1 //===-- tsan_rtl.cc -------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Main file (entry points) for the TSan run-time. 13 //===----------------------------------------------------------------------===// 14 15 #include "sanitizer_common/sanitizer_atomic.h" 16 #include "sanitizer_common/sanitizer_common.h" 17 #include "sanitizer_common/sanitizer_libc.h" 18 #include "sanitizer_common/sanitizer_stackdepot.h" 19 #include "sanitizer_common/sanitizer_placement_new.h" 20 #include "sanitizer_common/sanitizer_symbolizer.h" 21 #include "tsan_defs.h" 22 #include "tsan_platform.h" 23 #include "tsan_rtl.h" 24 #include "tsan_mman.h" 25 #include "tsan_suppressions.h" 26 #include "tsan_symbolize.h" 27 28 #ifdef __SSE3__ 29 // <emmintrin.h> transitively includes <stdlib.h>, 30 // and it's prohibited to include std headers into tsan runtime. 31 // So we do this dirty trick. 32 #define _MM_MALLOC_H_INCLUDED 33 #define __MM_MALLOC_H 34 #include <emmintrin.h> 35 typedef __m128i m128; 36 #endif 37 38 volatile int __tsan_resumed = 0; 39 40 extern "C" void __tsan_resume() { 41 __tsan_resumed = 1; 42 } 43 44 namespace __tsan { 45 46 #ifndef SANITIZER_GO 47 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); 48 #endif 49 static char ctx_placeholder[sizeof(Context)] ALIGNED(64); 50 Context *ctx; 51 52 // Can be overriden by a front-end. 53 #ifdef TSAN_EXTERNAL_HOOKS 54 bool OnFinalize(bool failed); 55 void OnInitialize(); 56 #else 57 SANITIZER_INTERFACE_ATTRIBUTE 58 bool WEAK OnFinalize(bool failed) { 59 return failed; 60 } 61 SANITIZER_INTERFACE_ATTRIBUTE 62 void WEAK OnInitialize() {} 63 #endif 64 65 static char thread_registry_placeholder[sizeof(ThreadRegistry)]; 66 67 static ThreadContextBase *CreateThreadContext(u32 tid) { 68 // Map thread trace when context is created. 69 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event)); 70 const uptr hdr = GetThreadTraceHeader(tid); 71 MapThreadTrace(hdr, sizeof(Trace)); 72 new((void*)hdr) Trace(); 73 // We are going to use only a small part of the trace with the default 74 // value of history_size. However, the constructor writes to the whole trace. 75 // Unmap the unused part. 76 uptr hdr_end = hdr + sizeof(Trace); 77 hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts()); 78 hdr_end = RoundUp(hdr_end, GetPageSizeCached()); 79 if (hdr_end < hdr + sizeof(Trace)) 80 UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end); 81 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext)); 82 return new(mem) ThreadContext(tid); 83 } 84 85 #ifndef SANITIZER_GO 86 static const u32 kThreadQuarantineSize = 16; 87 #else 88 static const u32 kThreadQuarantineSize = 64; 89 #endif 90 91 Context::Context() 92 : initialized() 93 , report_mtx(MutexTypeReport, StatMtxReport) 94 , nreported() 95 , nmissed_expected() 96 , thread_registry(new(thread_registry_placeholder) ThreadRegistry( 97 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse)) 98 , racy_stacks(MBlockRacyStacks) 99 , racy_addresses(MBlockRacyAddresses) 100 , fired_suppressions(8) { 101 } 102 103 // The objects are allocated in TLS, so one may rely on zero-initialization. 104 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 105 unsigned reuse_count, 106 uptr stk_addr, uptr stk_size, 107 uptr tls_addr, uptr tls_size) 108 : fast_state(tid, epoch) 109 // Do not touch these, rely on zero initialization, 110 // they may be accessed before the ctor. 111 // , ignore_reads_and_writes() 112 // , ignore_interceptors() 113 , clock(tid, reuse_count) 114 #ifndef SANITIZER_GO 115 , jmp_bufs(MBlockJmpBuf) 116 #endif 117 , tid(tid) 118 , unique_id(unique_id) 119 , stk_addr(stk_addr) 120 , stk_size(stk_size) 121 , tls_addr(tls_addr) 122 , tls_size(tls_size) 123 #ifndef SANITIZER_GO 124 , last_sleep_clock(tid) 125 #endif 126 { 127 } 128 129 #ifndef SANITIZER_GO 130 static void MemoryProfiler(Context *ctx, fd_t fd, int i) { 131 uptr n_threads; 132 uptr n_running_threads; 133 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); 134 InternalScopedBuffer<char> buf(4096); 135 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads); 136 WriteToFile(fd, buf.data(), internal_strlen(buf.data())); 137 } 138 139 static void BackgroundThread(void *arg) { 140 // This is a non-initialized non-user thread, nothing to see here. 141 // We don't use ScopedIgnoreInterceptors, because we want ignores to be 142 // enabled even when the thread function exits (e.g. during pthread thread 143 // shutdown code). 144 cur_thread()->ignore_interceptors++; 145 const u64 kMs2Ns = 1000 * 1000; 146 147 fd_t mprof_fd = kInvalidFd; 148 if (flags()->profile_memory && flags()->profile_memory[0]) { 149 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) { 150 mprof_fd = 1; 151 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) { 152 mprof_fd = 2; 153 } else { 154 InternalScopedString filename(kMaxPathLength); 155 filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid()); 156 fd_t fd = OpenFile(filename.data(), WrOnly); 157 if (fd == kInvalidFd) { 158 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", 159 &filename[0]); 160 } else { 161 mprof_fd = fd; 162 } 163 } 164 } 165 166 u64 last_flush = NanoTime(); 167 uptr last_rss = 0; 168 for (int i = 0; 169 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0; 170 i++) { 171 SleepForMillis(100); 172 u64 now = NanoTime(); 173 174 // Flush memory if requested. 175 if (flags()->flush_memory_ms > 0) { 176 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { 177 VPrintf(1, "ThreadSanitizer: periodic memory flush\n"); 178 FlushShadowMemory(); 179 last_flush = NanoTime(); 180 } 181 } 182 // GetRSS can be expensive on huge programs, so don't do it every 100ms. 183 if (flags()->memory_limit_mb > 0) { 184 uptr rss = GetRSS(); 185 uptr limit = uptr(flags()->memory_limit_mb) << 20; 186 VPrintf(1, "ThreadSanitizer: memory flush check" 187 " RSS=%llu LAST=%llu LIMIT=%llu\n", 188 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); 189 if (2 * rss > limit + last_rss) { 190 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n"); 191 FlushShadowMemory(); 192 rss = GetRSS(); 193 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20); 194 } 195 last_rss = rss; 196 } 197 198 // Write memory profile if requested. 199 if (mprof_fd != kInvalidFd) 200 MemoryProfiler(ctx, mprof_fd, i); 201 202 // Flush symbolizer cache if requested. 203 if (flags()->flush_symbolizer_ms > 0) { 204 u64 last = atomic_load(&ctx->last_symbolize_time_ns, 205 memory_order_relaxed); 206 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { 207 Lock l(&ctx->report_mtx); 208 SpinMutexLock l2(&CommonSanitizerReportMutex); 209 SymbolizeFlush(); 210 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); 211 } 212 } 213 } 214 } 215 216 static void StartBackgroundThread() { 217 ctx->background_thread = internal_start_thread(&BackgroundThread, 0); 218 } 219 220 #ifndef __mips__ 221 static void StopBackgroundThread() { 222 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); 223 internal_join_thread(ctx->background_thread); 224 ctx->background_thread = 0; 225 } 226 #endif 227 #endif 228 229 void DontNeedShadowFor(uptr addr, uptr size) { 230 uptr shadow_beg = MemToShadow(addr); 231 uptr shadow_end = MemToShadow(addr + size); 232 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); 233 } 234 235 void MapShadow(uptr addr, uptr size) { 236 // Global data is not 64K aligned, but there are no adjacent mappings, 237 // so we can get away with unaligned mapping. 238 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 239 MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier); 240 241 // Meta shadow is 2:1, so tread carefully. 242 static bool data_mapped = false; 243 static uptr mapped_meta_end = 0; 244 uptr meta_begin = (uptr)MemToMeta(addr); 245 uptr meta_end = (uptr)MemToMeta(addr + size); 246 meta_begin = RoundDownTo(meta_begin, 64 << 10); 247 meta_end = RoundUpTo(meta_end, 64 << 10); 248 if (!data_mapped) { 249 // First call maps data+bss. 250 data_mapped = true; 251 MmapFixedNoReserve(meta_begin, meta_end - meta_begin); 252 } else { 253 // Mapping continous heap. 254 // Windows wants 64K alignment. 255 meta_begin = RoundDownTo(meta_begin, 64 << 10); 256 meta_end = RoundUpTo(meta_end, 64 << 10); 257 if (meta_end <= mapped_meta_end) 258 return; 259 if (meta_begin < mapped_meta_end) 260 meta_begin = mapped_meta_end; 261 MmapFixedNoReserve(meta_begin, meta_end - meta_begin); 262 mapped_meta_end = meta_end; 263 } 264 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n", 265 addr, addr+size, meta_begin, meta_end); 266 } 267 268 void MapThreadTrace(uptr addr, uptr size) { 269 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); 270 CHECK_GE(addr, kTraceMemBeg); 271 CHECK_LE(addr + size, kTraceMemEnd); 272 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 273 uptr addr1 = (uptr)MmapFixedNoReserve(addr, size); 274 if (addr1 != addr) { 275 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n", 276 addr, size, addr1); 277 Die(); 278 } 279 } 280 281 static void CheckShadowMapping() { 282 for (uptr i = 0; i < ARRAY_SIZE(UserRegions); i += 2) { 283 const uptr beg = UserRegions[i]; 284 const uptr end = UserRegions[i + 1]; 285 VPrintf(3, "checking shadow region %p-%p\n", beg, end); 286 for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) { 287 for (int x = -1; x <= 1; x++) { 288 const uptr p = p0 + x; 289 if (p < beg || p >= end) 290 continue; 291 const uptr s = MemToShadow(p); 292 const uptr m = (uptr)MemToMeta(p); 293 VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m); 294 CHECK(IsAppMem(p)); 295 CHECK(IsShadowMem(s)); 296 CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s)); 297 CHECK(IsMetaMem(m)); 298 } 299 } 300 } 301 } 302 303 void Initialize(ThreadState *thr) { 304 // Thread safe because done before all threads exist. 305 static bool is_initialized = false; 306 if (is_initialized) 307 return; 308 is_initialized = true; 309 // We are not ready to handle interceptors yet. 310 ScopedIgnoreInterceptors ignore; 311 SanitizerToolName = "ThreadSanitizer"; 312 // Install tool-specific callbacks in sanitizer_common. 313 SetCheckFailedCallback(TsanCheckFailed); 314 315 ctx = new(ctx_placeholder) Context; 316 const char *options = GetEnv(kTsanOptionsEnv); 317 InitializeFlags(&ctx->flags, options); 318 #ifndef SANITIZER_GO 319 InitializeAllocator(); 320 #endif 321 InitializeInterceptors(); 322 CheckShadowMapping(); 323 InitializePlatform(); 324 InitializeMutex(); 325 InitializeDynamicAnnotations(); 326 #ifndef SANITIZER_GO 327 InitializeShadowMemory(); 328 #endif 329 // Setup correct file descriptor for error reports. 330 __sanitizer_set_report_path(common_flags()->log_path); 331 InitializeSuppressions(); 332 #ifndef SANITIZER_GO 333 InitializeLibIgnore(); 334 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); 335 // On MIPS, TSan initialization is run before 336 // __pthread_initialize_minimal_internal() is finished, so we can not spawn 337 // new threads. 338 #ifndef __mips__ 339 StartBackgroundThread(); 340 SetSandboxingCallback(StopBackgroundThread); 341 #endif 342 #endif 343 if (common_flags()->detect_deadlocks) 344 ctx->dd = DDetector::Create(flags()); 345 346 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n", 347 (int)internal_getpid()); 348 349 // Initialize thread 0. 350 int tid = ThreadCreate(thr, 0, 0, true); 351 CHECK_EQ(tid, 0); 352 ThreadStart(thr, tid, internal_getpid()); 353 ctx->initialized = true; 354 355 if (flags()->stop_on_start) { 356 Printf("ThreadSanitizer is suspended at startup (pid %d)." 357 " Call __tsan_resume().\n", 358 (int)internal_getpid()); 359 while (__tsan_resumed == 0) {} 360 } 361 362 OnInitialize(); 363 } 364 365 int Finalize(ThreadState *thr) { 366 bool failed = false; 367 368 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 369 SleepForMillis(flags()->atexit_sleep_ms); 370 371 // Wait for pending reports. 372 ctx->report_mtx.Lock(); 373 CommonSanitizerReportMutex.Lock(); 374 CommonSanitizerReportMutex.Unlock(); 375 ctx->report_mtx.Unlock(); 376 377 #ifndef SANITIZER_GO 378 if (Verbosity()) AllocatorPrintStats(); 379 #endif 380 381 ThreadFinalize(thr); 382 383 if (ctx->nreported) { 384 failed = true; 385 #ifndef SANITIZER_GO 386 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 387 #else 388 Printf("Found %d data race(s)\n", ctx->nreported); 389 #endif 390 } 391 392 if (ctx->nmissed_expected) { 393 failed = true; 394 Printf("ThreadSanitizer: missed %d expected races\n", 395 ctx->nmissed_expected); 396 } 397 398 if (common_flags()->print_suppressions) 399 PrintMatchedSuppressions(); 400 #ifndef SANITIZER_GO 401 if (flags()->print_benign) 402 PrintMatchedBenignRaces(); 403 #endif 404 405 failed = OnFinalize(failed); 406 407 #if TSAN_COLLECT_STATS 408 StatAggregate(ctx->stat, thr->stat); 409 StatOutput(ctx->stat); 410 #endif 411 412 return failed ? flags()->exitcode : 0; 413 } 414 415 #ifndef SANITIZER_GO 416 void ForkBefore(ThreadState *thr, uptr pc) { 417 ctx->thread_registry->Lock(); 418 ctx->report_mtx.Lock(); 419 } 420 421 void ForkParentAfter(ThreadState *thr, uptr pc) { 422 ctx->report_mtx.Unlock(); 423 ctx->thread_registry->Unlock(); 424 } 425 426 void ForkChildAfter(ThreadState *thr, uptr pc) { 427 ctx->report_mtx.Unlock(); 428 ctx->thread_registry->Unlock(); 429 430 uptr nthread = 0; 431 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */); 432 VPrintf(1, "ThreadSanitizer: forked new process with pid %d," 433 " parent had %d threads\n", (int)internal_getpid(), (int)nthread); 434 if (nthread == 1) { 435 StartBackgroundThread(); 436 } else { 437 // We've just forked a multi-threaded process. We cannot reasonably function 438 // after that (some mutexes may be locked before fork). So just enable 439 // ignores for everything in the hope that we will exec soon. 440 ctx->after_multithreaded_fork = true; 441 thr->ignore_interceptors++; 442 ThreadIgnoreBegin(thr, pc); 443 ThreadIgnoreSyncBegin(thr, pc); 444 } 445 } 446 #endif 447 448 #ifdef SANITIZER_GO 449 NOINLINE 450 void GrowShadowStack(ThreadState *thr) { 451 const int sz = thr->shadow_stack_end - thr->shadow_stack; 452 const int newsz = 2 * sz; 453 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, 454 newsz * sizeof(uptr)); 455 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 456 internal_free(thr->shadow_stack); 457 thr->shadow_stack = newstack; 458 thr->shadow_stack_pos = newstack + sz; 459 thr->shadow_stack_end = newstack + newsz; 460 } 461 #endif 462 463 u32 CurrentStackId(ThreadState *thr, uptr pc) { 464 if (!thr->is_inited) // May happen during bootstrap. 465 return 0; 466 if (pc != 0) { 467 #ifndef SANITIZER_GO 468 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 469 #else 470 if (thr->shadow_stack_pos == thr->shadow_stack_end) 471 GrowShadowStack(thr); 472 #endif 473 thr->shadow_stack_pos[0] = pc; 474 thr->shadow_stack_pos++; 475 } 476 u32 id = StackDepotPut( 477 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); 478 if (pc != 0) 479 thr->shadow_stack_pos--; 480 return id; 481 } 482 483 void TraceSwitch(ThreadState *thr) { 484 thr->nomalloc++; 485 Trace *thr_trace = ThreadTrace(thr->tid); 486 Lock l(&thr_trace->mtx); 487 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); 488 TraceHeader *hdr = &thr_trace->headers[trace]; 489 hdr->epoch0 = thr->fast_state.epoch(); 490 ObtainCurrentStack(thr, 0, &hdr->stack0); 491 hdr->mset0 = thr->mset; 492 thr->nomalloc--; 493 } 494 495 Trace *ThreadTrace(int tid) { 496 return (Trace*)GetThreadTraceHeader(tid); 497 } 498 499 uptr TraceTopPC(ThreadState *thr) { 500 Event *events = (Event*)GetThreadTrace(thr->tid); 501 uptr pc = events[thr->fast_state.GetTracePos()]; 502 return pc; 503 } 504 505 uptr TraceSize() { 506 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); 507 } 508 509 uptr TraceParts() { 510 return TraceSize() / kTracePartSize; 511 } 512 513 #ifndef SANITIZER_GO 514 extern "C" void __tsan_trace_switch() { 515 TraceSwitch(cur_thread()); 516 } 517 518 extern "C" void __tsan_report_race() { 519 ReportRace(cur_thread()); 520 } 521 #endif 522 523 ALWAYS_INLINE 524 Shadow LoadShadow(u64 *p) { 525 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); 526 return Shadow(raw); 527 } 528 529 ALWAYS_INLINE 530 void StoreShadow(u64 *sp, u64 s) { 531 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); 532 } 533 534 ALWAYS_INLINE 535 void StoreIfNotYetStored(u64 *sp, u64 *s) { 536 StoreShadow(sp, *s); 537 *s = 0; 538 } 539 540 ALWAYS_INLINE 541 void HandleRace(ThreadState *thr, u64 *shadow_mem, 542 Shadow cur, Shadow old) { 543 thr->racy_state[0] = cur.raw(); 544 thr->racy_state[1] = old.raw(); 545 thr->racy_shadow_addr = shadow_mem; 546 #ifndef SANITIZER_GO 547 HACKY_CALL(__tsan_report_race); 548 #else 549 ReportRace(thr); 550 #endif 551 } 552 553 static inline bool HappensBefore(Shadow old, ThreadState *thr) { 554 return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); 555 } 556 557 ALWAYS_INLINE 558 void MemoryAccessImpl1(ThreadState *thr, uptr addr, 559 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 560 u64 *shadow_mem, Shadow cur) { 561 StatInc(thr, StatMop); 562 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 563 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 564 565 // This potentially can live in an MMX/SSE scratch register. 566 // The required intrinsics are: 567 // __m128i _mm_move_epi64(__m128i*); 568 // _mm_storel_epi64(u64*, __m128i); 569 u64 store_word = cur.raw(); 570 571 // scan all the shadow values and dispatch to 4 categories: 572 // same, replace, candidate and race (see comments below). 573 // we consider only 3 cases regarding access sizes: 574 // equal, intersect and not intersect. initially I considered 575 // larger and smaller as well, it allowed to replace some 576 // 'candidates' with 'same' or 'replace', but I think 577 // it's just not worth it (performance- and complexity-wise). 578 579 Shadow old(0); 580 581 // It release mode we manually unroll the loop, 582 // because empirically gcc generates better code this way. 583 // However, we can't afford unrolling in debug mode, because the function 584 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test 585 // threads, which is not enough for the unrolled loop. 586 #if SANITIZER_DEBUG 587 for (int idx = 0; idx < 4; idx++) { 588 #include "tsan_update_shadow_word_inl.h" 589 } 590 #else 591 int idx = 0; 592 #include "tsan_update_shadow_word_inl.h" 593 idx = 1; 594 #include "tsan_update_shadow_word_inl.h" 595 idx = 2; 596 #include "tsan_update_shadow_word_inl.h" 597 idx = 3; 598 #include "tsan_update_shadow_word_inl.h" 599 #endif 600 601 // we did not find any races and had already stored 602 // the current access info, so we are done 603 if (LIKELY(store_word == 0)) 604 return; 605 // choose a random candidate slot and replace it 606 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); 607 StatInc(thr, StatShadowReplace); 608 return; 609 RACE: 610 HandleRace(thr, shadow_mem, cur, old); 611 return; 612 } 613 614 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 615 int size, bool kAccessIsWrite, bool kIsAtomic) { 616 while (size) { 617 int size1 = 1; 618 int kAccessSizeLog = kSizeLog1; 619 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { 620 size1 = 8; 621 kAccessSizeLog = kSizeLog8; 622 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { 623 size1 = 4; 624 kAccessSizeLog = kSizeLog4; 625 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { 626 size1 = 2; 627 kAccessSizeLog = kSizeLog2; 628 } 629 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); 630 addr += size1; 631 size -= size1; 632 } 633 } 634 635 ALWAYS_INLINE 636 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 637 Shadow cur(a); 638 for (uptr i = 0; i < kShadowCnt; i++) { 639 Shadow old(LoadShadow(&s[i])); 640 if (Shadow::Addr0AndSizeAreEqual(cur, old) && 641 old.TidWithIgnore() == cur.TidWithIgnore() && 642 old.epoch() > sync_epoch && 643 old.IsAtomic() == cur.IsAtomic() && 644 old.IsRead() <= cur.IsRead()) 645 return true; 646 } 647 return false; 648 } 649 650 #if defined(__SSE3__) 651 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \ 652 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \ 653 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) 654 ALWAYS_INLINE 655 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 656 // This is an optimized version of ContainsSameAccessSlow. 657 // load current access into access[0:63] 658 const m128 access = _mm_cvtsi64_si128(a); 659 // duplicate high part of access in addr0: 660 // addr0[0:31] = access[32:63] 661 // addr0[32:63] = access[32:63] 662 // addr0[64:95] = access[32:63] 663 // addr0[96:127] = access[32:63] 664 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); 665 // load 4 shadow slots 666 const m128 shadow0 = _mm_load_si128((__m128i*)s); 667 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1); 668 // load high parts of 4 shadow slots into addr_vect: 669 // addr_vect[0:31] = shadow0[32:63] 670 // addr_vect[32:63] = shadow0[96:127] 671 // addr_vect[64:95] = shadow1[32:63] 672 // addr_vect[96:127] = shadow1[96:127] 673 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); 674 if (!is_write) { 675 // set IsRead bit in addr_vect 676 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15); 677 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); 678 addr_vect = _mm_or_si128(addr_vect, rw_mask); 679 } 680 // addr0 == addr_vect? 681 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); 682 // epoch1[0:63] = sync_epoch 683 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); 684 // epoch[0:31] = sync_epoch[0:31] 685 // epoch[32:63] = sync_epoch[0:31] 686 // epoch[64:95] = sync_epoch[0:31] 687 // epoch[96:127] = sync_epoch[0:31] 688 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); 689 // load low parts of shadow cell epochs into epoch_vect: 690 // epoch_vect[0:31] = shadow0[0:31] 691 // epoch_vect[32:63] = shadow0[64:95] 692 // epoch_vect[64:95] = shadow1[0:31] 693 // epoch_vect[96:127] = shadow1[64:95] 694 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); 695 // epoch_vect >= sync_epoch? 696 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); 697 // addr_res & epoch_res 698 const m128 res = _mm_and_si128(addr_res, epoch_res); 699 // mask[0] = res[7] 700 // mask[1] = res[15] 701 // ... 702 // mask[15] = res[127] 703 const int mask = _mm_movemask_epi8(res); 704 return mask != 0; 705 } 706 #endif 707 708 ALWAYS_INLINE 709 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 710 #if defined(__SSE3__) 711 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); 712 // NOTE: this check can fail if the shadow is concurrently mutated 713 // by other threads. But it still can be useful if you modify 714 // ContainsSameAccessFast and want to ensure that it's not completely broken. 715 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); 716 return res; 717 #else 718 return ContainsSameAccessSlow(s, a, sync_epoch, is_write); 719 #endif 720 } 721 722 ALWAYS_INLINE USED 723 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 724 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { 725 u64 *shadow_mem = (u64*)MemToShadow(addr); 726 DPrintf2("#%d: MemoryAccess: @%p %p size=%d" 727 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", 728 (int)thr->fast_state.tid(), (void*)pc, (void*)addr, 729 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, 730 (uptr)shadow_mem[0], (uptr)shadow_mem[1], 731 (uptr)shadow_mem[2], (uptr)shadow_mem[3]); 732 #if SANITIZER_DEBUG 733 if (!IsAppMem(addr)) { 734 Printf("Access to non app mem %zx\n", addr); 735 DCHECK(IsAppMem(addr)); 736 } 737 if (!IsShadowMem((uptr)shadow_mem)) { 738 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); 739 DCHECK(IsShadowMem((uptr)shadow_mem)); 740 } 741 #endif 742 743 if (kCppMode && *shadow_mem == kShadowRodata) { 744 // Access to .rodata section, no races here. 745 // Measurements show that it can be 10-20% of all memory accesses. 746 StatInc(thr, StatMop); 747 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 748 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 749 StatInc(thr, StatMopRodata); 750 return; 751 } 752 753 FastState fast_state = thr->fast_state; 754 if (fast_state.GetIgnoreBit()) { 755 StatInc(thr, StatMop); 756 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 757 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 758 StatInc(thr, StatMopIgnored); 759 return; 760 } 761 762 Shadow cur(fast_state); 763 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); 764 cur.SetWrite(kAccessIsWrite); 765 cur.SetAtomic(kIsAtomic); 766 767 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 768 thr->fast_synch_epoch, kAccessIsWrite))) { 769 StatInc(thr, StatMop); 770 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 771 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 772 StatInc(thr, StatMopSame); 773 return; 774 } 775 776 if (kCollectHistory) { 777 fast_state.IncrementEpoch(); 778 thr->fast_state = fast_state; 779 TraceAddEvent(thr, fast_state, EventTypeMop, pc); 780 cur.IncrementEpoch(); 781 } 782 783 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 784 shadow_mem, cur); 785 } 786 787 // Called by MemoryAccessRange in tsan_rtl_thread.cc 788 ALWAYS_INLINE USED 789 void MemoryAccessImpl(ThreadState *thr, uptr addr, 790 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 791 u64 *shadow_mem, Shadow cur) { 792 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 793 thr->fast_synch_epoch, kAccessIsWrite))) { 794 StatInc(thr, StatMop); 795 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 796 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 797 StatInc(thr, StatMopSame); 798 return; 799 } 800 801 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 802 shadow_mem, cur); 803 } 804 805 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, 806 u64 val) { 807 (void)thr; 808 (void)pc; 809 if (size == 0) 810 return; 811 // FIXME: fix me. 812 uptr offset = addr % kShadowCell; 813 if (offset) { 814 offset = kShadowCell - offset; 815 if (size <= offset) 816 return; 817 addr += offset; 818 size -= offset; 819 } 820 DCHECK_EQ(addr % 8, 0); 821 // If a user passes some insane arguments (memset(0)), 822 // let it just crash as usual. 823 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 824 return; 825 // Don't want to touch lots of shadow memory. 826 // If a program maps 10MB stack, there is no need reset the whole range. 827 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); 828 // UnmapOrDie/MmapFixedNoReserve does not work on Windows, 829 // so we do it only for C/C++. 830 if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) { 831 u64 *p = (u64*)MemToShadow(addr); 832 CHECK(IsShadowMem((uptr)p)); 833 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); 834 // FIXME: may overwrite a part outside the region 835 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { 836 p[i++] = val; 837 for (uptr j = 1; j < kShadowCnt; j++) 838 p[i++] = 0; 839 } 840 } else { 841 // The region is big, reset only beginning and end. 842 const uptr kPageSize = GetPageSizeCached(); 843 u64 *begin = (u64*)MemToShadow(addr); 844 u64 *end = begin + size / kShadowCell * kShadowCnt; 845 u64 *p = begin; 846 // Set at least first kPageSize/2 to page boundary. 847 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { 848 *p++ = val; 849 for (uptr j = 1; j < kShadowCnt; j++) 850 *p++ = 0; 851 } 852 // Reset middle part. 853 u64 *p1 = p; 854 p = RoundDown(end, kPageSize); 855 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); 856 MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1); 857 // Set the ending. 858 while (p < end) { 859 *p++ = val; 860 for (uptr j = 1; j < kShadowCnt; j++) 861 *p++ = 0; 862 } 863 } 864 } 865 866 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { 867 MemoryRangeSet(thr, pc, addr, size, 0); 868 } 869 870 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { 871 // Processing more than 1k (4k of shadow) is expensive, 872 // can cause excessive memory consumption (user does not necessary touch 873 // the whole range) and most likely unnecessary. 874 if (size > 1024) 875 size = 1024; 876 CHECK_EQ(thr->is_freeing, false); 877 thr->is_freeing = true; 878 MemoryAccessRange(thr, pc, addr, size, true); 879 thr->is_freeing = false; 880 if (kCollectHistory) { 881 thr->fast_state.IncrementEpoch(); 882 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 883 } 884 Shadow s(thr->fast_state); 885 s.ClearIgnoreBit(); 886 s.MarkAsFreed(); 887 s.SetWrite(true); 888 s.SetAddr0AndSizeLog(0, 3); 889 MemoryRangeSet(thr, pc, addr, size, s.raw()); 890 } 891 892 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { 893 if (kCollectHistory) { 894 thr->fast_state.IncrementEpoch(); 895 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 896 } 897 Shadow s(thr->fast_state); 898 s.ClearIgnoreBit(); 899 s.SetWrite(true); 900 s.SetAddr0AndSizeLog(0, 3); 901 MemoryRangeSet(thr, pc, addr, size, s.raw()); 902 } 903 904 ALWAYS_INLINE USED 905 void FuncEntry(ThreadState *thr, uptr pc) { 906 StatInc(thr, StatFuncEnter); 907 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); 908 if (kCollectHistory) { 909 thr->fast_state.IncrementEpoch(); 910 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); 911 } 912 913 // Shadow stack maintenance can be replaced with 914 // stack unwinding during trace switch (which presumably must be faster). 915 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); 916 #ifndef SANITIZER_GO 917 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 918 #else 919 if (thr->shadow_stack_pos == thr->shadow_stack_end) 920 GrowShadowStack(thr); 921 #endif 922 thr->shadow_stack_pos[0] = pc; 923 thr->shadow_stack_pos++; 924 } 925 926 ALWAYS_INLINE USED 927 void FuncExit(ThreadState *thr) { 928 StatInc(thr, StatFuncExit); 929 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); 930 if (kCollectHistory) { 931 thr->fast_state.IncrementEpoch(); 932 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); 933 } 934 935 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); 936 #ifndef SANITIZER_GO 937 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 938 #endif 939 thr->shadow_stack_pos--; 940 } 941 942 void ThreadIgnoreBegin(ThreadState *thr, uptr pc) { 943 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); 944 thr->ignore_reads_and_writes++; 945 CHECK_GT(thr->ignore_reads_and_writes, 0); 946 thr->fast_state.SetIgnoreBit(); 947 #ifndef SANITIZER_GO 948 if (!ctx->after_multithreaded_fork) 949 thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); 950 #endif 951 } 952 953 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) { 954 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); 955 thr->ignore_reads_and_writes--; 956 CHECK_GE(thr->ignore_reads_and_writes, 0); 957 if (thr->ignore_reads_and_writes == 0) { 958 thr->fast_state.ClearIgnoreBit(); 959 #ifndef SANITIZER_GO 960 thr->mop_ignore_set.Reset(); 961 #endif 962 } 963 } 964 965 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { 966 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); 967 thr->ignore_sync++; 968 CHECK_GT(thr->ignore_sync, 0); 969 #ifndef SANITIZER_GO 970 if (!ctx->after_multithreaded_fork) 971 thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); 972 #endif 973 } 974 975 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) { 976 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); 977 thr->ignore_sync--; 978 CHECK_GE(thr->ignore_sync, 0); 979 #ifndef SANITIZER_GO 980 if (thr->ignore_sync == 0) 981 thr->sync_ignore_set.Reset(); 982 #endif 983 } 984 985 bool MD5Hash::operator==(const MD5Hash &other) const { 986 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 987 } 988 989 #if SANITIZER_DEBUG 990 void build_consistency_debug() {} 991 #else 992 void build_consistency_release() {} 993 #endif 994 995 #if TSAN_COLLECT_STATS 996 void build_consistency_stats() {} 997 #else 998 void build_consistency_nostats() {} 999 #endif 1000 1001 } // namespace __tsan 1002 1003 #ifndef SANITIZER_GO 1004 // Must be included in this file to make sure everything is inlined. 1005 #include "tsan_interface_inl.h" 1006 #endif 1007