1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Main internal TSan header file. 13 // 14 // Ground rules: 15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static 16 // function-scope locals) 17 // - All functions/classes/etc reside in namespace __tsan, except for those 18 // declared in tsan_interface.h. 19 // - Platform-specific files should be used instead of ifdefs (*). 20 // - No system headers included in header files (*). 21 // - Platform specific headres included only into platform-specific files (*). 22 // 23 // (*) Except when inlining is critical for performance. 24 //===----------------------------------------------------------------------===// 25 26 #ifndef TSAN_RTL_H 27 #define TSAN_RTL_H 28 29 #include "sanitizer_common/sanitizer_allocator.h" 30 #include "sanitizer_common/sanitizer_allocator_internal.h" 31 #include "sanitizer_common/sanitizer_asm.h" 32 #include "sanitizer_common/sanitizer_common.h" 33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" 34 #include "sanitizer_common/sanitizer_libignore.h" 35 #include "sanitizer_common/sanitizer_suppressions.h" 36 #include "sanitizer_common/sanitizer_thread_registry.h" 37 #include "tsan_clock.h" 38 #include "tsan_defs.h" 39 #include "tsan_flags.h" 40 #include "tsan_sync.h" 41 #include "tsan_trace.h" 42 #include "tsan_vector.h" 43 #include "tsan_report.h" 44 #include "tsan_platform.h" 45 #include "tsan_mutexset.h" 46 #include "tsan_ignoreset.h" 47 #include "tsan_stack_trace.h" 48 49 #if SANITIZER_WORDSIZE != 64 50 # error "ThreadSanitizer is supported only on 64-bit platforms" 51 #endif 52 53 namespace __tsan { 54 55 #ifndef SANITIZER_GO 56 struct MapUnmapCallback; 57 #ifdef __mips64 58 static const uptr kAllocatorSpace = 0; 59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE; 60 static const uptr kAllocatorRegionSizeLog = 20; 61 static const uptr kAllocatorNumRegions = 62 kAllocatorSize >> kAllocatorRegionSizeLog; 63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12, 64 MapUnmapCallback> ByteMap; 65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0, 66 CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap, 67 MapUnmapCallback> PrimaryAllocator; 68 #else 69 typedef SizeClassAllocator64<kHeapMemBeg, kHeapMemEnd - kHeapMemBeg, 0, 70 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator; 71 #endif 72 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; 73 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator; 74 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, 75 SecondaryAllocator> Allocator; 76 Allocator *allocator(); 77 #endif 78 79 void TsanCheckFailed(const char *file, int line, const char *cond, 80 u64 v1, u64 v2); 81 82 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker 83 84 // FastState (from most significant bit): 85 // ignore : 1 86 // tid : kTidBits 87 // unused : - 88 // history_size : 3 89 // epoch : kClkBits 90 class FastState { 91 public: 92 FastState(u64 tid, u64 epoch) { 93 x_ = tid << kTidShift; 94 x_ |= epoch; 95 DCHECK_EQ(tid, this->tid()); 96 DCHECK_EQ(epoch, this->epoch()); 97 DCHECK_EQ(GetIgnoreBit(), false); 98 } 99 100 explicit FastState(u64 x) 101 : x_(x) { 102 } 103 104 u64 raw() const { 105 return x_; 106 } 107 108 u64 tid() const { 109 u64 res = (x_ & ~kIgnoreBit) >> kTidShift; 110 return res; 111 } 112 113 u64 TidWithIgnore() const { 114 u64 res = x_ >> kTidShift; 115 return res; 116 } 117 118 u64 epoch() const { 119 u64 res = x_ & ((1ull << kClkBits) - 1); 120 return res; 121 } 122 123 void IncrementEpoch() { 124 u64 old_epoch = epoch(); 125 x_ += 1; 126 DCHECK_EQ(old_epoch + 1, epoch()); 127 (void)old_epoch; 128 } 129 130 void SetIgnoreBit() { x_ |= kIgnoreBit; } 131 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } 132 bool GetIgnoreBit() const { return (s64)x_ < 0; } 133 134 void SetHistorySize(int hs) { 135 CHECK_GE(hs, 0); 136 CHECK_LE(hs, 7); 137 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift); 138 } 139 140 ALWAYS_INLINE 141 int GetHistorySize() const { 142 return (int)((x_ >> kHistoryShift) & kHistoryMask); 143 } 144 145 void ClearHistorySize() { 146 SetHistorySize(0); 147 } 148 149 ALWAYS_INLINE 150 u64 GetTracePos() const { 151 const int hs = GetHistorySize(); 152 // When hs == 0, the trace consists of 2 parts. 153 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1; 154 return epoch() & mask; 155 } 156 157 private: 158 friend class Shadow; 159 static const int kTidShift = 64 - kTidBits - 1; 160 static const u64 kIgnoreBit = 1ull << 63; 161 static const u64 kFreedBit = 1ull << 63; 162 static const u64 kHistoryShift = kClkBits; 163 static const u64 kHistoryMask = 7; 164 u64 x_; 165 }; 166 167 // Shadow (from most significant bit): 168 // freed : 1 169 // tid : kTidBits 170 // is_atomic : 1 171 // is_read : 1 172 // size_log : 2 173 // addr0 : 3 174 // epoch : kClkBits 175 class Shadow : public FastState { 176 public: 177 explicit Shadow(u64 x) 178 : FastState(x) { 179 } 180 181 explicit Shadow(const FastState &s) 182 : FastState(s.x_) { 183 ClearHistorySize(); 184 } 185 186 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { 187 DCHECK_EQ((x_ >> kClkBits) & 31, 0); 188 DCHECK_LE(addr0, 7); 189 DCHECK_LE(kAccessSizeLog, 3); 190 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits; 191 DCHECK_EQ(kAccessSizeLog, size_log()); 192 DCHECK_EQ(addr0, this->addr0()); 193 } 194 195 void SetWrite(unsigned kAccessIsWrite) { 196 DCHECK_EQ(x_ & kReadBit, 0); 197 if (!kAccessIsWrite) 198 x_ |= kReadBit; 199 DCHECK_EQ(kAccessIsWrite, IsWrite()); 200 } 201 202 void SetAtomic(bool kIsAtomic) { 203 DCHECK(!IsAtomic()); 204 if (kIsAtomic) 205 x_ |= kAtomicBit; 206 DCHECK_EQ(IsAtomic(), kIsAtomic); 207 } 208 209 bool IsAtomic() const { 210 return x_ & kAtomicBit; 211 } 212 213 bool IsZero() const { 214 return x_ == 0; 215 } 216 217 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { 218 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; 219 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore()); 220 return shifted_xor == 0; 221 } 222 223 static ALWAYS_INLINE 224 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { 225 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31; 226 return masked_xor == 0; 227 } 228 229 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2, 230 unsigned kS2AccessSize) { 231 bool res = false; 232 u64 diff = s1.addr0() - s2.addr0(); 233 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT 234 // if (s1.addr0() + size1) > s2.addr0()) return true; 235 if (s1.size() > -diff) 236 res = true; 237 } else { 238 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; 239 if (kS2AccessSize > diff) 240 res = true; 241 } 242 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2)); 243 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1)); 244 return res; 245 } 246 247 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; } 248 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); } 249 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); } 250 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; } 251 252 // The idea behind the freed bit is as follows. 253 // When the memory is freed (or otherwise unaccessible) we write to the shadow 254 // values with tid/epoch related to the free and the freed bit set. 255 // During memory accesses processing the freed bit is considered 256 // as msb of tid. So any access races with shadow with freed bit set 257 // (it is as if write from a thread with which we never synchronized before). 258 // This allows us to detect accesses to freed memory w/o additional 259 // overheads in memory access processing and at the same time restore 260 // tid/epoch of free. 261 void MarkAsFreed() { 262 x_ |= kFreedBit; 263 } 264 265 bool IsFreed() const { 266 return x_ & kFreedBit; 267 } 268 269 bool GetFreedAndReset() { 270 bool res = x_ & kFreedBit; 271 x_ &= ~kFreedBit; 272 return res; 273 } 274 275 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const { 276 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift) 277 | (u64(kIsAtomic) << kAtomicShift)); 278 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic)); 279 return v; 280 } 281 282 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const { 283 bool v = ((x_ >> kReadShift) & 3) 284 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 285 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) || 286 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite)); 287 return v; 288 } 289 290 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const { 291 bool v = ((x_ >> kReadShift) & 3) 292 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 293 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) || 294 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite)); 295 return v; 296 } 297 298 private: 299 static const u64 kReadShift = 5 + kClkBits; 300 static const u64 kReadBit = 1ull << kReadShift; 301 static const u64 kAtomicShift = 6 + kClkBits; 302 static const u64 kAtomicBit = 1ull << kAtomicShift; 303 304 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; } 305 306 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) { 307 if (s1.addr0() == s2.addr0()) return true; 308 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) 309 return true; 310 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) 311 return true; 312 return false; 313 } 314 }; 315 316 struct ThreadSignalContext; 317 318 struct JmpBuf { 319 uptr sp; 320 uptr mangled_sp; 321 int int_signal_send; 322 bool in_blocking_func; 323 uptr in_signal_handler; 324 uptr *shadow_stack_pos; 325 }; 326 327 // This struct is stored in TLS. 328 struct ThreadState { 329 FastState fast_state; 330 // Synch epoch represents the threads's epoch before the last synchronization 331 // action. It allows to reduce number of shadow state updates. 332 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, 333 // if we are processing write to X from the same thread at epoch=200, 334 // we do nothing, because both writes happen in the same 'synch epoch'. 335 // That is, if another memory access does not race with the former write, 336 // it does not race with the latter as well. 337 // QUESTION: can we can squeeze this into ThreadState::Fast? 338 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are 339 // taken by epoch between synchs. 340 // This way we can save one load from tls. 341 u64 fast_synch_epoch; 342 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. 343 // We do not distinguish beteween ignoring reads and writes 344 // for better performance. 345 int ignore_reads_and_writes; 346 int ignore_sync; 347 // Go does not support ignores. 348 #ifndef SANITIZER_GO 349 IgnoreSet mop_ignore_set; 350 IgnoreSet sync_ignore_set; 351 #endif 352 // C/C++ uses fixed size shadow stack embed into Trace. 353 // Go uses malloc-allocated shadow stack with dynamic size. 354 uptr *shadow_stack; 355 uptr *shadow_stack_end; 356 uptr *shadow_stack_pos; 357 u64 *racy_shadow_addr; 358 u64 racy_state[2]; 359 MutexSet mset; 360 ThreadClock clock; 361 #ifndef SANITIZER_GO 362 AllocatorCache alloc_cache; 363 InternalAllocatorCache internal_alloc_cache; 364 Vector<JmpBuf> jmp_bufs; 365 int ignore_interceptors; 366 #endif 367 #if TSAN_COLLECT_STATS 368 u64 stat[StatCnt]; 369 #endif 370 const int tid; 371 const int unique_id; 372 bool in_symbolizer; 373 bool in_ignored_lib; 374 bool is_inited; 375 bool is_dead; 376 bool is_freeing; 377 bool is_vptr_access; 378 const uptr stk_addr; 379 const uptr stk_size; 380 const uptr tls_addr; 381 const uptr tls_size; 382 ThreadContext *tctx; 383 384 #if SANITIZER_DEBUG && !SANITIZER_GO 385 InternalDeadlockDetector internal_deadlock_detector; 386 #endif 387 DDPhysicalThread *dd_pt; 388 DDLogicalThread *dd_lt; 389 390 atomic_uintptr_t in_signal_handler; 391 ThreadSignalContext *signal_ctx; 392 393 DenseSlabAllocCache block_cache; 394 DenseSlabAllocCache sync_cache; 395 DenseSlabAllocCache clock_cache; 396 397 #ifndef SANITIZER_GO 398 u32 last_sleep_stack_id; 399 ThreadClock last_sleep_clock; 400 #endif 401 402 // Set in regions of runtime that must be signal-safe and fork-safe. 403 // If set, malloc must not be called. 404 int nomalloc; 405 406 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 407 unsigned reuse_count, 408 uptr stk_addr, uptr stk_size, 409 uptr tls_addr, uptr tls_size); 410 }; 411 412 #ifndef SANITIZER_GO 413 __attribute__((tls_model("initial-exec"))) 414 extern THREADLOCAL char cur_thread_placeholder[]; 415 INLINE ThreadState *cur_thread() { 416 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); 417 } 418 #endif 419 420 class ThreadContext : public ThreadContextBase { 421 public: 422 explicit ThreadContext(int tid); 423 ~ThreadContext(); 424 ThreadState *thr; 425 u32 creation_stack_id; 426 SyncClock sync; 427 // Epoch at which the thread had started. 428 // If we see an event from the thread stamped by an older epoch, 429 // the event is from a dead thread that shared tid with this thread. 430 u64 epoch0; 431 u64 epoch1; 432 433 // Override superclass callbacks. 434 void OnDead() override; 435 void OnJoined(void *arg) override; 436 void OnFinished() override; 437 void OnStarted(void *arg) override; 438 void OnCreated(void *arg) override; 439 void OnReset() override; 440 void OnDetached(void *arg) override; 441 }; 442 443 struct RacyStacks { 444 MD5Hash hash[2]; 445 bool operator==(const RacyStacks &other) const { 446 if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) 447 return true; 448 if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) 449 return true; 450 return false; 451 } 452 }; 453 454 struct RacyAddress { 455 uptr addr_min; 456 uptr addr_max; 457 }; 458 459 struct FiredSuppression { 460 ReportType type; 461 uptr pc; 462 Suppression *supp; 463 }; 464 465 struct Context { 466 Context(); 467 468 bool initialized; 469 bool after_multithreaded_fork; 470 471 MetaMap metamap; 472 473 Mutex report_mtx; 474 int nreported; 475 int nmissed_expected; 476 atomic_uint64_t last_symbolize_time_ns; 477 478 void *background_thread; 479 atomic_uint32_t stop_background_thread; 480 481 ThreadRegistry *thread_registry; 482 483 Vector<RacyStacks> racy_stacks; 484 Vector<RacyAddress> racy_addresses; 485 // Number of fired suppressions may be large enough. 486 InternalMmapVector<FiredSuppression> fired_suppressions; 487 DDetector *dd; 488 489 ClockAlloc clock_alloc; 490 491 Flags flags; 492 493 u64 stat[StatCnt]; 494 u64 int_alloc_cnt[MBlockTypeCount]; 495 u64 int_alloc_siz[MBlockTypeCount]; 496 }; 497 498 extern Context *ctx; // The one and the only global runtime context. 499 500 struct ScopedIgnoreInterceptors { 501 ScopedIgnoreInterceptors() { 502 #ifndef SANITIZER_GO 503 cur_thread()->ignore_interceptors++; 504 #endif 505 } 506 507 ~ScopedIgnoreInterceptors() { 508 #ifndef SANITIZER_GO 509 cur_thread()->ignore_interceptors--; 510 #endif 511 } 512 }; 513 514 class ScopedReport { 515 public: 516 explicit ScopedReport(ReportType typ); 517 ~ScopedReport(); 518 519 void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack, 520 const MutexSet *mset); 521 void AddStack(StackTrace stack, bool suppressable = false); 522 void AddThread(const ThreadContext *tctx, bool suppressable = false); 523 void AddThread(int unique_tid, bool suppressable = false); 524 void AddUniqueTid(int unique_tid); 525 void AddMutex(const SyncVar *s); 526 u64 AddMutex(u64 id); 527 void AddLocation(uptr addr, uptr size); 528 void AddSleep(u32 stack_id); 529 void SetCount(int count); 530 531 const ReportDesc *GetReport() const; 532 533 private: 534 ReportDesc *rep_; 535 // Symbolizer makes lots of intercepted calls. If we try to process them, 536 // at best it will cause deadlocks on internal mutexes. 537 ScopedIgnoreInterceptors ignore_interceptors_; 538 539 void AddDeadMutex(u64 id); 540 541 ScopedReport(const ScopedReport&); 542 void operator = (const ScopedReport&); 543 }; 544 545 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk, 546 MutexSet *mset); 547 548 template<typename StackTraceTy> 549 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) { 550 uptr size = thr->shadow_stack_pos - thr->shadow_stack; 551 uptr start = 0; 552 if (size + !!toppc > kStackTraceMax) { 553 start = size + !!toppc - kStackTraceMax; 554 size = kStackTraceMax - !!toppc; 555 } 556 stack->Init(&thr->shadow_stack[start], size, toppc); 557 } 558 559 560 #if TSAN_COLLECT_STATS 561 void StatAggregate(u64 *dst, u64 *src); 562 void StatOutput(u64 *stat); 563 #endif 564 565 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { 566 #if TSAN_COLLECT_STATS 567 thr->stat[typ] += n; 568 #endif 569 } 570 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) { 571 #if TSAN_COLLECT_STATS 572 thr->stat[typ] = n; 573 #endif 574 } 575 576 void MapShadow(uptr addr, uptr size); 577 void MapThreadTrace(uptr addr, uptr size); 578 void DontNeedShadowFor(uptr addr, uptr size); 579 void InitializeShadowMemory(); 580 void InitializeInterceptors(); 581 void InitializeLibIgnore(); 582 void InitializeDynamicAnnotations(); 583 584 void ForkBefore(ThreadState *thr, uptr pc); 585 void ForkParentAfter(ThreadState *thr, uptr pc); 586 void ForkChildAfter(ThreadState *thr, uptr pc); 587 588 void ReportRace(ThreadState *thr); 589 bool OutputReport(ThreadState *thr, const ScopedReport &srep); 590 bool IsFiredSuppression(Context *ctx, const ScopedReport &srep, 591 StackTrace trace); 592 bool IsExpectedReport(uptr addr, uptr size); 593 void PrintMatchedBenignRaces(); 594 595 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 596 # define DPrintf Printf 597 #else 598 # define DPrintf(...) 599 #endif 600 601 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 602 # define DPrintf2 Printf 603 #else 604 # define DPrintf2(...) 605 #endif 606 607 u32 CurrentStackId(ThreadState *thr, uptr pc); 608 ReportStack *SymbolizeStackId(u32 stack_id); 609 void PrintCurrentStack(ThreadState *thr, uptr pc); 610 void PrintCurrentStackSlow(uptr pc); // uses libunwind 611 612 void Initialize(ThreadState *thr); 613 int Finalize(ThreadState *thr); 614 615 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); 616 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); 617 618 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 619 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic); 620 void MemoryAccessImpl(ThreadState *thr, uptr addr, 621 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 622 u64 *shadow_mem, Shadow cur); 623 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, 624 uptr size, bool is_write); 625 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, 626 uptr size, uptr step, bool is_write); 627 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 628 int size, bool kAccessIsWrite, bool kIsAtomic); 629 630 const int kSizeLog1 = 0; 631 const int kSizeLog2 = 1; 632 const int kSizeLog4 = 2; 633 const int kSizeLog8 = 3; 634 635 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc, 636 uptr addr, int kAccessSizeLog) { 637 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false); 638 } 639 640 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc, 641 uptr addr, int kAccessSizeLog) { 642 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false); 643 } 644 645 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc, 646 uptr addr, int kAccessSizeLog) { 647 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true); 648 } 649 650 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc, 651 uptr addr, int kAccessSizeLog) { 652 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true); 653 } 654 655 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); 656 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); 657 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); 658 659 void ThreadIgnoreBegin(ThreadState *thr, uptr pc); 660 void ThreadIgnoreEnd(ThreadState *thr, uptr pc); 661 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc); 662 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc); 663 664 void FuncEntry(ThreadState *thr, uptr pc); 665 void FuncExit(ThreadState *thr); 666 667 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); 668 void ThreadStart(ThreadState *thr, int tid, uptr os_id); 669 void ThreadFinish(ThreadState *thr); 670 int ThreadTid(ThreadState *thr, uptr pc, uptr uid); 671 void ThreadJoin(ThreadState *thr, uptr pc, int tid); 672 void ThreadDetach(ThreadState *thr, uptr pc, int tid); 673 void ThreadFinalize(ThreadState *thr); 674 void ThreadSetName(ThreadState *thr, const char *name); 675 int ThreadCount(ThreadState *thr); 676 void ProcessPendingSignals(ThreadState *thr); 677 678 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, 679 bool rw, bool recursive, bool linker_init); 680 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); 681 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1, 682 bool try_lock = false); 683 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false); 684 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false); 685 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); 686 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); 687 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD 688 689 void Acquire(ThreadState *thr, uptr pc, uptr addr); 690 // AcquireGlobal synchronizes the current thread with all other threads. 691 // In terms of happens-before relation, it draws a HB edge from all threads 692 // (where they happen to execute right now) to the current thread. We use it to 693 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal 694 // right before executing finalizers. This provides a coarse, but simple 695 // approximation of the actual required synchronization. 696 void AcquireGlobal(ThreadState *thr, uptr pc); 697 void Release(ThreadState *thr, uptr pc, uptr addr); 698 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); 699 void AfterSleep(ThreadState *thr, uptr pc); 700 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c); 701 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 702 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c); 703 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 704 705 // The hacky call uses custom calling convention and an assembly thunk. 706 // It is considerably faster that a normal call for the caller 707 // if it is not executed (it is intended for slow paths from hot functions). 708 // The trick is that the call preserves all registers and the compiler 709 // does not treat it as a call. 710 // If it does not work for you, use normal call. 711 #if !SANITIZER_DEBUG && defined(__x86_64__) 712 // The caller may not create the stack frame for itself at all, 713 // so we create a reserve stack frame for it (1024b must be enough). 714 #define HACKY_CALL(f) \ 715 __asm__ __volatile__("sub $1024, %%rsp;" \ 716 CFI_INL_ADJUST_CFA_OFFSET(1024) \ 717 ".hidden " #f "_thunk;" \ 718 "call " #f "_thunk;" \ 719 "add $1024, %%rsp;" \ 720 CFI_INL_ADJUST_CFA_OFFSET(-1024) \ 721 ::: "memory", "cc"); 722 #else 723 #define HACKY_CALL(f) f() 724 #endif 725 726 void TraceSwitch(ThreadState *thr); 727 uptr TraceTopPC(ThreadState *thr); 728 uptr TraceSize(); 729 uptr TraceParts(); 730 Trace *ThreadTrace(int tid); 731 732 extern "C" void __tsan_trace_switch(); 733 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs, 734 EventType typ, u64 addr) { 735 if (!kCollectHistory) 736 return; 737 DCHECK_GE((int)typ, 0); 738 DCHECK_LE((int)typ, 7); 739 DCHECK_EQ(GetLsb(addr, 61), addr); 740 StatInc(thr, StatEvents); 741 u64 pos = fs.GetTracePos(); 742 if (UNLIKELY((pos % kTracePartSize) == 0)) { 743 #ifndef SANITIZER_GO 744 HACKY_CALL(__tsan_trace_switch); 745 #else 746 TraceSwitch(thr); 747 #endif 748 } 749 Event *trace = (Event*)GetThreadTrace(fs.tid()); 750 Event *evp = &trace[pos]; 751 Event ev = (u64)addr | ((u64)typ << 61); 752 *evp = ev; 753 } 754 755 #ifndef SANITIZER_GO 756 uptr ALWAYS_INLINE HeapEnd() { 757 #if SANITIZER_CAN_USE_ALLOCATOR64 758 return kHeapMemEnd + PrimaryAllocator::AdditionalSize(); 759 #else 760 return kHeapMemEnd; 761 #endif 762 } 763 #endif 764 765 } // namespace __tsan 766 767 #endif // TSAN_RTL_H 768