Note the specified type doesn't
    892   /// have to be legal as the hook is used before type legalization.
    893   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
    894 
    895   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
    896   bool usesUnderscoreSetJmp() const {
    897     return UseUnderscoreSetJmp;
    898   }
    899 
    900   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
    901   bool usesUnderscoreLongJmp() const {
    902     return UseUnderscoreLongJmp;
    903   }
    904 
    905   /// Return integer threshold on number of blocks to use jump tables rather
    906   /// than if sequence.
    907   int getMinimumJumpTableEntries() const {
    908     return MinimumJumpTableEntries;
    909   }
    910 
    911   /// If a physical register, this specifies the register that
    912   /// llvm.savestack/llvm.restorestack should save and restore.
    913   unsigned getStackPointerRegisterToSaveRestore() const {
    914     return StackPointerRegisterToSaveRestore;
    915   }
    916 
    917   /// If a physical register, this returns the register that receives the
    918   /// exception address on entry to a landing pad.
    919   unsigned getExceptionPointerRegister() const {
    920     return ExceptionPointerRegister;
    921   }
    922 
    923   /// If a physical register, this returns the register that receives the
    924   /// exception typeid on entry to a landing pad.
    925   unsigned getExceptionSelectorRegister() const {
    926     return ExceptionSelectorRegister;
    927   }
    928 
    929   /// Returns the target's jmp_buf size in bytes (if never set, the default is
    930   /// 200)
    931   unsigned getJumpBufSize() const {
    932     return JumpBufSize;
    933   }
    934 
    935   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
    936   /// is 0)
    937   unsigned getJumpBufAlignment() const {
    938     return JumpBufAlignment;
    939   }
    940 
    941   /// Return the minimum stack alignment of an argument.
    942   unsigned getMinStackArgumentAlignment() const {
    943     return MinStackArgumentAlignment;
    944   }
    945 
    946   /// Return the minimum function alignment.
    947   unsigned getMinFunctionAlignment() const {
    948     return MinFunctionAlignment;
    949   }
    950 
    951   /// Return the preferred function alignment.
    952   unsigned getPrefFunctionAlignment() const {
    953     return PrefFunctionAlignment;
    954   }
    955 
    956   /// Return the preferred loop alignment.
    957   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
    958     return PrefLoopAlignment;
    959   }
    960 
    961   /// Return whether the DAG builder should automatically insert fences and
    962   /// reduce ordering for atomics.
    963   bool getInsertFencesForAtomic() const {
    964     return InsertFencesForAtomic;
    965   }
    966 
    967   /// Return true if the target stores stack protector cookies at a fixed offset
    968   /// in some non-standard address space, and populates the address space and
    969   /// offset as appropriate.
    970   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
    971                                       unsigned &/*Offset*/) const {
    972     return false;
    973   }
    974 
    975   /// Returns true if a cast between SrcAS and DestAS is a noop.
    976   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
    977     return false;
    978   }
    979 
    980   /// Return true if the pointer arguments to CI should be aligned by aligning
    981   /// the object whose address is being passed. If so then MinSize is set to the
    982   /// minimum size the object must be to be aligned and PrefAlign is set to the
    983   /// preferred alignment.
    984   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
    985                                       unsigned & /*PrefAlign*/) const {
    986     return false;
    987   }
    988 
    989   //===--------------------------------------------------------------------===//
    990   /// \name Helpers for TargetTransformInfo implementations
    991   /// @{
    992 
    993   /// Get the ISD node that corresponds to the Instruction class opcode.
    994   int InstructionOpcodeToISD(unsigned Opcode) const;
    995 
    996   /// Estimate the cost of type-legalization and the legalized type.
    997   std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
    998 
    999   /// @}
   1000 
   1001   //===--------------------------------------------------------------------===//
   1002   /// \name Helpers for atomic expansion.
   1003   /// @{
   1004 
   1005   /// True if AtomicExpandPass should use emitLoadLinked/emitStoreConditional
   1006   /// and expand AtomicCmpXchgInst.
   1007   virtual bool hasLoadLinkedStoreConditional() const { return false; }
   1008 
   1009   /// Perform a load-linked operation on Addr, returning a "Value *" with the
   1010   /// corresponding pointee type. This may entail some non-trivial operations to
   1011   /// truncate or reconstruct types that will be illegal in the backend. See
   1012   /// ARMISelLowering for an example implementation.
   1013   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   1014                                 AtomicOrdering Ord) const {
   1015     llvm_unreachable("Load linked unimplemented on this target");
   1016   }
   1017 
   1018   /// Perform a store-conditional operation to Addr. Return the status of the
   1019   /// store. This should be 0 if the store succeeded, non-zero otherwise.
   1020   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   1021                                       Value *Addr, AtomicOrdering Ord) const {
   1022     llvm_unreachable("Store conditional unimplemented on this target");
   1023   }
   1024 
   1025   /// Inserts in the IR a target-specific intrinsic specifying a fence.
   1026   /// It is called by AtomicExpandPass before expanding an
   1027   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
   1028   /// RMW and CmpXchg set both IsStore and IsLoad to true.
   1029   /// This function should either return a nullptr, or a pointer to an IR-level
   1030   ///   Instruction*. Even complex fence sequences can be represented by a
   1031   ///   single Instruction* through an intrinsic to be lowered later.
   1032   /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
   1033   /// Backends should override this method to produce target-specific intrinsic
   1034   ///   for their fences.
   1035   /// FIXME: Please note that the default implementation here in terms of
   1036   ///   IR-level fences exists for historical/compatibility reasons and is
   1037   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
   1038   ///   consistency. For example, consider the following example:
   1039   /// atomic<int> x = y = 0;
   1040   /// int r1, r2, r3, r4;
   1041   /// Thread 0:
   1042   ///   x.store(1);
   1043   /// Thread 1:
   1044   ///   y.store(1);
   1045   /// Thread 2:
   1046   ///   r1 = x.load();
   1047   ///   r2 = y.load();
   1048   /// Thread 3:
   1049   ///   r3 = y.load();
   1050   ///   r4 = x.load();
   1051   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
   1052   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
   1053   ///  IR-level fences can prevent it.
   1054   /// @{
   1055   virtual Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
   1056           bool IsStore, bool IsLoad) const {
   1057     if (!getInsertFencesForAtomic())
   1058       return nullptr;
   1059 
   1060     if (isAtLeastRelease(Ord) && IsStore)
   1061       return Builder.CreateFence(Ord);
   1062     else
   1063       return nullptr;
   1064   }
   1065 
   1066   virtual Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
   1067           bool IsStore, bool IsLoad) const {
   1068     if (!getInsertFencesForAtomic())
   1069       return nullptr;
   1070 
   1071     if (isAtLeastAcquire(Ord))
   1072       return Builder.CreateFence(Ord);
   1073     else
   1074       return nullptr;
   1075   }
   1076   /// @}
   1077 
   1078   /// Returns true if the given (atomic) store should be expanded by the
   1079   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
   1080   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   1081     return false;
   1082   }
   1083 
   1084   /// Returns true if arguments should be sign-extended in lib calls.
   1085   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
   1086     return IsSigned;
   1087  }
   1088 
   1089   /// Returns true if the given (atomic) load should be expanded by the
   1090   /// IR-level AtomicExpand pass into a load-linked instruction
   1091   /// (through emitLoadLinked()).
   1092   virtual bool shouldExpandAtomicLoadInIR(LoadInst *LI) const { return false; }
   1093 
   1094   /// Returns how the IR-level AtomicExpand pass should expand the given
   1095   /// AtomicRMW, if at all. Default is to never expand.
   1096   virtual AtomicRMWExpansionKind
   1097   shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
   1098     return AtomicRMWExpansionKind::None;
   1099   }
   1100 
   1101   /// On some platforms, an AtomicRMW that never actually modifies the value
   1102   /// (such as fetch_add of 0) can be turned into a fence followed by an
   1103   /// atomic load. This may sound useless, but it makes it possible for the
   1104   /// processor to keep the cacheline shared, dramatically improving
   1105   /// performance. And such idempotent RMWs are useful for implementing some
   1106   /// kinds of locks, see for example (justification + benchmarks):
   1107   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
   1108   /// This method tries doing that transformation, returning the atomic load if
   1109   /// it succeeds, and nullptr otherwise.
   1110   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
   1111   /// another round of expansion.
   1112   virtual LoadInst *lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
   1113     return nullptr;
   1114   }
   1115 
   1116   /// Returns true if we should normalize
   1117   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
   1118   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
   1119   /// that it saves us from materializing N0 and N1 in an integer register.
   1120   /// Targets that are able to perform and/or on flags should return false here.
   1121   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
   1122                                                EVT VT) const {
   1123     // If a target has multiple condition registers, then it likely has logical
   1124     // operations on those registers.
   1125     if (hasMultipleConditionRegisters())
   1126       return false;
   1127     // Only do the transform if the value won't be split into multiple
   1128     // registers.
   1129     LegalizeTypeAction Action = getTypeAction(Context, VT);
   1130     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
   1131       Action != TypeSplitVector;
   1132   }
   1133 
   1134   //===--------------------------------------------------------------------===//
   1135   // TargetLowering Configuration Methods - These methods should be invoked by
   1136   // the derived class constructor to configure this object for the target.
   1137   //
   1138 protected:
   1139   /// Specify how the target extends the result of integer and floating point
   1140   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1141   void setBooleanContents(BooleanContent Ty) {
   1142     BooleanContents = Ty;
   1143     BooleanFloatContents = Ty;
   1144   }
   1145 
   1146   /// Specify how the target extends the result of integer and floating point
   1147   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1148   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
   1149     BooleanContents = IntTy;
   1150     BooleanFloatContents = FloatTy;
   1151   }
   1152 
   1153   /// Specify how the target extends the result of a vector boolean value from a
   1154   /// vector of i1 to a wider type.  See getBooleanContents.
   1155   void setBooleanVectorContents(BooleanContent Ty) {
   1156     BooleanVectorContents = Ty;
   1157   }
   1158 
   1159   /// Specify the target scheduling preference.
   1160   void setSchedulingPreference(Sched::Preference Pref) {
   1161     SchedPreferenceInfo = Pref;
   1162   }
   1163 
   1164   /// Indicate whether this target prefers to use _setjmp to implement
   1165   /// llvm.setjmp or the version without _.  Defaults to false.
   1166   void setUseUnderscoreSetJmp(bool Val) {
   1167     UseUnderscoreSetJmp = Val;
   1168   }
   1169 
   1170   /// Indicate whether this target prefers to use _longjmp to implement
   1171   /// llvm.longjmp or the version without _.  Defaults to false.
   1172   void setUseUnderscoreLongJmp(bool Val) {
   1173     UseUnderscoreLongJmp = Val;
   1174   }
   1175 
   1176   /// Indicate the number of blocks to generate jump tables rather than if
   1177   /// sequence.
   1178   void setMinimumJumpTableEntries(int Val) {
   1179     MinimumJumpTableEntries = Val;
   1180   }
   1181 
   1182   /// If set to a physical register, this specifies the register that
   1183   /// llvm.savestack/llvm.restorestack should save and restore.
   1184   void setStackPointerRegisterToSaveRestore(unsigned R) {
   1185     StackPointerRegisterToSaveRestore = R;
   1186   }
   1187 
   1188   /// If set to a physical register, this sets the register that receives the
   1189   /// exception address on entry to a landing pad.
   1190   void setExceptionPointerRegister(unsigned R) {
   1191     ExceptionPointerRegister = R;
   1192   }
   1193 
   1194   /// If set to a physical register, this sets the register that receives the
   1195   /// exception typeid on entry to a landing pad.
   1196   void setExceptionSelectorRegister(unsigned R) {
   1197     ExceptionSelectorRegister = R;
   1198   }
   1199 
   1200   /// Tells the code generator not to expand operations into sequences that use
   1201   /// the select operations if possible.
   1202   void setSelectIsExpensive(bool isExpensive = true) {
   1203     SelectIsExpensive = isExpensive;
   1204   }
   1205 
   1206   /// Tells the code generator that the target has multiple (allocatable)
   1207   /// condition registers that can be used to store the results of comparisons
   1208   /// for use by selects and conditional branches. With multiple condition
   1209   /// registers, the code generator will not aggressively sink comparisons into
   1210   /// the blocks of their users.
   1211   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
   1212     HasMultipleConditionRegisters = hasManyRegs;
   1213   }
   1214 
   1215   /// Tells the code generator that the target has BitExtract instructions.
   1216   /// The code generator will aggressively sink "shift"s into the blocks of
   1217   /// their users if the users will generate "and" instructions which can be
   1218   /// combined with "shift" to BitExtract instructions.
   1219   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
   1220     HasExtractBitsInsn = hasExtractInsn;
   1221   }
   1222 
   1223   /// Tells the code generator not to expand sequence of operations into a
   1224   /// separate sequences that increases the amount of flow control.
   1225   void setJumpIsExpensive(bool isExpensive = true) {
   1226     JumpIsExpensive = isExpensive;
   1227   }
   1228 
   1229   /// Tells the code generator that integer divide is expensive, and if
   1230   /// possible, should be replaced by an alternate sequence of instructions not
   1231   /// containing an integer divide.
   1232   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
   1233 
   1234   /// Tells the code generator that fsqrt is cheap, and should not be replaced
   1235   /// with an alternative sequence of instructions.
   1236   void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
   1237 
   1238   /// Tells the code generator that this target supports floating point
   1239   /// exceptions and cares about preserving floating point exception behavior.
   1240   void setHasFloatingPointExceptions(bool FPExceptions = true) {
   1241     HasFloatingPointExceptions = FPExceptions;
   1242   }
   1243 
   1244   /// Tells the code generator which bitwidths to bypass.
   1245   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
   1246     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
   1247   }
   1248 
   1249   /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
   1250   /// signed divide by power of two; let the target handle it.
   1251   void setPow2SDivIsCheap(bool isCheap = true) { Pow2SDivIsCheap = isCheap; }
   1252 
   1253   /// Add the specified register class as an available regclass for the
   1254   /// specified value type. This indicates the selector can handle values of
   1255   /// that class natively.
   1256   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
   1257     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
   1258     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1259     RegClassForVT[VT.SimpleTy] = RC;
   1260   }
   1261 
   1262   /// Remove all register classes.
   1263   void clearRegisterClasses() {
   1264     memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
   1265 
   1266     AvailableRegClasses.clear();
   1267   }
   1268 
   1269   /// \brief Remove all operation actions.
   1270   void clearOperationActions() {
   1271   }
   1272 
   1273   /// Return the largest legal super-reg register class of the register class
   1274   /// for the specified type and its associated "cost".
   1275   virtual std::pair<const TargetRegisterClass *, uint8_t>
   1276   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
   1277 
   1278   /// Once all of the register classes are added, this allows us to compute
   1279   /// derived properties we expose.
   1280   void computeRegisterProperties(const TargetRegisterInfo *TRI);
   1281 
   1282   /// Indicate that the specified operation does not work with the specified
   1283   /// type and indicate what to do about it.
   1284   void setOperationAction(unsigned Op, MVT VT,
   1285                           LegalizeAction Action) {
   1286     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1287     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
   1288   }
   1289 
   1290   /// Indicate that the specified load with extension does not work with the
   1291   /// specified type and indicate what to do about it.
   1292   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
   1293                         LegalizeAction Action) {
   1294     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
   1295            MemVT.isValid() && "Table isn't big enough!");
   1296     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = (uint8_t)Action;
   1297   }
   1298 
   1299   /// Indicate that the specified truncating store does not work with the
   1300   /// specified type and indicate what to do about it.
   1301   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1302                            LegalizeAction Action) {
   1303     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
   1304     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
   1305   }
   1306 
   1307   /// Indicate that the specified indexed load does or does not work with the
   1308   /// specified type and indicate what to do abort it.
   1309   ///
   1310   /// NOTE: All indexed mode loads are initialized to Expand in
   1311   /// TargetLowering.cpp
   1312   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1313                             LegalizeAction Action) {
   1314     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1315            (unsigned)Action < 0xf && "Table isn't big enough!");
   1316     // Load action are kept in the upper half.
   1317     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1318     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1319   }
   1320 
   1321   /// Indicate that the specified indexed store does or does not work with the
   1322   /// specified type and indicate what to do about it.
   1323   ///
   1324   /// NOTE: All indexed mode stores are initialized to Expand in
   1325   /// TargetLowering.cpp
   1326   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1327                              LegalizeAction Action) {
   1328     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1329            (unsigned)Action < 0xf && "Table isn't big enough!");
   1330     // Store action are kept in the lower half.
   1331     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1332     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1333   }
   1334 
   1335   /// Indicate that the specified condition code is or isn't supported on the
   1336   /// target and indicate what to do about it.
   1337   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1338                          LegalizeAction Action) {
   1339     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
   1340            "Table isn't big enough!");
   1341     /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
   1342     /// value and the upper 27 bits index into the second dimension of the array
   1343     /// to select what 32-bit value to use.
   1344     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
   1345     CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
   1346     CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
   1347   }
   1348 
   1349   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
   1350   /// to trying a larger integer/fp until it can find one that works. If that
   1351   /// default is insufficient, this method can be used by the target to override
   1352   /// the default.
   1353   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1354     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1355   }
   1356 
   1357   /// Targets should invoke this method for each target independent node that
   1358   /// they want to provide a custom DAG combiner for by implementing the
   1359   /// PerformDAGCombine virtual method.
   1360   void setTargetDAGCombine(ISD::NodeType NT) {
   1361     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1362     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1363   }
   1364 
   1365   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
   1366   void setJumpBufSize(unsigned Size) {
   1367     JumpBufSize = Size;
   1368   }
   1369 
   1370   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
   1371   /// 0
   1372   void setJumpBufAlignment(unsigned Align) {
   1373     JumpBufAlignment = Align;
   1374   }
   1375 
   1376   /// Set the target's minimum function alignment (in log2(bytes))
   1377   void setMinFunctionAlignment(unsigned Align) {
   1378     MinFunctionAlignment = Align;
   1379   }
   1380 
   1381   /// Set the target's preferred function alignment.  This should be set if
   1382   /// there is a performance benefit to higher-than-minimum alignment (in
   1383   /// log2(bytes))
   1384   void setPrefFunctionAlignment(unsigned Align) {
   1385     PrefFunctionAlignment = Align;
   1386   }
   1387 
   1388   /// Set the target's preferred loop alignment. Default alignment is zero, it
   1389   /// means the target does not care about loop alignment.  The alignment is
   1390   /// specified in log2(bytes). The target may also override
   1391   /// getPrefLoopAlignment to provide per-loop values.
   1392   void setPrefLoopAlignment(unsigned Align) {
   1393     PrefLoopAlignment = Align;
   1394   }
   1395 
   1396   /// Set the minimum stack alignment of an argument (in log2(bytes)).
   1397   void setMinStackArgumentAlignment(unsigned Align) {
   1398     MinStackArgumentAlignment = Align;
   1399   }
   1400 
   1401   /// Set if the DAG builder should automatically insert fences and reduce the
   1402   /// order of atomic memory operations to Monotonic.
   1403   void setInsertFencesForAtomic(bool fence) {
   1404     InsertFencesForAtomic = fence;
   1405   }
   1406 
   1407 public:
   1408   //===--------------------------------------------------------------------===//
   1409   // Addressing mode description hooks (used by LSR etc).
   1410   //
   1411 
   1412   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
   1413   /// instructions reading the address. This allows as much computation as
   1414   /// possible to be done in the address mode for that operand. This hook lets
   1415   /// targets also pass back when this should be done on intrinsics which
   1416   /// load/store.
   1417   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
   1418                                     SmallVectorImpl<Value*> &/*Ops*/,
   1419                                     Type *&/*AccessTy*/) const {
   1420     return false;
   1421   }
   1422 
   1423   /// This represents an addressing mode of:
   1424   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1425   /// If BaseGV is null,  there is no BaseGV.
   1426   /// If BaseOffs is zero, there is no base offset.
   1427   /// If HasBaseReg is false, there is no base register.
   1428   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1429   /// no scale.
   1430   struct AddrMode {
   1431     GlobalValue *BaseGV;
   1432     int64_t      BaseOffs;
   1433     bool         HasBaseReg;
   1434     int64_t      Scale;
   1435     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1436   };
   1437 
   1438   /// Return true if the addressing mode represented by AM is legal for this
   1439   /// target, for a load/store of the specified type.
   1440   ///
   1441   /// The type may be VoidTy, in which case only return true if the addressing
   1442   /// mode is legal for a load/store of any legal type.  TODO: Handle
   1443   /// pre/postinc as well.
   1444   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
   1445 
   1446   /// \brief Return the cost of the scaling factor used in the addressing mode
   1447   /// represented by AM for this target, for a load/store of the specified type.
   1448   ///
   1449   /// If the AM is supported, the return value must be >= 0.
   1450   /// If the AM is not supported, it returns a negative value.
   1451   /// TODO: Handle pre/postinc as well.
   1452   virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
   1453     // Default: assume that any scaling factor used in a legal AM is free.
   1454     if (isLegalAddressingMode(AM, Ty)) return 0;
   1455     return -1;
   1456   }
   1457 
   1458   /// Return true if the specified immediate is legal icmp immediate, that is
   1459   /// the target has icmp instructions which can compare a register against the
   1460   /// immediate without having to materialize the immediate into a register.
   1461   virtual bool isLegalICmpImmediate(int64_t) const {
   1462     return true;
   1463   }
   1464 
   1465   /// Return true if the specified immediate is legal add immediate, that is the
   1466   /// target has add instructions which can add a register with the immediate
   1467   /// without having to materialize the immediate into a register.
   1468   virtual bool isLegalAddImmediate(int64_t) const {
   1469     return true;
   1470   }
   1471 
   1472   /// Return true if it's significantly cheaper to shift a vector by a uniform
   1473   /// scalar than by an amount which will vary across each lane. On x86, for
   1474   /// example, there is a "psllw" instruction for the former case, but no simple
   1475   /// instruction for a general "a << b" operation on vectors.
   1476   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
   1477     return false;
   1478   }
   1479 
   1480   /// Return true if it's free to truncate a value of type Ty1 to type
   1481   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
   1482   /// by referencing its sub-register AX.
   1483   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1484     return false;
   1485   }
   1486 
   1487   /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
   1488   /// whether a call is in tail position. Typically this means that both results
   1489   /// would be assigned to the same register or stack slot, but it could mean
   1490   /// the target performs adequate checks of its own before proceeding with the
   1491   /// tail call.
   1492   virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1493     return false;
   1494   }
   1495 
   1496   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1497     return false;
   1498   }
   1499 
   1500   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
   1501 
   1502   /// Return true if the extension represented by \p I is free.
   1503   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
   1504   /// this method can use the context provided by \p I to decide
   1505   /// whether or not \p I is free.
   1506   /// This method extends the behavior of the is[Z|FP]ExtFree family.
   1507   /// In other words, if is[Z|FP]Free returns true, then this method
   1508   /// returns true as well. The converse is not true.
   1509   /// The target can perform the adequate checks by overriding isExtFreeImpl.
   1510   /// \pre \p I must be a sign, zero, or fp extension.
   1511   bool isExtFree(const Instruction *I) const {
   1512     switch (I->getOpcode()) {
   1513     case Instruction::FPExt:
   1514       if (isFPExtFree(EVT::getEVT(I->getType())))
   1515         return true;
   1516       break;
   1517     case Instruction::ZExt:
   1518       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
   1519         return true;
   1520       break;
   1521     case Instruction::SExt:
   1522       break;
   1523     default:
   1524       llvm_unreachable("Instruction is not an extension");
   1525     }
   1526     return isExtFreeImpl(I);
   1527   }
   1528 
   1529   /// Return true if any actual instruction that defines a value of type Ty1
   1530   /// implicitly zero-extends the value to Ty2 in the result register.
   1531   ///
   1532   /// This does not necessarily include registers defined in unknown ways, such
   1533   /// as incoming arguments, or copies from unknown virtual registers. Also, if
   1534   /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
   1535   /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
   1536   /// values implicit zero-extend the result out to 64 bits.
   1537   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1538     return false;
   1539   }
   1540 
   1541   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1542     return false;
   1543   }
   1544 
   1545   /// Return true if the target supplies and combines to a paired load
   1546   /// two loaded values of type LoadedType next to each other in memory.
   1547   /// RequiredAlignment gives the minimal alignment constraints that must be met
   1548   /// to be able to select this paired load.
   1549   ///
   1550   /// This information is *not* used to generate actual paired loads, but it is
   1551   /// used to generate a sequence of loads that is easier to combine into a
   1552   /// paired load.
   1553   /// For instance, something like this:
   1554   /// a = load i64* addr
   1555   /// b = trunc i64 a to i32
   1556   /// c = lshr i64 a, 32
   1557   /// d = trunc i64 c to i32
   1558   /// will be optimized into:
   1559   /// b = load i32* addr1
   1560   /// d = load i32* addr2
   1561   /// Where addr1 = addr2 +/- sizeof(i32).
   1562   ///
   1563   /// In other words, unless the target performs a post-isel load combining,
   1564   /// this information should not be provided because it will generate more
   1565   /// loads.
   1566   virtual bool hasPairedLoad(Type * /*LoadedType*/,
   1567                              unsigned & /*RequiredAligment*/) const {
   1568     return false;
   1569   }
   1570 
   1571   virtual bool hasPairedLoad(EVT /*LoadedType*/,
   1572                              unsigned & /*RequiredAligment*/) const {
   1573     return false;
   1574   }
   1575 
   1576   /// Return true if zero-extending the specific node Val to type VT2 is free
   1577   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
   1578   /// because it's folded such as X86 zero-extending loads).
   1579   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
   1580     return isZExtFree(Val.getValueType(), VT2);
   1581   }
   1582 
   1583   /// Return true if an fpext operation is free (for instance, because
   1584   /// single-precision floating-point numbers are implicitly extended to
   1585   /// double-precision).
   1586   virtual bool isFPExtFree(EVT VT) const {
   1587     assert(VT.isFloatingPoint());
   1588     return false;
   1589   }
   1590 
   1591   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
   1592   /// extend node) is profitable.
   1593   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
   1594 
   1595   /// Return true if an fneg operation is free to the point where it is never
   1596   /// worthwhile to replace it with a bitwise operation.
   1597   virtual bool isFNegFree(EVT VT) const {
   1598     assert(VT.isFloatingPoint());
   1599     return false;
   1600   }
   1601 
   1602   /// Return true if an fabs operation is free to the point where it is never
   1603   /// worthwhile to replace it with a bitwise operation.
   1604   virtual bool isFAbsFree(EVT VT) const {
   1605     assert(VT.isFloatingPoint());
   1606     return false;
   1607   }
   1608 
   1609   /// Return true if an FMA operation is faster than a pair of fmul and fadd
   1610   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
   1611   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
   1612   ///
   1613   /// NOTE: This may be called before legalization on types for which FMAs are
   1614   /// not legal, but should return true if those types will eventually legalize
   1615   /// to types that support FMAs. After legalization, it will only be called on
   1616   /// types that support FMAs (via Legal or Custom actions)
   1617   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
   1618     return false;
   1619   }
   1620 
   1621   /// Return true if it's profitable to narrow operations of type VT1 to
   1622   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
   1623   /// i32 to i16.
   1624   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
   1625     return false;
   1626   }
   1627 
   1628   /// \brief Return true if it is beneficial to convert a load of a constant to
   1629   /// just the constant itself.
   1630   /// On some targets it might be more efficient to use a combination of
   1631   /// arithmetic instructions to materialize the constant instead of loading it
   1632   /// from a constant pool.
   1633   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
   1634                                                  Type *Ty) const {
   1635     return false;
   1636   }
   1637 
   1638   /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
   1639   /// with this index. This is needed because EXTRACT_SUBVECTOR usually
   1640   /// has custom lowering that depends on the index of the first element,
   1641   /// and only the target knows which lowering is cheap.
   1642   virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
   1643     return false;
   1644   }
   1645 
   1646   //===--------------------------------------------------------------------===//
   1647   // Runtime Library hooks
   1648   //
   1649 
   1650   /// Rename the default libcall routine name for the specified libcall.
   1651   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1652     LibcallRoutineNames[Call] = Name;
   1653   }
   1654 
   1655   /// Get the libcall routine name for the specified libcall.
   1656   const char *getLibcallName(RTLIB::Libcall Call) const {
   1657     return LibcallRoutineNames[Call];
   1658   }
   1659 
   1660   /// Override the default CondCode to be used to test the result of the
   1661   /// comparison libcall against zero.
   1662   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1663     CmpLibcallCCs[Call] = CC;
   1664   }
   1665 
   1666   /// Get the CondCode that's to be used to test the result of the comparison
   1667   /// libcall against zero.
   1668   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1669     return CmpLibcallCCs[Call];
   1670   }
   1671 
   1672   /// Set the CallingConv that should be used for the specified libcall.
   1673   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1674     LibcallCallingConvs[Call] = CC;
   1675   }
   1676 
   1677   /// Get the CallingConv that should be used for the specified libcall.
   1678   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1679     return LibcallCallingConvs[Call];
   1680   }
   1681 
   1682 private:
   1683   const TargetMachine &TM;
   1684 
   1685   /// True if this is a little endian target.
   1686   bool IsLittleEndian;
   1687 
   1688   /// Tells the code generator not to expand operations into sequences that use
   1689   /// the select operations if possible.
   1690   bool SelectIsExpensive;
   1691 
   1692   /// Tells the code generator that the target has multiple (allocatable)
   1693   /// condition registers that can be used to store the results of comparisons
   1694   /// for use by selects and conditional branches. With multiple condition
   1695   /// registers, the code generator will not aggressively sink comparisons into
   1696   /// the blocks of their users.
   1697   bool HasMultipleConditionRegisters;
   1698 
   1699   /// Tells the code generator that the target has BitExtract instructions.
   1700   /// The code generator will aggressively sink "shift"s into the blocks of
   1701   /// their users if the users will generate "and" instructions which can be
   1702   /// combined with "shift" to BitExtract instructions.
   1703   bool HasExtractBitsInsn;
   1704 
   1705   /// Tells the code generator not to expand integer divides by constants into a
   1706   /// sequence of muls, adds, and shifts.  This is a hack until a real cost
   1707   /// model is in place.  If we ever optimize for size, this will be set to true
   1708   /// unconditionally.
   1709   bool IntDivIsCheap;
   1710 
   1711   // Don't expand fsqrt with an approximation based on the inverse sqrt.
   1712   bool FsqrtIsCheap;
   1713 
   1714   /// Tells the code generator to bypass slow divide or remainder
   1715   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
   1716   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
   1717   /// div/rem when the operands are positive and less than 256.
   1718   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
   1719 
   1720   /// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
   1721   /// signed divide by power of two; let the target handle it.
   1722   bool Pow2SDivIsCheap;
   1723 
   1724   /// Tells the code generator that it shouldn't generate extra flow control
   1725   /// instructions and should attempt to combine flow control instructions via
   1726   /// predication.
   1727   bool JumpIsExpensive;
   1728 
   1729   /// Whether the target supports or cares about preserving floating point
   1730   /// exception behavior.
   1731   bool HasFloatingPointExceptions;
   1732 
   1733   /// This target prefers to use _setjmp to implement llvm.setjmp.
   1734   ///
   1735   /// Defaults to false.
   1736   bool UseUnderscoreSetJmp;
   1737 
   1738   /// This target prefers to use _longjmp to implement llvm.longjmp.
   1739   ///
   1740   /// Defaults to false.
   1741   bool UseUnderscoreLongJmp;
   1742 
   1743   /// Number of blocks threshold to use jump tables.
   1744   int MinimumJumpTableEntries;
   1745 
   1746   /// Information about the contents of the high-bits in boolean values held in
   1747   /// a type wider than i1. See getBooleanContents.
   1748   BooleanContent BooleanContents;
   1749 
   1750   /// Information about the contents of the high-bits in boolean values held in
   1751   /// a type wider than i1. See getBooleanContents.
   1752   BooleanContent BooleanFloatContents;
   1753 
   1754   /// Information about the contents of the high-bits in boolean vector values
   1755   /// when the element type is wider than i1. See getBooleanContents.
   1756   BooleanContent BooleanVectorContents;
   1757 
   1758   /// The target scheduling preference: shortest possible total cycles or lowest
   1759   /// register usage.
   1760   Sched::Preference SchedPreferenceInfo;
   1761 
   1762   /// The size, in bytes, of the target's jmp_buf buffers
   1763   unsigned JumpBufSize;
   1764 
   1765   /// The alignment, in bytes, of the target's jmp_buf buffers
   1766   unsigned JumpBufAlignment;
   1767 
   1768   /// The minimum alignment that any argument on the stack needs to have.
   1769   unsigned MinStackArgumentAlignment;
   1770 
   1771   /// The minimum function alignment (used when optimizing for size, and to
   1772   /// prevent explicitly provided alignment from leading to incorrect code).
   1773   unsigned MinFunctionAlignment;
   1774 
   1775   /// The preferred function alignment (used when alignment unspecified and
   1776   /// optimizing for speed).
   1777   unsigned PrefFunctionAlignment;
   1778 
   1779   /// The preferred loop alignment.
   1780   unsigned PrefLoopAlignment;
   1781 
   1782   /// Whether the DAG builder should automatically insert fences and reduce
   1783   /// ordering for atomics.  (This will be set for for most architectures with
   1784   /// weak memory ordering.)
   1785   bool InsertFencesForAtomic;
   1786 
   1787   /// If set to a physical register, this specifies the register that
   1788   /// llvm.savestack/llvm.restorestack should save and restore.
   1789   unsigned StackPointerRegisterToSaveRestore;
   1790 
   1791   /// If set to a physical register, this specifies the register that receives
   1792   /// the exception address on entry to a landing pad.
   1793   unsigned ExceptionPointerRegister;
   1794 
   1795   /// If set to a physical register, this specifies the register that receives
   1796   /// the exception typeid on entry to a landing pad.
   1797   unsigned ExceptionSelectorRegister;
   1798 
   1799   /// This indicates the default register class to use for each ValueType the
   1800   /// target supports natively.
   1801   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1802   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1803   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1804 
   1805   /// This indicates the "representative" register class to use for each
   1806   /// ValueType the target supports natively. This information is used by the
   1807   /// scheduler to track register pressure. By default, the representative
   1808   /// register class is the largest legal super-reg register class of the
   1809   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
   1810   /// representative class would be GR32.
   1811   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   1812 
   1813   /// This indicates the "cost" of the "representative" register class for each
   1814   /// ValueType. The cost is used by the scheduler to approximate register
   1815   /// pressure.
   1816   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   1817 
   1818   /// For any value types we are promoting or expanding, this contains the value
   1819   /// type that we are changing to.  For Expanded types, this contains one step
   1820   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
   1821   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
   1822   /// the same type (e.g. i32 -> i32).
   1823   MVT TransformToType[MVT::LAST_VALUETYPE];
   1824 
   1825   /// For each operation and each value type, keep a LegalizeAction that
   1826   /// indicates how instruction selection should deal with the operation.  Most
   1827   /// operations are Legal (aka, supported natively by the target), but
   1828   /// operations that are not should be described.  Note that operations on
   1829   /// non-legal value types are not described here.
   1830   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   1831 
   1832   /// For each load extension type and each value type, keep a LegalizeAction
   1833   /// that indicates how instruction selection should deal with a load of a
   1834   /// specific value type and extension type.
   1835   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
   1836                         [ISD::LAST_LOADEXT_TYPE];
   1837 
   1838   /// For each value type pair keep a LegalizeAction that indicates whether a
   1839   /// truncating store of a specific value type and truncating type is legal.
   1840   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   1841 
   1842   /// For each indexed mode and each value type, keep a pair of LegalizeAction
   1843   /// that indicates how instruction selection should deal with the load /
   1844   /// store.
   1845   ///
   1846   /// The first dimension is the value_type for the reference. The second
   1847   /// dimension represents the various modes for load store.
   1848   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   1849 
   1850   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
   1851   /// indicates how instruction selection should deal with the condition code.
   1852   ///
   1853   /// Because each CC action takes up 2 bits, we need to have the array size be
   1854   /// large enough to fit all of the value types. This can be done by rounding
   1855   /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
   1856   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
   1857 
   1858   ValueTypeActionImpl ValueTypeActions;
   1859 
   1860 private:
   1861   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
   1862 
   1863 private:
   1864   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
   1865 
   1866   /// Targets can specify ISD nodes that they would like PerformDAGCombine
   1867   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
   1868   /// array.
   1869   unsigned char
   1870   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   1871 
   1872   /// For operations that must be promoted to a specific type, this holds the
   1873   /// destination type.  This map should be sparse, so don't hold it as an
   1874   /// array.
   1875   ///
   1876   /// Targets add entries to this map with AddPromotedToType(..), clients access
   1877   /// this with getTypeToPromoteTo(..).
   1878   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   1879     PromoteToType;
   1880 
   1881   /// Stores the name each libcall.
   1882   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   1883 
   1884   /// The ISD::CondCode that should be used to test the result of each of the
   1885   /// comparison libcall against zero.
   1886   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   1887 
   1888   /// Stores the CallingConv that should be used for each libcall.
   1889   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   1890 
   1891 protected:
   1892   /// Return true if the extension represented by \p I is free.
   1893   /// \pre \p I is a sign, zero, or fp extension and
   1894   ///      is[Z|FP]ExtFree of the related types is not true.
   1895   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
   1896 
   1897   /// \brief Specify maximum number of store instructions per memset call.
   1898   ///
   1899   /// When lowering \@llvm.memset this field specifies the maximum number of
   1900   /// store operations that may be substituted for the call to memset. Targets
   1901   /// must set this value based on the cost threshold for that target. Targets
   1902   /// should assume that the memset will be done using as many of the largest
   1903   /// store operations first, followed by smaller ones, if necessary, per
   1904   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   1905   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   1906   /// store.  This only applies to setting a constant array of a constant size.
   1907   unsigned MaxStoresPerMemset;
   1908 
   1909   /// Maximum number of stores operations that may be substituted for the call
   1910   /// to memset, used for functions with OptSize attribute.
   1911   unsigned MaxStoresPerMemsetOptSize;
   1912 
   1913   /// \brief Specify maximum bytes of store instructions per memcpy call.
   1914   ///
   1915   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   1916   /// store operations that may be substituted for a call to memcpy. Targets
   1917   /// must set this value based on the cost threshold for that target. Targets
   1918   /// should assume that the memcpy will be done using as many of the largest
   1919   /// store operations first, followed by smaller ones, if necessary, per
   1920   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   1921   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   1922   /// and one 1-byte store. This only applies to copying a constant array of
   1923   /// constant size.
   1924   unsigned MaxStoresPerMemcpy;
   1925 
   1926   /// Maximum number of store operations that may be substituted for a call to
   1927   /// memcpy, used for functions with OptSize attribute.
   1928   unsigned MaxStoresPerMemcpyOptSize;
   1929 
   1930   /// \brief Specify maximum bytes of store instructions per memmove call.
   1931   ///
   1932   /// When lowering \@llvm.memmove this field specifies the maximum number of
   1933   /// store instructions that may be substituted for a call to memmove. Targets
   1934   /// must set this value based on the cost threshold for that target. Targets
   1935   /// should assume that the memmove will be done using as many of the largest
   1936   /// store operations first, followed by smaller ones, if necessary, per
   1937   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   1938   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   1939   /// applies to copying a constant array of constant size.
   1940   unsigned MaxStoresPerMemmove;
   1941 
   1942   /// Maximum number of store instructions that may be substituted for a call to
   1943   /// memmove, used for functions with OpSize attribute.
   1944   unsigned MaxStoresPerMemmoveOptSize;
   1945 
   1946   /// Tells the code generator that select is more expensive than a branch if
   1947   /// the branch is usually predicted right.
   1948   bool PredictableSelectIsExpensive;
   1949 
   1950   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
   1951   /// a mask of a single bit, a compare, and a branch into a single instruction.
   1952   bool MaskAndBranchFoldingIsLegal;
   1953 
   1954   /// \see enableExtLdPromotion.
   1955   bool EnableExtLdPromotion;
   1956 
   1957 protected:
   1958   /// Return true if the value types that can be represented by the specified
   1959   /// register class are all legal.
   1960   bool isLegalRC(const TargetRegisterClass *RC) const;
   1961 
   1962   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   1963   /// sequence of memory operands that is recognized by PrologEpilogInserter.
   1964   MachineBasicBlock *emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const;
   1965 };
   1966 
   1967 /// This class defines information used to lower LLVM code to legal SelectionDAG
   1968 /// operators that the target instruction selector can accept natively.
   1969 ///
   1970 /// This class also defines callbacks that targets must implement to lower
   1971 /// target-specific constructs to SelectionDAG operators.
   1972 class TargetLowering : public TargetLoweringBase {
   1973   TargetLowering(const TargetLowering&) = delete;
   1974   void operator=(const TargetLowering&) = delete;
   1975 
   1976 public:
   1977   /// NOTE: The TargetMachine owns TLOF.
   1978   explicit TargetLowering(const TargetMachine &TM);
   1979 
   1980   /// Returns true by value, base pointer and offset pointer and addressing mode
   1981   /// by reference if the node's address can be legally represented as
   1982   /// pre-indexed load / store address.
   1983   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
   1984                                          SDValue &/*Offset*/,
   1985                                          ISD::MemIndexedMode &/*AM*/,
   1986                                          SelectionDAG &/*DAG*/) const {
   1987     return false;
   1988   }
   1989 
   1990   /// Returns true by value, base pointer and offset pointer and addressing mode
   1991   /// by reference if this node can be combined with a load / store to form a
   1992   /// post-indexed load / store.
   1993   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
   1994                                           SDValue &/*Base*/,
   1995                                           SDValue &/*Offset*/,
   1996                                           ISD::MemIndexedMode &/*AM*/,
   1997                                           SelectionDAG &/*DAG*/) const {
   1998     return false;
   1999   }
   2000 
   2001   /// Return the entry encoding for a jump table in the current function.  The
   2002   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
   2003   virtual unsigned getJumpTableEncoding() const;
   2004 
   2005   virtual const MCExpr *
   2006   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
   2007                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
   2008                             MCContext &/*Ctx*/) const {
   2009     llvm_unreachable("Need to implement this hook if target has custom JTIs");
   2010   }
   2011 
   2012   /// Returns relocation base for the given PIC jumptable.
   2013   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
   2014                                            SelectionDAG &DAG) const;
   2015 
   2016   /// This returns the relocation base for the given PIC jumptable, the same as
   2017   /// getPICJumpTableRelocBase, but as an MCExpr.
   2018   virtual const MCExpr *
   2019   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   2020                                unsigned JTI, MCContext &Ctx) const;
   2021 
   2022   /// Return true if folding a constant offset with the given GlobalAddress is
   2023   /// legal.  It is frequently not legal in PIC relocation models.
   2024   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
   2025 
   2026   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
   2027                             SDValue &Chain) const;
   2028 
   2029   void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
   2030                            SDValue &NewLHS, SDValue &NewRHS,
   2031                            ISD::CondCode &CCCode, SDLoc DL) const;
   2032 
   2033   /// Returns a pair of (return value, chain).
   2034   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
   2035   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
   2036                                           EVT RetVT, const SDValue *Ops,
   2037                                           unsigned NumOps, bool isSigned,
   2038                                           SDLoc dl, bool doesNotReturn = false,
   2039                                           bool isReturnValueUsed = true) const;
   2040 
   2041   //===--------------------------------------------------------------------===//
   2042   // TargetLowering Optimization Methods
   2043   //
   2044 
   2045   /// A convenience struct that encapsulates a DAG, and two SDValues for
   2046   /// returning information from TargetLowering to its clients that want to
   2047   /// combine.
   2048   struct TargetLoweringOpt {
   2049     SelectionDAG &DAG;
   2050     bool LegalTys;
   2051     bool LegalOps;
   2052     SDValue Old;
   2053     SDValue New;
   2054 
   2055     explicit TargetLoweringOpt(SelectionDAG &InDAG,
   2056                                bool LT, bool LO) :
   2057       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
   2058 
   2059     bool LegalTypes() const { return LegalTys; }
   2060     bool LegalOperations() const { return LegalOps; }
   2061 
   2062     bool CombineTo(SDValue O, SDValue N) {
   2063       Old = O;
   2064       New = N;
   2065       return true;
   2066     }
   2067 
   2068     /// Check to see if the specified operand of the specified instruction is a
   2069     /// constant integer.  If so, check to see if there are any bits set in the
   2070     /// constant that are not demanded.  If so, shrink the constant and return
   2071     /// true.
   2072     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
   2073 
   2074     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
   2075     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
   2076     /// generalized for targets with other types of implicit widening casts.
   2077     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
   2078                           SDLoc dl);
   2079   };
   2080 
   2081   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
   2082   /// result of Op are ever used downstream.  If we can use this information to
   2083   /// simplify Op, create a new simplified DAG node and return true, returning
   2084   /// the original and new nodes in Old and New.  Otherwise, analyze the
   2085   /// expression and return a mask of KnownOne and KnownZero bits for the
   2086   /// expression (used to simplify the caller).  The KnownZero/One bits may only
   2087   /// be accurate for those bits in the DemandedMask.
   2088   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
   2089                             APInt &KnownZero, APInt &KnownOne,
   2090                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
   2091 
   2092   /// Determine which of the bits specified in Mask are known to be either zero
   2093   /// or one and return them in the KnownZero/KnownOne bitsets.
   2094   virtual void computeKnownBitsForTargetNode(const SDValue Op,
   2095                                              APInt &KnownZero,
   2096                                              APInt &KnownOne,
   2097                                              const SelectionDAG &DAG,
   2098                                              unsigned Depth = 0) const;
   2099 
   2100   /// This method can be implemented by targets that want to expose additional
   2101   /// information about sign bits to the DAG Combiner.
   2102   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
   2103                                                    const SelectionDAG &DAG,
   2104                                                    unsigned Depth = 0) const;
   2105 
   2106   struct DAGCombinerInfo {
   2107     void *DC;  // The DAG Combiner object.
   2108     CombineLevel Level;
   2109     bool CalledByLegalizer;
   2110   public:
   2111     SelectionDAG &DAG;
   2112 
   2113     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
   2114       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
   2115 
   2116     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
   2117     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
   2118     bool isAfterLegalizeVectorOps() const {
   2119       return Level == AfterLegalizeDAG;
   2120     }
   2121     CombineLevel getDAGCombineLevel() { return Level; }
   2122     bool isCalledByLegalizer() const { return CalledByLegalizer; }
   2123 
   2124     void AddToWorklist(SDNode *N);
   2125     void RemoveFromWorklist(SDNode *N);
   2126     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
   2127     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
   2128     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
   2129 
   2130     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
   2131   };
   2132 
   2133   /// Return if the N is a constant or constant vector equal to the true value
   2134   /// from getBooleanContents().
   2135   bool isConstTrueVal(const SDNode *N) const;
   2136 
   2137   /// Return if the N is a constant or constant vector equal to the false value
   2138   /// from getBooleanContents().
   2139   bool isConstFalseVal(const SDNode *N) const;
   2140 
   2141   /// Try to simplify a setcc built with the specified operands and cc. If it is
   2142   /// unable to simplify it, return a null SDValue.
   2143   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   2144                           ISD::CondCode Cond, bool foldBooleans,
   2145                           DAGCombinerInfo &DCI, SDLoc dl) const;
   2146 
   2147   /// Returns true (and the GlobalValue and the offset) if the node is a
   2148   /// GlobalAddress + offset.
   2149   virtual bool
   2150   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
   2151 
   2152   /// This method will be invoked for all target nodes and for any
   2153   /// target-independent nodes that the target has registered with invoke it
   2154   /// for.
   2155   ///
   2156   /// The semantics are as follows:
   2157   /// Return Value:
   2158   ///   SDValue.Val == 0   - No change was made
   2159   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
   2160   ///   otherwise          - N should be replaced by the returned Operand.
   2161   ///
   2162   /// In addition, methods provided by DAGCombinerInfo may be used to perform
   2163   /// more complex transformations.
   2164   ///
   2165   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
   2166 
   2167   /// Return true if it is profitable to move a following shift through this
   2168   //  node, adjusting any immediate operands as necessary to preserve semantics.
   2169   //  This transformation may not be desirable if it disrupts a particularly
   2170   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
   2171   //  By default, it returns true.
   2172   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
   2173     return true;
   2174   }
   2175 
   2176   /// Return true if the target has native support for the specified value type
   2177   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
   2178   /// i16 is legal, but undesirable since i16 instruction encodings are longer
   2179   /// and some i16 instructions are slow.
   2180   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
   2181     // By default, assume all legal types are desirable.
   2182     return isTypeLegal(VT);
   2183   }
   2184 
   2185   /// Return true if it is profitable for dag combiner to transform a floating
   2186   /// point op of specified opcode to a equivalent op of an integer
   2187   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
   2188   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
   2189                                                  EVT /*VT*/) const {
   2190     return false;
   2191   }
   2192 
   2193   /// This method query the target whether it is beneficial for dag combiner to
   2194   /// promote the specified node. If true, it should return the desired
   2195   /// promotion type by reference.
   2196   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
   2197     return false;
   2198   }
   2199 
   2200   //===--------------------------------------------------------------------===//
   2201   // Lowering methods - These methods must be implemented by targets so that
   2202   // the SelectionDAGBuilder code knows how to lower these.
   2203   //
   2204 
   2205   /// This hook must be implemented to lower the incoming (formal) arguments,
   2206   /// described by the Ins array, into the specified DAG. The implementation
   2207   /// should fill in the InVals array with legal-type argument values, and
   2208   /// return the resulting token chain value.
   2209   ///
   2210   virtual SDValue
   2211     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   2212                          bool /*isVarArg*/,
   2213                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
   2214                          SDLoc /*dl*/, SelectionDAG &/*DAG*/,
   2215                          SmallVectorImpl<SDValue> &/*InVals*/) const {
   2216     llvm_unreachable("Not Implemented");
   2217   }
   2218 
   2219   struct ArgListEntry {
   2220     SDValue Node;
   2221     Type* Ty;
   2222     bool isSExt     : 1;
   2223     bool isZExt     : 1;
   2224     bool isInReg    : 1;
   2225     bool isSRet     : 1;
   2226     bool isNest     : 1;
   2227     bool isByVal    : 1;
   2228     bool isInAlloca : 1;
   2229     bool isReturned : 1;
   2230     uint16_t Alignment;
   2231 
   2232     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   2233       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
   2234       isReturned(false), Alignment(0) { }
   2235 
   2236     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
   2237   };
   2238   typedef std::vector<ArgListEntry> ArgListTy;
   2239 
   2240   /// This structure contains all information that is necessary for lowering
   2241   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
   2242   /// needs to lower a call, and targets will see this struct in their LowerCall
   2243   /// implementation.
   2244   struct CallLoweringInfo {
   2245     SDValue Chain;
   2246     Type *RetTy;
   2247     bool RetSExt           : 1;
   2248     bool RetZExt           : 1;
   2249     bool IsVarArg          : 1;
   2250     bool IsInReg           : 1;
   2251     bool DoesNotReturn     : 1;
   2252     bool IsReturnValueUsed : 1;
   2253 
   2254     // IsTailCall should be modified by implementations of
   2255     // TargetLowering::LowerCall that perform tail call conversions.
   2256     bool IsTailCall;
   2257 
   2258     unsigned NumFixedArgs;
   2259     CallingConv::ID CallConv;
   2260     SDValue Callee;
   2261     ArgListTy Args;
   2262     SelectionDAG &DAG;
   2263     SDLoc DL;
   2264     ImmutableCallSite *CS;
   2265     bool IsPatchPoint;
   2266     SmallVector<ISD::OutputArg, 32> Outs;
   2267     SmallVector<SDValue, 32> OutVals;
   2268     SmallVector<ISD::InputArg, 32> Ins;
   2269 
   2270     CallLoweringInfo(SelectionDAG &DAG)
   2271       : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
   2272         IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
   2273         IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
   2274         DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
   2275 
   2276     CallLoweringInfo &setDebugLoc(SDLoc dl) {
   2277       DL = dl;
   2278       return *this;
   2279     }
   2280 
   2281     CallLoweringInfo &setChain(SDValue InChain) {
   2282       Chain = InChain;
   2283       return *this;
   2284     }
   2285 
   2286     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
   2287                                 SDValue Target, ArgListTy &&ArgsList,
   2288                                 unsigned FixedArgs = -1) {
   2289       RetTy = ResultType;
   2290       Callee = Target;
   2291       CallConv = CC;
   2292       NumFixedArgs =
   2293         (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
   2294       Args = std::move(ArgsList);
   2295       return *this;
   2296     }
   2297 
   2298     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
   2299                                 SDValue Target, ArgListTy &&ArgsList,
   2300                                 ImmutableCallSite &Call) {
   2301       RetTy = ResultType;
   2302 
   2303       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
   2304       DoesNotReturn = Call.doesNotReturn();
   2305       IsVarArg = FTy->isVarArg();
   2306       IsReturnValueUsed = !Call.getInstruction()->use_empty();
   2307       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
   2308       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
   2309 
   2310       Callee = Target;
   2311 
   2312       CallConv = Call.getCallingConv();
   2313       NumFixedArgs = FTy->getNumParams();
   2314       Args = std::move(ArgsList);
   2315 
   2316       CS = &Call;
   2317 
   2318       return *this;
   2319     }
   2320 
   2321     CallLoweringInfo &setInRegister(bool Value = true) {
   2322       IsInReg = Value;
   2323       return *this;
   2324     }
   2325 
   2326     CallLoweringInfo &setNoReturn(bool Value = true) {
   2327       DoesNotReturn = Value;
   2328       return *this;
   2329     }
   2330 
   2331     CallLoweringInfo &setVarArg(bool Value = true) {
   2332       IsVarArg = Value;
   2333       return *this;
   2334     }
   2335 
   2336     CallLoweringInfo &setTailCall(bool Value = true) {
   2337       IsTailCall = Value;
   2338       return *this;
   2339     }
   2340 
   2341     CallLoweringInfo &setDiscardResult(bool Value = true) {
   2342       IsReturnValueUsed = !Value;
   2343       return *this;
   2344     }
   2345 
   2346     CallLoweringInfo &setSExtResult(bool Value = true) {
   2347       RetSExt = Value;
   2348       return *this;
   2349     }
   2350 
   2351     CallLoweringInfo &setZExtResult(bool Value = true) {
   2352       RetZExt = Value;
   2353       return *this;
   2354     }
   2355 
   2356     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
   2357       IsPatchPoint = Value;
   2358       return *this;
   2359     }
   2360 
   2361     ArgListTy &getArgs() {
   2362       return Args;
   2363     }
   2364   };
   2365 
   2366   /// This function lowers an abstract call to a function into an actual call.
   2367   /// This returns a pair of operands.  The first element is the return value
   2368   /// for the function (if RetTy is not VoidTy).  The second element is the
   2369   /// outgoing token chain. It calls LowerCall to do the actual lowering.
   2370   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
   2371 
   2372   /// This hook must be implemented to lower calls into the the specified
   2373   /// DAG. The outgoing arguments to the call are described by the Outs array,
   2374   /// and the values to be returned by the call are described by the Ins
   2375   /// array. The implementation should fill in the InVals array with legal-type
   2376   /// return values from the call, and return the resulting token chain value.
   2377   virtual SDValue
   2378     LowerCall(CallLoweringInfo &/*CLI*/,
   2379               SmallVectorImpl<SDValue> &/*InVals*/) const {
   2380     llvm_unreachable("Not Implemented");
   2381   }
   2382 
   2383   /// Target-specific cleanup for formal ByVal parameters.
   2384   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
   2385 
   2386   /// This hook should be implemented to check whether the return values
   2387   /// described by the Outs array can fit into the return registers.  If false
   2388   /// is returned, an sret-demotion is performed.
   2389   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
   2390                               MachineFunction &/*MF*/, bool /*isVarArg*/,
   2391                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   2392                LLVMContext &/*Context*/) const
   2393   {
   2394     // Return true by default to get preexisting behavior.
   2395     return true;
   2396   }
   2397 
   2398   /// This hook must be implemented to lower outgoing return values, described
   2399   /// by the Outs array, into the specified DAG. The implementation should
   2400   /// return the resulting token chain value.
   2401   virtual SDValue
   2402     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   2403                 bool /*isVarArg*/,
   2404                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   2405                 const SmallVectorImpl<SDValue> &/*OutVals*/,
   2406                 SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
   2407     llvm_unreachable("Not Implemented");
   2408   }
   2409 
   2410   /// Return true if result of the specified node is used by a return node
   2411   /// only. It also compute and return the input chain for the tail call.
   2412   ///
   2413   /// This is used to determine whether it is possible to codegen a libcall as
   2414   /// tail call at legalization time.
   2415   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
   2416     return false;
   2417   }
   2418 
   2419   /// Return true if the target may be able emit the call instruction as a tail
   2420   /// call. This is used by optimization passes to determine if it's profitable
   2421   /// to duplicate return instructions to enable tailcall optimization.
   2422   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
   2423     return false;
   2424   }
   2425 
   2426   /// Return the builtin name for the __builtin___clear_cache intrinsic
   2427   /// Default is to invoke the clear cache library call
   2428   virtual const char * getClearCacheBuiltinName() const {
   2429     return "__clear_cache";
   2430   }
   2431 
   2432   /// Return the register ID of the name passed in. Used by named register
   2433   /// global variables extension. There is no target-independent behaviour
   2434   /// so the default action is to bail.
   2435   virtual unsigned getRegisterByName(const char* RegName, EVT VT) const {
   2436     report_fatal_error("Named registers not implemented for this target");
   2437   }
   2438 
   2439   /// Return the type that should be used to zero or sign extend a
   2440   /// zeroext/signext integer argument or return value.  FIXME: Most C calling
   2441   /// convention requires the return type to be promoted, but this is not true
   2442   /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
   2443   /// calling conventions. The frontend should handle this and include all of
   2444   /// the necessary information.
   2445   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   2446                                        ISD::NodeType /*ExtendKind*/) const {
   2447     EVT MinVT = getRegisterType(Context, MVT::i32);
   2448     return VT.bitsLT(MinVT) ? MinVT : VT;
   2449   }
   2450 
   2451   /// For some targets, an LLVM struct type must be broken down into multiple
   2452   /// simple types, but the calling convention specifies that the entire struct
   2453   /// must be passed in a block of consecutive registers.
   2454   virtual bool
   2455   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
   2456                                             bool isVarArg) const {
   2457     return false;
   2458   }
   2459 
   2460   /// Returns a 0 terminated array of registers that can be safely used as
   2461   /// scratch registers.
   2462   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
   2463     return nullptr;
   2464   }
   2465 
   2466   /// This callback is used to prepare for a volatile or atomic load.
   2467   /// It takes a chain node as input and returns the chain for the load itself.
   2468   ///
   2469   /// Having a callback like this is necessary for targets like SystemZ,
   2470   /// which allows a CPU to reuse the result of a previous load indefinitely,
   2471   /// even if a cache-coherent store is performed by another CPU.  The default
   2472   /// implementation does nothing.
   2473   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
   2474                                               SelectionDAG &DAG) const {
   2475     return Chain;
   2476   }
   2477 
   2478   /// This callback is invoked by the type legalizer to legalize nodes with an
   2479   /// illegal operand type but legal result types.  It replaces the
   2480   /// LowerOperation callback in the type Legalizer.  The reason we can not do
   2481   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
   2482   /// use this callback.
   2483   ///
   2484   /// TODO: Consider merging with ReplaceNodeResults.
   2485   ///
   2486   /// The target places new result values for the node in Results (their number
   2487   /// and types must exactly match those of the original return values of
   2488   /// the node), or leaves Results empty, which indicates that the node is not
   2489   /// to be custom lowered after all.
   2490   /// The default implementation calls LowerOperation.
   2491   virtual void LowerOperationWrapper(SDNode *N,
   2492                                      SmallVectorImpl<SDValue> &Results,
   2493                                      SelectionDAG &DAG) const;
   2494 
   2495   /// This callback is invoked for operations that are unsupported by the
   2496   /// target, which are registered to use 'custom' lowering, and whose defined
   2497   /// values are all legal.  If the target has no operations that require custom
   2498   /// lowering, it need not implement this.  The default implementation of this
   2499   /// aborts.
   2500   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   2501 
   2502   /// This callback is invoked when a node result type is illegal for the
   2503   /// target, and the operation was registered to use 'custom' lowering for that
   2504   /// result type.  The target places new result values for the node in Results
   2505   /// (their number and types must exactly match those of the original return
   2506   /// values of the node), or leaves Results empty, which indicates that the
   2507   /// node is not to be custom lowered after all.
   2508   ///
   2509   /// If the target has no operations that require custom lowering, it need not
   2510   /// implement this.  The default implementation aborts.
   2511   virtual void ReplaceNodeResults(SDNode * /*N*/,
   2512                                   SmallVectorImpl<SDValue> &/*Results*/,
   2513                                   SelectionDAG &/*DAG*/) const {
   2514     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
   2515   }
   2516 
   2517   /// This method returns the name of a target specific DAG node.
   2518   virtual const char *getTargetNodeName(unsigned Opcode) const;
   2519 
   2520   /// This method returns a target specific FastISel object, or null if the
   2521   /// target does not support "fast" ISel.
   2522   virtual FastISel *createFastISel(FunctionLoweringInfo &,
   2523                                    const TargetLibraryInfo *) const {
   2524     return nullptr;
   2525   }
   2526 
   2527 
   2528   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
   2529                                              SelectionDAG &DAG) const;
   2530 
   2531   //===--------------------------------------------------------------------===//
   2532   // Inline Asm Support hooks
   2533   //
   2534 
   2535   /// This hook allows the target to expand an inline asm call to be explicit
   2536   /// llvm code if it wants to.  This is useful for turning simple inline asms
   2537   /// into LLVM intrinsics, which gives the compiler more information about the
   2538   /// behavior of the code.
   2539   virtual bool ExpandInlineAsm(CallInst *) const {
   2540     return false;
   2541   }
   2542 
   2543   enum ConstraintType {
   2544     C_Register,            // Constraint represents specific register(s).
   2545     C_RegisterClass,       // Constraint represents any of register(s) in class.
   2546     C_Memory,              // Memory constraint.
   2547     C_Other,               // Something else.
   2548     C_Unknown              // Unsupported constraint.
   2549   };
   2550 
   2551   enum ConstraintWeight {
   2552     // Generic weights.
   2553     CW_Invalid  = -1,     // No match.
   2554     CW_Okay     = 0,      // Acceptable.
   2555     CW_Good     = 1,      // Good weight.
   2556     CW_Better   = 2,      // Better weight.
   2557     CW_Best     = 3,      // Best weight.
   2558 
   2559     // Well-known weights.
   2560     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   2561     CW_Register     = CW_Good,    // Register operands.
   2562     CW_Memory       = CW_Better,  // Memory operands.
   2563     CW_Constant     = CW_Best,    // Constant operand.
   2564     CW_Default      = CW_Okay     // Default or don't know type.
   2565   };
   2566 
   2567   /// This contains information for each constraint that we are lowering.
   2568   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   2569     /// This contains the actual string for the code, like "m".  TargetLowering
   2570     /// picks the 'best' code from ConstraintInfo::Codes that most closely
   2571     /// matches the operand.
   2572     std::string ConstraintCode;
   2573 
   2574     /// Information about the constraint code, e.g. Register, RegisterClass,
   2575     /// Memory, Other, Unknown.
   2576     TargetLowering::ConstraintType ConstraintType;
   2577 
   2578     /// If this is the result output operand or a clobber, this is null,
   2579     /// otherwise it is the incoming operand to the CallInst.  This gets
   2580     /// modified as the asm is processed.
   2581     Value *CallOperandVal;
   2582 
   2583     /// The ValueType for the operand value.
   2584     MVT ConstraintVT;
   2585 
   2586     /// Return true of this is an input operand that is a matching constraint
   2587     /// like "4".
   2588     bool isMatchingInputConstraint() const;
   2589 
   2590     /// If this is an input matching constraint, this method returns the output
   2591     /// operand it matches.
   2592     unsigned getMatchedOperand() const;
   2593 
   2594     /// Copy constructor for copying from a ConstraintInfo.
   2595     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
   2596         : InlineAsm::ConstraintInfo(std::move(Info)),
   2597           ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
   2598           ConstraintVT(MVT::Other) {}
   2599   };
   2600 
   2601   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   2602 
   2603   /// Split up the constraint string from the inline assembly value into the
   2604   /// specific constraints and their prefixes, and also tie in the associated
   2605   /// operand values.  If this returns an empty vector, and if the constraint
   2606   /// string itself isn't empty, there was an error parsing.
   2607   virtual AsmOperandInfoVector ParseConstraints(const TargetRegisterInfo *TRI,
   2608                                                 ImmutableCallSite CS) const;
   2609 
   2610   /// Examine constraint type and operand type and determine a weight value.
   2611   /// The operand object must already have been set up with the operand type.
   2612   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   2613       AsmOperandInfo &info, int maIndex) const;
   2614 
   2615   /// Examine constraint string and operand type and determine a weight value.
   2616   /// The operand object must already have been set up with the operand type.
   2617   virtual ConstraintWeight getSingleConstraintMatchWeight(
   2618       AsmOperandInfo &info, const char *constraint) const;
   2619 
   2620   /// Determines the constraint code and constraint type to use for the specific
   2621   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2622   /// If the actual operand being passed in is available, it can be passed in as
   2623   /// Op, otherwise an empty SDValue can be passed.
   2624   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2625                                       SDValue Op,
   2626                                       SelectionDAG *DAG = nullptr) const;
   2627 
   2628   /// Given a constraint, return the type of constraint it is for this target.
   2629   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
   2630 
   2631   /// Given a physical register constraint (e.g.  {edx}), return the register
   2632   /// number and the register class for the register.
   2633   ///
   2634   /// Given a register class constraint, like 'r', if this corresponds directly
   2635   /// to an LLVM register class, return a register of 0 and the register class
   2636   /// pointer.
   2637   ///
   2638   /// This should only be used for C_Register constraints.  On error, this
   2639   /// returns a register number of 0 and a null register class pointer.
   2640   virtual std::pair<unsigned, const TargetRegisterClass *>
   2641   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   2642                                const std::string &Constraint, MVT VT) const;
   2643 
   2644   virtual unsigned
   2645   getInlineAsmMemConstraint(const std::string &ConstraintCode) const {
   2646     if (ConstraintCode == "i")
   2647       return InlineAsm::Constraint_i;
   2648     else if (ConstraintCode == "m")
   2649       return InlineAsm::Constraint_m;
   2650     return InlineAsm::Constraint_Unknown;
   2651   }
   2652 
   2653   /// Try to replace an X constraint, which matches anything, with another that
   2654   /// has more specific requirements based on the type of the corresponding
   2655   /// operand.  This returns null if there is no replacement to make.
   2656   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   2657 
   2658   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
   2659   /// add anything to Ops.
   2660   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   2661                                             std::vector<SDValue> &Ops,
   2662                                             SelectionDAG &DAG) const;
   2663 
   2664   //===--------------------------------------------------------------------===//
   2665   // Div utility functions
   2666   //
   2667   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
   2668                          SelectionDAG &DAG) const;
   2669   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2670                     bool IsAfterLegalization,
   2671                     std::vector<SDNode *> *Created) const;
   2672   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2673                     bool IsAfterLegalization,
   2674                     std::vector<SDNode *> *Created) const;
   2675   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   2676                                 SelectionDAG &DAG,
   2677                                 std::vector<SDNode *> *Created) const {
   2678     return SDValue();
   2679   }
   2680 
   2681   /// Indicate whether this target prefers to combine the given number of FDIVs
   2682   /// with the same divisor.
   2683   virtual bool combineRepeatedFPDivisors(unsigned NumUsers) const {
   2684     return false;
   2685   }
   2686 
   2687   /// Hooks for building estimates in place of slower divisions and square
   2688   /// roots.
   2689 
   2690   /// Return a reciprocal square root estimate value for the input operand.
   2691   /// The RefinementSteps output is the number of Newton-Raphson refinement
   2692   /// iterations required to generate a sufficient (though not necessarily
   2693   /// IEEE-754 compliant) estimate for the value type.
   2694   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
   2695   /// algorithm implementation that uses one constant or two constants.
   2696   /// A target may choose to implement its own refinement within this function.
   2697   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   2698   /// any further refinement of the estimate.
   2699   /// An empty SDValue return means no estimate sequence can be created.
   2700   virtual SDValue getRsqrtEstimate(SDValue Operand,
   2701                               DAGCombinerInfo &DCI,
   2702                               unsigned &RefinementSteps,
   2703                               bool &UseOneConstNR) const {
   2704     return SDValue();
   2705   }
   2706 
   2707   /// Return a reciprocal estimate value for the input operand.
   2708   /// The RefinementSteps output is the number of Newton-Raphson refinement
   2709   /// iterations required to generate a sufficient (though not necessarily
   2710   /// IEEE-754 compliant) estimate for the value type.
   2711   /// A target may choose to implement its own refinement within this function.
   2712   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   2713   /// any further refinement of the estimate.
   2714   /// An empty SDValue return means no estimate sequence can be created.
   2715   virtual SDValue getRecipEstimate(SDValue Operand,
   2716                                    DAGCombinerInfo &DCI,
   2717                                    unsigned &RefinementSteps) const {
   2718     return SDValue();
   2719   }
   2720 
   2721   //===--------------------------------------------------------------------===//
   2722   // Legalization utility functions
   2723   //
   2724 
   2725   /// Expand a MUL into two nodes.  One that computes the high bits of
   2726   /// the result and one that computes the low bits.
   2727   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
   2728   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
   2729   ///        if you want to control how low bits are extracted from the LHS.
   2730   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
   2731   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
   2732   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
   2733   /// \returns true if the node has been expanded. false if it has not
   2734   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2735                  SelectionDAG &DAG, SDValue LL = SDValue(),
   2736                  SDValue LH = SDValue(), SDValue RL = SDValue(),
   2737                  SDValue RH = SDValue()) const;
   2738 
   2739   /// Expand float(f32) to SINT(i64) conversion
   2740   /// \param N Node to expand
   2741   /// \param Result output after conversion
   2742   /// \returns True, if the expansion was successful, false otherwise
   2743   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
   2744 
   2745   //===--------------------------------------------------------------------===//
   2746   // Instruction Emitting Hooks
   2747   //
   2748 
   2749   /// This method should be implemented by targets that mark instructions with
   2750   /// the 'usesCustomInserter' flag.  These instructions are special in various
   2751   /// ways, which require special support to insert.  The specified MachineInstr
   2752   /// is created but not inserted into any basic blocks, and this method is
   2753   /// called to expand it into a sequence of instructions, potentially also
   2754   /// creating new basic blocks and control flow.
   2755   /// As long as the returned basic block is different (i.e., we created a new
   2756   /// one), the custom inserter is free to modify the rest of \p MBB.
   2757   virtual MachineBasicBlock *
   2758     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
   2759 
   2760   /// This method should be implemented by targets that mark instructions with
   2761   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
   2762   /// instruction selection by target hooks.  e.g. To fill in optional defs for
   2763   /// ARM 's' setting instructions.
   2764   virtual void
   2765   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
   2766 
   2767   /// If this function returns true, SelectionDAGBuilder emits a
   2768   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
   2769   virtual bool useLoadStackGuardNode() const {
   2770     return false;
   2771   }
   2772 };
   2773 
   2774 /// Given an LLVM IR type and return type attributes, compute the return value
   2775 /// EVTs and flags, and optionally also the offsets, if the return value is
   2776 /// being lowered to memory.
   2777 void GetReturnInfo(Type* ReturnType, AttributeSet attr,
   2778                    SmallVectorImpl<ISD::OutputArg> &Outs,
   2779                    const TargetLowering &TLI);
   2780 
   2781 } // end llvm namespace
   2782 
   2783 #endif
   2784