Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_rtl.cc -------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 // Main file (entry points) for the TSan run-time.
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "sanitizer_common/sanitizer_atomic.h"
     16 #include "sanitizer_common/sanitizer_common.h"
     17 #include "sanitizer_common/sanitizer_libc.h"
     18 #include "sanitizer_common/sanitizer_stackdepot.h"
     19 #include "sanitizer_common/sanitizer_placement_new.h"
     20 #include "sanitizer_common/sanitizer_symbolizer.h"
     21 #include "tsan_defs.h"
     22 #include "tsan_platform.h"
     23 #include "tsan_rtl.h"
     24 #include "tsan_mman.h"
     25 #include "tsan_suppressions.h"
     26 #include "tsan_symbolize.h"
     27 
     28 #ifdef __SSE3__
     29 // <emmintrin.h> transitively includes <stdlib.h>,
     30 // and it's prohibited to include std headers into tsan runtime.
     31 // So we do this dirty trick.
     32 #define _MM_MALLOC_H_INCLUDED
     33 #define __MM_MALLOC_H
     34 #include <emmintrin.h>
     35 typedef __m128i m128;
     36 #endif
     37 
     38 volatile int __tsan_resumed = 0;
     39 
     40 extern "C" void __tsan_resume() {
     41   __tsan_resumed = 1;
     42 }
     43 
     44 namespace __tsan {
     45 
     46 #ifndef SANITIZER_GO
     47 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
     48 #endif
     49 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
     50 Context *ctx;
     51 
     52 // Can be overriden by a front-end.
     53 #ifdef TSAN_EXTERNAL_HOOKS
     54 bool OnFinalize(bool failed);
     55 void OnInitialize();
     56 #else
     57 SANITIZER_INTERFACE_ATTRIBUTE
     58 bool WEAK OnFinalize(bool failed) {
     59   return failed;
     60 }
     61 SANITIZER_INTERFACE_ATTRIBUTE
     62 void WEAK OnInitialize() {}
     63 #endif
     64 
     65 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
     66 
     67 static ThreadContextBase *CreateThreadContext(u32 tid) {
     68   // Map thread trace when context is created.
     69   MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
     70   const uptr hdr = GetThreadTraceHeader(tid);
     71   MapThreadTrace(hdr, sizeof(Trace));
     72   new((void*)hdr) Trace();
     73   // We are going to use only a small part of the trace with the default
     74   // value of history_size. However, the constructor writes to the whole trace.
     75   // Unmap the unused part.
     76   uptr hdr_end = hdr + sizeof(Trace);
     77   hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
     78   hdr_end = RoundUp(hdr_end, GetPageSizeCached());
     79   if (hdr_end < hdr + sizeof(Trace))
     80     UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
     81   void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
     82   return new(mem) ThreadContext(tid);
     83 }
     84 
     85 #ifndef SANITIZER_GO
     86 static const u32 kThreadQuarantineSize = 16;
     87 #else
     88 static const u32 kThreadQuarantineSize = 64;
     89 #endif
     90 
     91 Context::Context()
     92   : initialized()
     93   , report_mtx(MutexTypeReport, StatMtxReport)
     94   , nreported()
     95   , nmissed_expected()
     96   , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
     97       CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
     98   , racy_stacks(MBlockRacyStacks)
     99   , racy_addresses(MBlockRacyAddresses)
    100   , fired_suppressions(8) {
    101 }
    102 
    103 // The objects are allocated in TLS, so one may rely on zero-initialization.
    104 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
    105                          unsigned reuse_count,
    106                          uptr stk_addr, uptr stk_size,
    107                          uptr tls_addr, uptr tls_size)
    108   : fast_state(tid, epoch)
    109   // Do not touch these, rely on zero initialization,
    110   // they may be accessed before the ctor.
    111   // , ignore_reads_and_writes()
    112   // , ignore_interceptors()
    113   , clock(tid, reuse_count)
    114 #ifndef SANITIZER_GO
    115   , jmp_bufs(MBlockJmpBuf)
    116 #endif
    117   , tid(tid)
    118   , unique_id(unique_id)
    119   , stk_addr(stk_addr)
    120   , stk_size(stk_size)
    121   , tls_addr(tls_addr)
    122   , tls_size(tls_size)
    123 #ifndef SANITIZER_GO
    124   , last_sleep_clock(tid)
    125 #endif
    126 {
    127 }
    128 
    129 #ifndef SANITIZER_GO
    130 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
    131   uptr n_threads;
    132   uptr n_running_threads;
    133   ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
    134   InternalScopedBuffer<char> buf(4096);
    135   WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
    136   WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
    137 }
    138 
    139 static void BackgroundThread(void *arg) {
    140   // This is a non-initialized non-user thread, nothing to see here.
    141   // We don't use ScopedIgnoreInterceptors, because we want ignores to be
    142   // enabled even when the thread function exits (e.g. during pthread thread
    143   // shutdown code).
    144   cur_thread()->ignore_interceptors++;
    145   const u64 kMs2Ns = 1000 * 1000;
    146 
    147   fd_t mprof_fd = kInvalidFd;
    148   if (flags()->profile_memory && flags()->profile_memory[0]) {
    149     if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
    150       mprof_fd = 1;
    151     } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
    152       mprof_fd = 2;
    153     } else {
    154       InternalScopedString filename(kMaxPathLength);
    155       filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
    156       fd_t fd = OpenFile(filename.data(), WrOnly);
    157       if (fd == kInvalidFd) {
    158         Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
    159             &filename[0]);
    160       } else {
    161         mprof_fd = fd;
    162       }
    163     }
    164   }
    165 
    166   u64 last_flush = NanoTime();
    167   uptr last_rss = 0;
    168   for (int i = 0;
    169       atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
    170       i++) {
    171     SleepForMillis(100);
    172     u64 now = NanoTime();
    173 
    174     // Flush memory if requested.
    175     if (flags()->flush_memory_ms > 0) {
    176       if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
    177         VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
    178         FlushShadowMemory();
    179         last_flush = NanoTime();
    180       }
    181     }
    182     // GetRSS can be expensive on huge programs, so don't do it every 100ms.
    183     if (flags()->memory_limit_mb > 0) {
    184       uptr rss = GetRSS();
    185       uptr limit = uptr(flags()->memory_limit_mb) << 20;
    186       VPrintf(1, "ThreadSanitizer: memory flush check"
    187                  " RSS=%llu LAST=%llu LIMIT=%llu\n",
    188               (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
    189       if (2 * rss > limit + last_rss) {
    190         VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
    191         FlushShadowMemory();
    192         rss = GetRSS();
    193         VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
    194       }
    195       last_rss = rss;
    196     }
    197 
    198     // Write memory profile if requested.
    199     if (mprof_fd != kInvalidFd)
    200       MemoryProfiler(ctx, mprof_fd, i);
    201 
    202     // Flush symbolizer cache if requested.
    203     if (flags()->flush_symbolizer_ms > 0) {
    204       u64 last = atomic_load(&ctx->last_symbolize_time_ns,
    205                              memory_order_relaxed);
    206       if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
    207         Lock l(&ctx->report_mtx);
    208         SpinMutexLock l2(&CommonSanitizerReportMutex);
    209         SymbolizeFlush();
    210         atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
    211       }
    212     }
    213   }
    214 }
    215 
    216 static void StartBackgroundThread() {
    217   ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
    218 }
    219 
    220 #ifndef __mips__
    221 static void StopBackgroundThread() {
    222   atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
    223   internal_join_thread(ctx->background_thread);
    224   ctx->background_thread = 0;
    225 }
    226 #endif
    227 #endif
    228 
    229 void DontNeedShadowFor(uptr addr, uptr size) {
    230   uptr shadow_beg = MemToShadow(addr);
    231   uptr shadow_end = MemToShadow(addr + size);
    232   FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
    233 }
    234 
    235 void MapShadow(uptr addr, uptr size) {
    236   // Global data is not 64K aligned, but there are no adjacent mappings,
    237   // so we can get away with unaligned mapping.
    238   // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
    239   MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier);
    240 
    241   // Meta shadow is 2:1, so tread carefully.
    242   static bool data_mapped = false;
    243   static uptr mapped_meta_end = 0;
    244   uptr meta_begin = (uptr)MemToMeta(addr);
    245   uptr meta_end = (uptr)MemToMeta(addr + size);
    246   meta_begin = RoundDownTo(meta_begin, 64 << 10);
    247   meta_end = RoundUpTo(meta_end, 64 << 10);
    248   if (!data_mapped) {
    249     // First call maps data+bss.
    250     data_mapped = true;
    251     MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
    252   } else {
    253     // Mapping continous heap.
    254     // Windows wants 64K alignment.
    255     meta_begin = RoundDownTo(meta_begin, 64 << 10);
    256     meta_end = RoundUpTo(meta_end, 64 << 10);
    257     if (meta_end <= mapped_meta_end)
    258       return;
    259     if (meta_begin < mapped_meta_end)
    260       meta_begin = mapped_meta_end;
    261     MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
    262     mapped_meta_end = meta_end;
    263   }
    264   VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
    265       addr, addr+size, meta_begin, meta_end);
    266 }
    267 
    268 void MapThreadTrace(uptr addr, uptr size) {
    269   DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
    270   CHECK_GE(addr, kTraceMemBeg);
    271   CHECK_LE(addr + size, kTraceMemEnd);
    272   CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
    273   uptr addr1 = (uptr)MmapFixedNoReserve(addr, size);
    274   if (addr1 != addr) {
    275     Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
    276         addr, size, addr1);
    277     Die();
    278   }
    279 }
    280 
    281 static void CheckShadowMapping() {
    282   for (uptr i = 0; i < ARRAY_SIZE(UserRegions); i += 2) {
    283     const uptr beg = UserRegions[i];
    284     const uptr end = UserRegions[i + 1];
    285     VPrintf(3, "checking shadow region %p-%p\n", beg, end);
    286     for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
    287       for (int x = -1; x <= 1; x++) {
    288         const uptr p = p0 + x;
    289         if (p < beg || p >= end)
    290           continue;
    291         const uptr s = MemToShadow(p);
    292         const uptr m = (uptr)MemToMeta(p);
    293         VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
    294         CHECK(IsAppMem(p));
    295         CHECK(IsShadowMem(s));
    296         CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s));
    297         CHECK(IsMetaMem(m));
    298       }
    299     }
    300   }
    301 }
    302 
    303 void Initialize(ThreadState *thr) {
    304   // Thread safe because done before all threads exist.
    305   static bool is_initialized = false;
    306   if (is_initialized)
    307     return;
    308   is_initialized = true;
    309   // We are not ready to handle interceptors yet.
    310   ScopedIgnoreInterceptors ignore;
    311   SanitizerToolName = "ThreadSanitizer";
    312   // Install tool-specific callbacks in sanitizer_common.
    313   SetCheckFailedCallback(TsanCheckFailed);
    314 
    315   ctx = new(ctx_placeholder) Context;
    316   const char *options = GetEnv(kTsanOptionsEnv);
    317   InitializeFlags(&ctx->flags, options);
    318 #ifndef SANITIZER_GO
    319   InitializeAllocator();
    320 #endif
    321   InitializeInterceptors();
    322   CheckShadowMapping();
    323   InitializePlatform();
    324   InitializeMutex();
    325   InitializeDynamicAnnotations();
    326 #ifndef SANITIZER_GO
    327   InitializeShadowMemory();
    328 #endif
    329   // Setup correct file descriptor for error reports.
    330   __sanitizer_set_report_path(common_flags()->log_path);
    331   InitializeSuppressions();
    332 #ifndef SANITIZER_GO
    333   InitializeLibIgnore();
    334   Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
    335   // On MIPS, TSan initialization is run before
    336   // __pthread_initialize_minimal_internal() is finished, so we can not spawn
    337   // new threads.
    338 #ifndef __mips__
    339   StartBackgroundThread();
    340   SetSandboxingCallback(StopBackgroundThread);
    341 #endif
    342 #endif
    343   if (common_flags()->detect_deadlocks)
    344     ctx->dd = DDetector::Create(flags());
    345 
    346   VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
    347           (int)internal_getpid());
    348 
    349   // Initialize thread 0.
    350   int tid = ThreadCreate(thr, 0, 0, true);
    351   CHECK_EQ(tid, 0);
    352   ThreadStart(thr, tid, internal_getpid());
    353   ctx->initialized = true;
    354 
    355   if (flags()->stop_on_start) {
    356     Printf("ThreadSanitizer is suspended at startup (pid %d)."
    357            " Call __tsan_resume().\n",
    358            (int)internal_getpid());
    359     while (__tsan_resumed == 0) {}
    360   }
    361 
    362   OnInitialize();
    363 }
    364 
    365 int Finalize(ThreadState *thr) {
    366   bool failed = false;
    367 
    368   if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
    369     SleepForMillis(flags()->atexit_sleep_ms);
    370 
    371   // Wait for pending reports.
    372   ctx->report_mtx.Lock();
    373   CommonSanitizerReportMutex.Lock();
    374   CommonSanitizerReportMutex.Unlock();
    375   ctx->report_mtx.Unlock();
    376 
    377 #ifndef SANITIZER_GO
    378   if (Verbosity()) AllocatorPrintStats();
    379 #endif
    380 
    381   ThreadFinalize(thr);
    382 
    383   if (ctx->nreported) {
    384     failed = true;
    385 #ifndef SANITIZER_GO
    386     Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
    387 #else
    388     Printf("Found %d data race(s)\n", ctx->nreported);
    389 #endif
    390   }
    391 
    392   if (ctx->nmissed_expected) {
    393     failed = true;
    394     Printf("ThreadSanitizer: missed %d expected races\n",
    395         ctx->nmissed_expected);
    396   }
    397 
    398   if (common_flags()->print_suppressions)
    399     PrintMatchedSuppressions();
    400 #ifndef SANITIZER_GO
    401   if (flags()->print_benign)
    402     PrintMatchedBenignRaces();
    403 #endif
    404 
    405   failed = OnFinalize(failed);
    406 
    407 #if TSAN_COLLECT_STATS
    408   StatAggregate(ctx->stat, thr->stat);
    409   StatOutput(ctx->stat);
    410 #endif
    411 
    412   return failed ? flags()->exitcode : 0;
    413 }
    414 
    415 #ifndef SANITIZER_GO
    416 void ForkBefore(ThreadState *thr, uptr pc) {
    417   ctx->thread_registry->Lock();
    418   ctx->report_mtx.Lock();
    419 }
    420 
    421 void ForkParentAfter(ThreadState *thr, uptr pc) {
    422   ctx->report_mtx.Unlock();
    423   ctx->thread_registry->Unlock();
    424 }
    425 
    426 void ForkChildAfter(ThreadState *thr, uptr pc) {
    427   ctx->report_mtx.Unlock();
    428   ctx->thread_registry->Unlock();
    429 
    430   uptr nthread = 0;
    431   ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
    432   VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
    433       " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
    434   if (nthread == 1) {
    435     StartBackgroundThread();
    436   } else {
    437     // We've just forked a multi-threaded process. We cannot reasonably function
    438     // after that (some mutexes may be locked before fork). So just enable
    439     // ignores for everything in the hope that we will exec soon.
    440     ctx->after_multithreaded_fork = true;
    441     thr->ignore_interceptors++;
    442     ThreadIgnoreBegin(thr, pc);
    443     ThreadIgnoreSyncBegin(thr, pc);
    444   }
    445 }
    446 #endif
    447 
    448 #ifdef SANITIZER_GO
    449 NOINLINE
    450 void GrowShadowStack(ThreadState *thr) {
    451   const int sz = thr->shadow_stack_end - thr->shadow_stack;
    452   const int newsz = 2 * sz;
    453   uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
    454       newsz * sizeof(uptr));
    455   internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
    456   internal_free(thr->shadow_stack);
    457   thr->shadow_stack = newstack;
    458   thr->shadow_stack_pos = newstack + sz;
    459   thr->shadow_stack_end = newstack + newsz;
    460 }
    461 #endif
    462 
    463 u32 CurrentStackId(ThreadState *thr, uptr pc) {
    464   if (!thr->is_inited)  // May happen during bootstrap.
    465     return 0;
    466   if (pc != 0) {
    467 #ifndef SANITIZER_GO
    468     DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
    469 #else
    470     if (thr->shadow_stack_pos == thr->shadow_stack_end)
    471       GrowShadowStack(thr);
    472 #endif
    473     thr->shadow_stack_pos[0] = pc;
    474     thr->shadow_stack_pos++;
    475   }
    476   u32 id = StackDepotPut(
    477       StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
    478   if (pc != 0)
    479     thr->shadow_stack_pos--;
    480   return id;
    481 }
    482 
    483 void TraceSwitch(ThreadState *thr) {
    484   thr->nomalloc++;
    485   Trace *thr_trace = ThreadTrace(thr->tid);
    486   Lock l(&thr_trace->mtx);
    487   unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
    488   TraceHeader *hdr = &thr_trace->headers[trace];
    489   hdr->epoch0 = thr->fast_state.epoch();
    490   ObtainCurrentStack(thr, 0, &hdr->stack0);
    491   hdr->mset0 = thr->mset;
    492   thr->nomalloc--;
    493 }
    494 
    495 Trace *ThreadTrace(int tid) {
    496   return (Trace*)GetThreadTraceHeader(tid);
    497 }
    498 
    499 uptr TraceTopPC(ThreadState *thr) {
    500   Event *events = (Event*)GetThreadTrace(thr->tid);
    501   uptr pc = events[thr->fast_state.GetTracePos()];
    502   return pc;
    503 }
    504 
    505 uptr TraceSize() {
    506   return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
    507 }
    508 
    509 uptr TraceParts() {
    510   return TraceSize() / kTracePartSize;
    511 }
    512 
    513 #ifndef SANITIZER_GO
    514 extern "C" void __tsan_trace_switch() {
    515   TraceSwitch(cur_thread());
    516 }
    517 
    518 extern "C" void __tsan_report_race() {
    519   ReportRace(cur_thread());
    520 }
    521 #endif
    522 
    523 ALWAYS_INLINE
    524 Shadow LoadShadow(u64 *p) {
    525   u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
    526   return Shadow(raw);
    527 }
    528 
    529 ALWAYS_INLINE
    530 void StoreShadow(u64 *sp, u64 s) {
    531   atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
    532 }
    533 
    534 ALWAYS_INLINE
    535 void StoreIfNotYetStored(u64 *sp, u64 *s) {
    536   StoreShadow(sp, *s);
    537   *s = 0;
    538 }
    539 
    540 ALWAYS_INLINE
    541 void HandleRace(ThreadState *thr, u64 *shadow_mem,
    542                               Shadow cur, Shadow old) {
    543   thr->racy_state[0] = cur.raw();
    544   thr->racy_state[1] = old.raw();
    545   thr->racy_shadow_addr = shadow_mem;
    546 #ifndef SANITIZER_GO
    547   HACKY_CALL(__tsan_report_race);
    548 #else
    549   ReportRace(thr);
    550 #endif
    551 }
    552 
    553 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
    554   return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
    555 }
    556 
    557 ALWAYS_INLINE
    558 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
    559     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    560     u64 *shadow_mem, Shadow cur) {
    561   StatInc(thr, StatMop);
    562   StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    563   StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    564 
    565   // This potentially can live in an MMX/SSE scratch register.
    566   // The required intrinsics are:
    567   // __m128i _mm_move_epi64(__m128i*);
    568   // _mm_storel_epi64(u64*, __m128i);
    569   u64 store_word = cur.raw();
    570 
    571   // scan all the shadow values and dispatch to 4 categories:
    572   // same, replace, candidate and race (see comments below).
    573   // we consider only 3 cases regarding access sizes:
    574   // equal, intersect and not intersect. initially I considered
    575   // larger and smaller as well, it allowed to replace some
    576   // 'candidates' with 'same' or 'replace', but I think
    577   // it's just not worth it (performance- and complexity-wise).
    578 
    579   Shadow old(0);
    580 
    581   // It release mode we manually unroll the loop,
    582   // because empirically gcc generates better code this way.
    583   // However, we can't afford unrolling in debug mode, because the function
    584   // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
    585   // threads, which is not enough for the unrolled loop.
    586 #if SANITIZER_DEBUG
    587   for (int idx = 0; idx < 4; idx++) {
    588 #include "tsan_update_shadow_word_inl.h"
    589   }
    590 #else
    591   int idx = 0;
    592 #include "tsan_update_shadow_word_inl.h"
    593   idx = 1;
    594 #include "tsan_update_shadow_word_inl.h"
    595   idx = 2;
    596 #include "tsan_update_shadow_word_inl.h"
    597   idx = 3;
    598 #include "tsan_update_shadow_word_inl.h"
    599 #endif
    600 
    601   // we did not find any races and had already stored
    602   // the current access info, so we are done
    603   if (LIKELY(store_word == 0))
    604     return;
    605   // choose a random candidate slot and replace it
    606   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
    607   StatInc(thr, StatShadowReplace);
    608   return;
    609  RACE:
    610   HandleRace(thr, shadow_mem, cur, old);
    611   return;
    612 }
    613 
    614 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    615     int size, bool kAccessIsWrite, bool kIsAtomic) {
    616   while (size) {
    617     int size1 = 1;
    618     int kAccessSizeLog = kSizeLog1;
    619     if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
    620       size1 = 8;
    621       kAccessSizeLog = kSizeLog8;
    622     } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
    623       size1 = 4;
    624       kAccessSizeLog = kSizeLog4;
    625     } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
    626       size1 = 2;
    627       kAccessSizeLog = kSizeLog2;
    628     }
    629     MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
    630     addr += size1;
    631     size -= size1;
    632   }
    633 }
    634 
    635 ALWAYS_INLINE
    636 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
    637   Shadow cur(a);
    638   for (uptr i = 0; i < kShadowCnt; i++) {
    639     Shadow old(LoadShadow(&s[i]));
    640     if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
    641         old.TidWithIgnore() == cur.TidWithIgnore() &&
    642         old.epoch() > sync_epoch &&
    643         old.IsAtomic() == cur.IsAtomic() &&
    644         old.IsRead() <= cur.IsRead())
    645       return true;
    646   }
    647   return false;
    648 }
    649 
    650 #if defined(__SSE3__)
    651 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
    652     _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
    653     (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
    654 ALWAYS_INLINE
    655 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
    656   // This is an optimized version of ContainsSameAccessSlow.
    657   // load current access into access[0:63]
    658   const m128 access     = _mm_cvtsi64_si128(a);
    659   // duplicate high part of access in addr0:
    660   // addr0[0:31]        = access[32:63]
    661   // addr0[32:63]       = access[32:63]
    662   // addr0[64:95]       = access[32:63]
    663   // addr0[96:127]      = access[32:63]
    664   const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
    665   // load 4 shadow slots
    666   const m128 shadow0    = _mm_load_si128((__m128i*)s);
    667   const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
    668   // load high parts of 4 shadow slots into addr_vect:
    669   // addr_vect[0:31]    = shadow0[32:63]
    670   // addr_vect[32:63]   = shadow0[96:127]
    671   // addr_vect[64:95]   = shadow1[32:63]
    672   // addr_vect[96:127]  = shadow1[96:127]
    673   m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
    674   if (!is_write) {
    675     // set IsRead bit in addr_vect
    676     const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
    677     const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
    678     addr_vect           = _mm_or_si128(addr_vect, rw_mask);
    679   }
    680   // addr0 == addr_vect?
    681   const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
    682   // epoch1[0:63]       = sync_epoch
    683   const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
    684   // epoch[0:31]        = sync_epoch[0:31]
    685   // epoch[32:63]       = sync_epoch[0:31]
    686   // epoch[64:95]       = sync_epoch[0:31]
    687   // epoch[96:127]      = sync_epoch[0:31]
    688   const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
    689   // load low parts of shadow cell epochs into epoch_vect:
    690   // epoch_vect[0:31]   = shadow0[0:31]
    691   // epoch_vect[32:63]  = shadow0[64:95]
    692   // epoch_vect[64:95]  = shadow1[0:31]
    693   // epoch_vect[96:127] = shadow1[64:95]
    694   const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
    695   // epoch_vect >= sync_epoch?
    696   const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
    697   // addr_res & epoch_res
    698   const m128 res        = _mm_and_si128(addr_res, epoch_res);
    699   // mask[0] = res[7]
    700   // mask[1] = res[15]
    701   // ...
    702   // mask[15] = res[127]
    703   const int mask        = _mm_movemask_epi8(res);
    704   return mask != 0;
    705 }
    706 #endif
    707 
    708 ALWAYS_INLINE
    709 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
    710 #if defined(__SSE3__)
    711   bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
    712   // NOTE: this check can fail if the shadow is concurrently mutated
    713   // by other threads. But it still can be useful if you modify
    714   // ContainsSameAccessFast and want to ensure that it's not completely broken.
    715   // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
    716   return res;
    717 #else
    718   return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
    719 #endif
    720 }
    721 
    722 ALWAYS_INLINE USED
    723 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    724     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
    725   u64 *shadow_mem = (u64*)MemToShadow(addr);
    726   DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
    727       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
    728       (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
    729       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
    730       (uptr)shadow_mem[0], (uptr)shadow_mem[1],
    731       (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
    732 #if SANITIZER_DEBUG
    733   if (!IsAppMem(addr)) {
    734     Printf("Access to non app mem %zx\n", addr);
    735     DCHECK(IsAppMem(addr));
    736   }
    737   if (!IsShadowMem((uptr)shadow_mem)) {
    738     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    739     DCHECK(IsShadowMem((uptr)shadow_mem));
    740   }
    741 #endif
    742 
    743   if (kCppMode && *shadow_mem == kShadowRodata) {
    744     // Access to .rodata section, no races here.
    745     // Measurements show that it can be 10-20% of all memory accesses.
    746     StatInc(thr, StatMop);
    747     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    748     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    749     StatInc(thr, StatMopRodata);
    750     return;
    751   }
    752 
    753   FastState fast_state = thr->fast_state;
    754   if (fast_state.GetIgnoreBit()) {
    755     StatInc(thr, StatMop);
    756     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    757     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    758     StatInc(thr, StatMopIgnored);
    759     return;
    760   }
    761 
    762   Shadow cur(fast_state);
    763   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
    764   cur.SetWrite(kAccessIsWrite);
    765   cur.SetAtomic(kIsAtomic);
    766 
    767   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
    768       thr->fast_synch_epoch, kAccessIsWrite))) {
    769     StatInc(thr, StatMop);
    770     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    771     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    772     StatInc(thr, StatMopSame);
    773     return;
    774   }
    775 
    776   if (kCollectHistory) {
    777     fast_state.IncrementEpoch();
    778     thr->fast_state = fast_state;
    779     TraceAddEvent(thr, fast_state, EventTypeMop, pc);
    780     cur.IncrementEpoch();
    781   }
    782 
    783   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
    784       shadow_mem, cur);
    785 }
    786 
    787 // Called by MemoryAccessRange in tsan_rtl_thread.cc
    788 ALWAYS_INLINE USED
    789 void MemoryAccessImpl(ThreadState *thr, uptr addr,
    790     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    791     u64 *shadow_mem, Shadow cur) {
    792   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
    793       thr->fast_synch_epoch, kAccessIsWrite))) {
    794     StatInc(thr, StatMop);
    795     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    796     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    797     StatInc(thr, StatMopSame);
    798     return;
    799   }
    800 
    801   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
    802       shadow_mem, cur);
    803 }
    804 
    805 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
    806                            u64 val) {
    807   (void)thr;
    808   (void)pc;
    809   if (size == 0)
    810     return;
    811   // FIXME: fix me.
    812   uptr offset = addr % kShadowCell;
    813   if (offset) {
    814     offset = kShadowCell - offset;
    815     if (size <= offset)
    816       return;
    817     addr += offset;
    818     size -= offset;
    819   }
    820   DCHECK_EQ(addr % 8, 0);
    821   // If a user passes some insane arguments (memset(0)),
    822   // let it just crash as usual.
    823   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
    824     return;
    825   // Don't want to touch lots of shadow memory.
    826   // If a program maps 10MB stack, there is no need reset the whole range.
    827   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
    828   // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
    829   // so we do it only for C/C++.
    830   if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) {
    831     u64 *p = (u64*)MemToShadow(addr);
    832     CHECK(IsShadowMem((uptr)p));
    833     CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
    834     // FIXME: may overwrite a part outside the region
    835     for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
    836       p[i++] = val;
    837       for (uptr j = 1; j < kShadowCnt; j++)
    838         p[i++] = 0;
    839     }
    840   } else {
    841     // The region is big, reset only beginning and end.
    842     const uptr kPageSize = GetPageSizeCached();
    843     u64 *begin = (u64*)MemToShadow(addr);
    844     u64 *end = begin + size / kShadowCell * kShadowCnt;
    845     u64 *p = begin;
    846     // Set at least first kPageSize/2 to page boundary.
    847     while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
    848       *p++ = val;
    849       for (uptr j = 1; j < kShadowCnt; j++)
    850         *p++ = 0;
    851     }
    852     // Reset middle part.
    853     u64 *p1 = p;
    854     p = RoundDown(end, kPageSize);
    855     UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
    856     MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
    857     // Set the ending.
    858     while (p < end) {
    859       *p++ = val;
    860       for (uptr j = 1; j < kShadowCnt; j++)
    861         *p++ = 0;
    862     }
    863   }
    864 }
    865 
    866 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
    867   MemoryRangeSet(thr, pc, addr, size, 0);
    868 }
    869 
    870 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
    871   // Processing more than 1k (4k of shadow) is expensive,
    872   // can cause excessive memory consumption (user does not necessary touch
    873   // the whole range) and most likely unnecessary.
    874   if (size > 1024)
    875     size = 1024;
    876   CHECK_EQ(thr->is_freeing, false);
    877   thr->is_freeing = true;
    878   MemoryAccessRange(thr, pc, addr, size, true);
    879   thr->is_freeing = false;
    880   if (kCollectHistory) {
    881     thr->fast_state.IncrementEpoch();
    882     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
    883   }
    884   Shadow s(thr->fast_state);
    885   s.ClearIgnoreBit();
    886   s.MarkAsFreed();
    887   s.SetWrite(true);
    888   s.SetAddr0AndSizeLog(0, 3);
    889   MemoryRangeSet(thr, pc, addr, size, s.raw());
    890 }
    891 
    892 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
    893   if (kCollectHistory) {
    894     thr->fast_state.IncrementEpoch();
    895     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
    896   }
    897   Shadow s(thr->fast_state);
    898   s.ClearIgnoreBit();
    899   s.SetWrite(true);
    900   s.SetAddr0AndSizeLog(0, 3);
    901   MemoryRangeSet(thr, pc, addr, size, s.raw());
    902 }
    903 
    904 ALWAYS_INLINE USED
    905 void FuncEntry(ThreadState *thr, uptr pc) {
    906   StatInc(thr, StatFuncEnter);
    907   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
    908   if (kCollectHistory) {
    909     thr->fast_state.IncrementEpoch();
    910     TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
    911   }
    912 
    913   // Shadow stack maintenance can be replaced with
    914   // stack unwinding during trace switch (which presumably must be faster).
    915   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
    916 #ifndef SANITIZER_GO
    917   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
    918 #else
    919   if (thr->shadow_stack_pos == thr->shadow_stack_end)
    920     GrowShadowStack(thr);
    921 #endif
    922   thr->shadow_stack_pos[0] = pc;
    923   thr->shadow_stack_pos++;
    924 }
    925 
    926 ALWAYS_INLINE USED
    927 void FuncExit(ThreadState *thr) {
    928   StatInc(thr, StatFuncExit);
    929   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
    930   if (kCollectHistory) {
    931     thr->fast_state.IncrementEpoch();
    932     TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
    933   }
    934 
    935   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
    936 #ifndef SANITIZER_GO
    937   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
    938 #endif
    939   thr->shadow_stack_pos--;
    940 }
    941 
    942 void ThreadIgnoreBegin(ThreadState *thr, uptr pc) {
    943   DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
    944   thr->ignore_reads_and_writes++;
    945   CHECK_GT(thr->ignore_reads_and_writes, 0);
    946   thr->fast_state.SetIgnoreBit();
    947 #ifndef SANITIZER_GO
    948   if (!ctx->after_multithreaded_fork)
    949     thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
    950 #endif
    951 }
    952 
    953 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
    954   DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
    955   thr->ignore_reads_and_writes--;
    956   CHECK_GE(thr->ignore_reads_and_writes, 0);
    957   if (thr->ignore_reads_and_writes == 0) {
    958     thr->fast_state.ClearIgnoreBit();
    959 #ifndef SANITIZER_GO
    960     thr->mop_ignore_set.Reset();
    961 #endif
    962   }
    963 }
    964 
    965 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
    966   DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
    967   thr->ignore_sync++;
    968   CHECK_GT(thr->ignore_sync, 0);
    969 #ifndef SANITIZER_GO
    970   if (!ctx->after_multithreaded_fork)
    971     thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
    972 #endif
    973 }
    974 
    975 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
    976   DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
    977   thr->ignore_sync--;
    978   CHECK_GE(thr->ignore_sync, 0);
    979 #ifndef SANITIZER_GO
    980   if (thr->ignore_sync == 0)
    981     thr->sync_ignore_set.Reset();
    982 #endif
    983 }
    984 
    985 bool MD5Hash::operator==(const MD5Hash &other) const {
    986   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
    987 }
    988 
    989 #if SANITIZER_DEBUG
    990 void build_consistency_debug() {}
    991 #else
    992 void build_consistency_release() {}
    993 #endif
    994 
    995 #if TSAN_COLLECT_STATS
    996 void build_consistency_stats() {}
    997 #else
    998 void build_consistency_nostats() {}
    999 #endif
   1000 
   1001 }  // namespace __tsan
   1002 
   1003 #ifndef SANITIZER_GO
   1004 // Must be included in this file to make sure everything is inlined.
   1005 #include "tsan_interface_inl.h"
   1006 #endif
   1007