Home | History | Annotate | Download | only in XCore
      1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the XCoreTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "XCoreISelLowering.h"
     15 #include "XCore.h"
     16 #include "XCoreMachineFunctionInfo.h"
     17 #include "XCoreSubtarget.h"
     18 #include "XCoreTargetMachine.h"
     19 #include "XCoreTargetObjectFile.h"
     20 #include "llvm/CodeGen/CallingConvLower.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/SelectionDAGISel.h"
     27 #include "llvm/CodeGen/ValueTypes.h"
     28 #include "llvm/IR/CallingConv.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/GlobalAlias.h"
     33 #include "llvm/IR/GlobalVariable.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <algorithm>
     39 
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "xcore-lower"
     43 
     44 const char *XCoreTargetLowering::
     45 getTargetNodeName(unsigned Opcode) const
     46 {
     47   switch (Opcode)
     48   {
     49     case XCoreISD::BL                : return "XCoreISD::BL";
     50     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
     51     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
     52     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
     53     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
     54     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
     55     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
     56     case XCoreISD::LADD              : return "XCoreISD::LADD";
     57     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
     58     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
     59     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
     60     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
     61     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
     62     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
     63     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
     64     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
     65     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
     66     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
     67     default                          : return nullptr;
     68   }
     69 }
     70 
     71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
     72                                          const XCoreSubtarget &Subtarget)
     73     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
     74 
     75   // Set up the register classes.
     76   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
     77 
     78   // Compute derived properties from the register classes
     79   computeRegisterProperties(Subtarget.getRegisterInfo());
     80 
     81   // Division is expensive
     82   setIntDivIsCheap(false);
     83 
     84   setStackPointerRegisterToSaveRestore(XCore::SP);
     85 
     86   setSchedulingPreference(Sched::Source);
     87 
     88   // Use i32 for setcc operations results (slt, sgt, ...).
     89   setBooleanContents(ZeroOrOneBooleanContent);
     90   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
     91 
     92   // XCore does not have the NodeTypes below.
     93   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
     94   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
     95   setOperationAction(ISD::ADDC, MVT::i32, Expand);
     96   setOperationAction(ISD::ADDE, MVT::i32, Expand);
     97   setOperationAction(ISD::SUBC, MVT::i32, Expand);
     98   setOperationAction(ISD::SUBE, MVT::i32, Expand);
     99 
    100   // 64bit
    101   setOperationAction(ISD::ADD, MVT::i64, Custom);
    102   setOperationAction(ISD::SUB, MVT::i64, Custom);
    103   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
    104   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
    105   setOperationAction(ISD::MULHS, MVT::i32, Expand);
    106   setOperationAction(ISD::MULHU, MVT::i32, Expand);
    107   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
    108   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
    109   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
    110 
    111   // Bit Manipulation
    112   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    113   setOperationAction(ISD::ROTL , MVT::i32, Expand);
    114   setOperationAction(ISD::ROTR , MVT::i32, Expand);
    115   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    116   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    117 
    118   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    119 
    120   // Jump tables.
    121   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
    122 
    123   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    124   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
    125 
    126   // Conversion of i64 -> double produces constantpool nodes
    127   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
    128 
    129   // Loads
    130   for (MVT VT : MVT::integer_valuetypes()) {
    131     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    132     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    133     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    134 
    135     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
    136     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
    137   }
    138 
    139   // Custom expand misaligned loads / stores.
    140   setOperationAction(ISD::LOAD, MVT::i32, Custom);
    141   setOperationAction(ISD::STORE, MVT::i32, Custom);
    142 
    143   // Varargs
    144   setOperationAction(ISD::VAEND, MVT::Other, Expand);
    145   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
    146   setOperationAction(ISD::VAARG, MVT::Other, Custom);
    147   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    148 
    149   // Dynamic stack
    150   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
    151   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
    152   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    153 
    154   // Exception handling
    155   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
    156   setExceptionPointerRegister(XCore::R0);
    157   setExceptionSelectorRegister(XCore::R1);
    158   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    159 
    160   // Atomic operations
    161   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
    162   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
    163   setInsertFencesForAtomic(true);
    164   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    165   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    166   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    167 
    168   // TRAMPOLINE is custom lowered.
    169   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    170   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    171 
    172   // We want to custom lower some of our intrinsics.
    173   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    174 
    175   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
    176   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
    177     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
    178 
    179   // We have target-specific dag combine patterns for the following nodes:
    180   setTargetDAGCombine(ISD::STORE);
    181   setTargetDAGCombine(ISD::ADD);
    182   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    183   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    184 
    185   setMinFunctionAlignment(1);
    186   setPrefFunctionAlignment(2);
    187 }
    188 
    189 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
    190   if (Val.getOpcode() != ISD::LOAD)
    191     return false;
    192 
    193   EVT VT1 = Val.getValueType();
    194   if (!VT1.isSimple() || !VT1.isInteger() ||
    195       !VT2.isSimple() || !VT2.isInteger())
    196     return false;
    197 
    198   switch (VT1.getSimpleVT().SimpleTy) {
    199   default: break;
    200   case MVT::i8:
    201     return true;
    202   }
    203 
    204   return false;
    205 }
    206 
    207 SDValue XCoreTargetLowering::
    208 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
    209   switch (Op.getOpcode())
    210   {
    211   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
    212   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
    213   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
    214   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
    215   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
    216   case ISD::LOAD:               return LowerLOAD(Op, DAG);
    217   case ISD::STORE:              return LowerSTORE(Op, DAG);
    218   case ISD::VAARG:              return LowerVAARG(Op, DAG);
    219   case ISD::VASTART:            return LowerVASTART(Op, DAG);
    220   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
    221   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
    222   // FIXME: Remove these when LegalizeDAGTypes lands.
    223   case ISD::ADD:
    224   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
    225   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
    226   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
    227   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
    228   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
    229   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
    230   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
    231   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
    232   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
    233   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
    234   default:
    235     llvm_unreachable("unimplemented operand");
    236   }
    237 }
    238 
    239 /// ReplaceNodeResults - Replace the results of node with an illegal result
    240 /// type with new values built out of custom code.
    241 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
    242                                              SmallVectorImpl<SDValue>&Results,
    243                                              SelectionDAG &DAG) const {
    244   switch (N->getOpcode()) {
    245   default:
    246     llvm_unreachable("Don't know how to custom expand this!");
    247   case ISD::ADD:
    248   case ISD::SUB:
    249     Results.push_back(ExpandADDSUB(N, DAG));
    250     return;
    251   }
    252 }
    253 
    254 //===----------------------------------------------------------------------===//
    255 //  Misc Lower Operation implementation
    256 //===----------------------------------------------------------------------===//
    257 
    258 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
    259                                                      const GlobalValue *GV,
    260                                                      SelectionDAG &DAG) const {
    261   // FIXME there is no actual debug info here
    262   SDLoc dl(GA);
    263 
    264   if (GV->getType()->getElementType()->isFunctionTy())
    265     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
    266 
    267   const auto *GVar = dyn_cast<GlobalVariable>(GV);
    268   if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
    269       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
    270     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
    271 
    272   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
    273 }
    274 
    275 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
    276   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
    277     return true;
    278 
    279   Type *ObjType = GV->getType()->getPointerElementType();
    280   if (!ObjType->isSized())
    281     return false;
    282 
    283   unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
    284   return ObjSize < CodeModelLargeSize && ObjSize != 0;
    285 }
    286 
    287 SDValue XCoreTargetLowering::
    288 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
    289 {
    290   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
    291   const GlobalValue *GV = GN->getGlobal();
    292   SDLoc DL(GN);
    293   int64_t Offset = GN->getOffset();
    294   if (IsSmallObject(GV, *this)) {
    295     // We can only fold positive offsets that are a multiple of the word size.
    296     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
    297     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
    298     GA = getGlobalAddressWrapper(GA, GV, DAG);
    299     // Handle the rest of the offset.
    300     if (Offset != FoldedOffset) {
    301       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
    302       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
    303     }
    304     return GA;
    305   } else {
    306     // Ideally we would not fold in offset with an index <= 11.
    307     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
    308     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
    309     Ty = Type::getInt32Ty(*DAG.getContext());
    310     Constant *Idx = ConstantInt::get(Ty, Offset);
    311     Constant *GAI = ConstantExpr::getGetElementPtr(
    312         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
    313     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
    314     return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
    315                        MachinePointerInfo(), false, false, false, 0);
    316   }
    317 }
    318 
    319 SDValue XCoreTargetLowering::
    320 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
    321 {
    322   SDLoc DL(Op);
    323 
    324   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
    325   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
    326 
    327   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
    328 }
    329 
    330 SDValue XCoreTargetLowering::
    331 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
    332 {
    333   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
    334   // FIXME there isn't really debug info here
    335   SDLoc dl(CP);
    336   EVT PtrVT = Op.getValueType();
    337   SDValue Res;
    338   if (CP->isMachineConstantPoolEntry()) {
    339     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
    340                                     CP->getAlignment(), CP->getOffset());
    341   } else {
    342     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
    343                                     CP->getAlignment(), CP->getOffset());
    344   }
    345   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
    346 }
    347 
    348 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
    349   return MachineJumpTableInfo::EK_Inline;
    350 }
    351 
    352 SDValue XCoreTargetLowering::
    353 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
    354 {
    355   SDValue Chain = Op.getOperand(0);
    356   SDValue Table = Op.getOperand(1);
    357   SDValue Index = Op.getOperand(2);
    358   SDLoc dl(Op);
    359   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
    360   unsigned JTI = JT->getIndex();
    361   MachineFunction &MF = DAG.getMachineFunction();
    362   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
    363   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
    364 
    365   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
    366   if (NumEntries <= 32) {
    367     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
    368   }
    369   assert((NumEntries >> 31) == 0);
    370   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
    371                                     DAG.getConstant(1, MVT::i32));
    372   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
    373                      ScaledIndex);
    374 }
    375 
    376 SDValue XCoreTargetLowering::
    377 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
    378                                        int64_t Offset, SelectionDAG &DAG) const
    379 {
    380   if ((Offset & 0x3) == 0) {
    381     return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
    382                        false, false, false, 0);
    383   }
    384   // Lower to pair of consecutive word aligned loads plus some bit shifting.
    385   int32_t HighOffset = RoundUpToAlignment(Offset, 4);
    386   int32_t LowOffset = HighOffset - 4;
    387   SDValue LowAddr, HighAddr;
    388   if (GlobalAddressSDNode *GASD =
    389         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
    390     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
    391                                    LowOffset);
    392     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
    393                                     HighOffset);
    394   } else {
    395     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
    396                           DAG.getConstant(LowOffset, MVT::i32));
    397     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
    398                            DAG.getConstant(HighOffset, MVT::i32));
    399   }
    400   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
    401   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
    402 
    403   SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
    404                             LowAddr, MachinePointerInfo(),
    405                             false, false, false, 0);
    406   SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
    407                              HighAddr, MachinePointerInfo(),
    408                              false, false, false, 0);
    409   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
    410   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
    411   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
    412   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
    413                       High.getValue(1));
    414   SDValue Ops[] = { Result, Chain };
    415   return DAG.getMergeValues(Ops, DL);
    416 }
    417 
    418 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
    419 {
    420   APInt KnownZero, KnownOne;
    421   DAG.computeKnownBits(Value, KnownZero, KnownOne);
    422   return KnownZero.countTrailingOnes() >= 2;
    423 }
    424 
    425 SDValue XCoreTargetLowering::
    426 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
    427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    428   LoadSDNode *LD = cast<LoadSDNode>(Op);
    429   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
    430          "Unexpected extension type");
    431   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
    432   if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
    433                                      LD->getAddressSpace(),
    434                                      LD->getAlignment()))
    435     return SDValue();
    436 
    437   unsigned ABIAlignment = getDataLayout()->
    438     getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
    439   // Leave aligned load alone.
    440   if (LD->getAlignment() >= ABIAlignment)
    441     return SDValue();
    442 
    443   SDValue Chain = LD->getChain();
    444   SDValue BasePtr = LD->getBasePtr();
    445   SDLoc DL(Op);
    446 
    447   if (!LD->isVolatile()) {
    448     const GlobalValue *GV;
    449     int64_t Offset = 0;
    450     if (DAG.isBaseWithConstantOffset(BasePtr) &&
    451         isWordAligned(BasePtr->getOperand(0), DAG)) {
    452       SDValue NewBasePtr = BasePtr->getOperand(0);
    453       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
    454       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
    455                                                     Offset, DAG);
    456     }
    457     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
    458         MinAlign(GV->getAlignment(), 4) == 4) {
    459       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
    460                                                 BasePtr->getValueType(0));
    461       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
    462                                                     Offset, DAG);
    463     }
    464   }
    465 
    466   if (LD->getAlignment() == 2) {
    467     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
    468                                  BasePtr, LD->getPointerInfo(), MVT::i16,
    469                                  LD->isVolatile(), LD->isNonTemporal(),
    470                                  LD->isInvariant(), 2);
    471     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
    472                                    DAG.getConstant(2, MVT::i32));
    473     SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
    474                                   HighAddr,
    475                                   LD->getPointerInfo().getWithOffset(2),
    476                                   MVT::i16, LD->isVolatile(),
    477                                   LD->isNonTemporal(), LD->isInvariant(), 2);
    478     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
    479                                       DAG.getConstant(16, MVT::i32));
    480     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
    481     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
    482                              High.getValue(1));
    483     SDValue Ops[] = { Result, Chain };
    484     return DAG.getMergeValues(Ops, DL);
    485   }
    486 
    487   // Lower to a call to __misaligned_load(BasePtr).
    488   Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
    489   TargetLowering::ArgListTy Args;
    490   TargetLowering::ArgListEntry Entry;
    491 
    492   Entry.Ty = IntPtrTy;
    493   Entry.Node = BasePtr;
    494   Args.push_back(Entry);
    495 
    496   TargetLowering::CallLoweringInfo CLI(DAG);
    497   CLI.setDebugLoc(DL).setChain(Chain)
    498     .setCallee(CallingConv::C, IntPtrTy,
    499                DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
    500                std::move(Args), 0);
    501 
    502   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
    503   SDValue Ops[] = { CallResult.first, CallResult.second };
    504   return DAG.getMergeValues(Ops, DL);
    505 }
    506 
    507 SDValue XCoreTargetLowering::
    508 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
    509 {
    510   StoreSDNode *ST = cast<StoreSDNode>(Op);
    511   assert(!ST->isTruncatingStore() && "Unexpected store type");
    512   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
    513   if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
    514                                      ST->getAddressSpace(),
    515                                      ST->getAlignment())) {
    516     return SDValue();
    517   }
    518   unsigned ABIAlignment = getDataLayout()->
    519     getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
    520   // Leave aligned store alone.
    521   if (ST->getAlignment() >= ABIAlignment) {
    522     return SDValue();
    523   }
    524   SDValue Chain = ST->getChain();
    525   SDValue BasePtr = ST->getBasePtr();
    526   SDValue Value = ST->getValue();
    527   SDLoc dl(Op);
    528 
    529   if (ST->getAlignment() == 2) {
    530     SDValue Low = Value;
    531     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
    532                                       DAG.getConstant(16, MVT::i32));
    533     SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
    534                                          ST->getPointerInfo(), MVT::i16,
    535                                          ST->isVolatile(), ST->isNonTemporal(),
    536                                          2);
    537     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
    538                                    DAG.getConstant(2, MVT::i32));
    539     SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
    540                                           ST->getPointerInfo().getWithOffset(2),
    541                                           MVT::i16, ST->isVolatile(),
    542                                           ST->isNonTemporal(), 2);
    543     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
    544   }
    545 
    546   // Lower to a call to __misaligned_store(BasePtr, Value).
    547   Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
    548   TargetLowering::ArgListTy Args;
    549   TargetLowering::ArgListEntry Entry;
    550 
    551   Entry.Ty = IntPtrTy;
    552   Entry.Node = BasePtr;
    553   Args.push_back(Entry);
    554 
    555   Entry.Node = Value;
    556   Args.push_back(Entry);
    557 
    558   TargetLowering::CallLoweringInfo CLI(DAG);
    559   CLI.setDebugLoc(dl).setChain(Chain)
    560     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
    561                DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
    562                std::move(Args), 0);
    563 
    564   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
    565   return CallResult.second;
    566 }
    567 
    568 SDValue XCoreTargetLowering::
    569 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
    570 {
    571   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
    572          "Unexpected operand to lower!");
    573   SDLoc dl(Op);
    574   SDValue LHS = Op.getOperand(0);
    575   SDValue RHS = Op.getOperand(1);
    576   SDValue Zero = DAG.getConstant(0, MVT::i32);
    577   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
    578                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
    579                            LHS, RHS);
    580   SDValue Lo(Hi.getNode(), 1);
    581   SDValue Ops[] = { Lo, Hi };
    582   return DAG.getMergeValues(Ops, dl);
    583 }
    584 
    585 SDValue XCoreTargetLowering::
    586 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
    587 {
    588   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
    589          "Unexpected operand to lower!");
    590   SDLoc dl(Op);
    591   SDValue LHS = Op.getOperand(0);
    592   SDValue RHS = Op.getOperand(1);
    593   SDValue Zero = DAG.getConstant(0, MVT::i32);
    594   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
    595                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
    596                            Zero, Zero);
    597   SDValue Lo(Hi.getNode(), 1);
    598   SDValue Ops[] = { Lo, Hi };
    599   return DAG.getMergeValues(Ops, dl);
    600 }
    601 
    602 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
    603 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
    604 /// each intermediate result in the calculation must also have a single use.
    605 /// If the Op is in the correct form the constituent parts are written to Mul0,
    606 /// Mul1, Addend0 and Addend1.
    607 static bool
    608 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
    609             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
    610 {
    611   if (Op.getOpcode() != ISD::ADD)
    612     return false;
    613   SDValue N0 = Op.getOperand(0);
    614   SDValue N1 = Op.getOperand(1);
    615   SDValue AddOp;
    616   SDValue OtherOp;
    617   if (N0.getOpcode() == ISD::ADD) {
    618     AddOp = N0;
    619     OtherOp = N1;
    620   } else if (N1.getOpcode() == ISD::ADD) {
    621     AddOp = N1;
    622     OtherOp = N0;
    623   } else {
    624     return false;
    625   }
    626   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
    627     return false;
    628   if (OtherOp.getOpcode() == ISD::MUL) {
    629     // add(add(a,b),mul(x,y))
    630     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
    631       return false;
    632     Mul0 = OtherOp.getOperand(0);
    633     Mul1 = OtherOp.getOperand(1);
    634     Addend0 = AddOp.getOperand(0);
    635     Addend1 = AddOp.getOperand(1);
    636     return true;
    637   }
    638   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
    639     // add(add(mul(x,y),a),b)
    640     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
    641       return false;
    642     Mul0 = AddOp.getOperand(0).getOperand(0);
    643     Mul1 = AddOp.getOperand(0).getOperand(1);
    644     Addend0 = AddOp.getOperand(1);
    645     Addend1 = OtherOp;
    646     return true;
    647   }
    648   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
    649     // add(add(a,mul(x,y)),b)
    650     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
    651       return false;
    652     Mul0 = AddOp.getOperand(1).getOperand(0);
    653     Mul1 = AddOp.getOperand(1).getOperand(1);
    654     Addend0 = AddOp.getOperand(0);
    655     Addend1 = OtherOp;
    656     return true;
    657   }
    658   return false;
    659 }
    660 
    661 SDValue XCoreTargetLowering::
    662 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
    663 {
    664   SDValue Mul;
    665   SDValue Other;
    666   if (N->getOperand(0).getOpcode() == ISD::MUL) {
    667     Mul = N->getOperand(0);
    668     Other = N->getOperand(1);
    669   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
    670     Mul = N->getOperand(1);
    671     Other = N->getOperand(0);
    672   } else {
    673     return SDValue();
    674   }
    675   SDLoc dl(N);
    676   SDValue LL, RL, AddendL, AddendH;
    677   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    678                    Mul.getOperand(0),  DAG.getConstant(0, MVT::i32));
    679   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    680                    Mul.getOperand(1),  DAG.getConstant(0, MVT::i32));
    681   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    682                         Other,  DAG.getConstant(0, MVT::i32));
    683   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    684                         Other,  DAG.getConstant(1, MVT::i32));
    685   APInt HighMask = APInt::getHighBitsSet(64, 32);
    686   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
    687   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
    688   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
    689       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
    690     // The inputs are both zero-extended.
    691     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
    692                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    693                              AddendL, LL, RL);
    694     SDValue Lo(Hi.getNode(), 1);
    695     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    696   }
    697   if (LHSSB > 32 && RHSSB > 32) {
    698     // The inputs are both sign-extended.
    699     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
    700                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    701                              AddendL, LL, RL);
    702     SDValue Lo(Hi.getNode(), 1);
    703     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    704   }
    705   SDValue LH, RH;
    706   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    707                    Mul.getOperand(0),  DAG.getConstant(1, MVT::i32));
    708   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    709                    Mul.getOperand(1),  DAG.getConstant(1, MVT::i32));
    710   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
    711                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    712                            AddendL, LL, RL);
    713   SDValue Lo(Hi.getNode(), 1);
    714   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
    715   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
    716   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
    717   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
    718   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    719 }
    720 
    721 SDValue XCoreTargetLowering::
    722 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
    723 {
    724   assert(N->getValueType(0) == MVT::i64 &&
    725          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
    726         "Unknown operand to lower!");
    727 
    728   if (N->getOpcode() == ISD::ADD) {
    729     SDValue Result = TryExpandADDWithMul(N, DAG);
    730     if (Result.getNode())
    731       return Result;
    732   }
    733 
    734   SDLoc dl(N);
    735 
    736   // Extract components
    737   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    738                             N->getOperand(0),  DAG.getConstant(0, MVT::i32));
    739   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    740                             N->getOperand(0),  DAG.getConstant(1, MVT::i32));
    741   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    742                              N->getOperand(1), DAG.getConstant(0, MVT::i32));
    743   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    744                              N->getOperand(1), DAG.getConstant(1, MVT::i32));
    745 
    746   // Expand
    747   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
    748                                                    XCoreISD::LSUB;
    749   SDValue Zero = DAG.getConstant(0, MVT::i32);
    750   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
    751                            LHSL, RHSL, Zero);
    752   SDValue Carry(Lo.getNode(), 1);
    753 
    754   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
    755                            LHSH, RHSH, Carry);
    756   SDValue Ignored(Hi.getNode(), 1);
    757   // Merge the pieces
    758   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    759 }
    760 
    761 SDValue XCoreTargetLowering::
    762 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
    763 {
    764   // Whist llvm does not support aggregate varargs we can ignore
    765   // the possibility of the ValueType being an implicit byVal vararg.
    766   SDNode *Node = Op.getNode();
    767   EVT VT = Node->getValueType(0); // not an aggregate
    768   SDValue InChain = Node->getOperand(0);
    769   SDValue VAListPtr = Node->getOperand(1);
    770   EVT PtrVT = VAListPtr.getValueType();
    771   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
    772   SDLoc dl(Node);
    773   SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
    774                                VAListPtr, MachinePointerInfo(SV),
    775                                false, false, false, 0);
    776   // Increment the pointer, VAList, to the next vararg
    777   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
    778                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
    779   // Store the incremented VAList to the legalized pointer
    780   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
    781                          MachinePointerInfo(SV), false, false, 0);
    782   // Load the actual argument out of the pointer VAList
    783   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
    784                      false, false, false, 0);
    785 }
    786 
    787 SDValue XCoreTargetLowering::
    788 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
    789 {
    790   SDLoc dl(Op);
    791   // vastart stores the address of the VarArgsFrameIndex slot into the
    792   // memory location argument
    793   MachineFunction &MF = DAG.getMachineFunction();
    794   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
    795   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
    796   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
    797                       MachinePointerInfo(), false, false, 0);
    798 }
    799 
    800 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
    801                                             SelectionDAG &DAG) const {
    802   // This nodes represent llvm.frameaddress on the DAG.
    803   // It takes one operand, the index of the frame address to return.
    804   // An index of zero corresponds to the current function's frame address.
    805   // An index of one to the parent's frame address, and so on.
    806   // Depths > 0 not supported yet!
    807   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
    808     return SDValue();
    809 
    810   MachineFunction &MF = DAG.getMachineFunction();
    811   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
    812   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
    813                             RegInfo->getFrameRegister(MF), MVT::i32);
    814 }
    815 
    816 SDValue XCoreTargetLowering::
    817 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
    818   // This nodes represent llvm.returnaddress on the DAG.
    819   // It takes one operand, the index of the return address to return.
    820   // An index of zero corresponds to the current function's return address.
    821   // An index of one to the parent's return address, and so on.
    822   // Depths > 0 not supported yet!
    823   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
    824     return SDValue();
    825 
    826   MachineFunction &MF = DAG.getMachineFunction();
    827   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
    828   int FI = XFI->createLRSpillSlot(MF);
    829   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
    830   return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
    831                      MachinePointerInfo::getFixedStack(FI), false, false,
    832                      false, 0);
    833 }
    834 
    835 SDValue XCoreTargetLowering::
    836 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
    837   // This node represents offset from frame pointer to first on-stack argument.
    838   // This is needed for correct stack adjustment during unwind.
    839   // However, we don't know the offset until after the frame has be finalised.
    840   // This is done during the XCoreFTAOElim pass.
    841   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
    842 }
    843 
    844 SDValue XCoreTargetLowering::
    845 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
    846   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
    847   // This node represents 'eh_return' gcc dwarf builtin, which is used to
    848   // return from exception. The general meaning is: adjust stack by OFFSET and
    849   // pass execution to HANDLER.
    850   MachineFunction &MF = DAG.getMachineFunction();
    851   SDValue Chain     = Op.getOperand(0);
    852   SDValue Offset    = Op.getOperand(1);
    853   SDValue Handler   = Op.getOperand(2);
    854   SDLoc dl(Op);
    855 
    856   // Absolute SP = (FP + FrameToArgs) + Offset
    857   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
    858   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
    859                             RegInfo->getFrameRegister(MF), MVT::i32);
    860   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
    861                                     MVT::i32);
    862   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
    863   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
    864 
    865   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
    866   // which leaves 2 caller saved registers, R2 & R3 for us to use.
    867   unsigned StackReg = XCore::R2;
    868   unsigned HandlerReg = XCore::R3;
    869 
    870   SDValue OutChains[] = {
    871     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
    872     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
    873   };
    874 
    875   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
    876 
    877   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
    878                      DAG.getRegister(StackReg, MVT::i32),
    879                      DAG.getRegister(HandlerReg, MVT::i32));
    880 
    881 }
    882 
    883 SDValue XCoreTargetLowering::
    884 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
    885   return Op.getOperand(0);
    886 }
    887 
    888 SDValue XCoreTargetLowering::
    889 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
    890   SDValue Chain = Op.getOperand(0);
    891   SDValue Trmp = Op.getOperand(1); // trampoline
    892   SDValue FPtr = Op.getOperand(2); // nested function
    893   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
    894 
    895   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
    896 
    897   // .align 4
    898   // LDAPF_u10 r11, nest
    899   // LDW_2rus r11, r11[0]
    900   // STWSP_ru6 r11, sp[0]
    901   // LDAPF_u10 r11, fptr
    902   // LDW_2rus r11, r11[0]
    903   // BAU_1r r11
    904   // nest:
    905   // .word nest
    906   // fptr:
    907   // .word fptr
    908   SDValue OutChains[5];
    909 
    910   SDValue Addr = Trmp;
    911 
    912   SDLoc dl(Op);
    913   OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
    914                               Addr, MachinePointerInfo(TrmpAddr), false, false,
    915                               0);
    916 
    917   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    918                      DAG.getConstant(4, MVT::i32));
    919   OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
    920                               Addr, MachinePointerInfo(TrmpAddr, 4), false,
    921                               false, 0);
    922 
    923   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    924                      DAG.getConstant(8, MVT::i32));
    925   OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
    926                               Addr, MachinePointerInfo(TrmpAddr, 8), false,
    927                               false, 0);
    928 
    929   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    930                      DAG.getConstant(12, MVT::i32));
    931   OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
    932                               MachinePointerInfo(TrmpAddr, 12), false, false,
    933                               0);
    934 
    935   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    936                      DAG.getConstant(16, MVT::i32));
    937   OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
    938                               MachinePointerInfo(TrmpAddr, 16), false, false,
    939                               0);
    940 
    941   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
    942 }
    943 
    944 SDValue XCoreTargetLowering::
    945 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
    946   SDLoc DL(Op);
    947   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    948   switch (IntNo) {
    949     case Intrinsic::xcore_crc8:
    950       EVT VT = Op.getValueType();
    951       SDValue Data =
    952         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
    953                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
    954       SDValue Crc(Data.getNode(), 1);
    955       SDValue Results[] = { Crc, Data };
    956       return DAG.getMergeValues(Results, DL);
    957   }
    958   return SDValue();
    959 }
    960 
    961 SDValue XCoreTargetLowering::
    962 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
    963   SDLoc DL(Op);
    964   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
    965 }
    966 
    967 SDValue XCoreTargetLowering::
    968 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
    969   AtomicSDNode *N = cast<AtomicSDNode>(Op);
    970   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
    971   assert(N->getOrdering() <= Monotonic &&
    972          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
    973   if (N->getMemoryVT() == MVT::i32) {
    974     if (N->getAlignment() < 4)
    975       report_fatal_error("atomic load must be aligned");
    976     return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
    977                        N->getBasePtr(), N->getPointerInfo(),
    978                        N->isVolatile(), N->isNonTemporal(),
    979                        N->isInvariant(), N->getAlignment(),
    980                        N->getAAInfo(), N->getRanges());
    981   }
    982   if (N->getMemoryVT() == MVT::i16) {
    983     if (N->getAlignment() < 2)
    984       report_fatal_error("atomic load must be aligned");
    985     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
    986                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
    987                           N->isVolatile(), N->isNonTemporal(),
    988                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
    989   }
    990   if (N->getMemoryVT() == MVT::i8)
    991     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
    992                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
    993                           N->isVolatile(), N->isNonTemporal(),
    994                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
    995   return SDValue();
    996 }
    997 
    998 SDValue XCoreTargetLowering::
    999 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
   1000   AtomicSDNode *N = cast<AtomicSDNode>(Op);
   1001   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
   1002   assert(N->getOrdering() <= Monotonic &&
   1003          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
   1004   if (N->getMemoryVT() == MVT::i32) {
   1005     if (N->getAlignment() < 4)
   1006       report_fatal_error("atomic store must be aligned");
   1007     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
   1008                         N->getBasePtr(), N->getPointerInfo(),
   1009                         N->isVolatile(), N->isNonTemporal(),
   1010                         N->getAlignment(), N->getAAInfo());
   1011   }
   1012   if (N->getMemoryVT() == MVT::i16) {
   1013     if (N->getAlignment() < 2)
   1014       report_fatal_error("atomic store must be aligned");
   1015     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
   1016                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
   1017                              N->isVolatile(), N->isNonTemporal(),
   1018                              N->getAlignment(), N->getAAInfo());
   1019   }
   1020   if (N->getMemoryVT() == MVT::i8)
   1021     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
   1022                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
   1023                              N->isVolatile(), N->isNonTemporal(),
   1024                              N->getAlignment(), N->getAAInfo());
   1025   return SDValue();
   1026 }
   1027 
   1028 //===----------------------------------------------------------------------===//
   1029 //                      Calling Convention Implementation
   1030 //===----------------------------------------------------------------------===//
   1031 
   1032 #include "XCoreGenCallingConv.inc"
   1033 
   1034 //===----------------------------------------------------------------------===//
   1035 //                  Call Calling Convention Implementation
   1036 //===----------------------------------------------------------------------===//
   1037 
   1038 /// XCore call implementation
   1039 SDValue
   1040 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1041                                SmallVectorImpl<SDValue> &InVals) const {
   1042   SelectionDAG &DAG                     = CLI.DAG;
   1043   SDLoc &dl                             = CLI.DL;
   1044   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1045   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1046   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1047   SDValue Chain                         = CLI.Chain;
   1048   SDValue Callee                        = CLI.Callee;
   1049   bool &isTailCall                      = CLI.IsTailCall;
   1050   CallingConv::ID CallConv              = CLI.CallConv;
   1051   bool isVarArg                         = CLI.IsVarArg;
   1052 
   1053   // XCore target does not yet support tail call optimization.
   1054   isTailCall = false;
   1055 
   1056   // For now, only CallingConv::C implemented
   1057   switch (CallConv)
   1058   {
   1059     default:
   1060       llvm_unreachable("Unsupported calling convention");
   1061     case CallingConv::Fast:
   1062     case CallingConv::C:
   1063       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
   1064                             Outs, OutVals, Ins, dl, DAG, InVals);
   1065   }
   1066 }
   1067 
   1068 /// LowerCallResult - Lower the result values of a call into the
   1069 /// appropriate copies out of appropriate physical registers / memory locations.
   1070 static SDValue
   1071 LowerCallResult(SDValue Chain, SDValue InFlag,
   1072                 const SmallVectorImpl<CCValAssign> &RVLocs,
   1073                 SDLoc dl, SelectionDAG &DAG,
   1074                 SmallVectorImpl<SDValue> &InVals) {
   1075   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
   1076   // Copy results out of physical registers.
   1077   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1078     const CCValAssign &VA = RVLocs[i];
   1079     if (VA.isRegLoc()) {
   1080       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
   1081                                  InFlag).getValue(1);
   1082       InFlag = Chain.getValue(2);
   1083       InVals.push_back(Chain.getValue(0));
   1084     } else {
   1085       assert(VA.isMemLoc());
   1086       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
   1087                                              InVals.size()));
   1088       // Reserve space for this result.
   1089       InVals.push_back(SDValue());
   1090     }
   1091   }
   1092 
   1093   // Copy results out of memory.
   1094   SmallVector<SDValue, 4> MemOpChains;
   1095   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
   1096     int offset = ResultMemLocs[i].first;
   1097     unsigned index = ResultMemLocs[i].second;
   1098     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
   1099     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
   1100     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
   1101     InVals[index] = load;
   1102     MemOpChains.push_back(load.getValue(1));
   1103   }
   1104 
   1105   // Transform all loads nodes into one single node because
   1106   // all load nodes are independent of each other.
   1107   if (!MemOpChains.empty())
   1108     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1109 
   1110   return Chain;
   1111 }
   1112 
   1113 /// LowerCCCCallTo - functions arguments are copied from virtual
   1114 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
   1115 /// CALLSEQ_END are emitted.
   1116 /// TODO: isTailCall, sret.
   1117 SDValue
   1118 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
   1119                                     CallingConv::ID CallConv, bool isVarArg,
   1120                                     bool isTailCall,
   1121                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   1122                                     const SmallVectorImpl<SDValue> &OutVals,
   1123                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1124                                     SDLoc dl, SelectionDAG &DAG,
   1125                                     SmallVectorImpl<SDValue> &InVals) const {
   1126 
   1127   // Analyze operands of the call, assigning locations to each operand.
   1128   SmallVector<CCValAssign, 16> ArgLocs;
   1129   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1130                  *DAG.getContext());
   1131 
   1132   // The ABI dictates there should be one stack slot available to the callee
   1133   // on function entry (for saving lr).
   1134   CCInfo.AllocateStack(4, 4);
   1135 
   1136   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
   1137 
   1138   SmallVector<CCValAssign, 16> RVLocs;
   1139   // Analyze return values to determine the number of bytes of stack required.
   1140   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1141                     *DAG.getContext());
   1142   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
   1143   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
   1144 
   1145   // Get a count of how many bytes are to be pushed on the stack.
   1146   unsigned NumBytes = RetCCInfo.getNextStackOffset();
   1147 
   1148   Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
   1149                                  getPointerTy(), true), dl);
   1150 
   1151   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
   1152   SmallVector<SDValue, 12> MemOpChains;
   1153 
   1154   // Walk the register/memloc assignments, inserting copies/loads.
   1155   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1156     CCValAssign &VA = ArgLocs[i];
   1157     SDValue Arg = OutVals[i];
   1158 
   1159     // Promote the value if needed.
   1160     switch (VA.getLocInfo()) {
   1161       default: llvm_unreachable("Unknown loc info!");
   1162       case CCValAssign::Full: break;
   1163       case CCValAssign::SExt:
   1164         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1165         break;
   1166       case CCValAssign::ZExt:
   1167         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1168         break;
   1169       case CCValAssign::AExt:
   1170         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1171         break;
   1172     }
   1173 
   1174     // Arguments that can be passed on register must be kept at
   1175     // RegsToPass vector
   1176     if (VA.isRegLoc()) {
   1177       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1178     } else {
   1179       assert(VA.isMemLoc());
   1180 
   1181       int Offset = VA.getLocMemOffset();
   1182 
   1183       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
   1184                                         Chain, Arg,
   1185                                         DAG.getConstant(Offset/4, MVT::i32)));
   1186     }
   1187   }
   1188 
   1189   // Transform all store nodes into one single node because
   1190   // all store nodes are independent of each other.
   1191   if (!MemOpChains.empty())
   1192     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1193 
   1194   // Build a sequence of copy-to-reg nodes chained together with token
   1195   // chain and flag operands which copy the outgoing args into registers.
   1196   // The InFlag in necessary since all emitted instructions must be
   1197   // stuck together.
   1198   SDValue InFlag;
   1199   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1200     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1201                              RegsToPass[i].second, InFlag);
   1202     InFlag = Chain.getValue(1);
   1203   }
   1204 
   1205   // If the callee is a GlobalAddress node (quite common, every direct call is)
   1206   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
   1207   // Likewise ExternalSymbol -> TargetExternalSymbol.
   1208   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   1209     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
   1210   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
   1211     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
   1212 
   1213   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
   1214   //             = Chain, Callee, Reg#1, Reg#2, ...
   1215   //
   1216   // Returns a chain & a flag for retval copy to use.
   1217   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1218   SmallVector<SDValue, 8> Ops;
   1219   Ops.push_back(Chain);
   1220   Ops.push_back(Callee);
   1221 
   1222   // Add argument registers to the end of the list so that they are
   1223   // known live into the call.
   1224   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1225     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1226                                   RegsToPass[i].second.getValueType()));
   1227 
   1228   if (InFlag.getNode())
   1229     Ops.push_back(InFlag);
   1230 
   1231   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
   1232   InFlag = Chain.getValue(1);
   1233 
   1234   // Create the CALLSEQ_END node.
   1235   Chain = DAG.getCALLSEQ_END(Chain,
   1236                              DAG.getConstant(NumBytes, getPointerTy(), true),
   1237                              DAG.getConstant(0, getPointerTy(), true),
   1238                              InFlag, dl);
   1239   InFlag = Chain.getValue(1);
   1240 
   1241   // Handle result values, copying them out of physregs into vregs that we
   1242   // return.
   1243   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
   1244 }
   1245 
   1246 //===----------------------------------------------------------------------===//
   1247 //             Formal Arguments Calling Convention Implementation
   1248 //===----------------------------------------------------------------------===//
   1249 
   1250 namespace {
   1251   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
   1252 }
   1253 
   1254 /// XCore formal arguments implementation
   1255 SDValue
   1256 XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
   1257                                           CallingConv::ID CallConv,
   1258                                           bool isVarArg,
   1259                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   1260                                           SDLoc dl,
   1261                                           SelectionDAG &DAG,
   1262                                           SmallVectorImpl<SDValue> &InVals)
   1263                                             const {
   1264   switch (CallConv)
   1265   {
   1266     default:
   1267       llvm_unreachable("Unsupported calling convention");
   1268     case CallingConv::C:
   1269     case CallingConv::Fast:
   1270       return LowerCCCArguments(Chain, CallConv, isVarArg,
   1271                                Ins, dl, DAG, InVals);
   1272   }
   1273 }
   1274 
   1275 /// LowerCCCArguments - transform physical registers into
   1276 /// virtual registers and generate load operations for
   1277 /// arguments places on the stack.
   1278 /// TODO: sret
   1279 SDValue
   1280 XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
   1281                                        CallingConv::ID CallConv,
   1282                                        bool isVarArg,
   1283                                        const SmallVectorImpl<ISD::InputArg>
   1284                                          &Ins,
   1285                                        SDLoc dl,
   1286                                        SelectionDAG &DAG,
   1287                                        SmallVectorImpl<SDValue> &InVals) const {
   1288   MachineFunction &MF = DAG.getMachineFunction();
   1289   MachineFrameInfo *MFI = MF.getFrameInfo();
   1290   MachineRegisterInfo &RegInfo = MF.getRegInfo();
   1291   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
   1292 
   1293   // Assign locations to all of the incoming arguments.
   1294   SmallVector<CCValAssign, 16> ArgLocs;
   1295   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1296                  *DAG.getContext());
   1297 
   1298   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
   1299 
   1300   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
   1301 
   1302   unsigned LRSaveSize = StackSlotSize;
   1303 
   1304   if (!isVarArg)
   1305     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
   1306 
   1307   // All getCopyFromReg ops must precede any getMemcpys to prevent the
   1308   // scheduler clobbering a register before it has been copied.
   1309   // The stages are:
   1310   // 1. CopyFromReg (and load) arg & vararg registers.
   1311   // 2. Chain CopyFromReg nodes into a TokenFactor.
   1312   // 3. Memcpy 'byVal' args & push final InVals.
   1313   // 4. Chain mem ops nodes into a TokenFactor.
   1314   SmallVector<SDValue, 4> CFRegNode;
   1315   SmallVector<ArgDataPair, 4> ArgData;
   1316   SmallVector<SDValue, 4> MemOps;
   1317 
   1318   // 1a. CopyFromReg (and load) arg registers.
   1319   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1320 
   1321     CCValAssign &VA = ArgLocs[i];
   1322     SDValue ArgIn;
   1323 
   1324     if (VA.isRegLoc()) {
   1325       // Arguments passed in registers
   1326       EVT RegVT = VA.getLocVT();
   1327       switch (RegVT.getSimpleVT().SimpleTy) {
   1328       default:
   1329         {
   1330 #ifndef NDEBUG
   1331           errs() << "LowerFormalArguments Unhandled argument type: "
   1332                  << RegVT.getSimpleVT().SimpleTy << "\n";
   1333 #endif
   1334           llvm_unreachable(nullptr);
   1335         }
   1336       case MVT::i32:
   1337         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
   1338         RegInfo.addLiveIn(VA.getLocReg(), VReg);
   1339         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
   1340         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
   1341       }
   1342     } else {
   1343       // sanity check
   1344       assert(VA.isMemLoc());
   1345       // Load the argument to a virtual register
   1346       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
   1347       if (ObjSize > StackSlotSize) {
   1348         errs() << "LowerFormalArguments Unhandled argument type: "
   1349                << EVT(VA.getLocVT()).getEVTString()
   1350                << "\n";
   1351       }
   1352       // Create the frame index object for this incoming parameter...
   1353       int FI = MFI->CreateFixedObject(ObjSize,
   1354                                       LRSaveSize + VA.getLocMemOffset(),
   1355                                       true);
   1356 
   1357       // Create the SelectionDAG nodes corresponding to a load
   1358       //from this parameter
   1359       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1360       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
   1361                           MachinePointerInfo::getFixedStack(FI),
   1362                           false, false, false, 0);
   1363     }
   1364     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
   1365     ArgData.push_back(ADP);
   1366   }
   1367 
   1368   // 1b. CopyFromReg vararg registers.
   1369   if (isVarArg) {
   1370     // Argument registers
   1371     static const MCPhysReg ArgRegs[] = {
   1372       XCore::R0, XCore::R1, XCore::R2, XCore::R3
   1373     };
   1374     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
   1375     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
   1376     if (FirstVAReg < array_lengthof(ArgRegs)) {
   1377       int offset = 0;
   1378       // Save remaining registers, storing higher register numbers at a higher
   1379       // address
   1380       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
   1381         // Create a stack slot
   1382         int FI = MFI->CreateFixedObject(4, offset, true);
   1383         if (i == (int)FirstVAReg) {
   1384           XFI->setVarArgsFrameIndex(FI);
   1385         }
   1386         offset -= StackSlotSize;
   1387         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1388         // Move argument from phys reg -> virt reg
   1389         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
   1390         RegInfo.addLiveIn(ArgRegs[i], VReg);
   1391         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   1392         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
   1393         // Move argument from virt reg -> stack
   1394         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1395                                      MachinePointerInfo(), false, false, 0);
   1396         MemOps.push_back(Store);
   1397       }
   1398     } else {
   1399       // This will point to the next argument passed via stack.
   1400       XFI->setVarArgsFrameIndex(
   1401         MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
   1402                                true));
   1403     }
   1404   }
   1405 
   1406   // 2. chain CopyFromReg nodes into a TokenFactor.
   1407   if (!CFRegNode.empty())
   1408     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
   1409 
   1410   // 3. Memcpy 'byVal' args & push final InVals.
   1411   // Aggregates passed "byVal" need to be copied by the callee.
   1412   // The callee will use a pointer to this copy, rather than the original
   1413   // pointer.
   1414   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
   1415                                                     ArgDE = ArgData.end();
   1416        ArgDI != ArgDE; ++ArgDI) {
   1417     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
   1418       unsigned Size = ArgDI->Flags.getByValSize();
   1419       unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
   1420       // Create a new object on the stack and copy the pointee into it.
   1421       int FI = MFI->CreateStackObject(Size, Align, false);
   1422       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1423       InVals.push_back(FIN);
   1424       MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
   1425                                      DAG.getConstant(Size, MVT::i32),
   1426                                      Align, false, false, false,
   1427                                      MachinePointerInfo(),
   1428                                      MachinePointerInfo()));
   1429     } else {
   1430       InVals.push_back(ArgDI->SDV);
   1431     }
   1432   }
   1433 
   1434   // 4, chain mem ops nodes into a TokenFactor.
   1435   if (!MemOps.empty()) {
   1436     MemOps.push_back(Chain);
   1437     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   1438   }
   1439 
   1440   return Chain;
   1441 }
   1442 
   1443 //===----------------------------------------------------------------------===//
   1444 //               Return Value Calling Convention Implementation
   1445 //===----------------------------------------------------------------------===//
   1446 
   1447 bool XCoreTargetLowering::
   1448 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
   1449                bool isVarArg,
   1450                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1451                LLVMContext &Context) const {
   1452   SmallVector<CCValAssign, 16> RVLocs;
   1453   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   1454   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
   1455     return false;
   1456   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
   1457     return false;
   1458   return true;
   1459 }
   1460 
   1461 SDValue
   1462 XCoreTargetLowering::LowerReturn(SDValue Chain,
   1463                                  CallingConv::ID CallConv, bool isVarArg,
   1464                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
   1465                                  const SmallVectorImpl<SDValue> &OutVals,
   1466                                  SDLoc dl, SelectionDAG &DAG) const {
   1467 
   1468   XCoreFunctionInfo *XFI =
   1469     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
   1470   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1471 
   1472   // CCValAssign - represent the assignment of
   1473   // the return value to a location
   1474   SmallVector<CCValAssign, 16> RVLocs;
   1475 
   1476   // CCState - Info about the registers and stack slot.
   1477   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1478                  *DAG.getContext());
   1479 
   1480   // Analyze return values.
   1481   if (!isVarArg)
   1482     CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
   1483 
   1484   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
   1485 
   1486   SDValue Flag;
   1487   SmallVector<SDValue, 4> RetOps(1, Chain);
   1488 
   1489   // Return on XCore is always a "retsp 0"
   1490   RetOps.push_back(DAG.getConstant(0, MVT::i32));
   1491 
   1492   SmallVector<SDValue, 4> MemOpChains;
   1493   // Handle return values that must be copied to memory.
   1494   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1495     CCValAssign &VA = RVLocs[i];
   1496     if (VA.isRegLoc())
   1497       continue;
   1498     assert(VA.isMemLoc());
   1499     if (isVarArg) {
   1500       report_fatal_error("Can't return value from vararg function in memory");
   1501     }
   1502 
   1503     int Offset = VA.getLocMemOffset();
   1504     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
   1505     // Create the frame index object for the memory location.
   1506     int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
   1507 
   1508     // Create a SelectionDAG node corresponding to a store
   1509     // to this memory location.
   1510     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1511     MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
   1512                           MachinePointerInfo::getFixedStack(FI), false, false,
   1513                           0));
   1514   }
   1515 
   1516   // Transform all store nodes into one single node because
   1517   // all stores are independent of each other.
   1518   if (!MemOpChains.empty())
   1519     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1520 
   1521   // Now handle return values copied to registers.
   1522   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1523     CCValAssign &VA = RVLocs[i];
   1524     if (!VA.isRegLoc())
   1525       continue;
   1526     // Copy the result values into the output registers.
   1527     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
   1528 
   1529     // guarantee that all emitted copies are
   1530     // stuck together, avoiding something bad
   1531     Flag = Chain.getValue(1);
   1532     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   1533   }
   1534 
   1535   RetOps[0] = Chain;  // Update chain.
   1536 
   1537   // Add the flag if we have it.
   1538   if (Flag.getNode())
   1539     RetOps.push_back(Flag);
   1540 
   1541   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
   1542 }
   1543 
   1544 //===----------------------------------------------------------------------===//
   1545 //  Other Lowering Code
   1546 //===----------------------------------------------------------------------===//
   1547 
   1548 MachineBasicBlock *
   1549 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   1550                                                  MachineBasicBlock *BB) const {
   1551   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
   1552   DebugLoc dl = MI->getDebugLoc();
   1553   assert((MI->getOpcode() == XCore::SELECT_CC) &&
   1554          "Unexpected instr type to insert");
   1555 
   1556   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
   1557   // control-flow pattern.  The incoming instruction knows the destination vreg
   1558   // to set, the condition code register to branch on, the true/false values to
   1559   // select between, and a branch opcode to use.
   1560   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1561   MachineFunction::iterator It = BB;
   1562   ++It;
   1563 
   1564   //  thisMBB:
   1565   //  ...
   1566   //   TrueVal = ...
   1567   //   cmpTY ccX, r1, r2
   1568   //   bCC copy1MBB
   1569   //   fallthrough --> copy0MBB
   1570   MachineBasicBlock *thisMBB = BB;
   1571   MachineFunction *F = BB->getParent();
   1572   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1573   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   1574   F->insert(It, copy0MBB);
   1575   F->insert(It, sinkMBB);
   1576 
   1577   // Transfer the remainder of BB and its successor edges to sinkMBB.
   1578   sinkMBB->splice(sinkMBB->begin(), BB,
   1579                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1580   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   1581 
   1582   // Next, add the true and fallthrough blocks as its successors.
   1583   BB->addSuccessor(copy0MBB);
   1584   BB->addSuccessor(sinkMBB);
   1585 
   1586   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
   1587     .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   1588 
   1589   //  copy0MBB:
   1590   //   %FalseValue = ...
   1591   //   # fallthrough to sinkMBB
   1592   BB = copy0MBB;
   1593 
   1594   // Update machine-CFG edges
   1595   BB->addSuccessor(sinkMBB);
   1596 
   1597   //  sinkMBB:
   1598   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   1599   //  ...
   1600   BB = sinkMBB;
   1601   BuildMI(*BB, BB->begin(), dl,
   1602           TII.get(XCore::PHI), MI->getOperand(0).getReg())
   1603     .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   1604     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   1605 
   1606   MI->eraseFromParent();   // The pseudo instruction is gone now.
   1607   return BB;
   1608 }
   1609 
   1610 //===----------------------------------------------------------------------===//
   1611 // Target Optimization Hooks
   1612 //===----------------------------------------------------------------------===//
   1613 
   1614 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
   1615                                              DAGCombinerInfo &DCI) const {
   1616   SelectionDAG &DAG = DCI.DAG;
   1617   SDLoc dl(N);
   1618   switch (N->getOpcode()) {
   1619   default: break;
   1620   case ISD::INTRINSIC_VOID:
   1621     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   1622     case Intrinsic::xcore_outt:
   1623     case Intrinsic::xcore_outct:
   1624     case Intrinsic::xcore_chkct: {
   1625       SDValue OutVal = N->getOperand(3);
   1626       // These instructions ignore the high bits.
   1627       if (OutVal.hasOneUse()) {
   1628         unsigned BitWidth = OutVal.getValueSizeInBits();
   1629         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
   1630         APInt KnownZero, KnownOne;
   1631         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   1632                                               !DCI.isBeforeLegalizeOps());
   1633         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1634         if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
   1635             TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
   1636                                      TLO))
   1637           DCI.CommitTargetLoweringOpt(TLO);
   1638       }
   1639       break;
   1640     }
   1641     case Intrinsic::xcore_setpt: {
   1642       SDValue Time = N->getOperand(3);
   1643       // This instruction ignores the high bits.
   1644       if (Time.hasOneUse()) {
   1645         unsigned BitWidth = Time.getValueSizeInBits();
   1646         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
   1647         APInt KnownZero, KnownOne;
   1648         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   1649                                               !DCI.isBeforeLegalizeOps());
   1650         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1651         if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
   1652             TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
   1653                                      TLO))
   1654           DCI.CommitTargetLoweringOpt(TLO);
   1655       }
   1656       break;
   1657     }
   1658     }
   1659     break;
   1660   case XCoreISD::LADD: {
   1661     SDValue N0 = N->getOperand(0);
   1662     SDValue N1 = N->getOperand(1);
   1663     SDValue N2 = N->getOperand(2);
   1664     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1665     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1666     EVT VT = N0.getValueType();
   1667 
   1668     // canonicalize constant to RHS
   1669     if (N0C && !N1C)
   1670       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
   1671 
   1672     // fold (ladd 0, 0, x) -> 0, x & 1
   1673     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
   1674       SDValue Carry = DAG.getConstant(0, VT);
   1675       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
   1676                                    DAG.getConstant(1, VT));
   1677       SDValue Ops[] = { Result, Carry };
   1678       return DAG.getMergeValues(Ops, dl);
   1679     }
   1680 
   1681     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
   1682     // low bit set
   1683     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
   1684       APInt KnownZero, KnownOne;
   1685       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1686                                          VT.getSizeInBits() - 1);
   1687       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1688       if ((KnownZero & Mask) == Mask) {
   1689         SDValue Carry = DAG.getConstant(0, VT);
   1690         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
   1691         SDValue Ops[] = { Result, Carry };
   1692         return DAG.getMergeValues(Ops, dl);
   1693       }
   1694     }
   1695   }
   1696   break;
   1697   case XCoreISD::LSUB: {
   1698     SDValue N0 = N->getOperand(0);
   1699     SDValue N1 = N->getOperand(1);
   1700     SDValue N2 = N->getOperand(2);
   1701     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1702     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1703     EVT VT = N0.getValueType();
   1704 
   1705     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
   1706     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
   1707       APInt KnownZero, KnownOne;
   1708       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1709                                          VT.getSizeInBits() - 1);
   1710       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1711       if ((KnownZero & Mask) == Mask) {
   1712         SDValue Borrow = N2;
   1713         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
   1714                                      DAG.getConstant(0, VT), N2);
   1715         SDValue Ops[] = { Result, Borrow };
   1716         return DAG.getMergeValues(Ops, dl);
   1717       }
   1718     }
   1719 
   1720     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
   1721     // low bit set
   1722     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
   1723       APInt KnownZero, KnownOne;
   1724       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1725                                          VT.getSizeInBits() - 1);
   1726       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1727       if ((KnownZero & Mask) == Mask) {
   1728         SDValue Borrow = DAG.getConstant(0, VT);
   1729         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
   1730         SDValue Ops[] = { Result, Borrow };
   1731         return DAG.getMergeValues(Ops, dl);
   1732       }
   1733     }
   1734   }
   1735   break;
   1736   case XCoreISD::LMUL: {
   1737     SDValue N0 = N->getOperand(0);
   1738     SDValue N1 = N->getOperand(1);
   1739     SDValue N2 = N->getOperand(2);
   1740     SDValue N3 = N->getOperand(3);
   1741     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1742     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1743     EVT VT = N0.getValueType();
   1744     // Canonicalize multiplicative constant to RHS. If both multiplicative
   1745     // operands are constant canonicalize smallest to RHS.
   1746     if ((N0C && !N1C) ||
   1747         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
   1748       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
   1749                          N1, N0, N2, N3);
   1750 
   1751     // lmul(x, 0, a, b)
   1752     if (N1C && N1C->isNullValue()) {
   1753       // If the high result is unused fold to add(a, b)
   1754       if (N->hasNUsesOfValue(0, 0)) {
   1755         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
   1756         SDValue Ops[] = { Lo, Lo };
   1757         return DAG.getMergeValues(Ops, dl);
   1758       }
   1759       // Otherwise fold to ladd(a, b, 0)
   1760       SDValue Result =
   1761         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
   1762       SDValue Carry(Result.getNode(), 1);
   1763       SDValue Ops[] = { Carry, Result };
   1764       return DAG.getMergeValues(Ops, dl);
   1765     }
   1766   }
   1767   break;
   1768   case ISD::ADD: {
   1769     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
   1770     // lmul(x, y, a, b). The high result of lmul will be ignored.
   1771     // This is only profitable if the intermediate results are unused
   1772     // elsewhere.
   1773     SDValue Mul0, Mul1, Addend0, Addend1;
   1774     if (N->getValueType(0) == MVT::i32 &&
   1775         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
   1776       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
   1777                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
   1778                                     Mul1, Addend0, Addend1);
   1779       SDValue Result(Ignored.getNode(), 1);
   1780       return Result;
   1781     }
   1782     APInt HighMask = APInt::getHighBitsSet(64, 32);
   1783     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
   1784     // lmul(x, y, a, b) if all operands are zero-extended. We do this
   1785     // before type legalization as it is messy to match the operands after
   1786     // that.
   1787     if (N->getValueType(0) == MVT::i64 &&
   1788         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
   1789         DAG.MaskedValueIsZero(Mul0, HighMask) &&
   1790         DAG.MaskedValueIsZero(Mul1, HighMask) &&
   1791         DAG.MaskedValueIsZero(Addend0, HighMask) &&
   1792         DAG.MaskedValueIsZero(Addend1, HighMask)) {
   1793       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1794                                   Mul0, DAG.getConstant(0, MVT::i32));
   1795       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1796                                   Mul1, DAG.getConstant(0, MVT::i32));
   1797       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1798                                      Addend0, DAG.getConstant(0, MVT::i32));
   1799       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1800                                      Addend1, DAG.getConstant(0, MVT::i32));
   1801       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
   1802                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
   1803                                Addend0L, Addend1L);
   1804       SDValue Lo(Hi.getNode(), 1);
   1805       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   1806     }
   1807   }
   1808   break;
   1809   case ISD::STORE: {
   1810     // Replace unaligned store of unaligned load with memmove.
   1811     StoreSDNode *ST  = cast<StoreSDNode>(N);
   1812     if (!DCI.isBeforeLegalize() ||
   1813         allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
   1814                                        ST->getAddressSpace(),
   1815                                        ST->getAlignment()) ||
   1816         ST->isVolatile() || ST->isIndexed()) {
   1817       break;
   1818     }
   1819     SDValue Chain = ST->getChain();
   1820 
   1821     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
   1822     if (StoreBits % 8) {
   1823       break;
   1824     }
   1825     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
   1826         ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
   1827     unsigned Alignment = ST->getAlignment();
   1828     if (Alignment >= ABIAlignment) {
   1829       break;
   1830     }
   1831 
   1832     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
   1833       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
   1834         LD->getAlignment() == Alignment &&
   1835         !LD->isVolatile() && !LD->isIndexed() &&
   1836         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
   1837         bool isTail = isInTailCallPosition(DAG, ST, Chain);
   1838         return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
   1839                               LD->getBasePtr(),
   1840                               DAG.getConstant(StoreBits/8, MVT::i32),
   1841                               Alignment, false, isTail, ST->getPointerInfo(),
   1842                               LD->getPointerInfo());
   1843       }
   1844     }
   1845     break;
   1846   }
   1847   }
   1848   return SDValue();
   1849 }
   1850 
   1851 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1852                                                         APInt &KnownZero,
   1853                                                         APInt &KnownOne,
   1854                                                         const SelectionDAG &DAG,
   1855                                                         unsigned Depth) const {
   1856   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   1857   switch (Op.getOpcode()) {
   1858   default: break;
   1859   case XCoreISD::LADD:
   1860   case XCoreISD::LSUB:
   1861     if (Op.getResNo() == 1) {
   1862       // Top bits of carry / borrow are clear.
   1863       KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1864                                         KnownZero.getBitWidth() - 1);
   1865     }
   1866     break;
   1867   case ISD::INTRINSIC_W_CHAIN:
   1868     {
   1869       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1870       switch (IntNo) {
   1871       case Intrinsic::xcore_getts:
   1872         // High bits are known to be zero.
   1873         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1874                                           KnownZero.getBitWidth() - 16);
   1875         break;
   1876       case Intrinsic::xcore_int:
   1877       case Intrinsic::xcore_inct:
   1878         // High bits are known to be zero.
   1879         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1880                                           KnownZero.getBitWidth() - 8);
   1881         break;
   1882       case Intrinsic::xcore_testct:
   1883         // Result is either 0 or 1.
   1884         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1885                                           KnownZero.getBitWidth() - 1);
   1886         break;
   1887       case Intrinsic::xcore_testwct:
   1888         // Result is in the range 0 - 4.
   1889         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1890                                           KnownZero.getBitWidth() - 3);
   1891         break;
   1892       }
   1893     }
   1894     break;
   1895   }
   1896 }
   1897 
   1898 //===----------------------------------------------------------------------===//
   1899 //  Addressing mode description hooks
   1900 //===----------------------------------------------------------------------===//
   1901 
   1902 static inline bool isImmUs(int64_t val)
   1903 {
   1904   return (val >= 0 && val <= 11);
   1905 }
   1906 
   1907 static inline bool isImmUs2(int64_t val)
   1908 {
   1909   return (val%2 == 0 && isImmUs(val/2));
   1910 }
   1911 
   1912 static inline bool isImmUs4(int64_t val)
   1913 {
   1914   return (val%4 == 0 && isImmUs(val/4));
   1915 }
   1916 
   1917 /// isLegalAddressingMode - Return true if the addressing mode represented
   1918 /// by AM is legal for this target, for a load/store of the specified type.
   1919 bool
   1920 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   1921                                               Type *Ty) const {
   1922   if (Ty->getTypeID() == Type::VoidTyID)
   1923     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
   1924 
   1925   const DataLayout *TD = TM.getDataLayout();
   1926   unsigned Size = TD->getTypeAllocSize(Ty);
   1927   if (AM.BaseGV) {
   1928     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
   1929                  AM.BaseOffs%4 == 0;
   1930   }
   1931 
   1932   switch (Size) {
   1933   case 1:
   1934     // reg + imm
   1935     if (AM.Scale == 0) {
   1936       return isImmUs(AM.BaseOffs);
   1937     }
   1938     // reg + reg
   1939     return AM.Scale == 1 && AM.BaseOffs == 0;
   1940   case 2:
   1941   case 3:
   1942     // reg + imm
   1943     if (AM.Scale == 0) {
   1944       return isImmUs2(AM.BaseOffs);
   1945     }
   1946     // reg + reg<<1
   1947     return AM.Scale == 2 && AM.BaseOffs == 0;
   1948   default:
   1949     // reg + imm
   1950     if (AM.Scale == 0) {
   1951       return isImmUs4(AM.BaseOffs);
   1952     }
   1953     // reg + reg<<2
   1954     return AM.Scale == 4 && AM.BaseOffs == 0;
   1955   }
   1956 }
   1957 
   1958 //===----------------------------------------------------------------------===//
   1959 //                           XCore Inline Assembly Support
   1960 //===----------------------------------------------------------------------===//
   1961 
   1962 std::pair<unsigned, const TargetRegisterClass *>
   1963 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   1964                                                   const std::string &Constraint,
   1965                                                   MVT VT) const {
   1966   if (Constraint.size() == 1) {
   1967     switch (Constraint[0]) {
   1968     default : break;
   1969     case 'r':
   1970       return std::make_pair(0U, &XCore::GRRegsRegClass);
   1971     }
   1972   }
   1973   // Use the default implementation in TargetLowering to convert the register
   1974   // constraint into a member of a register class.
   1975   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   1976 }
   1977