Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/IR/LLVMContext.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/MC/MCExpr.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Target/TargetLoweringObjectFile.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 #include <cctype>
     36 using namespace llvm;
     37 
     38 /// NOTE: The TargetMachine owns TLOF.
     39 TargetLowering::TargetLowering(const TargetMachine &tm)
     40   : TargetLoweringBase(tm) {}
     41 
     42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
     43   return nullptr;
     44 }
     45 
     46 /// Check whether a given call node is in tail position within its function. If
     47 /// so, it sets Chain to the input chain of the tail call.
     48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
     49                                           SDValue &Chain) const {
     50   const Function *F = DAG.getMachineFunction().getFunction();
     51 
     52   // Conservatively require the attributes of the call to match those of
     53   // the return. Ignore noalias because it doesn't affect the call sequence.
     54   AttributeSet CallerAttrs = F->getAttributes();
     55   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
     56       .removeAttribute(Attribute::NoAlias).hasAttributes())
     57     return false;
     58 
     59   // It's not safe to eliminate the sign / zero extension of the return value.
     60   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
     61       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
     62     return false;
     63 
     64   // Check if the only use is a function return node.
     65   return isUsedByReturnOnly(Node, Chain);
     66 }
     67 
     68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
     69 /// and called function attributes.
     70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
     71                                                  unsigned AttrIdx) {
     72   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
     73   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
     74   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
     75   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
     76   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
     77   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
     78   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
     79   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
     80   Alignment  = CS->getParamAlignment(AttrIdx);
     81 }
     82 
     83 /// Generate a libcall taking the given operands as arguments and returning a
     84 /// result of type RetVT.
     85 std::pair<SDValue, SDValue>
     86 TargetLowering::makeLibCall(SelectionDAG &DAG,
     87                             RTLIB::Libcall LC, EVT RetVT,
     88                             const SDValue *Ops, unsigned NumOps,
     89                             bool isSigned, SDLoc dl,
     90                             bool doesNotReturn,
     91                             bool isReturnValueUsed) const {
     92   TargetLowering::ArgListTy Args;
     93   Args.reserve(NumOps);
     94 
     95   TargetLowering::ArgListEntry Entry;
     96   for (unsigned i = 0; i != NumOps; ++i) {
     97     Entry.Node = Ops[i];
     98     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
     99     Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
    100     Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
    101     Args.push_back(Entry);
    102   }
    103   if (LC == RTLIB::UNKNOWN_LIBCALL)
    104     report_fatal_error("Unsupported library call operation!");
    105   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
    106 
    107   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
    108   TargetLowering::CallLoweringInfo CLI(DAG);
    109   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
    110   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
    111     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
    112     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
    113     .setSExtResult(signExtend).setZExtResult(!signExtend);
    114   return LowerCallTo(CLI);
    115 }
    116 
    117 
    118 /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
    119 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
    120 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
    121                                          SDValue &NewLHS, SDValue &NewRHS,
    122                                          ISD::CondCode &CCCode,
    123                                          SDLoc dl) const {
    124   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
    125          && "Unsupported setcc type!");
    126 
    127   // Expand into one or more soft-fp libcall(s).
    128   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
    129   switch (CCCode) {
    130   case ISD::SETEQ:
    131   case ISD::SETOEQ:
    132     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    133           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    134     break;
    135   case ISD::SETNE:
    136   case ISD::SETUNE:
    137     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
    138           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
    139     break;
    140   case ISD::SETGE:
    141   case ISD::SETOGE:
    142     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    143           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    144     break;
    145   case ISD::SETLT:
    146   case ISD::SETOLT:
    147     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    148           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    149     break;
    150   case ISD::SETLE:
    151   case ISD::SETOLE:
    152     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    153           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    154     break;
    155   case ISD::SETGT:
    156   case ISD::SETOGT:
    157     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    158           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    159     break;
    160   case ISD::SETUO:
    161     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    162           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    163     break;
    164   case ISD::SETO:
    165     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
    166           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
    167     break;
    168   default:
    169     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    170           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    171     switch (CCCode) {
    172     case ISD::SETONE:
    173       // SETONE = SETOLT | SETOGT
    174       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    175             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    176       // Fallthrough
    177     case ISD::SETUGT:
    178       LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    179             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    180       break;
    181     case ISD::SETUGE:
    182       LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    183             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    184       break;
    185     case ISD::SETULT:
    186       LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    187             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    188       break;
    189     case ISD::SETULE:
    190       LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    191             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    192       break;
    193     case ISD::SETUEQ:
    194       LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    195             (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    196       break;
    197     default: llvm_unreachable("Do not know how to soften this setcc!");
    198     }
    199   }
    200 
    201   // Use the target specific return value for comparions lib calls.
    202   EVT RetVT = getCmpLibcallReturnType();
    203   SDValue Ops[2] = { NewLHS, NewRHS };
    204   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
    205                        dl).first;
    206   NewRHS = DAG.getConstant(0, RetVT);
    207   CCCode = getCmpLibcallCC(LC1);
    208   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
    209     SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
    210                               getSetCCResultType(*DAG.getContext(), RetVT),
    211                               NewLHS, NewRHS, DAG.getCondCode(CCCode));
    212     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
    213                          dl).first;
    214     NewLHS = DAG.getNode(ISD::SETCC, dl,
    215                          getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
    216                          NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
    217     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
    218     NewRHS = SDValue();
    219   }
    220 }
    221 
    222 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    223 /// current function.  The returned value is a member of the
    224 /// MachineJumpTableInfo::JTEntryKind enum.
    225 unsigned TargetLowering::getJumpTableEncoding() const {
    226   // In non-pic modes, just use the address of a block.
    227   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
    228     return MachineJumpTableInfo::EK_BlockAddress;
    229 
    230   // In PIC mode, if the target supports a GPRel32 directive, use it.
    231   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
    232     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
    233 
    234   // Otherwise, use a label difference.
    235   return MachineJumpTableInfo::EK_LabelDifference32;
    236 }
    237 
    238 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
    239                                                  SelectionDAG &DAG) const {
    240   // If our PIC model is GP relative, use the global offset table as the base.
    241   unsigned JTEncoding = getJumpTableEncoding();
    242 
    243   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
    244       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
    245     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
    246 
    247   return Table;
    248 }
    249 
    250 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    251 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    252 /// MCExpr.
    253 const MCExpr *
    254 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    255                                              unsigned JTI,MCContext &Ctx) const{
    256   // The normal PIC reloc base is the label at the start of the jump table.
    257   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
    258 }
    259 
    260 bool
    261 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    262   // Assume that everything is safe in static mode.
    263   if (getTargetMachine().getRelocationModel() == Reloc::Static)
    264     return true;
    265 
    266   // In dynamic-no-pic mode, assume that known defined values are safe.
    267   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
    268       GA &&
    269       !GA->getGlobal()->isDeclaration() &&
    270       !GA->getGlobal()->isWeakForLinker())
    271     return true;
    272 
    273   // Otherwise assume nothing is safe.
    274   return false;
    275 }
    276 
    277 //===----------------------------------------------------------------------===//
    278 //  Optimization Methods
    279 //===----------------------------------------------------------------------===//
    280 
    281 /// ShrinkDemandedConstant - Check to see if the specified operand of the
    282 /// specified instruction is a constant integer.  If so, check to see if there
    283 /// are any bits set in the constant that are not demanded.  If so, shrink the
    284 /// constant and return true.
    285 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
    286                                                         const APInt &Demanded) {
    287   SDLoc dl(Op);
    288 
    289   // FIXME: ISD::SELECT, ISD::SELECT_CC
    290   switch (Op.getOpcode()) {
    291   default: break;
    292   case ISD::XOR:
    293   case ISD::AND:
    294   case ISD::OR: {
    295     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    296     if (!C) return false;
    297 
    298     if (Op.getOpcode() == ISD::XOR &&
    299         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
    300       return false;
    301 
    302     // if we can expand it to have all bits set, do it
    303     if (C->getAPIntValue().intersects(~Demanded)) {
    304       EVT VT = Op.getValueType();
    305       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
    306                                 DAG.getConstant(Demanded &
    307                                                 C->getAPIntValue(),
    308                                                 VT));
    309       return CombineTo(Op, New);
    310     }
    311 
    312     break;
    313   }
    314   }
    315 
    316   return false;
    317 }
    318 
    319 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    320 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    321 /// cast, but it could be generalized for targets with other types of
    322 /// implicit widening casts.
    323 bool
    324 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
    325                                                     unsigned BitWidth,
    326                                                     const APInt &Demanded,
    327                                                     SDLoc dl) {
    328   assert(Op.getNumOperands() == 2 &&
    329          "ShrinkDemandedOp only supports binary operators!");
    330   assert(Op.getNode()->getNumValues() == 1 &&
    331          "ShrinkDemandedOp only supports nodes with one result!");
    332 
    333   // Early return, as this function cannot handle vector types.
    334   if (Op.getValueType().isVector())
    335     return false;
    336 
    337   // Don't do this if the node has another user, which may require the
    338   // full value.
    339   if (!Op.getNode()->hasOneUse())
    340     return false;
    341 
    342   // Search for the smallest integer type with free casts to and from
    343   // Op's type. For expedience, just check power-of-2 integer types.
    344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    345   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
    346   unsigned SmallVTBits = DemandedSize;
    347   if (!isPowerOf2_32(SmallVTBits))
    348     SmallVTBits = NextPowerOf2(SmallVTBits);
    349   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
    350     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
    351     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
    352         TLI.isZExtFree(SmallVT, Op.getValueType())) {
    353       // We found a type with free casts.
    354       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
    355                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    356                                           Op.getNode()->getOperand(0)),
    357                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    358                                           Op.getNode()->getOperand(1)));
    359       bool NeedZext = DemandedSize > SmallVTBits;
    360       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
    361                               dl, Op.getValueType(), X);
    362       return CombineTo(Op, Z);
    363     }
    364   }
    365   return false;
    366 }
    367 
    368 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    369 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    370 /// use this information to simplify Op, create a new simplified DAG node and
    371 /// return true, returning the original and new nodes in Old and New. Otherwise,
    372 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
    373 /// the expression (used to simplify the caller).  The KnownZero/One bits may
    374 /// only be accurate for those bits in the DemandedMask.
    375 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
    376                                           const APInt &DemandedMask,
    377                                           APInt &KnownZero,
    378                                           APInt &KnownOne,
    379                                           TargetLoweringOpt &TLO,
    380                                           unsigned Depth) const {
    381   unsigned BitWidth = DemandedMask.getBitWidth();
    382   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
    383          "Mask size mismatches value type size!");
    384   APInt NewMask = DemandedMask;
    385   SDLoc dl(Op);
    386 
    387   // Don't know anything.
    388   KnownZero = KnownOne = APInt(BitWidth, 0);
    389 
    390   // Other users may use these bits.
    391   if (!Op.getNode()->hasOneUse()) {
    392     if (Depth != 0) {
    393       // If not at the root, Just compute the KnownZero/KnownOne bits to
    394       // simplify things downstream.
    395       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
    396       return false;
    397     }
    398     // If this is the root being simplified, allow it to have multiple uses,
    399     // just set the NewMask to all bits.
    400     NewMask = APInt::getAllOnesValue(BitWidth);
    401   } else if (DemandedMask == 0) {
    402     // Not demanding any bits from Op.
    403     if (Op.getOpcode() != ISD::UNDEF)
    404       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
    405     return false;
    406   } else if (Depth == 6) {        // Limit search depth.
    407     return false;
    408   }
    409 
    410   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
    411   switch (Op.getOpcode()) {
    412   case ISD::Constant:
    413     // We know all of the bits for a constant!
    414     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
    415     KnownZero = ~KnownOne;
    416     return false;   // Don't fall through, will infinitely loop.
    417   case ISD::AND:
    418     // If the RHS is a constant, check to see if the LHS would be zero without
    419     // using the bits from the RHS.  Below, we use knowledge about the RHS to
    420     // simplify the LHS, here we're using information from the LHS to simplify
    421     // the RHS.
    422     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    423       APInt LHSZero, LHSOne;
    424       // Do not increment Depth here; that can cause an infinite loop.
    425       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
    426       // If the LHS already has zeros where RHSC does, this and is dead.
    427       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
    428         return TLO.CombineTo(Op, Op.getOperand(0));
    429       // If any of the set bits in the RHS are known zero on the LHS, shrink
    430       // the constant.
    431       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
    432         return true;
    433     }
    434 
    435     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    436                              KnownOne, TLO, Depth+1))
    437       return true;
    438     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    439     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
    440                              KnownZero2, KnownOne2, TLO, Depth+1))
    441       return true;
    442     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    443 
    444     // If all of the demanded bits are known one on one side, return the other.
    445     // These bits cannot contribute to the result of the 'and'.
    446     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    447       return TLO.CombineTo(Op, Op.getOperand(0));
    448     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    449       return TLO.CombineTo(Op, Op.getOperand(1));
    450     // If all of the demanded bits in the inputs are known zeros, return zero.
    451     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
    452       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
    453     // If the RHS is a constant, see if we can simplify it.
    454     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
    455       return true;
    456     // If the operation can be done in a smaller type, do so.
    457     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    458       return true;
    459 
    460     // Output known-1 bits are only known if set in both the LHS & RHS.
    461     KnownOne &= KnownOne2;
    462     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    463     KnownZero |= KnownZero2;
    464     break;
    465   case ISD::OR:
    466     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    467                              KnownOne, TLO, Depth+1))
    468       return true;
    469     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    470     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
    471                              KnownZero2, KnownOne2, TLO, Depth+1))
    472       return true;
    473     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    474 
    475     // If all of the demanded bits are known zero on one side, return the other.
    476     // These bits cannot contribute to the result of the 'or'.
    477     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
    478       return TLO.CombineTo(Op, Op.getOperand(0));
    479     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
    480       return TLO.CombineTo(Op, Op.getOperand(1));
    481     // If all of the potentially set bits on one side are known to be set on
    482     // the other side, just use the 'other' side.
    483     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    484       return TLO.CombineTo(Op, Op.getOperand(0));
    485     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    486       return TLO.CombineTo(Op, Op.getOperand(1));
    487     // If the RHS is a constant, see if we can simplify it.
    488     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    489       return true;
    490     // If the operation can be done in a smaller type, do so.
    491     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    492       return true;
    493 
    494     // Output known-0 bits are only known if clear in both the LHS & RHS.
    495     KnownZero &= KnownZero2;
    496     // Output known-1 are known to be set if set in either the LHS | RHS.
    497     KnownOne |= KnownOne2;
    498     break;
    499   case ISD::XOR:
    500     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    501                              KnownOne, TLO, Depth+1))
    502       return true;
    503     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    504     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
    505                              KnownOne2, TLO, Depth+1))
    506       return true;
    507     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    508 
    509     // If all of the demanded bits are known zero on one side, return the other.
    510     // These bits cannot contribute to the result of the 'xor'.
    511     if ((KnownZero & NewMask) == NewMask)
    512       return TLO.CombineTo(Op, Op.getOperand(0));
    513     if ((KnownZero2 & NewMask) == NewMask)
    514       return TLO.CombineTo(Op, Op.getOperand(1));
    515     // If the operation can be done in a smaller type, do so.
    516     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    517       return true;
    518 
    519     // If all of the unknown bits are known to be zero on one side or the other
    520     // (but not both) turn this into an *inclusive* or.
    521     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    522     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
    523       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
    524                                                Op.getOperand(0),
    525                                                Op.getOperand(1)));
    526 
    527     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    528     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    529     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    530     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    531 
    532     // If all of the demanded bits on one side are known, and all of the set
    533     // bits on that side are also known to be set on the other side, turn this
    534     // into an AND, as we know the bits will be cleared.
    535     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    536     // NB: it is okay if more bits are known than are requested
    537     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
    538       if (KnownOne == KnownOne2) { // set bits are the same on both sides
    539         EVT VT = Op.getValueType();
    540         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
    541         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
    542                                                  Op.getOperand(0), ANDC));
    543       }
    544     }
    545 
    546     // If the RHS is a constant, see if we can simplify it.
    547     // for XOR, we prefer to force bits to 1 if they will make a -1.
    548     // if we can't force bits, try to shrink constant
    549     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    550       APInt Expanded = C->getAPIntValue() | (~NewMask);
    551       // if we can expand it to have all bits set, do it
    552       if (Expanded.isAllOnesValue()) {
    553         if (Expanded != C->getAPIntValue()) {
    554           EVT VT = Op.getValueType();
    555           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
    556                                           TLO.DAG.getConstant(Expanded, VT));
    557           return TLO.CombineTo(Op, New);
    558         }
    559         // if it already has all the bits set, nothing to change
    560         // but don't shrink either!
    561       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
    562         return true;
    563       }
    564     }
    565 
    566     KnownZero = KnownZeroOut;
    567     KnownOne  = KnownOneOut;
    568     break;
    569   case ISD::SELECT:
    570     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
    571                              KnownOne, TLO, Depth+1))
    572       return true;
    573     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
    574                              KnownOne2, TLO, Depth+1))
    575       return true;
    576     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    577     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    578 
    579     // If the operands are constants, see if we can simplify them.
    580     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    581       return true;
    582 
    583     // Only known if known in both the LHS and RHS.
    584     KnownOne &= KnownOne2;
    585     KnownZero &= KnownZero2;
    586     break;
    587   case ISD::SELECT_CC:
    588     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
    589                              KnownOne, TLO, Depth+1))
    590       return true;
    591     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
    592                              KnownOne2, TLO, Depth+1))
    593       return true;
    594     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    595     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    596 
    597     // If the operands are constants, see if we can simplify them.
    598     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    599       return true;
    600 
    601     // Only known if known in both the LHS and RHS.
    602     KnownOne &= KnownOne2;
    603     KnownZero &= KnownZero2;
    604     break;
    605   case ISD::SHL:
    606     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    607       unsigned ShAmt = SA->getZExtValue();
    608       SDValue InOp = Op.getOperand(0);
    609 
    610       // If the shift count is an invalid immediate, don't do anything.
    611       if (ShAmt >= BitWidth)
    612         break;
    613 
    614       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
    615       // single shift.  We can do this if the bottom bits (which are shifted
    616       // out) are never demanded.
    617       if (InOp.getOpcode() == ISD::SRL &&
    618           isa<ConstantSDNode>(InOp.getOperand(1))) {
    619         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
    620           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    621           unsigned Opc = ISD::SHL;
    622           int Diff = ShAmt-C1;
    623           if (Diff < 0) {
    624             Diff = -Diff;
    625             Opc = ISD::SRL;
    626           }
    627 
    628           SDValue NewSA =
    629             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    630           EVT VT = Op.getValueType();
    631           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    632                                                    InOp.getOperand(0), NewSA));
    633         }
    634       }
    635 
    636       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
    637                                KnownZero, KnownOne, TLO, Depth+1))
    638         return true;
    639 
    640       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
    641       // are not demanded. This will likely allow the anyext to be folded away.
    642       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
    643         SDValue InnerOp = InOp.getNode()->getOperand(0);
    644         EVT InnerVT = InnerOp.getValueType();
    645         unsigned InnerBits = InnerVT.getSizeInBits();
    646         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
    647             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
    648           EVT ShTy = getShiftAmountTy(InnerVT);
    649           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
    650             ShTy = InnerVT;
    651           SDValue NarrowShl =
    652             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
    653                             TLO.DAG.getConstant(ShAmt, ShTy));
    654           return
    655             TLO.CombineTo(Op,
    656                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
    657                                           NarrowShl));
    658         }
    659         // Repeat the SHL optimization above in cases where an extension
    660         // intervenes: (shl (anyext (shr x, c1)), c2) to
    661         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
    662         // aren't demanded (as above) and that the shifted upper c1 bits of
    663         // x aren't demanded.
    664         if (InOp.hasOneUse() &&
    665             InnerOp.getOpcode() == ISD::SRL &&
    666             InnerOp.hasOneUse() &&
    667             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
    668           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
    669             ->getZExtValue();
    670           if (InnerShAmt < ShAmt &&
    671               InnerShAmt < InnerBits &&
    672               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
    673               NewMask.trunc(ShAmt) == 0) {
    674             SDValue NewSA =
    675               TLO.DAG.getConstant(ShAmt - InnerShAmt,
    676                                   Op.getOperand(1).getValueType());
    677             EVT VT = Op.getValueType();
    678             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
    679                                              InnerOp.getOperand(0));
    680             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
    681                                                      NewExt, NewSA));
    682           }
    683         }
    684       }
    685 
    686       KnownZero <<= SA->getZExtValue();
    687       KnownOne  <<= SA->getZExtValue();
    688       // low bits known zero.
    689       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
    690     }
    691     break;
    692   case ISD::SRL:
    693     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    694       EVT VT = Op.getValueType();
    695       unsigned ShAmt = SA->getZExtValue();
    696       unsigned VTSize = VT.getSizeInBits();
    697       SDValue InOp = Op.getOperand(0);
    698 
    699       // If the shift count is an invalid immediate, don't do anything.
    700       if (ShAmt >= BitWidth)
    701         break;
    702 
    703       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
    704       // single shift.  We can do this if the top bits (which are shifted out)
    705       // are never demanded.
    706       if (InOp.getOpcode() == ISD::SHL &&
    707           isa<ConstantSDNode>(InOp.getOperand(1))) {
    708         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
    709           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    710           unsigned Opc = ISD::SRL;
    711           int Diff = ShAmt-C1;
    712           if (Diff < 0) {
    713             Diff = -Diff;
    714             Opc = ISD::SHL;
    715           }
    716 
    717           SDValue NewSA =
    718             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    719           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    720                                                    InOp.getOperand(0), NewSA));
    721         }
    722       }
    723 
    724       // Compute the new bits that are at the top now.
    725       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
    726                                KnownZero, KnownOne, TLO, Depth+1))
    727         return true;
    728       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    729       KnownZero = KnownZero.lshr(ShAmt);
    730       KnownOne  = KnownOne.lshr(ShAmt);
    731 
    732       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    733       KnownZero |= HighBits;  // High bits known zero.
    734     }
    735     break;
    736   case ISD::SRA:
    737     // If this is an arithmetic shift right and only the low-bit is set, we can
    738     // always convert this into a logical shr, even if the shift amount is
    739     // variable.  The low bit of the shift cannot be an input sign bit unless
    740     // the shift amount is >= the size of the datatype, which is undefined.
    741     if (NewMask == 1)
    742       return TLO.CombineTo(Op,
    743                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
    744                                            Op.getOperand(0), Op.getOperand(1)));
    745 
    746     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    747       EVT VT = Op.getValueType();
    748       unsigned ShAmt = SA->getZExtValue();
    749 
    750       // If the shift count is an invalid immediate, don't do anything.
    751       if (ShAmt >= BitWidth)
    752         break;
    753 
    754       APInt InDemandedMask = (NewMask << ShAmt);
    755 
    756       // If any of the demanded bits are produced by the sign extension, we also
    757       // demand the input sign bit.
    758       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    759       if (HighBits.intersects(NewMask))
    760         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
    761 
    762       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
    763                                KnownZero, KnownOne, TLO, Depth+1))
    764         return true;
    765       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    766       KnownZero = KnownZero.lshr(ShAmt);
    767       KnownOne  = KnownOne.lshr(ShAmt);
    768 
    769       // Handle the sign bit, adjusted to where it is now in the mask.
    770       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
    771 
    772       // If the input sign bit is known to be zero, or if none of the top bits
    773       // are demanded, turn this into an unsigned shift right.
    774       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
    775         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    776                                                  Op.getOperand(0),
    777                                                  Op.getOperand(1)));
    778 
    779       int Log2 = NewMask.exactLogBase2();
    780       if (Log2 >= 0) {
    781         // The bit must come from the sign.
    782         SDValue NewSA =
    783           TLO.DAG.getConstant(BitWidth - 1 - Log2,
    784                               Op.getOperand(1).getValueType());
    785         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    786                                                  Op.getOperand(0), NewSA));
    787       }
    788 
    789       if (KnownOne.intersects(SignBit))
    790         // New bits are known one.
    791         KnownOne |= HighBits;
    792     }
    793     break;
    794   case ISD::SIGN_EXTEND_INREG: {
    795     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    796 
    797     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
    798     // If we only care about the highest bit, don't bother shifting right.
    799     if (MsbMask == NewMask) {
    800       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
    801       SDValue InOp = Op.getOperand(0);
    802       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
    803       bool AlreadySignExtended =
    804         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
    805       // However if the input is already sign extended we expect the sign
    806       // extension to be dropped altogether later and do not simplify.
    807       if (!AlreadySignExtended) {
    808         // Compute the correct shift amount type, which must be getShiftAmountTy
    809         // for scalar types after legalization.
    810         EVT ShiftAmtTy = Op.getValueType();
    811         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    812           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
    813 
    814         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
    815         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    816                                                  Op.getValueType(), InOp,
    817                                                  ShiftAmt));
    818       }
    819     }
    820 
    821     // Sign extension.  Compute the demanded bits in the result that are not
    822     // present in the input.
    823     APInt NewBits =
    824       APInt::getHighBitsSet(BitWidth,
    825                             BitWidth - ExVT.getScalarType().getSizeInBits());
    826 
    827     // If none of the extended bits are demanded, eliminate the sextinreg.
    828     if ((NewBits & NewMask) == 0)
    829       return TLO.CombineTo(Op, Op.getOperand(0));
    830 
    831     APInt InSignBit =
    832       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
    833     APInt InputDemandedBits =
    834       APInt::getLowBitsSet(BitWidth,
    835                            ExVT.getScalarType().getSizeInBits()) &
    836       NewMask;
    837 
    838     // Since the sign extended bits are demanded, we know that the sign
    839     // bit is demanded.
    840     InputDemandedBits |= InSignBit;
    841 
    842     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
    843                              KnownZero, KnownOne, TLO, Depth+1))
    844       return true;
    845     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    846 
    847     // If the sign bit of the input is known set or clear, then we know the
    848     // top bits of the result.
    849 
    850     // If the input sign bit is known zero, convert this into a zero extension.
    851     if (KnownZero.intersects(InSignBit))
    852       return TLO.CombineTo(Op,
    853                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
    854 
    855     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
    856       KnownOne |= NewBits;
    857       KnownZero &= ~NewBits;
    858     } else {                       // Input sign bit unknown
    859       KnownZero &= ~NewBits;
    860       KnownOne &= ~NewBits;
    861     }
    862     break;
    863   }
    864   case ISD::BUILD_PAIR: {
    865     EVT HalfVT = Op.getOperand(0).getValueType();
    866     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
    867 
    868     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
    869     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
    870 
    871     APInt KnownZeroLo, KnownOneLo;
    872     APInt KnownZeroHi, KnownOneHi;
    873 
    874     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
    875                              KnownOneLo, TLO, Depth + 1))
    876       return true;
    877 
    878     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
    879                              KnownOneHi, TLO, Depth + 1))
    880       return true;
    881 
    882     KnownZero = KnownZeroLo.zext(BitWidth) |
    883                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
    884 
    885     KnownOne = KnownOneLo.zext(BitWidth) |
    886                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
    887     break;
    888   }
    889   case ISD::ZERO_EXTEND: {
    890     unsigned OperandBitWidth =
    891       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    892     APInt InMask = NewMask.trunc(OperandBitWidth);
    893 
    894     // If none of the top bits are demanded, convert this into an any_extend.
    895     APInt NewBits =
    896       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
    897     if (!NewBits.intersects(NewMask))
    898       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    899                                                Op.getValueType(),
    900                                                Op.getOperand(0)));
    901 
    902     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    903                              KnownZero, KnownOne, TLO, Depth+1))
    904       return true;
    905     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    906     KnownZero = KnownZero.zext(BitWidth);
    907     KnownOne = KnownOne.zext(BitWidth);
    908     KnownZero |= NewBits;
    909     break;
    910   }
    911   case ISD::SIGN_EXTEND: {
    912     EVT InVT = Op.getOperand(0).getValueType();
    913     unsigned InBits = InVT.getScalarType().getSizeInBits();
    914     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
    915     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
    916     APInt NewBits   = ~InMask & NewMask;
    917 
    918     // If none of the top bits are demanded, convert this into an any_extend.
    919     if (NewBits == 0)
    920       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    921                                               Op.getValueType(),
    922                                               Op.getOperand(0)));
    923 
    924     // Since some of the sign extended bits are demanded, we know that the sign
    925     // bit is demanded.
    926     APInt InDemandedBits = InMask & NewMask;
    927     InDemandedBits |= InSignBit;
    928     InDemandedBits = InDemandedBits.trunc(InBits);
    929 
    930     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
    931                              KnownOne, TLO, Depth+1))
    932       return true;
    933     KnownZero = KnownZero.zext(BitWidth);
    934     KnownOne = KnownOne.zext(BitWidth);
    935 
    936     // If the sign bit is known zero, convert this to a zero extend.
    937     if (KnownZero.intersects(InSignBit))
    938       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
    939                                                Op.getValueType(),
    940                                                Op.getOperand(0)));
    941 
    942     // If the sign bit is known one, the top bits match.
    943     if (KnownOne.intersects(InSignBit)) {
    944       KnownOne |= NewBits;
    945       assert((KnownZero & NewBits) == 0);
    946     } else {   // Otherwise, top bits aren't known.
    947       assert((KnownOne & NewBits) == 0);
    948       assert((KnownZero & NewBits) == 0);
    949     }
    950     break;
    951   }
    952   case ISD::ANY_EXTEND: {
    953     unsigned OperandBitWidth =
    954       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    955     APInt InMask = NewMask.trunc(OperandBitWidth);
    956     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    957                              KnownZero, KnownOne, TLO, Depth+1))
    958       return true;
    959     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    960     KnownZero = KnownZero.zext(BitWidth);
    961     KnownOne = KnownOne.zext(BitWidth);
    962     break;
    963   }
    964   case ISD::TRUNCATE: {
    965     // Simplify the input, using demanded bit information, and compute the known
    966     // zero/one bits live out.
    967     unsigned OperandBitWidth =
    968       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    969     APInt TruncMask = NewMask.zext(OperandBitWidth);
    970     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
    971                              KnownZero, KnownOne, TLO, Depth+1))
    972       return true;
    973     KnownZero = KnownZero.trunc(BitWidth);
    974     KnownOne = KnownOne.trunc(BitWidth);
    975 
    976     // If the input is only used by this truncate, see if we can shrink it based
    977     // on the known demanded bits.
    978     if (Op.getOperand(0).getNode()->hasOneUse()) {
    979       SDValue In = Op.getOperand(0);
    980       switch (In.getOpcode()) {
    981       default: break;
    982       case ISD::SRL:
    983         // Shrink SRL by a constant if none of the high bits shifted in are
    984         // demanded.
    985         if (TLO.LegalTypes() &&
    986             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
    987           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
    988           // undesirable.
    989           break;
    990         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
    991         if (!ShAmt)
    992           break;
    993         SDValue Shift = In.getOperand(1);
    994         if (TLO.LegalTypes()) {
    995           uint64_t ShVal = ShAmt->getZExtValue();
    996           Shift =
    997             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
    998         }
    999 
   1000         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
   1001                                                OperandBitWidth - BitWidth);
   1002         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
   1003 
   1004         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
   1005           // None of the shifted in bits are needed.  Add a truncate of the
   1006           // shift input, then shift it.
   1007           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
   1008                                              Op.getValueType(),
   1009                                              In.getOperand(0));
   1010           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
   1011                                                    Op.getValueType(),
   1012                                                    NewTrunc,
   1013                                                    Shift));
   1014         }
   1015         break;
   1016       }
   1017     }
   1018 
   1019     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1020     break;
   1021   }
   1022   case ISD::AssertZext: {
   1023     // AssertZext demands all of the high bits, plus any of the low bits
   1024     // demanded by its users.
   1025     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1026     APInt InMask = APInt::getLowBitsSet(BitWidth,
   1027                                         VT.getSizeInBits());
   1028     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1029                              KnownZero, KnownOne, TLO, Depth+1))
   1030       return true;
   1031     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1032 
   1033     KnownZero |= ~InMask & NewMask;
   1034     break;
   1035   }
   1036   case ISD::BITCAST:
   1037     // If this is an FP->Int bitcast and if the sign bit is the only
   1038     // thing demanded, turn this into a FGETSIGN.
   1039     if (!TLO.LegalOperations() &&
   1040         !Op.getValueType().isVector() &&
   1041         !Op.getOperand(0).getValueType().isVector() &&
   1042         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
   1043         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1044       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
   1045       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1046       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
   1047         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
   1048         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1049         // place.  We expect the SHL to be eliminated by other optimizations.
   1050         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1051         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
   1052         if (!OpVTLegal && OpVTSizeInBits > 32)
   1053           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
   1054         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
   1055         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
   1056         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1057                                                  Op.getValueType(),
   1058                                                  Sign, ShAmt));
   1059       }
   1060     }
   1061     break;
   1062   case ISD::ADD:
   1063   case ISD::MUL:
   1064   case ISD::SUB: {
   1065     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1066     // of the highest bit demanded of them.
   1067     APInt LoMask = APInt::getLowBitsSet(BitWidth,
   1068                                         BitWidth - NewMask.countLeadingZeros());
   1069     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
   1070                              KnownOne2, TLO, Depth+1))
   1071       return true;
   1072     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
   1073                              KnownOne2, TLO, Depth+1))
   1074       return true;
   1075     // See if the operation should be performed at a smaller bit width.
   1076     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1077       return true;
   1078   }
   1079   // FALL THROUGH
   1080   default:
   1081     // Just use computeKnownBits to compute output bits.
   1082     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
   1083     break;
   1084   }
   1085 
   1086   // If we know the value of all of the demanded bits, return this as a
   1087   // constant.
   1088   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
   1089     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
   1090 
   1091   return false;
   1092 }
   1093 
   1094 /// computeKnownBitsForTargetNode - Determine which of the bits specified
   1095 /// in Mask are known to be either zero or one and return them in the
   1096 /// KnownZero/KnownOne bitsets.
   1097 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1098                                                    APInt &KnownZero,
   1099                                                    APInt &KnownOne,
   1100                                                    const SelectionDAG &DAG,
   1101                                                    unsigned Depth) const {
   1102   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1103           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1104           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1105           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1106          "Should use MaskedValueIsZero if you don't know whether Op"
   1107          " is a target node!");
   1108   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1109 }
   1110 
   1111 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1112 /// targets that want to expose additional information about sign bits to the
   1113 /// DAG Combiner.
   1114 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1115                                                          const SelectionDAG &,
   1116                                                          unsigned Depth) const {
   1117   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1118           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1119           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1120           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1121          "Should use ComputeNumSignBits if you don't know whether Op"
   1122          " is a target node!");
   1123   return 1;
   1124 }
   1125 
   1126 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1127 /// one bit set. This differs from computeKnownBits in that it doesn't need to
   1128 /// determine which bit is set.
   1129 ///
   1130 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1131   // A left-shift of a constant one will have exactly one bit set, because
   1132   // shifting the bit off the end is undefined.
   1133   if (Val.getOpcode() == ISD::SHL)
   1134     if (ConstantSDNode *C =
   1135          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1136       if (C->getAPIntValue() == 1)
   1137         return true;
   1138 
   1139   // Similarly, a right-shift of a constant sign-bit will have exactly
   1140   // one bit set.
   1141   if (Val.getOpcode() == ISD::SRL)
   1142     if (ConstantSDNode *C =
   1143          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1144       if (C->getAPIntValue().isSignBit())
   1145         return true;
   1146 
   1147   // More could be done here, though the above checks are enough
   1148   // to handle some common cases.
   1149 
   1150   // Fall back to computeKnownBits to catch other known cases.
   1151   EVT OpVT = Val.getValueType();
   1152   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1153   APInt KnownZero, KnownOne;
   1154   DAG.computeKnownBits(Val, KnownZero, KnownOne);
   1155   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1156          (KnownOne.countPopulation() == 1);
   1157 }
   1158 
   1159 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
   1160   if (!N)
   1161     return false;
   1162 
   1163   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1164   if (!CN) {
   1165     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1166     if (!BV)
   1167       return false;
   1168 
   1169     BitVector UndefElements;
   1170     CN = BV->getConstantSplatNode(&UndefElements);
   1171     // Only interested in constant splats, and we don't try to handle undef
   1172     // elements in identifying boolean constants.
   1173     if (!CN || UndefElements.none())
   1174       return false;
   1175   }
   1176 
   1177   switch (getBooleanContents(N->getValueType(0))) {
   1178   case UndefinedBooleanContent:
   1179     return CN->getAPIntValue()[0];
   1180   case ZeroOrOneBooleanContent:
   1181     return CN->isOne();
   1182   case ZeroOrNegativeOneBooleanContent:
   1183     return CN->isAllOnesValue();
   1184   }
   1185 
   1186   llvm_unreachable("Invalid boolean contents");
   1187 }
   1188 
   1189 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
   1190   if (!N)
   1191     return false;
   1192 
   1193   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1194   if (!CN) {
   1195     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1196     if (!BV)
   1197       return false;
   1198 
   1199     BitVector UndefElements;
   1200     CN = BV->getConstantSplatNode(&UndefElements);
   1201     // Only interested in constant splats, and we don't try to handle undef
   1202     // elements in identifying boolean constants.
   1203     if (!CN || UndefElements.none())
   1204       return false;
   1205   }
   1206 
   1207   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
   1208     return !CN->getAPIntValue()[0];
   1209 
   1210   return CN->isNullValue();
   1211 }
   1212 
   1213 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1214 /// and cc. If it is unable to simplify it, return a null SDValue.
   1215 SDValue
   1216 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1217                               ISD::CondCode Cond, bool foldBooleans,
   1218                               DAGCombinerInfo &DCI, SDLoc dl) const {
   1219   SelectionDAG &DAG = DCI.DAG;
   1220 
   1221   // These setcc operations always fold.
   1222   switch (Cond) {
   1223   default: break;
   1224   case ISD::SETFALSE:
   1225   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
   1226   case ISD::SETTRUE:
   1227   case ISD::SETTRUE2: {
   1228     TargetLowering::BooleanContent Cnt =
   1229         getBooleanContents(N0->getValueType(0));
   1230     return DAG.getConstant(
   1231         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
   1232   }
   1233   }
   1234 
   1235   // Ensure that the constant occurs on the RHS, and fold constant
   1236   // comparisons.
   1237   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
   1238   if (isa<ConstantSDNode>(N0.getNode()) &&
   1239       (DCI.isBeforeLegalizeOps() ||
   1240        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
   1241     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
   1242 
   1243   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1244     const APInt &C1 = N1C->getAPIntValue();
   1245 
   1246     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1247     // equality comparison, then we're just comparing whether X itself is
   1248     // zero.
   1249     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1250         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1251         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1252       const APInt &ShAmt
   1253         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1254       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1255           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1256         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1257           // (srl (ctlz x), 5) == 0  -> X != 0
   1258           // (srl (ctlz x), 5) != 1  -> X != 0
   1259           Cond = ISD::SETNE;
   1260         } else {
   1261           // (srl (ctlz x), 5) != 0  -> X == 0
   1262           // (srl (ctlz x), 5) == 1  -> X == 0
   1263           Cond = ISD::SETEQ;
   1264         }
   1265         SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1266         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1267                             Zero, Cond);
   1268       }
   1269     }
   1270 
   1271     SDValue CTPOP = N0;
   1272     // Look through truncs that don't change the value of a ctpop.
   1273     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1274       CTPOP = N0.getOperand(0);
   1275 
   1276     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1277         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1278                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1279       EVT CTVT = CTPOP.getValueType();
   1280       SDValue CTOp = CTPOP.getOperand(0);
   1281 
   1282       // (ctpop x) u< 2 -> (x & x-1) == 0
   1283       // (ctpop x) u> 1 -> (x & x-1) != 0
   1284       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1285         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1286                                   DAG.getConstant(1, CTVT));
   1287         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1288         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1289         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
   1290       }
   1291 
   1292       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1293     }
   1294 
   1295     // (zext x) == C --> x == (trunc C)
   1296     // (sext x) == C --> x == (trunc C)
   1297     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1298         DCI.isBeforeLegalize() && N0->hasOneUse()) {
   1299       unsigned MinBits = N0.getValueSizeInBits();
   1300       SDValue PreExt;
   1301       bool Signed = false;
   1302       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1303         // ZExt
   1304         MinBits = N0->getOperand(0).getValueSizeInBits();
   1305         PreExt = N0->getOperand(0);
   1306       } else if (N0->getOpcode() == ISD::AND) {
   1307         // DAGCombine turns costly ZExts into ANDs
   1308         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1309           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1310             MinBits = C->getAPIntValue().countTrailingOnes();
   1311             PreExt = N0->getOperand(0);
   1312           }
   1313       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
   1314         // SExt
   1315         MinBits = N0->getOperand(0).getValueSizeInBits();
   1316         PreExt = N0->getOperand(0);
   1317         Signed = true;
   1318       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1319         // ZEXTLOAD / SEXTLOAD
   1320         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1321           MinBits = LN0->getMemoryVT().getSizeInBits();
   1322           PreExt = N0;
   1323         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
   1324           Signed = true;
   1325           MinBits = LN0->getMemoryVT().getSizeInBits();
   1326           PreExt = N0;
   1327         }
   1328       }
   1329 
   1330       // Figure out how many bits we need to preserve this constant.
   1331       unsigned ReqdBits = Signed ?
   1332         C1.getBitWidth() - C1.getNumSignBits() + 1 :
   1333         C1.getActiveBits();
   1334 
   1335       // Make sure we're not losing bits from the constant.
   1336       if (MinBits > 0 &&
   1337           MinBits < C1.getBitWidth() &&
   1338           MinBits >= ReqdBits) {
   1339         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   1340         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   1341           // Will get folded away.
   1342           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
   1343           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
   1344           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   1345         }
   1346       }
   1347     }
   1348 
   1349     // If the LHS is '(and load, const)', the RHS is 0,
   1350     // the test is for equality or unsigned, and all 1 bits of the const are
   1351     // in the same partial word, see if we can shorten the load.
   1352     if (DCI.isBeforeLegalize() &&
   1353         !ISD::isSignedIntSetCC(Cond) &&
   1354         N0.getOpcode() == ISD::AND && C1 == 0 &&
   1355         N0.getNode()->hasOneUse() &&
   1356         isa<LoadSDNode>(N0.getOperand(0)) &&
   1357         N0.getOperand(0).getNode()->hasOneUse() &&
   1358         isa<ConstantSDNode>(N0.getOperand(1))) {
   1359       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   1360       APInt bestMask;
   1361       unsigned bestWidth = 0, bestOffset = 0;
   1362       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   1363         unsigned origWidth = N0.getValueType().getSizeInBits();
   1364         unsigned maskWidth = origWidth;
   1365         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   1366         // 8 bits, but have to be careful...
   1367         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   1368           origWidth = Lod->getMemoryVT().getSizeInBits();
   1369         const APInt &Mask =
   1370           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1371         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   1372           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   1373           for (unsigned offset=0; offset<origWidth/width; offset++) {
   1374             if ((newMask & Mask) == Mask) {
   1375               if (!getDataLayout()->isLittleEndian())
   1376                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   1377               else
   1378                 bestOffset = (uint64_t)offset * (width/8);
   1379               bestMask = Mask.lshr(offset * (width/8) * 8);
   1380               bestWidth = width;
   1381               break;
   1382             }
   1383             newMask = newMask << width;
   1384           }
   1385         }
   1386       }
   1387       if (bestWidth) {
   1388         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   1389         if (newVT.isRound()) {
   1390           EVT PtrType = Lod->getOperand(1).getValueType();
   1391           SDValue Ptr = Lod->getBasePtr();
   1392           if (bestOffset != 0)
   1393             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   1394                               DAG.getConstant(bestOffset, PtrType));
   1395           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   1396           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   1397                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   1398                                         false, false, false, NewAlign);
   1399           return DAG.getSetCC(dl, VT,
   1400                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   1401                                       DAG.getConstant(bestMask.trunc(bestWidth),
   1402                                                       newVT)),
   1403                               DAG.getConstant(0LL, newVT), Cond);
   1404         }
   1405       }
   1406     }
   1407 
   1408     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   1409     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   1410       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   1411 
   1412       // If the comparison constant has bits in the upper part, the
   1413       // zero-extended value could never match.
   1414       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   1415                                               C1.getBitWidth() - InSize))) {
   1416         switch (Cond) {
   1417         case ISD::SETUGT:
   1418         case ISD::SETUGE:
   1419         case ISD::SETEQ: return DAG.getConstant(0, VT);
   1420         case ISD::SETULT:
   1421         case ISD::SETULE:
   1422         case ISD::SETNE: return DAG.getConstant(1, VT);
   1423         case ISD::SETGT:
   1424         case ISD::SETGE:
   1425           // True if the sign bit of C1 is set.
   1426           return DAG.getConstant(C1.isNegative(), VT);
   1427         case ISD::SETLT:
   1428         case ISD::SETLE:
   1429           // True if the sign bit of C1 isn't set.
   1430           return DAG.getConstant(C1.isNonNegative(), VT);
   1431         default:
   1432           break;
   1433         }
   1434       }
   1435 
   1436       // Otherwise, we can perform the comparison with the low bits.
   1437       switch (Cond) {
   1438       case ISD::SETEQ:
   1439       case ISD::SETNE:
   1440       case ISD::SETUGT:
   1441       case ISD::SETUGE:
   1442       case ISD::SETULT:
   1443       case ISD::SETULE: {
   1444         EVT newVT = N0.getOperand(0).getValueType();
   1445         if (DCI.isBeforeLegalizeOps() ||
   1446             (isOperationLegal(ISD::SETCC, newVT) &&
   1447              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
   1448           EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT);
   1449           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT);
   1450 
   1451           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
   1452                                           NewConst, Cond);
   1453           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
   1454         }
   1455         break;
   1456       }
   1457       default:
   1458         break;   // todo, be more careful with signed comparisons
   1459       }
   1460     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1461                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1462       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   1463       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   1464       EVT ExtDstTy = N0.getValueType();
   1465       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   1466 
   1467       // If the constant doesn't fit into the number of bits for the source of
   1468       // the sign extension, it is impossible for both sides to be equal.
   1469       if (C1.getMinSignedBits() > ExtSrcTyBits)
   1470         return DAG.getConstant(Cond == ISD::SETNE, VT);
   1471 
   1472       SDValue ZextOp;
   1473       EVT Op0Ty = N0.getOperand(0).getValueType();
   1474       if (Op0Ty == ExtSrcTy) {
   1475         ZextOp = N0.getOperand(0);
   1476       } else {
   1477         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   1478         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   1479                               DAG.getConstant(Imm, Op0Ty));
   1480       }
   1481       if (!DCI.isCalledByLegalizer())
   1482         DCI.AddToWorklist(ZextOp.getNode());
   1483       // Otherwise, make this a use of a zext.
   1484       return DAG.getSetCC(dl, VT, ZextOp,
   1485                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   1486                                                               ExtDstTyBits,
   1487                                                               ExtSrcTyBits),
   1488                                           ExtDstTy),
   1489                           Cond);
   1490     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   1491                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1492       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   1493       if (N0.getOpcode() == ISD::SETCC &&
   1494           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   1495         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   1496         if (TrueWhenTrue)
   1497           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   1498         // Invert the condition.
   1499         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   1500         CC = ISD::getSetCCInverse(CC,
   1501                                   N0.getOperand(0).getValueType().isInteger());
   1502         if (DCI.isBeforeLegalizeOps() ||
   1503             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
   1504           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   1505       }
   1506 
   1507       if ((N0.getOpcode() == ISD::XOR ||
   1508            (N0.getOpcode() == ISD::AND &&
   1509             N0.getOperand(0).getOpcode() == ISD::XOR &&
   1510             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   1511           isa<ConstantSDNode>(N0.getOperand(1)) &&
   1512           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   1513         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   1514         // can only do this if the top bits are known zero.
   1515         unsigned BitWidth = N0.getValueSizeInBits();
   1516         if (DAG.MaskedValueIsZero(N0,
   1517                                   APInt::getHighBitsSet(BitWidth,
   1518                                                         BitWidth-1))) {
   1519           // Okay, get the un-inverted input value.
   1520           SDValue Val;
   1521           if (N0.getOpcode() == ISD::XOR)
   1522             Val = N0.getOperand(0);
   1523           else {
   1524             assert(N0.getOpcode() == ISD::AND &&
   1525                     N0.getOperand(0).getOpcode() == ISD::XOR);
   1526             // ((X^1)&1)^1 -> X & 1
   1527             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   1528                               N0.getOperand(0).getOperand(0),
   1529                               N0.getOperand(1));
   1530           }
   1531 
   1532           return DAG.getSetCC(dl, VT, Val, N1,
   1533                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1534         }
   1535       } else if (N1C->getAPIntValue() == 1 &&
   1536                  (VT == MVT::i1 ||
   1537                   getBooleanContents(N0->getValueType(0)) ==
   1538                       ZeroOrOneBooleanContent)) {
   1539         SDValue Op0 = N0;
   1540         if (Op0.getOpcode() == ISD::TRUNCATE)
   1541           Op0 = Op0.getOperand(0);
   1542 
   1543         if ((Op0.getOpcode() == ISD::XOR) &&
   1544             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   1545             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   1546           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   1547           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   1548           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   1549                               Cond);
   1550         }
   1551         if (Op0.getOpcode() == ISD::AND &&
   1552             isa<ConstantSDNode>(Op0.getOperand(1)) &&
   1553             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   1554           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   1555           if (Op0.getValueType().bitsGT(VT))
   1556             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1557                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   1558                           DAG.getConstant(1, VT));
   1559           else if (Op0.getValueType().bitsLT(VT))
   1560             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1561                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   1562                         DAG.getConstant(1, VT));
   1563 
   1564           return DAG.getSetCC(dl, VT, Op0,
   1565                               DAG.getConstant(0, Op0.getValueType()),
   1566                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1567         }
   1568         if (Op0.getOpcode() == ISD::AssertZext &&
   1569             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
   1570           return DAG.getSetCC(dl, VT, Op0,
   1571                               DAG.getConstant(0, Op0.getValueType()),
   1572                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1573       }
   1574     }
   1575 
   1576     APInt MinVal, MaxVal;
   1577     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   1578     if (ISD::isSignedIntSetCC(Cond)) {
   1579       MinVal = APInt::getSignedMinValue(OperandBitSize);
   1580       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   1581     } else {
   1582       MinVal = APInt::getMinValue(OperandBitSize);
   1583       MaxVal = APInt::getMaxValue(OperandBitSize);
   1584     }
   1585 
   1586     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   1587     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   1588       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
   1589       // X >= C0 --> X > (C0 - 1)
   1590       APInt C = C1 - 1;
   1591       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
   1592       if ((DCI.isBeforeLegalizeOps() ||
   1593            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1594           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1595                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1596         return DAG.getSetCC(dl, VT, N0,
   1597                             DAG.getConstant(C, N1.getValueType()),
   1598                             NewCC);
   1599       }
   1600     }
   1601 
   1602     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   1603       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
   1604       // X <= C0 --> X < (C0 + 1)
   1605       APInt C = C1 + 1;
   1606       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
   1607       if ((DCI.isBeforeLegalizeOps() ||
   1608            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1609           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1610                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1611         return DAG.getSetCC(dl, VT, N0,
   1612                             DAG.getConstant(C, N1.getValueType()),
   1613                             NewCC);
   1614       }
   1615     }
   1616 
   1617     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   1618       return DAG.getConstant(0, VT);      // X < MIN --> false
   1619     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   1620       return DAG.getConstant(1, VT);      // X >= MIN --> true
   1621     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   1622       return DAG.getConstant(0, VT);      // X > MAX --> false
   1623     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   1624       return DAG.getConstant(1, VT);      // X <= MAX --> true
   1625 
   1626     // Canonicalize setgt X, Min --> setne X, Min
   1627     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   1628       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1629     // Canonicalize setlt X, Max --> setne X, Max
   1630     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   1631       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1632 
   1633     // If we have setult X, 1, turn it into seteq X, 0
   1634     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   1635       return DAG.getSetCC(dl, VT, N0,
   1636                           DAG.getConstant(MinVal, N0.getValueType()),
   1637                           ISD::SETEQ);
   1638     // If we have setugt X, Max-1, turn it into seteq X, Max
   1639     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   1640       return DAG.getSetCC(dl, VT, N0,
   1641                           DAG.getConstant(MaxVal, N0.getValueType()),
   1642                           ISD::SETEQ);
   1643 
   1644     // If we have "setcc X, C0", check to see if we can shrink the immediate
   1645     // by changing cc.
   1646 
   1647     // SETUGT X, SINTMAX  -> SETLT X, 0
   1648     if (Cond == ISD::SETUGT &&
   1649         C1 == APInt::getSignedMaxValue(OperandBitSize))
   1650       return DAG.getSetCC(dl, VT, N0,
   1651                           DAG.getConstant(0, N1.getValueType()),
   1652                           ISD::SETLT);
   1653 
   1654     // SETULT X, SINTMIN  -> SETGT X, -1
   1655     if (Cond == ISD::SETULT &&
   1656         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   1657       SDValue ConstMinusOne =
   1658           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
   1659                           N1.getValueType());
   1660       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   1661     }
   1662 
   1663     // Fold bit comparisons when we can.
   1664     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1665         (VT == N0.getValueType() ||
   1666          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   1667         N0.getOpcode() == ISD::AND)
   1668       if (ConstantSDNode *AndRHS =
   1669                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1670         EVT ShiftTy = DCI.isBeforeLegalize() ?
   1671           getPointerTy() : getShiftAmountTy(N0.getValueType());
   1672         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   1673           // Perform the xform if the AND RHS is a single bit.
   1674           if (AndRHS->getAPIntValue().isPowerOf2()) {
   1675             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1676                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1677                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
   1678           }
   1679         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   1680           // (X & 8) == 8  -->  (X & 8) >> 3
   1681           // Perform the xform if C1 is a single bit.
   1682           if (C1.isPowerOf2()) {
   1683             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1684                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1685                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
   1686           }
   1687         }
   1688       }
   1689 
   1690     if (C1.getMinSignedBits() <= 64 &&
   1691         !isLegalICmpImmediate(C1.getSExtValue())) {
   1692       // (X & -256) == 256 -> (X >> 8) == 1
   1693       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1694           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   1695         if (ConstantSDNode *AndRHS =
   1696             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1697           const APInt &AndRHSC = AndRHS->getAPIntValue();
   1698           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   1699             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   1700             EVT ShiftTy = DCI.isBeforeLegalize() ?
   1701               getPointerTy() : getShiftAmountTy(N0.getValueType());
   1702             EVT CmpTy = N0.getValueType();
   1703             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   1704                                         DAG.getConstant(ShiftBits, ShiftTy));
   1705             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
   1706             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   1707           }
   1708         }
   1709       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   1710                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   1711         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   1712         // X <  0x100000000 -> (X >> 32) <  1
   1713         // X >= 0x100000000 -> (X >> 32) >= 1
   1714         // X <= 0x0ffffffff -> (X >> 32) <  1
   1715         // X >  0x0ffffffff -> (X >> 32) >= 1
   1716         unsigned ShiftBits;
   1717         APInt NewC = C1;
   1718         ISD::CondCode NewCond = Cond;
   1719         if (AdjOne) {
   1720           ShiftBits = C1.countTrailingOnes();
   1721           NewC = NewC + 1;
   1722           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   1723         } else {
   1724           ShiftBits = C1.countTrailingZeros();
   1725         }
   1726         NewC = NewC.lshr(ShiftBits);
   1727         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
   1728           EVT ShiftTy = DCI.isBeforeLegalize() ?
   1729             getPointerTy() : getShiftAmountTy(N0.getValueType());
   1730           EVT CmpTy = N0.getValueType();
   1731           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   1732                                       DAG.getConstant(ShiftBits, ShiftTy));
   1733           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
   1734           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   1735         }
   1736       }
   1737     }
   1738   }
   1739 
   1740   if (isa<ConstantFPSDNode>(N0.getNode())) {
   1741     // Constant fold or commute setcc.
   1742     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   1743     if (O.getNode()) return O;
   1744   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   1745     // If the RHS of an FP comparison is a constant, simplify it away in
   1746     // some cases.
   1747     if (CFP->getValueAPF().isNaN()) {
   1748       // If an operand is known to be a nan, we can fold it.
   1749       switch (ISD::getUnorderedFlavor(Cond)) {
   1750       default: llvm_unreachable("Unknown flavor!");
   1751       case 0:  // Known false.
   1752         return DAG.getConstant(0, VT);
   1753       case 1:  // Known true.
   1754         return DAG.getConstant(1, VT);
   1755       case 2:  // Undefined.
   1756         return DAG.getUNDEF(VT);
   1757       }
   1758     }
   1759 
   1760     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   1761     // constant if knowing that the operand is non-nan is enough.  We prefer to
   1762     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   1763     // materialize 0.0.
   1764     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   1765       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   1766 
   1767     // If the condition is not legal, see if we can find an equivalent one
   1768     // which is legal.
   1769     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1770       // If the comparison was an awkward floating-point == or != and one of
   1771       // the comparison operands is infinity or negative infinity, convert the
   1772       // condition to a less-awkward <= or >=.
   1773       if (CFP->getValueAPF().isInfinity()) {
   1774         if (CFP->getValueAPF().isNegative()) {
   1775           if (Cond == ISD::SETOEQ &&
   1776               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1777             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   1778           if (Cond == ISD::SETUEQ &&
   1779               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1780             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   1781           if (Cond == ISD::SETUNE &&
   1782               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1783             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   1784           if (Cond == ISD::SETONE &&
   1785               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1786             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   1787         } else {
   1788           if (Cond == ISD::SETOEQ &&
   1789               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1790             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   1791           if (Cond == ISD::SETUEQ &&
   1792               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1793             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   1794           if (Cond == ISD::SETUNE &&
   1795               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1796             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   1797           if (Cond == ISD::SETONE &&
   1798               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1799             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   1800         }
   1801       }
   1802     }
   1803   }
   1804 
   1805   if (N0 == N1) {
   1806     // The sext(setcc()) => setcc() optimization relies on the appropriate
   1807     // constant being emitted.
   1808     uint64_t EqVal = 0;
   1809     switch (getBooleanContents(N0.getValueType())) {
   1810     case UndefinedBooleanContent:
   1811     case ZeroOrOneBooleanContent:
   1812       EqVal = ISD::isTrueWhenEqual(Cond);
   1813       break;
   1814     case ZeroOrNegativeOneBooleanContent:
   1815       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
   1816       break;
   1817     }
   1818 
   1819     // We can always fold X == X for integer setcc's.
   1820     if (N0.getValueType().isInteger()) {
   1821       return DAG.getConstant(EqVal, VT);
   1822     }
   1823     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   1824     if (UOF == 2)   // FP operators that are undefined on NaNs.
   1825       return DAG.getConstant(EqVal, VT);
   1826     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   1827       return DAG.getConstant(EqVal, VT);
   1828     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   1829     // if it is not already.
   1830     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   1831     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
   1832           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
   1833       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   1834   }
   1835 
   1836   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1837       N0.getValueType().isInteger()) {
   1838     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   1839         N0.getOpcode() == ISD::XOR) {
   1840       // Simplify (X+Y) == (X+Z) -->  Y == Z
   1841       if (N0.getOpcode() == N1.getOpcode()) {
   1842         if (N0.getOperand(0) == N1.getOperand(0))
   1843           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   1844         if (N0.getOperand(1) == N1.getOperand(1))
   1845           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   1846         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   1847           // If X op Y == Y op X, try other combinations.
   1848           if (N0.getOperand(0) == N1.getOperand(1))
   1849             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   1850                                 Cond);
   1851           if (N0.getOperand(1) == N1.getOperand(0))
   1852             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   1853                                 Cond);
   1854         }
   1855       }
   1856 
   1857       // If RHS is a legal immediate value for a compare instruction, we need
   1858       // to be careful about increasing register pressure needlessly.
   1859       bool LegalRHSImm = false;
   1860 
   1861       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   1862         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1863           // Turn (X+C1) == C2 --> X == C2-C1
   1864           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   1865             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1866                                 DAG.getConstant(RHSC->getAPIntValue()-
   1867                                                 LHSR->getAPIntValue(),
   1868                                 N0.getValueType()), Cond);
   1869           }
   1870 
   1871           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   1872           if (N0.getOpcode() == ISD::XOR)
   1873             // If we know that all of the inverted bits are zero, don't bother
   1874             // performing the inversion.
   1875             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   1876               return
   1877                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   1878                              DAG.getConstant(LHSR->getAPIntValue() ^
   1879                                                RHSC->getAPIntValue(),
   1880                                              N0.getValueType()),
   1881                              Cond);
   1882         }
   1883 
   1884         // Turn (C1-X) == C2 --> X == C1-C2
   1885         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   1886           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   1887             return
   1888               DAG.getSetCC(dl, VT, N0.getOperand(1),
   1889                            DAG.getConstant(SUBC->getAPIntValue() -
   1890                                              RHSC->getAPIntValue(),
   1891                                            N0.getValueType()),
   1892                            Cond);
   1893           }
   1894         }
   1895 
   1896         // Could RHSC fold directly into a compare?
   1897         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   1898           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   1899       }
   1900 
   1901       // Simplify (X+Z) == X -->  Z == 0
   1902       // Don't do this if X is an immediate that can fold into a cmp
   1903       // instruction and X+Z has other uses. It could be an induction variable
   1904       // chain, and the transform would increase register pressure.
   1905       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   1906         if (N0.getOperand(0) == N1)
   1907           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   1908                               DAG.getConstant(0, N0.getValueType()), Cond);
   1909         if (N0.getOperand(1) == N1) {
   1910           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   1911             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1912                                 DAG.getConstant(0, N0.getValueType()), Cond);
   1913           if (N0.getNode()->hasOneUse()) {
   1914             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   1915             // (Z-X) == X  --> Z == X<<1
   1916             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
   1917                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
   1918             if (!DCI.isCalledByLegalizer())
   1919               DCI.AddToWorklist(SH.getNode());
   1920             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   1921           }
   1922         }
   1923       }
   1924     }
   1925 
   1926     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   1927         N1.getOpcode() == ISD::XOR) {
   1928       // Simplify  X == (X+Z) -->  Z == 0
   1929       if (N1.getOperand(0) == N0)
   1930         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   1931                         DAG.getConstant(0, N1.getValueType()), Cond);
   1932       if (N1.getOperand(1) == N0) {
   1933         if (DAG.isCommutativeBinOp(N1.getOpcode()))
   1934           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   1935                           DAG.getConstant(0, N1.getValueType()), Cond);
   1936         if (N1.getNode()->hasOneUse()) {
   1937           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   1938           // X == (Z-X)  --> X<<1 == Z
   1939           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
   1940                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
   1941           if (!DCI.isCalledByLegalizer())
   1942             DCI.AddToWorklist(SH.getNode());
   1943           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   1944         }
   1945       }
   1946     }
   1947 
   1948     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   1949     // Note that where y is variable and is known to have at most
   1950     // one bit set (for example, if it is z&1) we cannot do this;
   1951     // the expressions are not equivalent when y==0.
   1952     if (N0.getOpcode() == ISD::AND)
   1953       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   1954         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   1955           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1956           if (DCI.isBeforeLegalizeOps() ||
   1957               isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1958             SDValue Zero = DAG.getConstant(0, N1.getValueType());
   1959             return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   1960           }
   1961         }
   1962       }
   1963     if (N1.getOpcode() == ISD::AND)
   1964       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   1965         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   1966           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1967           if (DCI.isBeforeLegalizeOps() ||
   1968               isCondCodeLegal(Cond, N1.getSimpleValueType())) {
   1969             SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1970             return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   1971           }
   1972         }
   1973       }
   1974   }
   1975 
   1976   // Fold away ALL boolean setcc's.
   1977   SDValue Temp;
   1978   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   1979     switch (Cond) {
   1980     default: llvm_unreachable("Unknown integer setcc!");
   1981     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   1982       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1983       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   1984       if (!DCI.isCalledByLegalizer())
   1985         DCI.AddToWorklist(Temp.getNode());
   1986       break;
   1987     case ISD::SETNE:  // X != Y   -->  (X^Y)
   1988       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1989       break;
   1990     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1991     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1992       Temp = DAG.getNOT(dl, N0, MVT::i1);
   1993       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   1994       if (!DCI.isCalledByLegalizer())
   1995         DCI.AddToWorklist(Temp.getNode());
   1996       break;
   1997     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   1998     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   1999       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2000       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   2001       if (!DCI.isCalledByLegalizer())
   2002         DCI.AddToWorklist(Temp.getNode());
   2003       break;
   2004     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   2005     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   2006       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2007       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   2008       if (!DCI.isCalledByLegalizer())
   2009         DCI.AddToWorklist(Temp.getNode());
   2010       break;
   2011     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   2012     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   2013       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2014       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   2015       break;
   2016     }
   2017     if (VT != MVT::i1) {
   2018       if (!DCI.isCalledByLegalizer())
   2019         DCI.AddToWorklist(N0.getNode());
   2020       // FIXME: If running after legalize, we probably can't do this.
   2021       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   2022     }
   2023     return N0;
   2024   }
   2025 
   2026   // Could not fold it.
   2027   return SDValue();
   2028 }
   2029 
   2030 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   2031 /// node is a GlobalAddress + offset.
   2032 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2033                                     int64_t &Offset) const {
   2034   if (isa<GlobalAddressSDNode>(N)) {
   2035     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   2036     GA = GASD->getGlobal();
   2037     Offset += GASD->getOffset();
   2038     return true;
   2039   }
   2040 
   2041   if (N->getOpcode() == ISD::ADD) {
   2042     SDValue N1 = N->getOperand(0);
   2043     SDValue N2 = N->getOperand(1);
   2044     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2045       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   2046       if (V) {
   2047         Offset += V->getSExtValue();
   2048         return true;
   2049       }
   2050     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2051       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   2052       if (V) {
   2053         Offset += V->getSExtValue();
   2054         return true;
   2055       }
   2056     }
   2057   }
   2058 
   2059   return false;
   2060 }
   2061 
   2062 
   2063 SDValue TargetLowering::
   2064 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   2065   // Default implementation: no optimization.
   2066   return SDValue();
   2067 }
   2068 
   2069 //===----------------------------------------------------------------------===//
   2070 //  Inline Assembler Implementation Methods
   2071 //===----------------------------------------------------------------------===//
   2072 
   2073 
   2074 TargetLowering::ConstraintType
   2075 TargetLowering::getConstraintType(const std::string &Constraint) const {
   2076   unsigned S = Constraint.size();
   2077 
   2078   if (S == 1) {
   2079     switch (Constraint[0]) {
   2080     default: break;
   2081     case 'r': return C_RegisterClass;
   2082     case 'm':    // memory
   2083     case 'o':    // offsetable
   2084     case 'V':    // not offsetable
   2085       return C_Memory;
   2086     case 'i':    // Simple Integer or Relocatable Constant
   2087     case 'n':    // Simple Integer
   2088     case 'E':    // Floating Point Constant
   2089     case 'F':    // Floating Point Constant
   2090     case 's':    // Relocatable Constant
   2091     case 'p':    // Address.
   2092     case 'X':    // Allow ANY value.
   2093     case 'I':    // Target registers.
   2094     case 'J':
   2095     case 'K':
   2096     case 'L':
   2097     case 'M':
   2098     case 'N':
   2099     case 'O':
   2100     case 'P':
   2101     case '<':
   2102     case '>':
   2103       return C_Other;
   2104     }
   2105   }
   2106 
   2107   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
   2108     if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
   2109       return C_Memory;
   2110     return C_Register;
   2111   }
   2112   return C_Unknown;
   2113 }
   2114 
   2115 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   2116 /// with another that has more specific requirements based on the type of the
   2117 /// corresponding operand.
   2118 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2119   if (ConstraintVT.isInteger())
   2120     return "r";
   2121   if (ConstraintVT.isFloatingPoint())
   2122     return "f";      // works for many targets
   2123   return nullptr;
   2124 }
   2125 
   2126 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   2127 /// vector.  If it is invalid, don't add anything to Ops.
   2128 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2129                                                   std::string &Constraint,
   2130                                                   std::vector<SDValue> &Ops,
   2131                                                   SelectionDAG &DAG) const {
   2132 
   2133   if (Constraint.length() > 1) return;
   2134 
   2135   char ConstraintLetter = Constraint[0];
   2136   switch (ConstraintLetter) {
   2137   default: break;
   2138   case 'X':     // Allows any operand; labels (basic block) use this.
   2139     if (Op.getOpcode() == ISD::BasicBlock) {
   2140       Ops.push_back(Op);
   2141       return;
   2142     }
   2143     // fall through
   2144   case 'i':    // Simple Integer or Relocatable Constant
   2145   case 'n':    // Simple Integer
   2146   case 's': {  // Relocatable Constant
   2147     // These operands are interested in values of the form (GV+C), where C may
   2148     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2149     // is possible and fine if either GV or C are missing.
   2150     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2151     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2152 
   2153     // If we have "(add GV, C)", pull out GV/C
   2154     if (Op.getOpcode() == ISD::ADD) {
   2155       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2156       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2157       if (!C || !GA) {
   2158         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2159         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2160       }
   2161       if (!C || !GA)
   2162         C = nullptr, GA = nullptr;
   2163     }
   2164 
   2165     // If we find a valid operand, map to the TargetXXX version so that the
   2166     // value itself doesn't get selected.
   2167     if (GA) {   // Either &GV   or   &GV+C
   2168       if (ConstraintLetter != 'n') {
   2169         int64_t Offs = GA->getOffset();
   2170         if (C) Offs += C->getZExtValue();
   2171         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2172                                                  C ? SDLoc(C) : SDLoc(),
   2173                                                  Op.getValueType(), Offs));
   2174         return;
   2175       }
   2176     }
   2177     if (C) {   // just C, no GV.
   2178       // Simple constants are not allowed for 's'.
   2179       if (ConstraintLetter != 's') {
   2180         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2181         // now; without this it would get ZExt'd later in
   2182         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2183         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   2184                                             MVT::i64));
   2185         return;
   2186       }
   2187     }
   2188     break;
   2189   }
   2190   }
   2191 }
   2192 
   2193 std::pair<unsigned, const TargetRegisterClass *>
   2194 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
   2195                                              const std::string &Constraint,
   2196                                              MVT VT) const {
   2197   if (Constraint.empty() || Constraint[0] != '{')
   2198     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
   2199   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2200 
   2201   // Remove the braces from around the name.
   2202   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2203 
   2204   std::pair<unsigned, const TargetRegisterClass*> R =
   2205     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
   2206 
   2207   // Figure out which register class contains this reg.
   2208   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2209        E = RI->regclass_end(); RCI != E; ++RCI) {
   2210     const TargetRegisterClass *RC = *RCI;
   2211 
   2212     // If none of the value types for this register class are valid, we
   2213     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2214     if (!isLegalRC(RC))
   2215       continue;
   2216 
   2217     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2218          I != E; ++I) {
   2219       if (RegName.equals_lower(RI->getName(*I))) {
   2220         std::pair<unsigned, const TargetRegisterClass*> S =
   2221           std::make_pair(*I, RC);
   2222 
   2223         // If this register class has the requested value type, return it,
   2224         // otherwise keep searching and return the first class found
   2225         // if no other is found which explicitly has the requested type.
   2226         if (RC->hasType(VT))
   2227           return S;
   2228         else if (!R.second)
   2229           R = S;
   2230       }
   2231     }
   2232   }
   2233 
   2234   return R;
   2235 }
   2236 
   2237 //===----------------------------------------------------------------------===//
   2238 // Constraint Selection.
   2239 
   2240 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2241 /// a matching constraint like "4".
   2242 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2243   assert(!ConstraintCode.empty() && "No known constraint!");
   2244   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
   2245 }
   2246 
   2247 /// getMatchedOperand - If this is an input matching constraint, this method
   2248 /// returns the output operand it matches.
   2249 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2250   assert(!ConstraintCode.empty() && "No known constraint!");
   2251   return atoi(ConstraintCode.c_str());
   2252 }
   2253 
   2254 
   2255 /// ParseConstraints - Split up the constraint string from the inline
   2256 /// assembly value into the specific constraints and their prefixes,
   2257 /// and also tie in the associated operand values.
   2258 /// If this returns an empty vector, and if the constraint string itself
   2259 /// isn't empty, there was an error parsing.
   2260 TargetLowering::AsmOperandInfoVector
   2261 TargetLowering::ParseConstraints(const TargetRegisterInfo *TRI,
   2262                                  ImmutableCallSite CS) const {
   2263   /// ConstraintOperands - Information about all of the constraints.
   2264   AsmOperandInfoVector ConstraintOperands;
   2265   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2266   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2267 
   2268   // Do a prepass over the constraints, canonicalizing them, and building up the
   2269   // ConstraintOperands list.
   2270   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2271   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2272 
   2273   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
   2274     ConstraintOperands.emplace_back(std::move(CI));
   2275     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2276 
   2277     // Update multiple alternative constraint count.
   2278     if (OpInfo.multipleAlternatives.size() > maCount)
   2279       maCount = OpInfo.multipleAlternatives.size();
   2280 
   2281     OpInfo.ConstraintVT = MVT::Other;
   2282 
   2283     // Compute the value type for each operand.
   2284     switch (OpInfo.Type) {
   2285     case InlineAsm::isOutput:
   2286       // Indirect outputs just consume an argument.
   2287       if (OpInfo.isIndirect) {
   2288         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2289         break;
   2290       }
   2291 
   2292       // The return value of the call is this value.  As such, there is no
   2293       // corresponding argument.
   2294       assert(!CS.getType()->isVoidTy() &&
   2295              "Bad inline asm!");
   2296       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2297         OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
   2298       } else {
   2299         assert(ResNo == 0 && "Asm only has one result!");
   2300         OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
   2301       }
   2302       ++ResNo;
   2303       break;
   2304     case InlineAsm::isInput:
   2305       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2306       break;
   2307     case InlineAsm::isClobber:
   2308       // Nothing to do.
   2309       break;
   2310     }
   2311 
   2312     if (OpInfo.CallOperandVal) {
   2313       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2314       if (OpInfo.isIndirect) {
   2315         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2316         if (!PtrTy)
   2317           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2318         OpTy = PtrTy->getElementType();
   2319       }
   2320 
   2321       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2322       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2323         if (STy->getNumElements() == 1)
   2324           OpTy = STy->getElementType(0);
   2325 
   2326       // If OpTy is not a single value, it may be a struct/union that we
   2327       // can tile with integers.
   2328       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2329         unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
   2330         switch (BitSize) {
   2331         default: break;
   2332         case 1:
   2333         case 8:
   2334         case 16:
   2335         case 32:
   2336         case 64:
   2337         case 128:
   2338           OpInfo.ConstraintVT =
   2339             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2340           break;
   2341         }
   2342       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
   2343         unsigned PtrSize
   2344           = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
   2345         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
   2346       } else {
   2347         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
   2348       }
   2349     }
   2350   }
   2351 
   2352   // If we have multiple alternative constraints, select the best alternative.
   2353   if (!ConstraintOperands.empty()) {
   2354     if (maCount) {
   2355       unsigned bestMAIndex = 0;
   2356       int bestWeight = -1;
   2357       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2358       int weight = -1;
   2359       unsigned maIndex;
   2360       // Compute the sums of the weights for each alternative, keeping track
   2361       // of the best (highest weight) one so far.
   2362       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2363         int weightSum = 0;
   2364         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2365             cIndex != eIndex; ++cIndex) {
   2366           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2367           if (OpInfo.Type == InlineAsm::isClobber)
   2368             continue;
   2369 
   2370           // If this is an output operand with a matching input operand,
   2371           // look up the matching input. If their types mismatch, e.g. one
   2372           // is an integer, the other is floating point, or their sizes are
   2373           // different, flag it as an maCantMatch.
   2374           if (OpInfo.hasMatchingInput()) {
   2375             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2376             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2377               if ((OpInfo.ConstraintVT.isInteger() !=
   2378                    Input.ConstraintVT.isInteger()) ||
   2379                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2380                    Input.ConstraintVT.getSizeInBits())) {
   2381                 weightSum = -1;  // Can't match.
   2382                 break;
   2383               }
   2384             }
   2385           }
   2386           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2387           if (weight == -1) {
   2388             weightSum = -1;
   2389             break;
   2390           }
   2391           weightSum += weight;
   2392         }
   2393         // Update best.
   2394         if (weightSum > bestWeight) {
   2395           bestWeight = weightSum;
   2396           bestMAIndex = maIndex;
   2397         }
   2398       }
   2399 
   2400       // Now select chosen alternative in each constraint.
   2401       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2402           cIndex != eIndex; ++cIndex) {
   2403         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2404         if (cInfo.Type == InlineAsm::isClobber)
   2405           continue;
   2406         cInfo.selectAlternative(bestMAIndex);
   2407       }
   2408     }
   2409   }
   2410 
   2411   // Check and hook up tied operands, choose constraint code to use.
   2412   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2413       cIndex != eIndex; ++cIndex) {
   2414     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2415 
   2416     // If this is an output operand with a matching input operand, look up the
   2417     // matching input. If their types mismatch, e.g. one is an integer, the
   2418     // other is floating point, or their sizes are different, flag it as an
   2419     // error.
   2420     if (OpInfo.hasMatchingInput()) {
   2421       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2422 
   2423       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2424         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
   2425             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
   2426                                          OpInfo.ConstraintVT);
   2427         std::pair<unsigned, const TargetRegisterClass *> InputRC =
   2428             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
   2429                                          Input.ConstraintVT);
   2430         if ((OpInfo.ConstraintVT.isInteger() !=
   2431              Input.ConstraintVT.isInteger()) ||
   2432             (MatchRC.second != InputRC.second)) {
   2433           report_fatal_error("Unsupported asm: input constraint"
   2434                              " with a matching output constraint of"
   2435                              " incompatible type!");
   2436         }
   2437       }
   2438 
   2439     }
   2440   }
   2441 
   2442   return ConstraintOperands;
   2443 }
   2444 
   2445 
   2446 /// getConstraintGenerality - Return an integer indicating how general CT
   2447 /// is.
   2448 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   2449   switch (CT) {
   2450   case TargetLowering::C_Other:
   2451   case TargetLowering::C_Unknown:
   2452     return 0;
   2453   case TargetLowering::C_Register:
   2454     return 1;
   2455   case TargetLowering::C_RegisterClass:
   2456     return 2;
   2457   case TargetLowering::C_Memory:
   2458     return 3;
   2459   }
   2460   llvm_unreachable("Invalid constraint type");
   2461 }
   2462 
   2463 /// Examine constraint type and operand type and determine a weight value.
   2464 /// This object must already have been set up with the operand type
   2465 /// and the current alternative constraint selected.
   2466 TargetLowering::ConstraintWeight
   2467   TargetLowering::getMultipleConstraintMatchWeight(
   2468     AsmOperandInfo &info, int maIndex) const {
   2469   InlineAsm::ConstraintCodeVector *rCodes;
   2470   if (maIndex >= (int)info.multipleAlternatives.size())
   2471     rCodes = &info.Codes;
   2472   else
   2473     rCodes = &info.multipleAlternatives[maIndex].Codes;
   2474   ConstraintWeight BestWeight = CW_Invalid;
   2475 
   2476   // Loop over the options, keeping track of the most general one.
   2477   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   2478     ConstraintWeight weight =
   2479       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   2480     if (weight > BestWeight)
   2481       BestWeight = weight;
   2482   }
   2483 
   2484   return BestWeight;
   2485 }
   2486 
   2487 /// Examine constraint type and operand type and determine a weight value.
   2488 /// This object must already have been set up with the operand type
   2489 /// and the current alternative constraint selected.
   2490 TargetLowering::ConstraintWeight
   2491   TargetLowering::getSingleConstraintMatchWeight(
   2492     AsmOperandInfo &info, const char *constraint) const {
   2493   ConstraintWeight weight = CW_Invalid;
   2494   Value *CallOperandVal = info.CallOperandVal;
   2495     // If we don't have a value, we can't do a match,
   2496     // but allow it at the lowest weight.
   2497   if (!CallOperandVal)
   2498     return CW_Default;
   2499   // Look at the constraint type.
   2500   switch (*constraint) {
   2501     case 'i': // immediate integer.
   2502     case 'n': // immediate integer with a known value.
   2503       if (isa<ConstantInt>(CallOperandVal))
   2504         weight = CW_Constant;
   2505       break;
   2506     case 's': // non-explicit intregal immediate.
   2507       if (isa<GlobalValue>(CallOperandVal))
   2508         weight = CW_Constant;
   2509       break;
   2510     case 'E': // immediate float if host format.
   2511     case 'F': // immediate float.
   2512       if (isa<ConstantFP>(CallOperandVal))
   2513         weight = CW_Constant;
   2514       break;
   2515     case '<': // memory operand with autodecrement.
   2516     case '>': // memory operand with autoincrement.
   2517     case 'm': // memory operand.
   2518     case 'o': // offsettable memory operand
   2519     case 'V': // non-offsettable memory operand
   2520       weight = CW_Memory;
   2521       break;
   2522     case 'r': // general register.
   2523     case 'g': // general register, memory operand or immediate integer.
   2524               // note: Clang converts "g" to "imr".
   2525       if (CallOperandVal->getType()->isIntegerTy())
   2526         weight = CW_Register;
   2527       break;
   2528     case 'X': // any operand.
   2529     default:
   2530       weight = CW_Default;
   2531       break;
   2532   }
   2533   return weight;
   2534 }
   2535 
   2536 /// ChooseConstraint - If there are multiple different constraints that we
   2537 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   2538 /// This is somewhat tricky: constraints fall into four classes:
   2539 ///    Other         -> immediates and magic values
   2540 ///    Register      -> one specific register
   2541 ///    RegisterClass -> a group of regs
   2542 ///    Memory        -> memory
   2543 /// Ideally, we would pick the most specific constraint possible: if we have
   2544 /// something that fits into a register, we would pick it.  The problem here
   2545 /// is that if we have something that could either be in a register or in
   2546 /// memory that use of the register could cause selection of *other*
   2547 /// operands to fail: they might only succeed if we pick memory.  Because of
   2548 /// this the heuristic we use is:
   2549 ///
   2550 ///  1) If there is an 'other' constraint, and if the operand is valid for
   2551 ///     that constraint, use it.  This makes us take advantage of 'i'
   2552 ///     constraints when available.
   2553 ///  2) Otherwise, pick the most general constraint present.  This prefers
   2554 ///     'm' over 'r', for example.
   2555 ///
   2556 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   2557                              const TargetLowering &TLI,
   2558                              SDValue Op, SelectionDAG *DAG) {
   2559   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   2560   unsigned BestIdx = 0;
   2561   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   2562   int BestGenerality = -1;
   2563 
   2564   // Loop over the options, keeping track of the most general one.
   2565   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   2566     TargetLowering::ConstraintType CType =
   2567       TLI.getConstraintType(OpInfo.Codes[i]);
   2568 
   2569     // If this is an 'other' constraint, see if the operand is valid for it.
   2570     // For example, on X86 we might have an 'rI' constraint.  If the operand
   2571     // is an integer in the range [0..31] we want to use I (saving a load
   2572     // of a register), otherwise we must use 'r'.
   2573     if (CType == TargetLowering::C_Other && Op.getNode()) {
   2574       assert(OpInfo.Codes[i].size() == 1 &&
   2575              "Unhandled multi-letter 'other' constraint");
   2576       std::vector<SDValue> ResultOps;
   2577       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   2578                                        ResultOps, *DAG);
   2579       if (!ResultOps.empty()) {
   2580         BestType = CType;
   2581         BestIdx = i;
   2582         break;
   2583       }
   2584     }
   2585 
   2586     // Things with matching constraints can only be registers, per gcc
   2587     // documentation.  This mainly affects "g" constraints.
   2588     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   2589       continue;
   2590 
   2591     // This constraint letter is more general than the previous one, use it.
   2592     int Generality = getConstraintGenerality(CType);
   2593     if (Generality > BestGenerality) {
   2594       BestType = CType;
   2595       BestIdx = i;
   2596       BestGenerality = Generality;
   2597     }
   2598   }
   2599 
   2600   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   2601   OpInfo.ConstraintType = BestType;
   2602 }
   2603 
   2604 /// ComputeConstraintToUse - Determines the constraint code and constraint
   2605 /// type to use for the specific AsmOperandInfo, setting
   2606 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2607 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2608                                             SDValue Op,
   2609                                             SelectionDAG *DAG) const {
   2610   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   2611 
   2612   // Single-letter constraints ('r') are very common.
   2613   if (OpInfo.Codes.size() == 1) {
   2614     OpInfo.ConstraintCode = OpInfo.Codes[0];
   2615     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2616   } else {
   2617     ChooseConstraint(OpInfo, *this, Op, DAG);
   2618   }
   2619 
   2620   // 'X' matches anything.
   2621   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   2622     // Labels and constants are handled elsewhere ('X' is the only thing
   2623     // that matches labels).  For Functions, the type here is the type of
   2624     // the result, which is not what we want to look at; leave them alone.
   2625     Value *v = OpInfo.CallOperandVal;
   2626     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   2627       OpInfo.CallOperandVal = v;
   2628       return;
   2629     }
   2630 
   2631     // Otherwise, try to resolve it to something we know about by looking at
   2632     // the actual operand type.
   2633     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   2634       OpInfo.ConstraintCode = Repl;
   2635       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2636     }
   2637   }
   2638 }
   2639 
   2640 /// \brief Given an exact SDIV by a constant, create a multiplication
   2641 /// with the multiplicative inverse of the constant.
   2642 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
   2643                                        SelectionDAG &DAG) const {
   2644   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
   2645   APInt d = C->getAPIntValue();
   2646   assert(d != 0 && "Division by zero!");
   2647 
   2648   // Shift the value upfront if it is even, so the LSB is one.
   2649   unsigned ShAmt = d.countTrailingZeros();
   2650   if (ShAmt) {
   2651     // TODO: For UDIV use SRL instead of SRA.
   2652     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
   2653     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false,
   2654                       true);
   2655     d = d.ashr(ShAmt);
   2656   }
   2657 
   2658   // Calculate the multiplicative inverse, using Newton's method.
   2659   APInt t, xn = d;
   2660   while ((t = d*xn) != 1)
   2661     xn *= APInt(d.getBitWidth(), 2) - t;
   2662 
   2663   Op2 = DAG.getConstant(xn, Op1.getValueType());
   2664   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   2665 }
   2666 
   2667 /// \brief Given an ISD::SDIV node expressing a divide by constant,
   2668 /// return a DAG expression to select that will generate the same value by
   2669 /// multiplying by a magic number.
   2670 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   2671 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
   2672                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2673                                   std::vector<SDNode *> *Created) const {
   2674   assert(Created && "No vector to hold sdiv ops.");
   2675 
   2676   EVT VT = N->getValueType(0);
   2677   SDLoc dl(N);
   2678 
   2679   // Check to see if we can do this.
   2680   // FIXME: We should be more aggressive here.
   2681   if (!isTypeLegal(VT))
   2682     return SDValue();
   2683 
   2684   APInt::ms magics = Divisor.magic();
   2685 
   2686   // Multiply the numerator (operand 0) by the magic value
   2687   // FIXME: We should support doing a MUL in a wider type
   2688   SDValue Q;
   2689   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   2690                             isOperationLegalOrCustom(ISD::MULHS, VT))
   2691     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   2692                     DAG.getConstant(magics.m, VT));
   2693   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   2694                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   2695     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   2696                               N->getOperand(0),
   2697                               DAG.getConstant(magics.m, VT)).getNode(), 1);
   2698   else
   2699     return SDValue();       // No mulhs or equvialent
   2700   // If d > 0 and m < 0, add the numerator
   2701   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
   2702     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   2703     Created->push_back(Q.getNode());
   2704   }
   2705   // If d < 0 and m > 0, subtract the numerator.
   2706   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
   2707     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   2708     Created->push_back(Q.getNode());
   2709   }
   2710   // Shift right algebraic if shift value is nonzero
   2711   if (magics.s > 0) {
   2712     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
   2713                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2714     Created->push_back(Q.getNode());
   2715   }
   2716   // Extract the sign bit and add it to the quotient
   2717   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
   2718                           DAG.getConstant(VT.getScalarSizeInBits() - 1,
   2719                                           getShiftAmountTy(Q.getValueType())));
   2720   Created->push_back(T.getNode());
   2721   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   2722 }
   2723 
   2724 /// \brief Given an ISD::UDIV node expressing a divide by constant,
   2725 /// return a DAG expression to select that will generate the same value by
   2726 /// multiplying by a magic number.
   2727 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   2728 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
   2729                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2730                                   std::vector<SDNode *> *Created) const {
   2731   assert(Created && "No vector to hold udiv ops.");
   2732 
   2733   EVT VT = N->getValueType(0);
   2734   SDLoc dl(N);
   2735 
   2736   // Check to see if we can do this.
   2737   // FIXME: We should be more aggressive here.
   2738   if (!isTypeLegal(VT))
   2739     return SDValue();
   2740 
   2741   // FIXME: We should use a narrower constant when the upper
   2742   // bits are known to be zero.
   2743   APInt::mu magics = Divisor.magicu();
   2744 
   2745   SDValue Q = N->getOperand(0);
   2746 
   2747   // If the divisor is even, we can avoid using the expensive fixup by shifting
   2748   // the divided value upfront.
   2749   if (magics.a != 0 && !Divisor[0]) {
   2750     unsigned Shift = Divisor.countTrailingZeros();
   2751     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
   2752                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
   2753     Created->push_back(Q.getNode());
   2754 
   2755     // Get magic number for the shifted divisor.
   2756     magics = Divisor.lshr(Shift).magicu(Shift);
   2757     assert(magics.a == 0 && "Should use cheap fixup now");
   2758   }
   2759 
   2760   // Multiply the numerator (operand 0) by the magic value
   2761   // FIXME: We should support doing a MUL in a wider type
   2762   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   2763                             isOperationLegalOrCustom(ISD::MULHU, VT))
   2764     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
   2765   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   2766                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   2767     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   2768                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   2769   else
   2770     return SDValue();       // No mulhu or equvialent
   2771 
   2772   Created->push_back(Q.getNode());
   2773 
   2774   if (magics.a == 0) {
   2775     assert(magics.s < Divisor.getBitWidth() &&
   2776            "We shouldn't generate an undefined shift!");
   2777     return DAG.getNode(ISD::SRL, dl, VT, Q,
   2778                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2779   } else {
   2780     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   2781     Created->push_back(NPQ.getNode());
   2782     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2783                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
   2784     Created->push_back(NPQ.getNode());
   2785     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   2786     Created->push_back(NPQ.getNode());
   2787     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2788              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
   2789   }
   2790 }
   2791 
   2792 bool TargetLowering::
   2793 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
   2794   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
   2795     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
   2796                                 "be a constant integer");
   2797     return true;
   2798   }
   2799 
   2800   return false;
   2801 }
   2802 
   2803 //===----------------------------------------------------------------------===//
   2804 // Legalization Utilities
   2805 //===----------------------------------------------------------------------===//
   2806 
   2807 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2808                                SelectionDAG &DAG, SDValue LL, SDValue LH,
   2809                                SDValue RL, SDValue RH) const {
   2810   EVT VT = N->getValueType(0);
   2811   SDLoc dl(N);
   2812 
   2813   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
   2814   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
   2815   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
   2816   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
   2817   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
   2818     unsigned OuterBitSize = VT.getSizeInBits();
   2819     unsigned InnerBitSize = HiLoVT.getSizeInBits();
   2820     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
   2821     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
   2822 
   2823     // LL, LH, RL, and RH must be either all NULL or all set to a value.
   2824     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
   2825            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
   2826 
   2827     if (!LL.getNode() && !RL.getNode() &&
   2828         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   2829       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
   2830       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
   2831     }
   2832 
   2833     if (!LL.getNode())
   2834       return false;
   2835 
   2836     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
   2837     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
   2838         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
   2839       // The inputs are both zero-extended.
   2840       if (HasUMUL_LOHI) {
   2841         // We can emit a umul_lohi.
   2842         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
   2843                          RL);
   2844         Hi = SDValue(Lo.getNode(), 1);
   2845         return true;
   2846       }
   2847       if (HasMULHU) {
   2848         // We can emit a mulhu+mul.
   2849         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2850         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   2851         return true;
   2852       }
   2853     }
   2854     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
   2855       // The input values are both sign-extended.
   2856       if (HasSMUL_LOHI) {
   2857         // We can emit a smul_lohi.
   2858         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
   2859                          RL);
   2860         Hi = SDValue(Lo.getNode(), 1);
   2861         return true;
   2862       }
   2863       if (HasMULHS) {
   2864         // We can emit a mulhs+mul.
   2865         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2866         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
   2867         return true;
   2868       }
   2869     }
   2870 
   2871     if (!LH.getNode() && !RH.getNode() &&
   2872         isOperationLegalOrCustom(ISD::SRL, VT) &&
   2873         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   2874       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
   2875       SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT));
   2876       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
   2877       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
   2878       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
   2879       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
   2880     }
   2881 
   2882     if (!LH.getNode())
   2883       return false;
   2884 
   2885     if (HasUMUL_LOHI) {
   2886       // Lo,Hi = umul LHS, RHS.
   2887       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
   2888                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
   2889       Lo = UMulLOHI;
   2890       Hi = UMulLOHI.getValue(1);
   2891       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   2892       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   2893       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   2894       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   2895       return true;
   2896     }
   2897     if (HasMULHU) {
   2898       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2899       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   2900       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   2901       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   2902       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   2903       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   2904       return true;
   2905     }
   2906   }
   2907   return false;
   2908 }
   2909 
   2910 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
   2911                                SelectionDAG &DAG) const {
   2912   EVT VT = Node->getOperand(0).getValueType();
   2913   EVT NVT = Node->getValueType(0);
   2914   SDLoc dl(SDValue(Node, 0));
   2915 
   2916   // FIXME: Only f32 to i64 conversions are supported.
   2917   if (VT != MVT::f32 || NVT != MVT::i64)
   2918     return false;
   2919 
   2920   // Expand f32 -> i64 conversion
   2921   // This algorithm comes from compiler-rt's implementation of fixsfdi:
   2922   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
   2923   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
   2924                                 VT.getSizeInBits());
   2925   SDValue ExponentMask = DAG.getConstant(0x7F800000, IntVT);
   2926   SDValue ExponentLoBit = DAG.getConstant(23, IntVT);
   2927   SDValue Bias = DAG.getConstant(127, IntVT);
   2928   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()),
   2929                                      IntVT);
   2930   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, IntVT);
   2931   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, IntVT);
   2932 
   2933   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
   2934 
   2935   SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT,
   2936       DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
   2937       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT)));
   2938   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
   2939 
   2940   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
   2941       DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
   2942       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT)));
   2943   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
   2944 
   2945   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
   2946       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
   2947       DAG.getConstant(0x00800000, IntVT));
   2948 
   2949   R = DAG.getZExtOrTrunc(R, dl, NVT);
   2950 
   2951 
   2952   R = DAG.getSelectCC(dl, Exponent, ExponentLoBit,
   2953      DAG.getNode(ISD::SHL, dl, NVT, R,
   2954                  DAG.getZExtOrTrunc(
   2955                     DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
   2956                     dl, getShiftAmountTy(IntVT))),
   2957      DAG.getNode(ISD::SRL, dl, NVT, R,
   2958                  DAG.getZExtOrTrunc(
   2959                     DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
   2960                     dl, getShiftAmountTy(IntVT))),
   2961      ISD::SETGT);
   2962 
   2963   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
   2964       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
   2965       Sign);
   2966 
   2967   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, IntVT),
   2968       DAG.getConstant(0, NVT), Ret, ISD::SETLT);
   2969   return true;
   2970 }
   2971