Home | History | Annotate | Download | only in Utils
      1 //===-- Transform/Utils/BasicBlockUtils.h - BasicBlock Utils ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
     16 #define LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
     17 
     18 // FIXME: Move to this file: BasicBlock::removePredecessor, BB::splitBasicBlock
     19 
     20 #include "llvm/IR/BasicBlock.h"
     21 #include "llvm/IR/CFG.h"
     22 
     23 namespace llvm {
     24 
     25 class AliasAnalysis;
     26 class MemoryDependenceAnalysis;
     27 class DominatorTree;
     28 class LoopInfo;
     29 class Instruction;
     30 class MDNode;
     31 class ReturnInst;
     32 class TargetLibraryInfo;
     33 class TerminatorInst;
     34 
     35 /// DeleteDeadBlock - Delete the specified block, which must have no
     36 /// predecessors.
     37 void DeleteDeadBlock(BasicBlock *BB);
     38 
     39 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
     40 /// any single-entry PHI nodes in it, fold them away.  This handles the case
     41 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
     42 /// when the block has exactly one predecessor.
     43 void FoldSingleEntryPHINodes(BasicBlock *BB, AliasAnalysis *AA = nullptr,
     44                              MemoryDependenceAnalysis *MemDep = nullptr);
     45 
     46 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
     47 /// is dead. Also recursively delete any operands that become dead as
     48 /// a result. This includes tracing the def-use list from the PHI to see if
     49 /// it is ultimately unused or if it reaches an unused cycle. Return true
     50 /// if any PHIs were deleted.
     51 bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI = nullptr);
     52 
     53 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
     54 /// if possible.  The return value indicates success or failure.
     55 bool MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT = nullptr,
     56                                LoopInfo *LI = nullptr,
     57                                AliasAnalysis *AA = nullptr,
     58                                MemoryDependenceAnalysis *MemDep = nullptr);
     59 
     60 // ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
     61 // with a value, then remove and delete the original instruction.
     62 //
     63 void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
     64                           BasicBlock::iterator &BI, Value *V);
     65 
     66 // ReplaceInstWithInst - Replace the instruction specified by BI with the
     67 // instruction specified by I.  The original instruction is deleted and BI is
     68 // updated to point to the new instruction.
     69 //
     70 void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
     71                          BasicBlock::iterator &BI, Instruction *I);
     72 
     73 // ReplaceInstWithInst - Replace the instruction specified by From with the
     74 // instruction specified by To.
     75 //
     76 void ReplaceInstWithInst(Instruction *From, Instruction *To);
     77 
     78 /// \brief Option class for critical edge splitting.
     79 ///
     80 /// This provides a builder interface for overriding the default options used
     81 /// during critical edge splitting.
     82 struct CriticalEdgeSplittingOptions {
     83   AliasAnalysis *AA;
     84   DominatorTree *DT;
     85   LoopInfo *LI;
     86   bool MergeIdenticalEdges;
     87   bool DontDeleteUselessPHIs;
     88   bool PreserveLCSSA;
     89 
     90   CriticalEdgeSplittingOptions()
     91       : AA(nullptr), DT(nullptr), LI(nullptr), MergeIdenticalEdges(false),
     92         DontDeleteUselessPHIs(false), PreserveLCSSA(false) {}
     93 
     94   /// \brief Basic case of setting up all the analysis.
     95   CriticalEdgeSplittingOptions(AliasAnalysis *AA, DominatorTree *DT = nullptr,
     96                                LoopInfo *LI = nullptr)
     97       : AA(AA), DT(DT), LI(LI), MergeIdenticalEdges(false),
     98         DontDeleteUselessPHIs(false), PreserveLCSSA(false) {}
     99 
    100   /// \brief A common pattern is to preserve the dominator tree and loop
    101   /// info but not care about AA.
    102   CriticalEdgeSplittingOptions(DominatorTree *DT, LoopInfo *LI)
    103       : AA(nullptr), DT(DT), LI(LI), MergeIdenticalEdges(false),
    104         DontDeleteUselessPHIs(false), PreserveLCSSA(false) {}
    105 
    106   CriticalEdgeSplittingOptions &setMergeIdenticalEdges() {
    107     MergeIdenticalEdges = true;
    108     return *this;
    109   }
    110 
    111   CriticalEdgeSplittingOptions &setDontDeleteUselessPHIs() {
    112     DontDeleteUselessPHIs = true;
    113     return *this;
    114   }
    115 
    116   CriticalEdgeSplittingOptions &setPreserveLCSSA() {
    117     PreserveLCSSA = true;
    118     return *this;
    119   }
    120 };
    121 
    122 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
    123 /// split the critical edge.  This will update the analyses passed in through
    124 /// the option struct. This returns the new block if the edge was split, null
    125 /// otherwise.
    126 ///
    127 /// If MergeIdenticalEdges in the options struct is true (not the default),
    128 /// *all* edges from TI to the specified successor will be merged into the same
    129 /// critical edge block. This is most commonly interesting with switch
    130 /// instructions, which may have many edges to any one destination.  This
    131 /// ensures that all edges to that dest go to one block instead of each going
    132 /// to a different block, but isn't the standard definition of a "critical
    133 /// edge".
    134 ///
    135 /// It is invalid to call this function on a critical edge that starts at an
    136 /// IndirectBrInst.  Splitting these edges will almost always create an invalid
    137 /// program because the address of the new block won't be the one that is jumped
    138 /// to.
    139 ///
    140 BasicBlock *SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
    141                               const CriticalEdgeSplittingOptions &Options =
    142                                   CriticalEdgeSplittingOptions());
    143 
    144 inline BasicBlock *
    145 SplitCriticalEdge(BasicBlock *BB, succ_iterator SI,
    146                   const CriticalEdgeSplittingOptions &Options =
    147                       CriticalEdgeSplittingOptions()) {
    148   return SplitCriticalEdge(BB->getTerminator(), SI.getSuccessorIndex(),
    149                            Options);
    150 }
    151 
    152 /// SplitCriticalEdge - If the edge from *PI to BB is not critical, return
    153 /// false.  Otherwise, split all edges between the two blocks and return true.
    154 /// This updates all of the same analyses as the other SplitCriticalEdge
    155 /// function.  If P is specified, it updates the analyses
    156 /// described above.
    157 inline bool SplitCriticalEdge(BasicBlock *Succ, pred_iterator PI,
    158                               const CriticalEdgeSplittingOptions &Options =
    159                                   CriticalEdgeSplittingOptions()) {
    160   bool MadeChange = false;
    161   TerminatorInst *TI = (*PI)->getTerminator();
    162   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    163     if (TI->getSuccessor(i) == Succ)
    164       MadeChange |= !!SplitCriticalEdge(TI, i, Options);
    165   return MadeChange;
    166 }
    167 
    168 /// SplitCriticalEdge - If an edge from Src to Dst is critical, split the edge
    169 /// and return true, otherwise return false.  This method requires that there be
    170 /// an edge between the two blocks.  It updates the analyses
    171 /// passed in the options struct
    172 inline BasicBlock *
    173 SplitCriticalEdge(BasicBlock *Src, BasicBlock *Dst,
    174                   const CriticalEdgeSplittingOptions &Options =
    175                       CriticalEdgeSplittingOptions()) {
    176   TerminatorInst *TI = Src->getTerminator();
    177   unsigned i = 0;
    178   while (1) {
    179     assert(i != TI->getNumSuccessors() && "Edge doesn't exist!");
    180     if (TI->getSuccessor(i) == Dst)
    181       return SplitCriticalEdge(TI, i, Options);
    182     ++i;
    183   }
    184 }
    185 
    186 // SplitAllCriticalEdges - Loop over all of the edges in the CFG,
    187 // breaking critical edges as they are found.
    188 // Returns the number of broken edges.
    189 unsigned SplitAllCriticalEdges(Function &F,
    190                                const CriticalEdgeSplittingOptions &Options =
    191                                    CriticalEdgeSplittingOptions());
    192 
    193 /// SplitEdge -  Split the edge connecting specified block.
    194 BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To,
    195                       DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
    196 
    197 /// SplitBlock - Split the specified block at the specified instruction - every
    198 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
    199 /// to a new block.  The two blocks are joined by an unconditional branch and
    200 /// the loop info is updated.
    201 ///
    202 BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt,
    203                        DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
    204 
    205 /// SplitBlockPredecessors - This method introduces at least one new basic block
    206 /// into the function and moves some of the predecessors of BB to be
    207 /// predecessors of the new block. The new predecessors are indicated by the
    208 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
    209 /// block to which predecessors from Preds are now pointing.
    210 ///
    211 /// If BB is a landingpad block then additional basicblock might be introduced.
    212 /// It will have Suffix+".split_lp". See SplitLandingPadPredecessors for more
    213 /// details on this case.
    214 ///
    215 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    216 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
    217 /// In particular, it does not preserve LoopSimplify (because it's
    218 /// complicated to handle the case where one of the edges being split
    219 /// is an exit of a loop with other exits).
    220 ///
    221 BasicBlock *SplitBlockPredecessors(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
    222                                    const char *Suffix,
    223                                    AliasAnalysis *AA = nullptr,
    224                                    DominatorTree *DT = nullptr,
    225                                    LoopInfo *LI = nullptr,
    226                                    bool PreserveLCSSA = false);
    227 
    228 /// SplitLandingPadPredecessors - This method transforms the landing pad,
    229 /// OrigBB, by introducing two new basic blocks into the function. One of those
    230 /// new basic blocks gets the predecessors listed in Preds. The other basic
    231 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
    232 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
    233 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
    234 ///
    235 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    236 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
    237 /// it does not preserve LoopSimplify (because it's complicated to handle the
    238 /// case where one of the edges being split is an exit of a loop with other
    239 /// exits).
    240 ///
    241 void SplitLandingPadPredecessors(BasicBlock *OrigBB,
    242                                  ArrayRef<BasicBlock *> Preds,
    243                                  const char *Suffix, const char *Suffix2,
    244                                  SmallVectorImpl<BasicBlock *> &NewBBs,
    245                                  AliasAnalysis *AA = nullptr,
    246                                  DominatorTree *DT = nullptr,
    247                                  LoopInfo *LI = nullptr,
    248                                  bool PreserveLCSSA = false);
    249 
    250 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
    251 /// instruction into a predecessor which ends in an unconditional branch. If
    252 /// the return instruction returns a value defined by a PHI, propagate the
    253 /// right value into the return. It returns the new return instruction in the
    254 /// predecessor.
    255 ReturnInst *FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    256                                        BasicBlock *Pred);
    257 
    258 /// SplitBlockAndInsertIfThen - Split the containing block at the
    259 /// specified instruction - everything before and including SplitBefore stays
    260 /// in the old basic block, and everything after SplitBefore is moved to a
    261 /// new block. The two blocks are connected by a conditional branch
    262 /// (with value of Cmp being the condition).
    263 /// Before:
    264 ///   Head
    265 ///   SplitBefore
    266 ///   Tail
    267 /// After:
    268 ///   Head
    269 ///   if (Cond)
    270 ///     ThenBlock
    271 ///   SplitBefore
    272 ///   Tail
    273 ///
    274 /// If Unreachable is true, then ThenBlock ends with
    275 /// UnreachableInst, otherwise it branches to Tail.
    276 /// Returns the NewBasicBlock's terminator.
    277 ///
    278 /// Updates DT if given.
    279 TerminatorInst *SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
    280                                           bool Unreachable,
    281                                           MDNode *BranchWeights = nullptr,
    282                                           DominatorTree *DT = nullptr);
    283 
    284 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
    285 /// but also creates the ElseBlock.
    286 /// Before:
    287 ///   Head
    288 ///   SplitBefore
    289 ///   Tail
    290 /// After:
    291 ///   Head
    292 ///   if (Cond)
    293 ///     ThenBlock
    294 ///   else
    295 ///     ElseBlock
    296 ///   SplitBefore
    297 ///   Tail
    298 void SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
    299                                    TerminatorInst **ThenTerm,
    300                                    TerminatorInst **ElseTerm,
    301                                    MDNode *BranchWeights = nullptr);
    302 
    303 ///
    304 /// GetIfCondition - Check whether BB is the merge point of a if-region.
    305 /// If so, return the boolean condition that determines which entry into
    306 /// BB will be taken.  Also, return by references the block that will be
    307 /// entered from if the condition is true, and the block that will be
    308 /// entered if the condition is false.
    309 Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    310                       BasicBlock *&IfFalse);
    311 } // End llvm namespace
    312 
    313 #endif
    314