Home | History | Annotate | Download | only in pub
      1 
      2 /*---------------------------------------------------------------*/
      3 /*--- begin                                       libvex_ir.h ---*/
      4 /*---------------------------------------------------------------*/
      5 
      6 /*
      7    This file is part of Valgrind, a dynamic binary instrumentation
      8    framework.
      9 
     10    Copyright (C) 2004-2013 OpenWorks LLP
     11       info (at) open-works.net
     12 
     13    This program is free software; you can redistribute it and/or
     14    modify it under the terms of the GNU General Public License as
     15    published by the Free Software Foundation; either version 2 of the
     16    License, or (at your option) any later version.
     17 
     18    This program is distributed in the hope that it will be useful, but
     19    WITHOUT ANY WARRANTY; without even the implied warranty of
     20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     21    General Public License for more details.
     22 
     23    You should have received a copy of the GNU General Public License
     24    along with this program; if not, write to the Free Software
     25    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
     26    02110-1301, USA.
     27 
     28    The GNU General Public License is contained in the file COPYING.
     29 
     30    Neither the names of the U.S. Department of Energy nor the
     31    University of California nor the names of its contributors may be
     32    used to endorse or promote products derived from this software
     33    without prior written permission.
     34 */
     35 
     36 #ifndef __LIBVEX_IR_H
     37 #define __LIBVEX_IR_H
     38 
     39 #include "libvex_basictypes.h"
     40 
     41 
     42 /*---------------------------------------------------------------*/
     43 /*--- High-level IR description                               ---*/
     44 /*---------------------------------------------------------------*/
     45 
     46 /* Vex IR is an architecture-neutral intermediate representation.
     47    Unlike some IRs in systems similar to Vex, it is not like assembly
     48    language (ie. a list of instructions).  Rather, it is more like the
     49    IR that might be used in a compiler.
     50 
     51    Code blocks
     52    ~~~~~~~~~~~
     53    The code is broken into small code blocks ("superblocks", type:
     54    'IRSB').  Each code block typically represents from 1 to perhaps 50
     55    instructions.  IRSBs are single-entry, multiple-exit code blocks.
     56    Each IRSB contains three things:
     57    - a type environment, which indicates the type of each temporary
     58      value present in the IRSB
     59    - a list of statements, which represent code
     60    - a jump that exits from the end the IRSB
     61    Because the blocks are multiple-exit, there can be additional
     62    conditional exit statements that cause control to leave the IRSB
     63    before the final exit.  Also because of this, IRSBs can cover
     64    multiple non-consecutive sequences of code (up to 3).  These are
     65    recorded in the type VexGuestExtents (see libvex.h).
     66 
     67    Statements and expressions
     68    ~~~~~~~~~~~~~~~~~~~~~~~~~~
     69    Statements (type 'IRStmt') represent operations with side-effects,
     70    eg.  guest register writes, stores, and assignments to temporaries.
     71    Expressions (type 'IRExpr') represent operations without
     72    side-effects, eg. arithmetic operations, loads, constants.
     73    Expressions can contain sub-expressions, forming expression trees,
     74    eg. (3 + (4 * load(addr1)).
     75 
     76    Storage of guest state
     77    ~~~~~~~~~~~~~~~~~~~~~~
     78    The "guest state" contains the guest registers of the guest machine
     79    (ie.  the machine that we are simulating).  It is stored by default
     80    in a block of memory supplied by the user of the VEX library,
     81    generally referred to as the guest state (area).  To operate on
     82    these registers, one must first read ("Get") them from the guest
     83    state into a temporary value.  Afterwards, one can write ("Put")
     84    them back into the guest state.
     85 
     86    Get and Put are characterised by a byte offset into the guest
     87    state, a small integer which effectively gives the identity of the
     88    referenced guest register, and a type, which indicates the size of
     89    the value to be transferred.
     90 
     91    The basic "Get" and "Put" operations are sufficient to model normal
     92    fixed registers on the guest.  Selected areas of the guest state
     93    can be treated as a circular array of registers (type:
     94    'IRRegArray'), which can be indexed at run-time.  This is done with
     95    the "GetI" and "PutI" primitives.  This is necessary to describe
     96    rotating register files, for example the x87 FPU stack, SPARC
     97    register windows, and the Itanium register files.
     98 
     99    Examples, and flattened vs. unflattened code
    100    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    101    For example, consider this x86 instruction:
    102 
    103      addl %eax, %ebx
    104 
    105    One Vex IR translation for this code would be this:
    106 
    107      ------ IMark(0x24F275, 7, 0) ------
    108      t3 = GET:I32(0)             # get %eax, a 32-bit integer
    109      t2 = GET:I32(12)            # get %ebx, a 32-bit integer
    110      t1 = Add32(t3,t2)           # addl
    111      PUT(0) = t1                 # put %eax
    112 
    113    (For simplicity, this ignores the effects on the condition codes, and
    114    the update of the instruction pointer.)
    115 
    116    The "IMark" is an IR statement that doesn't represent actual code.
    117    Instead it indicates the address and length of the original
    118    instruction.  The numbers 0 and 12 are offsets into the guest state
    119    for %eax and %ebx.  The full list of offsets for an architecture
    120    <ARCH> can be found in the type VexGuest<ARCH>State in the file
    121    VEX/pub/libvex_guest_<ARCH>.h.
    122 
    123    The five statements in this example are:
    124    - the IMark
    125    - three assignments to temporaries
    126    - one register write (put)
    127 
    128    The six expressions in this example are:
    129    - two register reads (gets)
    130    - one arithmetic (add) operation
    131    - three temporaries (two nested within the Add32, one in the PUT)
    132 
    133    The above IR is "flattened", ie. all sub-expressions are "atoms",
    134    either constants or temporaries.  An equivalent, unflattened version
    135    would be:
    136 
    137      PUT(0) = Add32(GET:I32(0), GET:I32(12))
    138 
    139    IR is guaranteed to be flattened at instrumentation-time.  This makes
    140    instrumentation easier.  Equivalent flattened and unflattened IR
    141    typically results in the same generated code.
    142 
    143    Another example, this one showing loads and stores:
    144 
    145      addl %edx,4(%eax)
    146 
    147    This becomes (again ignoring condition code and instruction pointer
    148    updates):
    149 
    150      ------ IMark(0x4000ABA, 3, 0) ------
    151      t3 = Add32(GET:I32(0),0x4:I32)
    152      t2 = LDle:I32(t3)
    153      t1 = GET:I32(8)
    154      t0 = Add32(t2,t1)
    155      STle(t3) = t0
    156 
    157    The "le" in "LDle" and "STle" is short for "little-endian".
    158 
    159    No need for deallocations
    160    ~~~~~~~~~~~~~~~~~~~~~~~~~
    161    Although there are allocation functions for various data structures
    162    in this file, there are no deallocation functions.  This is because
    163    Vex uses a memory allocation scheme that automatically reclaims the
    164    memory used by allocated structures once translation is completed.
    165    This makes things easier for tools that instruments/transforms code
    166    blocks.
    167 
    168    SSAness and typing
    169    ~~~~~~~~~~~~~~~~~~
    170    The IR is fully typed.  For every IRSB (IR block) it is possible to
    171    say unambiguously whether or not it is correctly typed.
    172    Incorrectly typed IR has no meaning and the VEX will refuse to
    173    process it.  At various points during processing VEX typechecks the
    174    IR and aborts if any violations are found.  This seems overkill but
    175    makes it a great deal easier to build a reliable JIT.
    176 
    177    IR also has the SSA property.  SSA stands for Static Single
    178    Assignment, and what it means is that each IR temporary may be
    179    assigned to only once.  This idea became widely used in compiler
    180    construction in the mid to late 90s.  It makes many IR-level
    181    transformations/code improvements easier, simpler and faster.
    182    Whenever it typechecks an IR block, VEX also checks the SSA
    183    property holds, and will abort if not so.  So SSAness is
    184    mechanically and rigidly enforced.
    185 */
    186 
    187 /*---------------------------------------------------------------*/
    188 /*--- Type definitions for the IR                             ---*/
    189 /*---------------------------------------------------------------*/
    190 
    191 /* General comments about naming schemes:
    192 
    193    All publically visible functions contain the name of the primary
    194    type on which they operate (IRFoo, IRBar, etc).  Hence you should
    195    be able to identify these functions by grepping for "IR[A-Z]".
    196 
    197    For some type 'IRFoo':
    198 
    199    - ppIRFoo is the printing method for IRFoo, printing it to the
    200      output channel specified in the LibVEX_Initialise call.
    201 
    202    - eqIRFoo is a structural equality predicate for IRFoos.
    203 
    204    - deepCopyIRFoo is a deep copy constructor for IRFoos.
    205      It recursively traverses the entire argument tree and
    206      produces a complete new tree.  All types have a deep copy
    207      constructor.
    208 
    209    - shallowCopyIRFoo is the shallow copy constructor for IRFoos.
    210      It creates a new top-level copy of the supplied object,
    211      but does not copy any sub-objects.  Only some types have a
    212      shallow copy constructor.
    213 */
    214 
    215 /* ------------------ Types ------------------ */
    216 
    217 /* A type indicates the size of a value, and whether it's an integer, a
    218    float, or a vector (SIMD) value. */
    219 typedef
    220    enum {
    221       Ity_INVALID=0x1100,
    222       Ity_I1,
    223       Ity_I8,
    224       Ity_I16,
    225       Ity_I32,
    226       Ity_I64,
    227       Ity_I128,  /* 128-bit scalar */
    228       Ity_F16,   /* 16 bit float */
    229       Ity_F32,   /* IEEE 754 float */
    230       Ity_F64,   /* IEEE 754 double */
    231       Ity_D32,   /* 32-bit Decimal floating point */
    232       Ity_D64,   /* 64-bit Decimal floating point */
    233       Ity_D128,  /* 128-bit Decimal floating point */
    234       Ity_F128,  /* 128-bit floating point; implementation defined */
    235       Ity_V128,  /* 128-bit SIMD */
    236       Ity_V256   /* 256-bit SIMD */
    237    }
    238    IRType;
    239 
    240 /* Pretty-print an IRType */
    241 extern void ppIRType ( IRType );
    242 
    243 /* Get the size (in bytes) of an IRType */
    244 extern Int sizeofIRType ( IRType );
    245 
    246 /* Translate 1/2/4/8 into Ity_I{8,16,32,64} respectively.  Asserts on
    247    any other input. */
    248 extern IRType integerIRTypeOfSize ( Int szB );
    249 
    250 
    251 /* ------------------ Endianness ------------------ */
    252 
    253 /* IREndness is used in load IRExprs and store IRStmts. */
    254 typedef
    255    enum {
    256       Iend_LE=0x1200, /* little endian */
    257       Iend_BE          /* big endian */
    258    }
    259    IREndness;
    260 
    261 
    262 /* ------------------ Constants ------------------ */
    263 
    264 /* IRConsts are used within 'Const' and 'Exit' IRExprs. */
    265 
    266 /* The various kinds of constant. */
    267 typedef
    268    enum {
    269       Ico_U1=0x1300,
    270       Ico_U8,
    271       Ico_U16,
    272       Ico_U32,
    273       Ico_U64,
    274       Ico_F32,   /* 32-bit IEEE754 floating */
    275       Ico_F32i,  /* 32-bit unsigned int to be interpreted literally
    276                     as a IEEE754 single value. */
    277       Ico_F64,   /* 64-bit IEEE754 floating */
    278       Ico_F64i,  /* 64-bit unsigned int to be interpreted literally
    279                     as a IEEE754 double value. */
    280       Ico_V128,  /* 128-bit restricted vector constant, with 1 bit
    281                     (repeated 8 times) for each of the 16 x 1-byte lanes */
    282       Ico_V256   /* 256-bit restricted vector constant, with 1 bit
    283                     (repeated 8 times) for each of the 32 x 1-byte lanes */
    284    }
    285    IRConstTag;
    286 
    287 /* A constant.  Stored as a tagged union.  'tag' indicates what kind of
    288    constant this is.  'Ico' is the union that holds the fields.  If an
    289    IRConst 'c' has c.tag equal to Ico_U32, then it's a 32-bit constant,
    290    and its value can be accessed with 'c.Ico.U32'. */
    291 typedef
    292    struct _IRConst {
    293       IRConstTag tag;
    294       union {
    295          Bool   U1;
    296          UChar  U8;
    297          UShort U16;
    298          UInt   U32;
    299          ULong  U64;
    300          Float  F32;
    301          UInt   F32i;
    302          Double F64;
    303          ULong  F64i;
    304          UShort V128;   /* 16-bit value; see Ico_V128 comment above */
    305          UInt   V256;   /* 32-bit value; see Ico_V256 comment above */
    306       } Ico;
    307    }
    308    IRConst;
    309 
    310 /* IRConst constructors */
    311 extern IRConst* IRConst_U1   ( Bool );
    312 extern IRConst* IRConst_U8   ( UChar );
    313 extern IRConst* IRConst_U16  ( UShort );
    314 extern IRConst* IRConst_U32  ( UInt );
    315 extern IRConst* IRConst_U64  ( ULong );
    316 extern IRConst* IRConst_F32  ( Float );
    317 extern IRConst* IRConst_F32i ( UInt );
    318 extern IRConst* IRConst_F64  ( Double );
    319 extern IRConst* IRConst_F64i ( ULong );
    320 extern IRConst* IRConst_V128 ( UShort );
    321 extern IRConst* IRConst_V256 ( UInt );
    322 
    323 /* Deep-copy an IRConst */
    324 extern IRConst* deepCopyIRConst ( const IRConst* );
    325 
    326 /* Pretty-print an IRConst */
    327 extern void ppIRConst ( const IRConst* );
    328 
    329 /* Compare two IRConsts for equality */
    330 extern Bool eqIRConst ( const IRConst*, const IRConst* );
    331 
    332 
    333 /* ------------------ Call targets ------------------ */
    334 
    335 /* Describes a helper function to call.  The name part is purely for
    336    pretty printing and not actually used.  regparms=n tells the back
    337    end that the callee has been declared
    338    "__attribute__((regparm(n)))", although indirectly using the
    339    VEX_REGPARM(n) macro.  On some targets (x86) the back end will need
    340    to construct a non-standard sequence to call a function declared
    341    like this.
    342 
    343    mcx_mask is a sop to Memcheck.  It indicates which args should be
    344    considered 'always defined' when lazily computing definedness of
    345    the result.  Bit 0 of mcx_mask corresponds to args[0], bit 1 to
    346    args[1], etc.  If a bit is set, the corresponding arg is excluded
    347    (hence "x" in "mcx") from definedness checking.
    348 */
    349 
    350 typedef
    351    struct {
    352       Int          regparms;
    353       const HChar* name;
    354       void*        addr;
    355       UInt         mcx_mask;
    356    }
    357    IRCallee;
    358 
    359 /* Create an IRCallee. */
    360 extern IRCallee* mkIRCallee ( Int regparms, const HChar* name, void* addr );
    361 
    362 /* Deep-copy an IRCallee. */
    363 extern IRCallee* deepCopyIRCallee ( const IRCallee* );
    364 
    365 /* Pretty-print an IRCallee. */
    366 extern void ppIRCallee ( const IRCallee* );
    367 
    368 
    369 /* ------------------ Guest state arrays ------------------ */
    370 
    371 /* This describes a section of the guest state that we want to
    372    be able to index at run time, so as to be able to describe
    373    indexed or rotating register files on the guest. */
    374 typedef
    375    struct {
    376       Int    base;   /* guest state offset of start of indexed area */
    377       IRType elemTy; /* type of each element in the indexed area */
    378       Int    nElems; /* number of elements in the indexed area */
    379    }
    380    IRRegArray;
    381 
    382 extern IRRegArray* mkIRRegArray ( Int, IRType, Int );
    383 
    384 extern IRRegArray* deepCopyIRRegArray ( const IRRegArray* );
    385 
    386 extern void ppIRRegArray ( const IRRegArray* );
    387 extern Bool eqIRRegArray ( const IRRegArray*, const IRRegArray* );
    388 
    389 
    390 /* ------------------ Temporaries ------------------ */
    391 
    392 /* This represents a temporary, eg. t1.  The IR optimiser relies on the
    393    fact that IRTemps are 32-bit ints.  Do not change them to be ints of
    394    any other size. */
    395 typedef UInt IRTemp;
    396 
    397 /* Pretty-print an IRTemp. */
    398 extern void ppIRTemp ( IRTemp );
    399 
    400 #define IRTemp_INVALID ((IRTemp)0xFFFFFFFF)
    401 
    402 
    403 /* --------------- Primops (arity 1,2,3 and 4) --------------- */
    404 
    405 /* Primitive operations that are used in Unop, Binop, Triop and Qop
    406    IRExprs.  Once we take into account integer, floating point and SIMD
    407    operations of all the different sizes, there are quite a lot of them.
    408    Most instructions supported by the architectures that Vex supports
    409    (x86, PPC, etc) are represented.  Some more obscure ones (eg. cpuid)
    410    are not;  they are instead handled with dirty helpers that emulate
    411    their functionality.  Such obscure ones are thus not directly visible
    412    in the IR, but their effects on guest state (memory and registers)
    413    are made visible via the annotations in IRDirty structures.
    414 */
    415 typedef
    416    enum {
    417       /* -- Do not change this ordering.  The IR generators rely on
    418             (eg) Iop_Add64 == IopAdd8 + 3. -- */
    419 
    420       Iop_INVALID=0x1400,
    421       Iop_Add8,  Iop_Add16,  Iop_Add32,  Iop_Add64,
    422       Iop_Sub8,  Iop_Sub16,  Iop_Sub32,  Iop_Sub64,
    423       /* Signless mul.  MullS/MullU is elsewhere. */
    424       Iop_Mul8,  Iop_Mul16,  Iop_Mul32,  Iop_Mul64,
    425       Iop_Or8,   Iop_Or16,   Iop_Or32,   Iop_Or64,
    426       Iop_And8,  Iop_And16,  Iop_And32,  Iop_And64,
    427       Iop_Xor8,  Iop_Xor16,  Iop_Xor32,  Iop_Xor64,
    428       Iop_Shl8,  Iop_Shl16,  Iop_Shl32,  Iop_Shl64,
    429       Iop_Shr8,  Iop_Shr16,  Iop_Shr32,  Iop_Shr64,
    430       Iop_Sar8,  Iop_Sar16,  Iop_Sar32,  Iop_Sar64,
    431       /* Integer comparisons. */
    432       Iop_CmpEQ8,  Iop_CmpEQ16,  Iop_CmpEQ32,  Iop_CmpEQ64,
    433       Iop_CmpNE8,  Iop_CmpNE16,  Iop_CmpNE32,  Iop_CmpNE64,
    434       /* Tags for unary ops */
    435       Iop_Not8,  Iop_Not16,  Iop_Not32,  Iop_Not64,
    436 
    437       /* Exactly like CmpEQ8/16/32/64, but carrying the additional
    438          hint that these compute the success/failure of a CAS
    439          operation, and hence are almost certainly applied to two
    440          copies of the same value, which in turn has implications for
    441          Memcheck's instrumentation. */
    442       Iop_CasCmpEQ8, Iop_CasCmpEQ16, Iop_CasCmpEQ32, Iop_CasCmpEQ64,
    443       Iop_CasCmpNE8, Iop_CasCmpNE16, Iop_CasCmpNE32, Iop_CasCmpNE64,
    444 
    445       /* Exactly like CmpNE8/16/32/64, but carrying the additional
    446          hint that these needs expensive definedness tracking. */
    447       Iop_ExpCmpNE8, Iop_ExpCmpNE16, Iop_ExpCmpNE32, Iop_ExpCmpNE64,
    448 
    449       /* -- Ordering not important after here. -- */
    450 
    451       /* Widening multiplies */
    452       Iop_MullS8, Iop_MullS16, Iop_MullS32, Iop_MullS64,
    453       Iop_MullU8, Iop_MullU16, Iop_MullU32, Iop_MullU64,
    454 
    455       /* Wierdo integer stuff */
    456       Iop_Clz64, Iop_Clz32,   /* count leading zeroes */
    457       Iop_Ctz64, Iop_Ctz32,   /* count trailing zeros */
    458       /* Ctz64/Ctz32/Clz64/Clz32 are UNDEFINED when given arguments of
    459          zero.  You must ensure they are never given a zero argument.
    460       */
    461 
    462       /* Standard integer comparisons */
    463       Iop_CmpLT32S, Iop_CmpLT64S,
    464       Iop_CmpLE32S, Iop_CmpLE64S,
    465       Iop_CmpLT32U, Iop_CmpLT64U,
    466       Iop_CmpLE32U, Iop_CmpLE64U,
    467 
    468       /* As a sop to Valgrind-Memcheck, the following are useful. */
    469       Iop_CmpNEZ8, Iop_CmpNEZ16,  Iop_CmpNEZ32,  Iop_CmpNEZ64,
    470       Iop_CmpwNEZ32, Iop_CmpwNEZ64, /* all-0s -> all-Os; other -> all-1s */
    471       Iop_Left8, Iop_Left16, Iop_Left32, Iop_Left64, /*  \x -> x | -x */
    472       Iop_Max32U, /* unsigned max */
    473 
    474       /* PowerPC-style 3-way integer comparisons.  Without them it is
    475          difficult to simulate PPC efficiently.
    476          op(x,y) | x < y  = 0x8 else
    477                  | x > y  = 0x4 else
    478                  | x == y = 0x2
    479       */
    480       Iop_CmpORD32U, Iop_CmpORD64U,
    481       Iop_CmpORD32S, Iop_CmpORD64S,
    482 
    483       /* Division */
    484       /* TODO: clarify semantics wrt rounding, negative values, whatever */
    485       Iop_DivU32,   // :: I32,I32 -> I32 (simple div, no mod)
    486       Iop_DivS32,   // ditto, signed
    487       Iop_DivU64,   // :: I64,I64 -> I64 (simple div, no mod)
    488       Iop_DivS64,   // ditto, signed
    489       Iop_DivU64E,  // :: I64,I64 -> I64 (dividend is 64-bit arg (hi)
    490                     //                    concat with 64 0's (low))
    491       Iop_DivS64E,  // ditto, signed
    492       Iop_DivU32E,  // :: I32,I32 -> I32 (dividend is 32-bit arg (hi)
    493                     // concat with 32 0's (low))
    494       Iop_DivS32E,  // ditto, signed
    495 
    496       Iop_DivModU64to32, // :: I64,I32 -> I64
    497                          // of which lo half is div and hi half is mod
    498       Iop_DivModS64to32, // ditto, signed
    499 
    500       Iop_DivModU128to64, // :: V128,I64 -> V128
    501                           // of which lo half is div and hi half is mod
    502       Iop_DivModS128to64, // ditto, signed
    503 
    504       Iop_DivModS64to64, // :: I64,I64 -> I128
    505                          // of which lo half is div and hi half is mod
    506 
    507       /* Integer conversions.  Some of these are redundant (eg
    508          Iop_64to8 is the same as Iop_64to32 and then Iop_32to8), but
    509          having a complete set reduces the typical dynamic size of IR
    510          and makes the instruction selectors easier to write. */
    511 
    512       /* Widening conversions */
    513       Iop_8Uto16, Iop_8Uto32,  Iop_8Uto64,
    514                   Iop_16Uto32, Iop_16Uto64,
    515                                Iop_32Uto64,
    516       Iop_8Sto16, Iop_8Sto32,  Iop_8Sto64,
    517                   Iop_16Sto32, Iop_16Sto64,
    518                                Iop_32Sto64,
    519 
    520       /* Narrowing conversions */
    521       Iop_64to8, Iop_32to8, Iop_64to16,
    522       /* 8 <-> 16 bit conversions */
    523       Iop_16to8,      // :: I16 -> I8, low half
    524       Iop_16HIto8,    // :: I16 -> I8, high half
    525       Iop_8HLto16,    // :: (I8,I8) -> I16
    526       /* 16 <-> 32 bit conversions */
    527       Iop_32to16,     // :: I32 -> I16, low half
    528       Iop_32HIto16,   // :: I32 -> I16, high half
    529       Iop_16HLto32,   // :: (I16,I16) -> I32
    530       /* 32 <-> 64 bit conversions */
    531       Iop_64to32,     // :: I64 -> I32, low half
    532       Iop_64HIto32,   // :: I64 -> I32, high half
    533       Iop_32HLto64,   // :: (I32,I32) -> I64
    534       /* 64 <-> 128 bit conversions */
    535       Iop_128to64,    // :: I128 -> I64, low half
    536       Iop_128HIto64,  // :: I128 -> I64, high half
    537       Iop_64HLto128,  // :: (I64,I64) -> I128
    538       /* 1-bit stuff */
    539       Iop_Not1,   /* :: Ity_Bit -> Ity_Bit */
    540       Iop_32to1,  /* :: Ity_I32 -> Ity_Bit, just select bit[0] */
    541       Iop_64to1,  /* :: Ity_I64 -> Ity_Bit, just select bit[0] */
    542       Iop_1Uto8,  /* :: Ity_Bit -> Ity_I8,  unsigned widen */
    543       Iop_1Uto32, /* :: Ity_Bit -> Ity_I32, unsigned widen */
    544       Iop_1Uto64, /* :: Ity_Bit -> Ity_I64, unsigned widen */
    545       Iop_1Sto8,  /* :: Ity_Bit -> Ity_I8,  signed widen */
    546       Iop_1Sto16, /* :: Ity_Bit -> Ity_I16, signed widen */
    547       Iop_1Sto32, /* :: Ity_Bit -> Ity_I32, signed widen */
    548       Iop_1Sto64, /* :: Ity_Bit -> Ity_I64, signed widen */
    549 
    550       /* ------ Floating point.  We try to be IEEE754 compliant. ------ */
    551 
    552       /* --- Simple stuff as mandated by 754. --- */
    553 
    554       /* Binary operations, with rounding. */
    555       /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
    556       Iop_AddF64, Iop_SubF64, Iop_MulF64, Iop_DivF64,
    557 
    558       /* :: IRRoundingMode(I32) x F32 x F32 -> F32 */
    559       Iop_AddF32, Iop_SubF32, Iop_MulF32, Iop_DivF32,
    560 
    561       /* Variants of the above which produce a 64-bit result but which
    562          round their result to a IEEE float range first. */
    563       /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
    564       Iop_AddF64r32, Iop_SubF64r32, Iop_MulF64r32, Iop_DivF64r32,
    565 
    566       /* Unary operations, without rounding. */
    567       /* :: F64 -> F64 */
    568       Iop_NegF64, Iop_AbsF64,
    569 
    570       /* :: F32 -> F32 */
    571       Iop_NegF32, Iop_AbsF32,
    572 
    573       /* Unary operations, with rounding. */
    574       /* :: IRRoundingMode(I32) x F64 -> F64 */
    575       Iop_SqrtF64,
    576 
    577       /* :: IRRoundingMode(I32) x F32 -> F32 */
    578       Iop_SqrtF32,
    579 
    580       /* Comparison, yielding GT/LT/EQ/UN(ordered), as per the following:
    581             0x45 Unordered
    582             0x01 LT
    583             0x00 GT
    584             0x40 EQ
    585          This just happens to be the Intel encoding.  The values
    586          are recorded in the type IRCmpF64Result.
    587       */
    588       /* :: F64 x F64 -> IRCmpF64Result(I32) */
    589       Iop_CmpF64,
    590       Iop_CmpF32,
    591       Iop_CmpF128,
    592 
    593       /* --- Int to/from FP conversions. --- */
    594 
    595       /* For the most part, these take a first argument :: Ity_I32 (as
    596          IRRoundingMode) which is an indication of the rounding mode
    597          to use, as per the following encoding ("the standard
    598          encoding"):
    599             00b  to nearest (the default)
    600             01b  to -infinity
    601             10b  to +infinity
    602             11b  to zero
    603          This just happens to be the Intel encoding.  For reference only,
    604          the PPC encoding is:
    605             00b  to nearest (the default)
    606             01b  to zero
    607             10b  to +infinity
    608             11b  to -infinity
    609          Any PPC -> IR front end will have to translate these PPC
    610          encodings, as encoded in the guest state, to the standard
    611          encodings, to pass to the primops.
    612          For reference only, the ARM VFP encoding is:
    613             00b  to nearest
    614             01b  to +infinity
    615             10b  to -infinity
    616             11b  to zero
    617          Again, this will have to be converted to the standard encoding
    618          to pass to primops.
    619 
    620          If one of these conversions gets an out-of-range condition,
    621          or a NaN, as an argument, the result is host-defined.  On x86
    622          the "integer indefinite" value 0x80..00 is produced.  On PPC
    623          it is either 0x80..00 or 0x7F..FF depending on the sign of
    624          the argument.
    625 
    626          On ARMvfp, when converting to a signed integer result, the
    627          overflow result is 0x80..00 for negative args and 0x7F..FF
    628          for positive args.  For unsigned integer results it is
    629          0x00..00 and 0xFF..FF respectively.
    630 
    631          Rounding is required whenever the destination type cannot
    632          represent exactly all values of the source type.
    633       */
    634       Iop_F64toI16S, /* IRRoundingMode(I32) x F64 -> signed I16 */
    635       Iop_F64toI32S, /* IRRoundingMode(I32) x F64 -> signed I32 */
    636       Iop_F64toI64S, /* IRRoundingMode(I32) x F64 -> signed I64 */
    637       Iop_F64toI64U, /* IRRoundingMode(I32) x F64 -> unsigned I64 */
    638 
    639       Iop_F64toI32U, /* IRRoundingMode(I32) x F64 -> unsigned I32 */
    640 
    641       Iop_I32StoF64, /*                       signed I32 -> F64 */
    642       Iop_I64StoF64, /* IRRoundingMode(I32) x signed I64 -> F64 */
    643       Iop_I64UtoF64, /* IRRoundingMode(I32) x unsigned I64 -> F64 */
    644       Iop_I64UtoF32, /* IRRoundingMode(I32) x unsigned I64 -> F32 */
    645 
    646       Iop_I32UtoF32, /* IRRoundingMode(I32) x unsigned I32 -> F32 */
    647       Iop_I32UtoF64, /*                       unsigned I32 -> F64 */
    648 
    649       Iop_F32toI32S, /* IRRoundingMode(I32) x F32 -> signed I32 */
    650       Iop_F32toI64S, /* IRRoundingMode(I32) x F32 -> signed I64 */
    651       Iop_F32toI32U, /* IRRoundingMode(I32) x F32 -> unsigned I32 */
    652       Iop_F32toI64U, /* IRRoundingMode(I32) x F32 -> unsigned I64 */
    653 
    654       Iop_I32StoF32, /* IRRoundingMode(I32) x signed I32 -> F32 */
    655       Iop_I64StoF32, /* IRRoundingMode(I32) x signed I64 -> F32 */
    656 
    657       /* Conversion between floating point formats */
    658       Iop_F32toF64,  /*                       F32 -> F64 */
    659       Iop_F64toF32,  /* IRRoundingMode(I32) x F64 -> F32 */
    660 
    661       /* Reinterpretation.  Take an F64 and produce an I64 with
    662          the same bit pattern, or vice versa. */
    663       Iop_ReinterpF64asI64, Iop_ReinterpI64asF64,
    664       Iop_ReinterpF32asI32, Iop_ReinterpI32asF32,
    665 
    666       /* Support for 128-bit floating point */
    667       Iop_F64HLtoF128,/* (high half of F128,low half of F128) -> F128 */
    668       Iop_F128HItoF64,/* F128 -> high half of F128 into a F64 register */
    669       Iop_F128LOtoF64,/* F128 -> low  half of F128 into a F64 register */
    670 
    671       /* :: IRRoundingMode(I32) x F128 x F128 -> F128 */
    672       Iop_AddF128, Iop_SubF128, Iop_MulF128, Iop_DivF128,
    673 
    674       /* :: F128 -> F128 */
    675       Iop_NegF128, Iop_AbsF128,
    676 
    677       /* :: IRRoundingMode(I32) x F128 -> F128 */
    678       Iop_SqrtF128,
    679 
    680       Iop_I32StoF128, /*                signed I32  -> F128 */
    681       Iop_I64StoF128, /*                signed I64  -> F128 */
    682       Iop_I32UtoF128, /*              unsigned I32  -> F128 */
    683       Iop_I64UtoF128, /*              unsigned I64  -> F128 */
    684       Iop_F32toF128,  /*                       F32  -> F128 */
    685       Iop_F64toF128,  /*                       F64  -> F128 */
    686 
    687       Iop_F128toI32S, /* IRRoundingMode(I32) x F128 -> signed I32  */
    688       Iop_F128toI64S, /* IRRoundingMode(I32) x F128 -> signed I64  */
    689       Iop_F128toI32U, /* IRRoundingMode(I32) x F128 -> unsigned I32  */
    690       Iop_F128toI64U, /* IRRoundingMode(I32) x F128 -> unsigned I64  */
    691       Iop_F128toF64,  /* IRRoundingMode(I32) x F128 -> F64         */
    692       Iop_F128toF32,  /* IRRoundingMode(I32) x F128 -> F32         */
    693 
    694       /* --- guest x86/amd64 specifics, not mandated by 754. --- */
    695 
    696       /* Binary ops, with rounding. */
    697       /* :: IRRoundingMode(I32) x F64 x F64 -> F64 */
    698       Iop_AtanF64,       /* FPATAN,  arctan(arg1/arg2)       */
    699       Iop_Yl2xF64,       /* FYL2X,   arg1 * log2(arg2)       */
    700       Iop_Yl2xp1F64,     /* FYL2XP1, arg1 * log2(arg2+1.0)   */
    701       Iop_PRemF64,       /* FPREM,   non-IEEE remainder(arg1/arg2)    */
    702       Iop_PRemC3210F64,  /* C3210 flags resulting from FPREM, :: I32 */
    703       Iop_PRem1F64,      /* FPREM1,  IEEE remainder(arg1/arg2)    */
    704       Iop_PRem1C3210F64, /* C3210 flags resulting from FPREM1, :: I32 */
    705       Iop_ScaleF64,      /* FSCALE,  arg1 * (2^RoundTowardsZero(arg2)) */
    706       /* Note that on x86 guest, PRem1{C3210} has the same behaviour
    707          as the IEEE mandated RemF64, except it is limited in the
    708          range of its operand.  Hence the partialness. */
    709 
    710       /* Unary ops, with rounding. */
    711       /* :: IRRoundingMode(I32) x F64 -> F64 */
    712       Iop_SinF64,    /* FSIN */
    713       Iop_CosF64,    /* FCOS */
    714       Iop_TanF64,    /* FTAN */
    715       Iop_2xm1F64,   /* (2^arg - 1.0) */
    716       Iop_RoundF64toInt, /* F64 value to nearest integral value (still
    717                             as F64) */
    718       Iop_RoundF32toInt, /* F32 value to nearest integral value (still
    719                             as F32) */
    720 
    721       /* --- guest s390 specifics, not mandated by 754. --- */
    722 
    723       /* Fused multiply-add/sub */
    724       /* :: IRRoundingMode(I32) x F32 x F32 x F32 -> F32
    725             (computes arg2 * arg3 +/- arg4) */
    726       Iop_MAddF32, Iop_MSubF32,
    727 
    728       /* --- guest ppc32/64 specifics, not mandated by 754. --- */
    729 
    730       /* Ternary operations, with rounding. */
    731       /* Fused multiply-add/sub, with 112-bit intermediate
    732          precision for ppc.
    733          Also used to implement fused multiply-add/sub for s390. */
    734       /* :: IRRoundingMode(I32) x F64 x F64 x F64 -> F64
    735             (computes arg2 * arg3 +/- arg4) */
    736       Iop_MAddF64, Iop_MSubF64,
    737 
    738       /* Variants of the above which produce a 64-bit result but which
    739          round their result to a IEEE float range first. */
    740       /* :: IRRoundingMode(I32) x F64 x F64 x F64 -> F64 */
    741       Iop_MAddF64r32, Iop_MSubF64r32,
    742 
    743       /* :: F64 -> F64 */
    744       Iop_RSqrtEst5GoodF64, /* reciprocal square root estimate, 5 good bits */
    745       Iop_RoundF64toF64_NEAREST, /* frin */
    746       Iop_RoundF64toF64_NegINF,  /* frim */
    747       Iop_RoundF64toF64_PosINF,  /* frip */
    748       Iop_RoundF64toF64_ZERO,    /* friz */
    749 
    750       /* :: F64 -> F32 */
    751       Iop_TruncF64asF32, /* do F64->F32 truncation as per 'fsts' */
    752 
    753       /* :: IRRoundingMode(I32) x F64 -> F64 */
    754       Iop_RoundF64toF32, /* round F64 to nearest F32 value (still as F64) */
    755       /* NB: pretty much the same as Iop_F64toF32, except no change
    756          of type. */
    757 
    758       /* --- guest arm64 specifics, not mandated by 754. --- */
    759 
    760       Iop_RecpExpF64,  /* FRECPX d  :: IRRoundingMode(I32) x F64 -> F64 */
    761       Iop_RecpExpF32,  /* FRECPX s  :: IRRoundingMode(I32) x F32 -> F32 */
    762 
    763       /* ------------------ 16-bit scalar FP ------------------ */
    764 
    765       Iop_F16toF64,  /*                       F16 -> F64 */
    766       Iop_F64toF16,  /* IRRoundingMode(I32) x F64 -> F16 */
    767 
    768       Iop_F16toF32,  /*                       F16 -> F32 */
    769       Iop_F32toF16,  /* IRRoundingMode(I32) x F32 -> F16 */
    770 
    771       /* ------------------ 32-bit SIMD Integer ------------------ */
    772 
    773       /* 32x1 saturating add/sub (ok, well, not really SIMD :) */
    774       Iop_QAdd32S,
    775       Iop_QSub32S,
    776 
    777       /* 16x2 add/sub, also signed/unsigned saturating variants */
    778       Iop_Add16x2, Iop_Sub16x2,
    779       Iop_QAdd16Sx2, Iop_QAdd16Ux2,
    780       Iop_QSub16Sx2, Iop_QSub16Ux2,
    781 
    782       /* 16x2 signed/unsigned halving add/sub.  For each lane, these
    783          compute bits 16:1 of (eg) sx(argL) + sx(argR),
    784          or zx(argL) - zx(argR) etc. */
    785       Iop_HAdd16Ux2, Iop_HAdd16Sx2,
    786       Iop_HSub16Ux2, Iop_HSub16Sx2,
    787 
    788       /* 8x4 add/sub, also signed/unsigned saturating variants */
    789       Iop_Add8x4, Iop_Sub8x4,
    790       Iop_QAdd8Sx4, Iop_QAdd8Ux4,
    791       Iop_QSub8Sx4, Iop_QSub8Ux4,
    792 
    793       /* 8x4 signed/unsigned halving add/sub.  For each lane, these
    794          compute bits 8:1 of (eg) sx(argL) + sx(argR),
    795          or zx(argL) - zx(argR) etc. */
    796       Iop_HAdd8Ux4, Iop_HAdd8Sx4,
    797       Iop_HSub8Ux4, Iop_HSub8Sx4,
    798 
    799       /* 8x4 sum of absolute unsigned differences. */
    800       Iop_Sad8Ux4,
    801 
    802       /* MISC (vector integer cmp != 0) */
    803       Iop_CmpNEZ16x2, Iop_CmpNEZ8x4,
    804 
    805       /* ------------------ 64-bit SIMD FP ------------------------ */
    806 
    807       /* Convertion to/from int */
    808       Iop_I32UtoFx2,  Iop_I32StoFx2,    /* I32x4 -> F32x4 */
    809       Iop_FtoI32Ux2_RZ,  Iop_FtoI32Sx2_RZ,    /* F32x4 -> I32x4 */
    810       /* Fixed32 format is floating-point number with fixed number of fraction
    811          bits. The number of fraction bits is passed as a second argument of
    812          type I8. */
    813       Iop_F32ToFixed32Ux2_RZ, Iop_F32ToFixed32Sx2_RZ, /* fp -> fixed-point */
    814       Iop_Fixed32UToF32x2_RN, Iop_Fixed32SToF32x2_RN, /* fixed-point -> fp */
    815 
    816       /* Binary operations */
    817       Iop_Max32Fx2,      Iop_Min32Fx2,
    818       /* Pairwise Min and Max. See integer pairwise operations for more
    819          details. */
    820       Iop_PwMax32Fx2,    Iop_PwMin32Fx2,
    821       /* Note: For the following compares, the arm front-end assumes a
    822          nan in a lane of either argument returns zero for that lane. */
    823       Iop_CmpEQ32Fx2, Iop_CmpGT32Fx2, Iop_CmpGE32Fx2,
    824 
    825       /* Vector Reciprocal Estimate finds an approximate reciprocal of each
    826       element in the operand vector, and places the results in the destination
    827       vector.  */
    828       Iop_RecipEst32Fx2,
    829 
    830       /* Vector Reciprocal Step computes (2.0 - arg1 * arg2).
    831          Note, that if one of the arguments is zero and another one is infinity
    832          of arbitrary sign the result of the operation is 2.0. */
    833       Iop_RecipStep32Fx2,
    834 
    835       /* Vector Reciprocal Square Root Estimate finds an approximate reciprocal
    836          square root of each element in the operand vector. */
    837       Iop_RSqrtEst32Fx2,
    838 
    839       /* Vector Reciprocal Square Root Step computes (3.0 - arg1 * arg2) / 2.0.
    840          Note, that of one of the arguments is zero and another one is infiinty
    841          of arbitrary sign the result of the operation is 1.5. */
    842       Iop_RSqrtStep32Fx2,
    843 
    844       /* Unary */
    845       Iop_Neg32Fx2, Iop_Abs32Fx2,
    846 
    847       /* ------------------ 64-bit SIMD Integer. ------------------ */
    848 
    849       /* MISC (vector integer cmp != 0) */
    850       Iop_CmpNEZ8x8, Iop_CmpNEZ16x4, Iop_CmpNEZ32x2,
    851 
    852       /* ADDITION (normal / unsigned sat / signed sat) */
    853       Iop_Add8x8,   Iop_Add16x4,   Iop_Add32x2,
    854       Iop_QAdd8Ux8, Iop_QAdd16Ux4, Iop_QAdd32Ux2, Iop_QAdd64Ux1,
    855       Iop_QAdd8Sx8, Iop_QAdd16Sx4, Iop_QAdd32Sx2, Iop_QAdd64Sx1,
    856 
    857       /* PAIRWISE operations */
    858       /* Iop_PwFoo16x4( [a,b,c,d], [e,f,g,h] ) =
    859             [Foo16(a,b), Foo16(c,d), Foo16(e,f), Foo16(g,h)] */
    860       Iop_PwAdd8x8,  Iop_PwAdd16x4,  Iop_PwAdd32x2,
    861       Iop_PwMax8Sx8, Iop_PwMax16Sx4, Iop_PwMax32Sx2,
    862       Iop_PwMax8Ux8, Iop_PwMax16Ux4, Iop_PwMax32Ux2,
    863       Iop_PwMin8Sx8, Iop_PwMin16Sx4, Iop_PwMin32Sx2,
    864       Iop_PwMin8Ux8, Iop_PwMin16Ux4, Iop_PwMin32Ux2,
    865       /* Longening variant is unary. The resulting vector contains two times
    866          less elements than operand, but they are two times wider.
    867          Example:
    868             Iop_PAddL16Ux4( [a,b,c,d] ) = [a+b,c+d]
    869                where a+b and c+d are unsigned 32-bit values. */
    870       Iop_PwAddL8Ux8, Iop_PwAddL16Ux4, Iop_PwAddL32Ux2,
    871       Iop_PwAddL8Sx8, Iop_PwAddL16Sx4, Iop_PwAddL32Sx2,
    872 
    873       /* SUBTRACTION (normal / unsigned sat / signed sat) */
    874       Iop_Sub8x8,   Iop_Sub16x4,   Iop_Sub32x2,
    875       Iop_QSub8Ux8, Iop_QSub16Ux4, Iop_QSub32Ux2, Iop_QSub64Ux1,
    876       Iop_QSub8Sx8, Iop_QSub16Sx4, Iop_QSub32Sx2, Iop_QSub64Sx1,
    877 
    878       /* ABSOLUTE VALUE */
    879       Iop_Abs8x8, Iop_Abs16x4, Iop_Abs32x2,
    880 
    881       /* MULTIPLICATION (normal / high half of signed/unsigned / plynomial ) */
    882       Iop_Mul8x8, Iop_Mul16x4, Iop_Mul32x2,
    883       Iop_Mul32Fx2,
    884       Iop_MulHi16Ux4,
    885       Iop_MulHi16Sx4,
    886       /* Plynomial multiplication treats it's arguments as coefficients of
    887          polynoms over {0, 1}. */
    888       Iop_PolynomialMul8x8,
    889 
    890       /* Vector Saturating Doubling Multiply Returning High Half and
    891          Vector Saturating Rounding Doubling Multiply Returning High Half */
    892       /* These IROp's multiply corresponding elements in two vectors, double
    893          the results, and place the most significant half of the final results
    894          in the destination vector. The results are truncated or rounded. If
    895          any of the results overflow, they are saturated. */
    896       Iop_QDMulHi16Sx4, Iop_QDMulHi32Sx2,
    897       Iop_QRDMulHi16Sx4, Iop_QRDMulHi32Sx2,
    898 
    899       /* AVERAGING: note: (arg1 + arg2 + 1) >>u 1 */
    900       Iop_Avg8Ux8,
    901       Iop_Avg16Ux4,
    902 
    903       /* MIN/MAX */
    904       Iop_Max8Sx8, Iop_Max16Sx4, Iop_Max32Sx2,
    905       Iop_Max8Ux8, Iop_Max16Ux4, Iop_Max32Ux2,
    906       Iop_Min8Sx8, Iop_Min16Sx4, Iop_Min32Sx2,
    907       Iop_Min8Ux8, Iop_Min16Ux4, Iop_Min32Ux2,
    908 
    909       /* COMPARISON */
    910       Iop_CmpEQ8x8,  Iop_CmpEQ16x4,  Iop_CmpEQ32x2,
    911       Iop_CmpGT8Ux8, Iop_CmpGT16Ux4, Iop_CmpGT32Ux2,
    912       Iop_CmpGT8Sx8, Iop_CmpGT16Sx4, Iop_CmpGT32Sx2,
    913 
    914       /* COUNT ones / leading zeroes / leading sign bits (not including topmost
    915          bit) */
    916       Iop_Cnt8x8,
    917       Iop_Clz8x8, Iop_Clz16x4, Iop_Clz32x2,
    918       Iop_Cls8x8, Iop_Cls16x4, Iop_Cls32x2,
    919       Iop_Clz64x2,
    920 
    921       /* VECTOR x VECTOR SHIFT / ROTATE */
    922       Iop_Shl8x8, Iop_Shl16x4, Iop_Shl32x2,
    923       Iop_Shr8x8, Iop_Shr16x4, Iop_Shr32x2,
    924       Iop_Sar8x8, Iop_Sar16x4, Iop_Sar32x2,
    925       Iop_Sal8x8, Iop_Sal16x4, Iop_Sal32x2, Iop_Sal64x1,
    926 
    927       /* VECTOR x SCALAR SHIFT (shift amt :: Ity_I8) */
    928       Iop_ShlN8x8, Iop_ShlN16x4, Iop_ShlN32x2,
    929       Iop_ShrN8x8, Iop_ShrN16x4, Iop_ShrN32x2,
    930       Iop_SarN8x8, Iop_SarN16x4, Iop_SarN32x2,
    931 
    932       /* VECTOR x VECTOR SATURATING SHIFT */
    933       Iop_QShl8x8, Iop_QShl16x4, Iop_QShl32x2, Iop_QShl64x1,
    934       Iop_QSal8x8, Iop_QSal16x4, Iop_QSal32x2, Iop_QSal64x1,
    935       /* VECTOR x INTEGER SATURATING SHIFT */
    936       Iop_QShlNsatSU8x8,  Iop_QShlNsatSU16x4,
    937       Iop_QShlNsatSU32x2, Iop_QShlNsatSU64x1,
    938       Iop_QShlNsatUU8x8,  Iop_QShlNsatUU16x4,
    939       Iop_QShlNsatUU32x2, Iop_QShlNsatUU64x1,
    940       Iop_QShlNsatSS8x8,  Iop_QShlNsatSS16x4,
    941       Iop_QShlNsatSS32x2, Iop_QShlNsatSS64x1,
    942 
    943       /* NARROWING (binary)
    944          -- narrow 2xI64 into 1xI64, hi half from left arg */
    945       /* For saturated narrowing, I believe there are 4 variants of
    946          the basic arithmetic operation, depending on the signedness
    947          of argument and result.  Here are examples that exemplify
    948          what I mean:
    949 
    950          QNarrow16Uto8U ( UShort x )  if (x >u 255) x = 255;
    951                                       return x[7:0];
    952 
    953          QNarrow16Sto8S ( Short x )   if (x <s -128) x = -128;
    954                                       if (x >s  127) x = 127;
    955                                       return x[7:0];
    956 
    957          QNarrow16Uto8S ( UShort x )  if (x >u 127) x = 127;
    958                                       return x[7:0];
    959 
    960          QNarrow16Sto8U ( Short x )   if (x <s 0)   x = 0;
    961                                       if (x >s 255) x = 255;
    962                                       return x[7:0];
    963       */
    964       Iop_QNarrowBin16Sto8Ux8,
    965       Iop_QNarrowBin16Sto8Sx8, Iop_QNarrowBin32Sto16Sx4,
    966       Iop_NarrowBin16to8x8,    Iop_NarrowBin32to16x4,
    967 
    968       /* INTERLEAVING */
    969       /* Interleave lanes from low or high halves of
    970          operands.  Most-significant result lane is from the left
    971          arg. */
    972       Iop_InterleaveHI8x8, Iop_InterleaveHI16x4, Iop_InterleaveHI32x2,
    973       Iop_InterleaveLO8x8, Iop_InterleaveLO16x4, Iop_InterleaveLO32x2,
    974       /* Interleave odd/even lanes of operands.  Most-significant result lane
    975          is from the left arg.  Note that Interleave{Odd,Even}Lanes32x2 are
    976          identical to Interleave{HI,LO}32x2 and so are omitted.*/
    977       Iop_InterleaveOddLanes8x8, Iop_InterleaveEvenLanes8x8,
    978       Iop_InterleaveOddLanes16x4, Iop_InterleaveEvenLanes16x4,
    979 
    980       /* CONCATENATION -- build a new value by concatenating either
    981          the even or odd lanes of both operands.  Note that
    982          Cat{Odd,Even}Lanes32x2 are identical to Interleave{HI,LO}32x2
    983          and so are omitted. */
    984       Iop_CatOddLanes8x8, Iop_CatOddLanes16x4,
    985       Iop_CatEvenLanes8x8, Iop_CatEvenLanes16x4,
    986 
    987       /* GET / SET elements of VECTOR
    988          GET is binop (I64, I8) -> I<elem_size>
    989          SET is triop (I64, I8, I<elem_size>) -> I64 */
    990       /* Note: the arm back-end handles only constant second argument */
    991       Iop_GetElem8x8, Iop_GetElem16x4, Iop_GetElem32x2,
    992       Iop_SetElem8x8, Iop_SetElem16x4, Iop_SetElem32x2,
    993 
    994       /* DUPLICATING -- copy value to all lanes */
    995       Iop_Dup8x8,   Iop_Dup16x4,   Iop_Dup32x2,
    996 
    997       /* SLICE -- produces the lowest 64 bits of (arg1:arg2) >> (8 * arg3).
    998          arg3 is a shift amount in bytes and may be between 0 and 8
    999          inclusive.  When 0, the result is arg2; when 8, the result is arg1.
   1000          Not all back ends handle all values.  The arm32 and arm64 back
   1001          ends handle only immediate arg3 values. */
   1002       Iop_Slice64,  // (I64, I64, I8) -> I64
   1003 
   1004       /* REVERSE the order of chunks in vector lanes.  Chunks must be
   1005          smaller than the vector lanes (obviously) and so may be 8-,
   1006          16- and 32-bit in size. */
   1007       /* Examples:
   1008             Reverse8sIn16_x4([a,b,c,d,e,f,g,h]) = [b,a,d,c,f,e,h,g]
   1009             Reverse8sIn32_x2([a,b,c,d,e,f,g,h]) = [d,c,b,a,h,g,f,e]
   1010             Reverse8sIn64_x1([a,b,c,d,e,f,g,h]) = [h,g,f,e,d,c,b,a] */
   1011       Iop_Reverse8sIn16_x4,
   1012       Iop_Reverse8sIn32_x2, Iop_Reverse16sIn32_x2,
   1013       Iop_Reverse8sIn64_x1, Iop_Reverse16sIn64_x1, Iop_Reverse32sIn64_x1,
   1014 
   1015       /* PERMUTING -- copy src bytes to dst,
   1016          as indexed by control vector bytes:
   1017             for i in 0 .. 7 . result[i] = argL[ argR[i] ]
   1018          argR[i] values may only be in the range 0 .. 7, else behaviour
   1019          is undefined. */
   1020       Iop_Perm8x8,
   1021 
   1022       /* MISC CONVERSION -- get high bits of each byte lane, a la
   1023          x86/amd64 pmovmskb */
   1024       Iop_GetMSBs8x8, /* I64 -> I8 */
   1025 
   1026       /* Vector Reciprocal Estimate and Vector Reciprocal Square Root Estimate
   1027          See floating-point equivalents for details. */
   1028       Iop_RecipEst32Ux2, Iop_RSqrtEst32Ux2,
   1029 
   1030       /* ------------------ Decimal Floating Point ------------------ */
   1031 
   1032       /* ARITHMETIC INSTRUCTIONS   64-bit
   1033 	 ----------------------------------
   1034 	 IRRoundingMode(I32) X D64 X D64 -> D64
   1035       */
   1036       Iop_AddD64, Iop_SubD64, Iop_MulD64, Iop_DivD64,
   1037 
   1038       /* ARITHMETIC INSTRUCTIONS  128-bit
   1039 	 ----------------------------------
   1040 	 IRRoundingMode(I32) X D128 X D128 -> D128
   1041       */
   1042       Iop_AddD128, Iop_SubD128, Iop_MulD128, Iop_DivD128,
   1043 
   1044       /* SHIFT SIGNIFICAND INSTRUCTIONS
   1045        *    The DFP significand is shifted by the number of digits specified
   1046        *    by the U8 operand.  Digits shifted out of the leftmost digit are
   1047        *    lost. Zeros are supplied to the vacated positions on the right.
   1048        *    The sign of the result is the same as the sign of the original
   1049        *    operand.
   1050        *
   1051        * D64 x U8  -> D64    left shift and right shift respectively */
   1052       Iop_ShlD64, Iop_ShrD64,
   1053 
   1054       /* D128 x U8  -> D128  left shift and right shift respectively */
   1055       Iop_ShlD128, Iop_ShrD128,
   1056 
   1057 
   1058       /* FORMAT CONVERSION INSTRUCTIONS
   1059        *   D32 -> D64
   1060        */
   1061       Iop_D32toD64,
   1062 
   1063       /*   D64 -> D128 */
   1064       Iop_D64toD128,
   1065 
   1066       /*   I32S -> D128 */
   1067       Iop_I32StoD128,
   1068 
   1069       /*   I32U -> D128 */
   1070       Iop_I32UtoD128,
   1071 
   1072       /*   I64S -> D128 */
   1073       Iop_I64StoD128,
   1074 
   1075       /*   I64U -> D128 */
   1076       Iop_I64UtoD128,
   1077 
   1078       /*   IRRoundingMode(I32) x D64 -> D32 */
   1079       Iop_D64toD32,
   1080 
   1081       /*   IRRoundingMode(I32) x D128 -> D64 */
   1082       Iop_D128toD64,
   1083 
   1084       /*   I32S -> D64 */
   1085       Iop_I32StoD64,
   1086 
   1087       /*   I32U -> D64 */
   1088       Iop_I32UtoD64,
   1089 
   1090       /*   IRRoundingMode(I32) x I64 -> D64 */
   1091       Iop_I64StoD64,
   1092 
   1093       /*   IRRoundingMode(I32) x I64 -> D64 */
   1094       Iop_I64UtoD64,
   1095 
   1096       /*   IRRoundingMode(I32) x D64 -> I32 */
   1097       Iop_D64toI32S,
   1098 
   1099       /*   IRRoundingMode(I32) x D64 -> I32 */
   1100       Iop_D64toI32U,
   1101 
   1102       /*   IRRoundingMode(I32) x D64 -> I64 */
   1103       Iop_D64toI64S,
   1104 
   1105       /*   IRRoundingMode(I32) x D64 -> I64 */
   1106       Iop_D64toI64U,
   1107 
   1108       /*   IRRoundingMode(I32) x D128 -> I32 */
   1109       Iop_D128toI32S,
   1110 
   1111       /*   IRRoundingMode(I32) x D128 -> I32 */
   1112       Iop_D128toI32U,
   1113 
   1114       /*   IRRoundingMode(I32) x D128 -> I64 */
   1115       Iop_D128toI64S,
   1116 
   1117       /*   IRRoundingMode(I32) x D128 -> I64 */
   1118       Iop_D128toI64U,
   1119 
   1120       /*   IRRoundingMode(I32) x F32 -> D32 */
   1121       Iop_F32toD32,
   1122 
   1123       /*   IRRoundingMode(I32) x F32 -> D64 */
   1124       Iop_F32toD64,
   1125 
   1126       /*   IRRoundingMode(I32) x F32 -> D128 */
   1127       Iop_F32toD128,
   1128 
   1129       /*   IRRoundingMode(I32) x F64 -> D32 */
   1130       Iop_F64toD32,
   1131 
   1132       /*   IRRoundingMode(I32) x F64 -> D64 */
   1133       Iop_F64toD64,
   1134 
   1135       /*   IRRoundingMode(I32) x F64 -> D128 */
   1136       Iop_F64toD128,
   1137 
   1138       /*   IRRoundingMode(I32) x F128 -> D32 */
   1139       Iop_F128toD32,
   1140 
   1141       /*   IRRoundingMode(I32) x F128 -> D64 */
   1142       Iop_F128toD64,
   1143 
   1144       /*   IRRoundingMode(I32) x F128 -> D128 */
   1145       Iop_F128toD128,
   1146 
   1147       /*   IRRoundingMode(I32) x D32 -> F32 */
   1148       Iop_D32toF32,
   1149 
   1150       /*   IRRoundingMode(I32) x D32 -> F64 */
   1151       Iop_D32toF64,
   1152 
   1153       /*   IRRoundingMode(I32) x D32 -> F128 */
   1154       Iop_D32toF128,
   1155 
   1156       /*   IRRoundingMode(I32) x D64 -> F32 */
   1157       Iop_D64toF32,
   1158 
   1159       /*   IRRoundingMode(I32) x D64 -> F64 */
   1160       Iop_D64toF64,
   1161 
   1162       /*   IRRoundingMode(I32) x D64 -> F128 */
   1163       Iop_D64toF128,
   1164 
   1165       /*   IRRoundingMode(I32) x D128 -> F32 */
   1166       Iop_D128toF32,
   1167 
   1168       /*   IRRoundingMode(I32) x D128 -> F64 */
   1169       Iop_D128toF64,
   1170 
   1171       /*   IRRoundingMode(I32) x D128 -> F128 */
   1172       Iop_D128toF128,
   1173 
   1174       /* ROUNDING INSTRUCTIONS
   1175        * IRRoundingMode(I32) x D64 -> D64
   1176        * The D64 operand, if a finite number, it is rounded to a
   1177        * floating point integer value, i.e. no fractional part.
   1178        */
   1179       Iop_RoundD64toInt,
   1180 
   1181       /* IRRoundingMode(I32) x D128 -> D128 */
   1182       Iop_RoundD128toInt,
   1183 
   1184       /* COMPARE INSTRUCTIONS
   1185        * D64 x D64 -> IRCmpD64Result(I32) */
   1186       Iop_CmpD64,
   1187 
   1188       /* D128 x D128 -> IRCmpD128Result(I32) */
   1189       Iop_CmpD128,
   1190 
   1191       /* COMPARE BIASED EXPONENET INSTRUCTIONS
   1192        * D64 x D64 -> IRCmpD64Result(I32) */
   1193       Iop_CmpExpD64,
   1194 
   1195       /* D128 x D128 -> IRCmpD128Result(I32) */
   1196       Iop_CmpExpD128,
   1197 
   1198       /* QUANTIZE AND ROUND INSTRUCTIONS
   1199        * The source operand is converted and rounded to the form with the
   1200        * immediate exponent specified by the rounding and exponent parameter.
   1201        *
   1202        * The second operand is converted and rounded to the form
   1203        * of the first operand's exponent and the rounded based on the specified
   1204        * rounding mode parameter.
   1205        *
   1206        * IRRoundingMode(I32) x D64 x D64-> D64 */
   1207       Iop_QuantizeD64,
   1208 
   1209       /* IRRoundingMode(I32) x D128 x D128 -> D128 */
   1210       Iop_QuantizeD128,
   1211 
   1212       /* IRRoundingMode(I32) x I8 x D64 -> D64
   1213        *    The Decimal Floating point operand is rounded to the requested
   1214        *    significance given by the I8 operand as specified by the rounding
   1215        *    mode.
   1216        */
   1217       Iop_SignificanceRoundD64,
   1218 
   1219       /* IRRoundingMode(I32) x I8 x D128 -> D128 */
   1220       Iop_SignificanceRoundD128,
   1221 
   1222       /* EXTRACT AND INSERT INSTRUCTIONS
   1223        * D64 -> I64
   1224        *    The exponent of the D32 or D64 operand is extracted.  The
   1225        *    extracted exponent is converted to a 64-bit signed binary integer.
   1226        */
   1227       Iop_ExtractExpD64,
   1228 
   1229       /* D128 -> I64 */
   1230       Iop_ExtractExpD128,
   1231 
   1232       /* D64 -> I64
   1233        * The number of significand digits of the D64 operand is extracted.
   1234        * The number is stored as a 64-bit signed binary integer.
   1235        */
   1236       Iop_ExtractSigD64,
   1237 
   1238       /* D128 -> I64 */
   1239       Iop_ExtractSigD128,
   1240 
   1241       /* I64 x D64  -> D64
   1242        *    The exponent is specified by the first I64 operand the signed
   1243        *    significand is given by the second I64 value.  The result is a D64
   1244        *    value consisting of the specified significand and exponent whose
   1245        *    sign is that of the specified significand.
   1246        */
   1247       Iop_InsertExpD64,
   1248 
   1249       /* I64 x D128 -> D128 */
   1250       Iop_InsertExpD128,
   1251 
   1252       /* Support for 128-bit DFP type */
   1253       Iop_D64HLtoD128, Iop_D128HItoD64, Iop_D128LOtoD64,
   1254 
   1255       /*  I64 -> I64
   1256        *     Convert 50-bit densely packed BCD string to 60 bit BCD string
   1257        */
   1258       Iop_DPBtoBCD,
   1259 
   1260       /* I64 -> I64
   1261        *     Convert 60 bit BCD string to 50-bit densely packed BCD string
   1262        */
   1263       Iop_BCDtoDPB,
   1264 
   1265       /* BCD arithmetic instructions, (V128, V128) -> V128
   1266        * The BCD format is the same as that used in the BCD<->DPB conversion
   1267        * routines, except using 124 digits (vs 60) plus the trailing 4-bit
   1268        * signed code. */
   1269       Iop_BCDAdd, Iop_BCDSub,
   1270 
   1271       /* Conversion I64 -> D64 */
   1272       Iop_ReinterpI64asD64,
   1273 
   1274       /* Conversion D64 -> I64 */
   1275       Iop_ReinterpD64asI64,
   1276 
   1277       /* ------------------ 128-bit SIMD FP. ------------------ */
   1278 
   1279       /* --- 32x4 vector FP --- */
   1280 
   1281       /* ternary :: IRRoundingMode(I32) x V128 x V128 -> V128 */
   1282       Iop_Add32Fx4, Iop_Sub32Fx4, Iop_Mul32Fx4, Iop_Div32Fx4,
   1283 
   1284       /* binary */
   1285       Iop_Max32Fx4, Iop_Min32Fx4,
   1286       Iop_Add32Fx2, Iop_Sub32Fx2,
   1287       /* Note: For the following compares, the ppc and arm front-ends assume a
   1288          nan in a lane of either argument returns zero for that lane. */
   1289       Iop_CmpEQ32Fx4, Iop_CmpLT32Fx4, Iop_CmpLE32Fx4, Iop_CmpUN32Fx4,
   1290       Iop_CmpGT32Fx4, Iop_CmpGE32Fx4,
   1291 
   1292       /* Pairwise Max and Min. See integer pairwise operations for details. */
   1293       Iop_PwMax32Fx4, Iop_PwMin32Fx4,
   1294 
   1295       /* unary */
   1296       Iop_Abs32Fx4,
   1297       Iop_Neg32Fx4,
   1298 
   1299       /* binary :: IRRoundingMode(I32) x V128 -> V128 */
   1300       Iop_Sqrt32Fx4,
   1301 
   1302       /* Vector Reciprocal Estimate finds an approximate reciprocal of each
   1303          element in the operand vector, and places the results in the
   1304          destination vector.  */
   1305       Iop_RecipEst32Fx4,
   1306 
   1307       /* Vector Reciprocal Step computes (2.0 - arg1 * arg2).
   1308          Note, that if one of the arguments is zero and another one is infinity
   1309          of arbitrary sign the result of the operation is 2.0. */
   1310       Iop_RecipStep32Fx4,
   1311 
   1312       /* Vector Reciprocal Square Root Estimate finds an approximate reciprocal
   1313          square root of each element in the operand vector. */
   1314       Iop_RSqrtEst32Fx4,
   1315 
   1316       /* Vector Reciprocal Square Root Step computes (3.0 - arg1 * arg2) / 2.0.
   1317          Note, that of one of the arguments is zero and another one is infiinty
   1318          of arbitrary sign the result of the operation is 1.5. */
   1319       Iop_RSqrtStep32Fx4,
   1320 
   1321       /* --- Int to/from FP conversion --- */
   1322       /* Unlike the standard fp conversions, these irops take no
   1323          rounding mode argument. Instead the irop trailers _R{M,P,N,Z}
   1324          indicate the mode: {-inf, +inf, nearest, zero} respectively. */
   1325       Iop_I32UtoFx4,     Iop_I32StoFx4,       /* I32x4 -> F32x4       */
   1326       Iop_FtoI32Ux4_RZ,  Iop_FtoI32Sx4_RZ,    /* F32x4 -> I32x4       */
   1327       Iop_QFtoI32Ux4_RZ, Iop_QFtoI32Sx4_RZ,   /* F32x4 -> I32x4 (saturating) */
   1328       Iop_RoundF32x4_RM, Iop_RoundF32x4_RP,   /* round to fp integer  */
   1329       Iop_RoundF32x4_RN, Iop_RoundF32x4_RZ,   /* round to fp integer  */
   1330       /* Fixed32 format is floating-point number with fixed number of fraction
   1331          bits. The number of fraction bits is passed as a second argument of
   1332          type I8. */
   1333       Iop_F32ToFixed32Ux4_RZ, Iop_F32ToFixed32Sx4_RZ, /* fp -> fixed-point */
   1334       Iop_Fixed32UToF32x4_RN, Iop_Fixed32SToF32x4_RN, /* fixed-point -> fp */
   1335 
   1336       /* --- Single to/from half conversion --- */
   1337       /* FIXME: what kind of rounding in F32x4 -> F16x4 case? */
   1338       Iop_F32toF16x4, Iop_F16toF32x4,         /* F32x4 <-> F16x4      */
   1339 
   1340       /* --- 32x4 lowest-lane-only scalar FP --- */
   1341 
   1342       /* In binary cases, upper 3/4 is copied from first operand.  In
   1343          unary cases, upper 3/4 is copied from the operand. */
   1344 
   1345       /* binary */
   1346       Iop_Add32F0x4, Iop_Sub32F0x4, Iop_Mul32F0x4, Iop_Div32F0x4,
   1347       Iop_Max32F0x4, Iop_Min32F0x4,
   1348       Iop_CmpEQ32F0x4, Iop_CmpLT32F0x4, Iop_CmpLE32F0x4, Iop_CmpUN32F0x4,
   1349 
   1350       /* unary */
   1351       Iop_RecipEst32F0x4, Iop_Sqrt32F0x4, Iop_RSqrtEst32F0x4,
   1352 
   1353       /* --- 64x2 vector FP --- */
   1354 
   1355       /* ternary :: IRRoundingMode(I32) x V128 x V128 -> V128 */
   1356       Iop_Add64Fx2, Iop_Sub64Fx2, Iop_Mul64Fx2, Iop_Div64Fx2,
   1357 
   1358       /* binary */
   1359       Iop_Max64Fx2, Iop_Min64Fx2,
   1360       Iop_CmpEQ64Fx2, Iop_CmpLT64Fx2, Iop_CmpLE64Fx2, Iop_CmpUN64Fx2,
   1361 
   1362       /* unary */
   1363       Iop_Abs64Fx2,
   1364       Iop_Neg64Fx2,
   1365 
   1366       /* binary :: IRRoundingMode(I32) x V128 -> V128 */
   1367       Iop_Sqrt64Fx2,
   1368 
   1369       /* see 32Fx4 variants for description */
   1370       Iop_RecipEst64Fx2,    // unary
   1371       Iop_RecipStep64Fx2,   // binary
   1372       Iop_RSqrtEst64Fx2,    // unary
   1373       Iop_RSqrtStep64Fx2,   // binary
   1374 
   1375       /* --- 64x2 lowest-lane-only scalar FP --- */
   1376 
   1377       /* In binary cases, upper half is copied from first operand.  In
   1378          unary cases, upper half is copied from the operand. */
   1379 
   1380       /* binary */
   1381       Iop_Add64F0x2, Iop_Sub64F0x2, Iop_Mul64F0x2, Iop_Div64F0x2,
   1382       Iop_Max64F0x2, Iop_Min64F0x2,
   1383       Iop_CmpEQ64F0x2, Iop_CmpLT64F0x2, Iop_CmpLE64F0x2, Iop_CmpUN64F0x2,
   1384 
   1385       /* unary */
   1386       Iop_Sqrt64F0x2,
   1387 
   1388       /* --- pack / unpack --- */
   1389 
   1390       /* 64 <-> 128 bit vector */
   1391       Iop_V128to64,     // :: V128 -> I64, low half
   1392       Iop_V128HIto64,   // :: V128 -> I64, high half
   1393       Iop_64HLtoV128,   // :: (I64,I64) -> V128
   1394 
   1395       Iop_64UtoV128,
   1396       Iop_SetV128lo64,
   1397 
   1398       /* Copies lower 64/32/16/8 bits, zeroes out the rest. */
   1399       Iop_ZeroHI64ofV128,    // :: V128 -> V128
   1400       Iop_ZeroHI96ofV128,    // :: V128 -> V128
   1401       Iop_ZeroHI112ofV128,   // :: V128 -> V128
   1402       Iop_ZeroHI120ofV128,   // :: V128 -> V128
   1403 
   1404       /* 32 <-> 128 bit vector */
   1405       Iop_32UtoV128,
   1406       Iop_V128to32,     // :: V128 -> I32, lowest lane
   1407       Iop_SetV128lo32,  // :: (V128,I32) -> V128
   1408 
   1409       /* ------------------ 128-bit SIMD Integer. ------------------ */
   1410 
   1411       /* BITWISE OPS */
   1412       Iop_NotV128,
   1413       Iop_AndV128, Iop_OrV128, Iop_XorV128,
   1414 
   1415       /* VECTOR SHIFT (shift amt :: Ity_I8) */
   1416       Iop_ShlV128, Iop_ShrV128,
   1417 
   1418       /* MISC (vector integer cmp != 0) */
   1419       Iop_CmpNEZ8x16, Iop_CmpNEZ16x8, Iop_CmpNEZ32x4, Iop_CmpNEZ64x2,
   1420 
   1421       /* ADDITION (normal / U->U sat / S->S sat) */
   1422       Iop_Add8x16,    Iop_Add16x8,    Iop_Add32x4,    Iop_Add64x2,
   1423       Iop_QAdd8Ux16,  Iop_QAdd16Ux8,  Iop_QAdd32Ux4,  Iop_QAdd64Ux2,
   1424       Iop_QAdd8Sx16,  Iop_QAdd16Sx8,  Iop_QAdd32Sx4,  Iop_QAdd64Sx2,
   1425 
   1426       /* ADDITION, ARM64 specific saturating variants. */
   1427       /* Unsigned widen left arg, signed widen right arg, add, saturate S->S.
   1428          This corresponds to SUQADD. */
   1429       Iop_QAddExtUSsatSS8x16, Iop_QAddExtUSsatSS16x8,
   1430       Iop_QAddExtUSsatSS32x4, Iop_QAddExtUSsatSS64x2,
   1431       /* Signed widen left arg, unsigned widen right arg, add, saturate U->U.
   1432          This corresponds to USQADD. */
   1433       Iop_QAddExtSUsatUU8x16, Iop_QAddExtSUsatUU16x8,
   1434       Iop_QAddExtSUsatUU32x4, Iop_QAddExtSUsatUU64x2,
   1435 
   1436       /* SUBTRACTION (normal / unsigned sat / signed sat) */
   1437       Iop_Sub8x16,   Iop_Sub16x8,   Iop_Sub32x4,   Iop_Sub64x2,
   1438       Iop_QSub8Ux16, Iop_QSub16Ux8, Iop_QSub32Ux4, Iop_QSub64Ux2,
   1439       Iop_QSub8Sx16, Iop_QSub16Sx8, Iop_QSub32Sx4, Iop_QSub64Sx2,
   1440 
   1441       /* MULTIPLICATION (normal / high half of signed/unsigned) */
   1442       Iop_Mul8x16,  Iop_Mul16x8,    Iop_Mul32x4,
   1443                     Iop_MulHi16Ux8, Iop_MulHi32Ux4,
   1444                     Iop_MulHi16Sx8, Iop_MulHi32Sx4,
   1445       /* (widening signed/unsigned of even lanes, with lowest lane=zero) */
   1446       Iop_MullEven8Ux16, Iop_MullEven16Ux8, Iop_MullEven32Ux4,
   1447       Iop_MullEven8Sx16, Iop_MullEven16Sx8, Iop_MullEven32Sx4,
   1448 
   1449       /* Widening multiplies, all of the form (I64, I64) -> V128 */
   1450       Iop_Mull8Ux8, Iop_Mull8Sx8,
   1451       Iop_Mull16Ux4, Iop_Mull16Sx4,
   1452       Iop_Mull32Ux2, Iop_Mull32Sx2,
   1453 
   1454       /* Signed doubling saturating widening multiplies, (I64, I64) -> V128 */
   1455       Iop_QDMull16Sx4, Iop_QDMull32Sx2,
   1456 
   1457       /* Vector Saturating Doubling Multiply Returning High Half and
   1458          Vector Saturating Rounding Doubling Multiply Returning High Half.
   1459          These IROps multiply corresponding elements in two vectors, double
   1460          the results, and place the most significant half of the final results
   1461          in the destination vector.  The results are truncated or rounded.  If
   1462          any of the results overflow, they are saturated.  To be more precise,
   1463          for each lane, the computed result is:
   1464            QDMulHi:
   1465              hi-half( sign-extend(laneL) *q sign-extend(laneR) *q 2 )
   1466            QRDMulHi:
   1467              hi-half( sign-extend(laneL) *q sign-extend(laneR) *q 2
   1468                       +q (1 << (lane-width-in-bits - 1)) )
   1469       */
   1470       Iop_QDMulHi16Sx8,  Iop_QDMulHi32Sx4,  /* (V128, V128) -> V128 */
   1471       Iop_QRDMulHi16Sx8, Iop_QRDMulHi32Sx4, /* (V128, V128) -> V128 */
   1472 
   1473       /* Polynomial multiplication treats its arguments as
   1474          coefficients of polynomials over {0, 1}. */
   1475       Iop_PolynomialMul8x16, /* (V128, V128) -> V128 */
   1476       Iop_PolynomialMull8x8, /*   (I64, I64) -> V128 */
   1477 
   1478       /* Vector Polynomial multiplication add.   (V128, V128) -> V128
   1479 
   1480        *** Below is the algorithm for the instructions. These Iops could
   1481            be emulated to get this functionality, but the emulation would
   1482            be long and messy.
   1483 
   1484         Example for polynomial multiply add for vector of bytes
   1485         do i = 0 to 15
   1486             prod[i].bit[0:14] <- 0
   1487             srcA <- VR[argL].byte[i]
   1488             srcB <- VR[argR].byte[i]
   1489             do j = 0 to 7
   1490                 do k = 0 to j
   1491                     gbit <- srcA.bit[k] & srcB.bit[j-k]
   1492                     prod[i].bit[j] <- prod[i].bit[j] ^ gbit
   1493                 end
   1494             end
   1495 
   1496             do j = 8 to 14
   1497                 do k = j-7 to 7
   1498                      gbit <- (srcA.bit[k] & srcB.bit[j-k])
   1499                      prod[i].bit[j] <- prod[i].bit[j] ^ gbit
   1500                 end
   1501             end
   1502         end
   1503 
   1504         do i = 0 to 7
   1505             VR[dst].hword[i] <- 0b0 || (prod[2i] ^ prod[2i+1])
   1506         end
   1507       */
   1508       Iop_PolynomialMulAdd8x16, Iop_PolynomialMulAdd16x8,
   1509       Iop_PolynomialMulAdd32x4, Iop_PolynomialMulAdd64x2,
   1510 
   1511       /* PAIRWISE operations */
   1512       /* Iop_PwFoo16x4( [a,b,c,d], [e,f,g,h] ) =
   1513             [Foo16(a,b), Foo16(c,d), Foo16(e,f), Foo16(g,h)] */
   1514       Iop_PwAdd8x16, Iop_PwAdd16x8, Iop_PwAdd32x4,
   1515       Iop_PwAdd32Fx2,
   1516       /* Longening variant is unary. The resulting vector contains two times
   1517          less elements than operand, but they are two times wider.
   1518          Example:
   1519             Iop_PwAddL16Ux4( [a,b,c,d] ) = [a+b,c+d]
   1520                where a+b and c+d are unsigned 32-bit values. */
   1521       Iop_PwAddL8Ux16, Iop_PwAddL16Ux8, Iop_PwAddL32Ux4,
   1522       Iop_PwAddL8Sx16, Iop_PwAddL16Sx8, Iop_PwAddL32Sx4,
   1523 
   1524       /* Other unary pairwise ops */
   1525 
   1526       /* Vector bit matrix transpose.  (V128) -> V128 */
   1527       /* For each doubleword element of the source vector, an 8-bit x 8-bit
   1528        * matrix transpose is performed. */
   1529       Iop_PwBitMtxXpose64x2,
   1530 
   1531       /* ABSOLUTE VALUE */
   1532       Iop_Abs8x16, Iop_Abs16x8, Iop_Abs32x4, Iop_Abs64x2,
   1533 
   1534       /* AVERAGING: note: (arg1 + arg2 + 1) >>u 1 */
   1535       Iop_Avg8Ux16, Iop_Avg16Ux8, Iop_Avg32Ux4,
   1536       Iop_Avg8Sx16, Iop_Avg16Sx8, Iop_Avg32Sx4,
   1537 
   1538       /* MIN/MAX */
   1539       Iop_Max8Sx16, Iop_Max16Sx8, Iop_Max32Sx4, Iop_Max64Sx2,
   1540       Iop_Max8Ux16, Iop_Max16Ux8, Iop_Max32Ux4, Iop_Max64Ux2,
   1541       Iop_Min8Sx16, Iop_Min16Sx8, Iop_Min32Sx4, Iop_Min64Sx2,
   1542       Iop_Min8Ux16, Iop_Min16Ux8, Iop_Min32Ux4, Iop_Min64Ux2,
   1543 
   1544       /* COMPARISON */
   1545       Iop_CmpEQ8x16,  Iop_CmpEQ16x8,  Iop_CmpEQ32x4,  Iop_CmpEQ64x2,
   1546       Iop_CmpGT8Sx16, Iop_CmpGT16Sx8, Iop_CmpGT32Sx4, Iop_CmpGT64Sx2,
   1547       Iop_CmpGT8Ux16, Iop_CmpGT16Ux8, Iop_CmpGT32Ux4, Iop_CmpGT64Ux2,
   1548 
   1549       /* COUNT ones / leading zeroes / leading sign bits (not including topmost
   1550          bit) */
   1551       Iop_Cnt8x16,
   1552       Iop_Clz8x16, Iop_Clz16x8, Iop_Clz32x4,
   1553       Iop_Cls8x16, Iop_Cls16x8, Iop_Cls32x4,
   1554 
   1555       /* VECTOR x SCALAR SHIFT (shift amt :: Ity_I8) */
   1556       Iop_ShlN8x16, Iop_ShlN16x8, Iop_ShlN32x4, Iop_ShlN64x2,
   1557       Iop_ShrN8x16, Iop_ShrN16x8, Iop_ShrN32x4, Iop_ShrN64x2,
   1558       Iop_SarN8x16, Iop_SarN16x8, Iop_SarN32x4, Iop_SarN64x2,
   1559 
   1560       /* VECTOR x VECTOR SHIFT / ROTATE */
   1561       /* FIXME: I'm pretty sure the ARM32 front/back ends interpret these
   1562          differently from all other targets.  The intention is that
   1563          the shift amount (2nd arg) is interpreted as unsigned and
   1564          only the lowest log2(lane-bits) bits are relevant.  But the
   1565          ARM32 versions treat the shift amount as an 8 bit signed
   1566          number.  The ARM32 uses should be replaced by the relevant
   1567          vector x vector bidirectional shifts instead. */
   1568       Iop_Shl8x16, Iop_Shl16x8, Iop_Shl32x4, Iop_Shl64x2,
   1569       Iop_Shr8x16, Iop_Shr16x8, Iop_Shr32x4, Iop_Shr64x2,
   1570       Iop_Sar8x16, Iop_Sar16x8, Iop_Sar32x4, Iop_Sar64x2,
   1571       Iop_Sal8x16, Iop_Sal16x8, Iop_Sal32x4, Iop_Sal64x2,
   1572       Iop_Rol8x16, Iop_Rol16x8, Iop_Rol32x4, Iop_Rol64x2,
   1573 
   1574       /* VECTOR x VECTOR SATURATING SHIFT */
   1575       Iop_QShl8x16, Iop_QShl16x8, Iop_QShl32x4, Iop_QShl64x2,
   1576       Iop_QSal8x16, Iop_QSal16x8, Iop_QSal32x4, Iop_QSal64x2,
   1577       /* VECTOR x INTEGER SATURATING SHIFT */
   1578       Iop_QShlNsatSU8x16, Iop_QShlNsatSU16x8,
   1579       Iop_QShlNsatSU32x4, Iop_QShlNsatSU64x2,
   1580       Iop_QShlNsatUU8x16, Iop_QShlNsatUU16x8,
   1581       Iop_QShlNsatUU32x4, Iop_QShlNsatUU64x2,
   1582       Iop_QShlNsatSS8x16, Iop_QShlNsatSS16x8,
   1583       Iop_QShlNsatSS32x4, Iop_QShlNsatSS64x2,
   1584 
   1585       /* VECTOR x VECTOR BIDIRECTIONAL SATURATING (& MAYBE ROUNDING) SHIFT */
   1586       /* All of type (V128, V128) -> V256. */
   1587       /* The least significant 8 bits of each lane of the second
   1588          operand are used as the shift amount, and interpreted signedly.
   1589          Positive values mean a shift left, negative a shift right.  The
   1590          result is signedly or unsignedly saturated.  There are also
   1591          rounding variants, which add 2^(shift_amount-1) to the value before
   1592          shifting, but only in the shift-right case.  Vacated positions
   1593          are filled with zeroes.  IOW, it's either SHR or SHL, but not SAR.
   1594 
   1595          These operations return 129 bits: one bit ("Q") indicating whether
   1596          saturation occurred, and the shift result.  The result type is V256,
   1597          of which the lower V128 is the shift result, and Q occupies the
   1598          least significant bit of the upper V128.  All other bits of the
   1599          upper V128 are zero. */
   1600       // Unsigned saturation, no rounding
   1601       Iop_QandUQsh8x16, Iop_QandUQsh16x8,
   1602       Iop_QandUQsh32x4, Iop_QandUQsh64x2,
   1603       // Signed saturation, no rounding
   1604       Iop_QandSQsh8x16, Iop_QandSQsh16x8,
   1605       Iop_QandSQsh32x4, Iop_QandSQsh64x2,
   1606 
   1607       // Unsigned saturation, rounding
   1608       Iop_QandUQRsh8x16, Iop_QandUQRsh16x8,
   1609       Iop_QandUQRsh32x4, Iop_QandUQRsh64x2,
   1610       // Signed saturation, rounding
   1611       Iop_QandSQRsh8x16, Iop_QandSQRsh16x8,
   1612       Iop_QandSQRsh32x4, Iop_QandSQRsh64x2,
   1613 
   1614       /* VECTOR x VECTOR BIDIRECTIONAL (& MAYBE ROUNDING) SHIFT */
   1615       /* All of type (V128, V128) -> V128 */
   1616       /* The least significant 8 bits of each lane of the second
   1617          operand are used as the shift amount, and interpreted signedly.
   1618          Positive values mean a shift left, negative a shift right.
   1619          There are also rounding variants, which add 2^(shift_amount-1)
   1620          to the value before shifting, but only in the shift-right case.
   1621 
   1622          For left shifts, the vacated places are filled with zeroes.
   1623          For right shifts, the vacated places are filled with zeroes
   1624          for the U variants and sign bits for the S variants. */
   1625       // Signed and unsigned, non-rounding
   1626       Iop_Sh8Sx16, Iop_Sh16Sx8, Iop_Sh32Sx4, Iop_Sh64Sx2,
   1627       Iop_Sh8Ux16, Iop_Sh16Ux8, Iop_Sh32Ux4, Iop_Sh64Ux2,
   1628 
   1629       // Signed and unsigned, rounding
   1630       Iop_Rsh8Sx16, Iop_Rsh16Sx8, Iop_Rsh32Sx4, Iop_Rsh64Sx2,
   1631       Iop_Rsh8Ux16, Iop_Rsh16Ux8, Iop_Rsh32Ux4, Iop_Rsh64Ux2,
   1632 
   1633       /* The least significant 8 bits of each lane of the second
   1634          operand are used as the shift amount, and interpreted signedly.
   1635          Positive values mean a shift left, negative a shift right.  The
   1636          result is signedly or unsignedly saturated.  There are also
   1637          rounding variants, which add 2^(shift_amount-1) to the value before
   1638          shifting, but only in the shift-right case.  Vacated positions
   1639          are filled with zeroes.  IOW, it's either SHR or SHL, but not SAR.
   1640       */
   1641 
   1642       /* VECTOR x SCALAR SATURATING (& MAYBE ROUNDING) NARROWING SHIFT RIGHT */
   1643       /* All of type (V128, I8) -> V128 */
   1644       /* The first argument is shifted right, then narrowed to half the width
   1645          by saturating it.  The second argument is a scalar shift amount that
   1646          applies to all lanes, and must be a value in the range 1 to lane_width.
   1647          The shift may be done signedly (Sar variants) or unsignedly (Shr
   1648          variants).  The saturation is done according to the two signedness
   1649          indicators at the end of the name.  For example 64Sto32U means a
   1650          signed 64 bit value is saturated into an unsigned 32 bit value.
   1651          Additionally, the QRS variants do rounding, that is, they add the
   1652          value (1 << (shift_amount-1)) to each source lane before shifting.
   1653 
   1654          These operations return 65 bits: one bit ("Q") indicating whether
   1655          saturation occurred, and the shift result.  The result type is V128,
   1656          of which the lower half is the shift result, and Q occupies the
   1657          least significant bit of the upper half.  All other bits of the
   1658          upper half are zero. */
   1659       // No rounding, sat U->U
   1660       Iop_QandQShrNnarrow16Uto8Ux8,
   1661       Iop_QandQShrNnarrow32Uto16Ux4, Iop_QandQShrNnarrow64Uto32Ux2,
   1662       // No rounding, sat S->S
   1663       Iop_QandQSarNnarrow16Sto8Sx8,
   1664       Iop_QandQSarNnarrow32Sto16Sx4, Iop_QandQSarNnarrow64Sto32Sx2,
   1665       // No rounding, sat S->U
   1666       Iop_QandQSarNnarrow16Sto8Ux8,
   1667       Iop_QandQSarNnarrow32Sto16Ux4, Iop_QandQSarNnarrow64Sto32Ux2,
   1668 
   1669       // Rounding, sat U->U
   1670       Iop_QandQRShrNnarrow16Uto8Ux8,
   1671       Iop_QandQRShrNnarrow32Uto16Ux4, Iop_QandQRShrNnarrow64Uto32Ux2,
   1672       // Rounding, sat S->S
   1673       Iop_QandQRSarNnarrow16Sto8Sx8,
   1674       Iop_QandQRSarNnarrow32Sto16Sx4, Iop_QandQRSarNnarrow64Sto32Sx2,
   1675       // Rounding, sat S->U
   1676       Iop_QandQRSarNnarrow16Sto8Ux8,
   1677       Iop_QandQRSarNnarrow32Sto16Ux4, Iop_QandQRSarNnarrow64Sto32Ux2,
   1678 
   1679       /* NARROWING (binary)
   1680          -- narrow 2xV128 into 1xV128, hi half from left arg */
   1681       /* See comments above w.r.t. U vs S issues in saturated narrowing. */
   1682       Iop_QNarrowBin16Sto8Ux16, Iop_QNarrowBin32Sto16Ux8,
   1683       Iop_QNarrowBin16Sto8Sx16, Iop_QNarrowBin32Sto16Sx8,
   1684       Iop_QNarrowBin16Uto8Ux16, Iop_QNarrowBin32Uto16Ux8,
   1685       Iop_NarrowBin16to8x16, Iop_NarrowBin32to16x8,
   1686       Iop_QNarrowBin64Sto32Sx4, Iop_QNarrowBin64Uto32Ux4,
   1687       Iop_NarrowBin64to32x4,
   1688 
   1689       /* NARROWING (unary) -- narrow V128 into I64 */
   1690       Iop_NarrowUn16to8x8, Iop_NarrowUn32to16x4, Iop_NarrowUn64to32x2,
   1691       /* Saturating narrowing from signed source to signed/unsigned
   1692          destination */
   1693       Iop_QNarrowUn16Sto8Sx8, Iop_QNarrowUn32Sto16Sx4, Iop_QNarrowUn64Sto32Sx2,
   1694       Iop_QNarrowUn16Sto8Ux8, Iop_QNarrowUn32Sto16Ux4, Iop_QNarrowUn64Sto32Ux2,
   1695       /* Saturating narrowing from unsigned source to unsigned destination */
   1696       Iop_QNarrowUn16Uto8Ux8, Iop_QNarrowUn32Uto16Ux4, Iop_QNarrowUn64Uto32Ux2,
   1697 
   1698       /* WIDENING -- sign or zero extend each element of the argument
   1699          vector to the twice original size.  The resulting vector consists of
   1700          the same number of elements but each element and the vector itself
   1701          are twice as wide.
   1702          All operations are I64->V128.
   1703          Example
   1704             Iop_Widen32Sto64x2( [a, b] ) = [c, d]
   1705                where c = Iop_32Sto64(a) and d = Iop_32Sto64(b) */
   1706       Iop_Widen8Uto16x8, Iop_Widen16Uto32x4, Iop_Widen32Uto64x2,
   1707       Iop_Widen8Sto16x8, Iop_Widen16Sto32x4, Iop_Widen32Sto64x2,
   1708 
   1709       /* INTERLEAVING */
   1710       /* Interleave lanes from low or high halves of
   1711          operands.  Most-significant result lane is from the left
   1712          arg. */
   1713       Iop_InterleaveHI8x16, Iop_InterleaveHI16x8,
   1714       Iop_InterleaveHI32x4, Iop_InterleaveHI64x2,
   1715       Iop_InterleaveLO8x16, Iop_InterleaveLO16x8,
   1716       Iop_InterleaveLO32x4, Iop_InterleaveLO64x2,
   1717       /* Interleave odd/even lanes of operands.  Most-significant result lane
   1718          is from the left arg. */
   1719       Iop_InterleaveOddLanes8x16, Iop_InterleaveEvenLanes8x16,
   1720       Iop_InterleaveOddLanes16x8, Iop_InterleaveEvenLanes16x8,
   1721       Iop_InterleaveOddLanes32x4, Iop_InterleaveEvenLanes32x4,
   1722 
   1723       /* CONCATENATION -- build a new value by concatenating either
   1724          the even or odd lanes of both operands.  Note that
   1725          Cat{Odd,Even}Lanes64x2 are identical to Interleave{HI,LO}64x2
   1726          and so are omitted. */
   1727       Iop_CatOddLanes8x16, Iop_CatOddLanes16x8, Iop_CatOddLanes32x4,
   1728       Iop_CatEvenLanes8x16, Iop_CatEvenLanes16x8, Iop_CatEvenLanes32x4,
   1729 
   1730       /* GET elements of VECTOR
   1731          GET is binop (V128, I8) -> I<elem_size> */
   1732       /* Note: the arm back-end handles only constant second argument. */
   1733       Iop_GetElem8x16, Iop_GetElem16x8, Iop_GetElem32x4, Iop_GetElem64x2,
   1734 
   1735       /* DUPLICATING -- copy value to all lanes */
   1736       Iop_Dup8x16,   Iop_Dup16x8,   Iop_Dup32x4,
   1737 
   1738       /* SLICE -- produces the lowest 128 bits of (arg1:arg2) >> (8 * arg3).
   1739          arg3 is a shift amount in bytes and may be between 0 and 16
   1740          inclusive.  When 0, the result is arg2; when 16, the result is arg1.
   1741          Not all back ends handle all values.  The arm64 back
   1742          end handles only immediate arg3 values. */
   1743       Iop_SliceV128,  // (V128, V128, I8) -> V128
   1744 
   1745       /* REVERSE the order of chunks in vector lanes.  Chunks must be
   1746          smaller than the vector lanes (obviously) and so may be 8-,
   1747          16- and 32-bit in size.  See definitions of 64-bit SIMD
   1748          versions above for examples. */
   1749       Iop_Reverse8sIn16_x8,
   1750       Iop_Reverse8sIn32_x4, Iop_Reverse16sIn32_x4,
   1751       Iop_Reverse8sIn64_x2, Iop_Reverse16sIn64_x2, Iop_Reverse32sIn64_x2,
   1752       Iop_Reverse1sIn8_x16, /* Reverse bits in each byte lane. */
   1753 
   1754       /* PERMUTING -- copy src bytes to dst,
   1755          as indexed by control vector bytes:
   1756             for i in 0 .. 15 . result[i] = argL[ argR[i] ]
   1757          argR[i] values may only be in the range 0 .. 15, else behaviour
   1758          is undefined. */
   1759       Iop_Perm8x16,
   1760       Iop_Perm32x4, /* ditto, except argR values are restricted to 0 .. 3 */
   1761 
   1762       /* MISC CONVERSION -- get high bits of each byte lane, a la
   1763          x86/amd64 pmovmskb */
   1764       Iop_GetMSBs8x16, /* V128 -> I16 */
   1765 
   1766       /* Vector Reciprocal Estimate and Vector Reciprocal Square Root Estimate
   1767          See floating-point equivalents for details. */
   1768       Iop_RecipEst32Ux4, Iop_RSqrtEst32Ux4,
   1769 
   1770       /* ------------------ 256-bit SIMD Integer. ------------------ */
   1771 
   1772       /* Pack/unpack */
   1773       Iop_V256to64_0,  // V256 -> I64, extract least significant lane
   1774       Iop_V256to64_1,
   1775       Iop_V256to64_2,
   1776       Iop_V256to64_3,  // V256 -> I64, extract most significant lane
   1777 
   1778       Iop_64x4toV256,  // (I64,I64,I64,I64)->V256
   1779                        // first arg is most significant lane
   1780 
   1781       Iop_V256toV128_0, // V256 -> V128, less significant lane
   1782       Iop_V256toV128_1, // V256 -> V128, more significant lane
   1783       Iop_V128HLtoV256, // (V128,V128)->V256, first arg is most signif
   1784 
   1785       Iop_AndV256,
   1786       Iop_OrV256,
   1787       Iop_XorV256,
   1788       Iop_NotV256,
   1789 
   1790       /* MISC (vector integer cmp != 0) */
   1791       Iop_CmpNEZ8x32, Iop_CmpNEZ16x16, Iop_CmpNEZ32x8, Iop_CmpNEZ64x4,
   1792 
   1793       Iop_Add8x32,    Iop_Add16x16,    Iop_Add32x8,    Iop_Add64x4,
   1794       Iop_Sub8x32,    Iop_Sub16x16,    Iop_Sub32x8,    Iop_Sub64x4,
   1795 
   1796       Iop_CmpEQ8x32,  Iop_CmpEQ16x16,  Iop_CmpEQ32x8,  Iop_CmpEQ64x4,
   1797       Iop_CmpGT8Sx32, Iop_CmpGT16Sx16, Iop_CmpGT32Sx8, Iop_CmpGT64Sx4,
   1798 
   1799       Iop_ShlN16x16, Iop_ShlN32x8, Iop_ShlN64x4,
   1800       Iop_ShrN16x16, Iop_ShrN32x8, Iop_ShrN64x4,
   1801       Iop_SarN16x16, Iop_SarN32x8,
   1802 
   1803       Iop_Max8Sx32, Iop_Max16Sx16, Iop_Max32Sx8,
   1804       Iop_Max8Ux32, Iop_Max16Ux16, Iop_Max32Ux8,
   1805       Iop_Min8Sx32, Iop_Min16Sx16, Iop_Min32Sx8,
   1806       Iop_Min8Ux32, Iop_Min16Ux16, Iop_Min32Ux8,
   1807 
   1808       Iop_Mul16x16, Iop_Mul32x8,
   1809       Iop_MulHi16Ux16, Iop_MulHi16Sx16,
   1810 
   1811       Iop_QAdd8Ux32, Iop_QAdd16Ux16,
   1812       Iop_QAdd8Sx32, Iop_QAdd16Sx16,
   1813       Iop_QSub8Ux32, Iop_QSub16Ux16,
   1814       Iop_QSub8Sx32, Iop_QSub16Sx16,
   1815 
   1816       Iop_Avg8Ux32, Iop_Avg16Ux16,
   1817 
   1818       Iop_Perm32x8,
   1819 
   1820       /* (V128, V128) -> V128 */
   1821       Iop_CipherV128, Iop_CipherLV128, Iop_CipherSV128,
   1822       Iop_NCipherV128, Iop_NCipherLV128,
   1823 
   1824       /* Hash instructions, Federal Information Processing Standards
   1825        * Publication 180-3 Secure Hash Standard. */
   1826       /* (V128, I8) -> V128; The I8 input arg is (ST | SIX), where ST and
   1827        * SIX are fields from the insn. See ISA 2.07 description of
   1828        * vshasigmad and vshasigmaw insns.*/
   1829       Iop_SHA512, Iop_SHA256,
   1830 
   1831       /* ------------------ 256-bit SIMD FP. ------------------ */
   1832 
   1833       /* ternary :: IRRoundingMode(I32) x V256 x V256 -> V256 */
   1834       Iop_Add64Fx4, Iop_Sub64Fx4, Iop_Mul64Fx4, Iop_Div64Fx4,
   1835       Iop_Add32Fx8, Iop_Sub32Fx8, Iop_Mul32Fx8, Iop_Div32Fx8,
   1836 
   1837       Iop_Sqrt32Fx8,
   1838       Iop_Sqrt64Fx4,
   1839       Iop_RSqrtEst32Fx8,
   1840       Iop_RecipEst32Fx8,
   1841 
   1842       Iop_Max32Fx8, Iop_Min32Fx8,
   1843       Iop_Max64Fx4, Iop_Min64Fx4,
   1844       Iop_LAST      /* must be the last enumerator */
   1845    }
   1846    IROp;
   1847 
   1848 /* Pretty-print an op. */
   1849 extern void ppIROp ( IROp );
   1850 
   1851 
   1852 /* Encoding of IEEE754-specified rounding modes.
   1853    Note, various front and back ends rely on the actual numerical
   1854    values of these, so do not change them. */
   1855 typedef
   1856    enum {
   1857       Irrm_NEAREST              = 0,  // Round to nearest, ties to even
   1858       Irrm_NegINF               = 1,  // Round to negative infinity
   1859       Irrm_PosINF               = 2,  // Round to positive infinity
   1860       Irrm_ZERO                 = 3,  // Round toward zero
   1861       Irrm_NEAREST_TIE_AWAY_0   = 4,  // Round to nearest, ties away from 0
   1862       Irrm_PREPARE_SHORTER      = 5,  // Round to prepare for shorter
   1863                                       // precision
   1864       Irrm_AWAY_FROM_ZERO       = 6,  // Round to away from 0
   1865       Irrm_NEAREST_TIE_TOWARD_0 = 7   // Round to nearest, ties towards 0
   1866    }
   1867    IRRoundingMode;
   1868 
   1869 /* Binary floating point comparison result values.
   1870    This is also derived from what IA32 does. */
   1871 typedef
   1872    enum {
   1873       Ircr_UN = 0x45,
   1874       Ircr_LT = 0x01,
   1875       Ircr_GT = 0x00,
   1876       Ircr_EQ = 0x40
   1877    }
   1878    IRCmpFResult;
   1879 
   1880 typedef IRCmpFResult IRCmpF32Result;
   1881 typedef IRCmpFResult IRCmpF64Result;
   1882 typedef IRCmpFResult IRCmpF128Result;
   1883 
   1884 /* Decimal floating point result values. */
   1885 typedef IRCmpFResult IRCmpDResult;
   1886 typedef IRCmpDResult IRCmpD64Result;
   1887 typedef IRCmpDResult IRCmpD128Result;
   1888 
   1889 /* ------------------ Expressions ------------------ */
   1890 
   1891 typedef struct _IRQop   IRQop;   /* forward declaration */
   1892 typedef struct _IRTriop IRTriop; /* forward declaration */
   1893 
   1894 
   1895 /* The different kinds of expressions.  Their meaning is explained below
   1896    in the comments for IRExpr. */
   1897 typedef
   1898    enum {
   1899       Iex_Binder=0x1900,
   1900       Iex_Get,
   1901       Iex_GetI,
   1902       Iex_RdTmp,
   1903       Iex_Qop,
   1904       Iex_Triop,
   1905       Iex_Binop,
   1906       Iex_Unop,
   1907       Iex_Load,
   1908       Iex_Const,
   1909       Iex_ITE,
   1910       Iex_CCall,
   1911       Iex_VECRET,
   1912       Iex_BBPTR
   1913    }
   1914    IRExprTag;
   1915 
   1916 /* An expression.  Stored as a tagged union.  'tag' indicates what kind
   1917    of expression this is.  'Iex' is the union that holds the fields.  If
   1918    an IRExpr 'e' has e.tag equal to Iex_Load, then it's a load
   1919    expression, and the fields can be accessed with
   1920    'e.Iex.Load.<fieldname>'.
   1921 
   1922    For each kind of expression, we show what it looks like when
   1923    pretty-printed with ppIRExpr().
   1924 */
   1925 typedef
   1926    struct _IRExpr
   1927    IRExpr;
   1928 
   1929 struct _IRExpr {
   1930    IRExprTag tag;
   1931    union {
   1932       /* Used only in pattern matching within Vex.  Should not be seen
   1933          outside of Vex. */
   1934       struct {
   1935          Int binder;
   1936       } Binder;
   1937 
   1938       /* Read a guest register, at a fixed offset in the guest state.
   1939          ppIRExpr output: GET:<ty>(<offset>), eg. GET:I32(0)
   1940       */
   1941       struct {
   1942          Int    offset;    /* Offset into the guest state */
   1943          IRType ty;        /* Type of the value being read */
   1944       } Get;
   1945 
   1946       /* Read a guest register at a non-fixed offset in the guest
   1947          state.  This allows circular indexing into parts of the guest
   1948          state, which is essential for modelling situations where the
   1949          identity of guest registers is not known until run time.  One
   1950          example is the x87 FP register stack.
   1951 
   1952          The part of the guest state to be treated as a circular array
   1953          is described in the IRRegArray 'descr' field.  It holds the
   1954          offset of the first element in the array, the type of each
   1955          element, and the number of elements.
   1956 
   1957          The array index is indicated rather indirectly, in a way
   1958          which makes optimisation easy: as the sum of variable part
   1959          (the 'ix' field) and a constant offset (the 'bias' field).
   1960 
   1961          Since the indexing is circular, the actual array index to use
   1962          is computed as (ix + bias) % num-of-elems-in-the-array.
   1963 
   1964          Here's an example.  The description
   1965 
   1966             (96:8xF64)[t39,-7]
   1967 
   1968          describes an array of 8 F64-typed values, the
   1969          guest-state-offset of the first being 96.  This array is
   1970          being indexed at (t39 - 7) % 8.
   1971 
   1972          It is important to get the array size/type exactly correct
   1973          since IR optimisation looks closely at such info in order to
   1974          establish aliasing/non-aliasing between seperate GetI and
   1975          PutI events, which is used to establish when they can be
   1976          reordered, etc.  Putting incorrect info in will lead to
   1977          obscure IR optimisation bugs.
   1978 
   1979             ppIRExpr output: GETI<descr>[<ix>,<bias]
   1980                          eg. GETI(128:8xI8)[t1,0]
   1981       */
   1982       struct {
   1983          IRRegArray* descr; /* Part of guest state treated as circular */
   1984          IRExpr*     ix;    /* Variable part of index into array */
   1985          Int         bias;  /* Constant offset part of index into array */
   1986       } GetI;
   1987 
   1988       /* The value held by a temporary.
   1989          ppIRExpr output: t<tmp>, eg. t1
   1990       */
   1991       struct {
   1992          IRTemp tmp;       /* The temporary number */
   1993       } RdTmp;
   1994 
   1995       /* A quaternary operation.
   1996          ppIRExpr output: <op>(<arg1>, <arg2>, <arg3>, <arg4>),
   1997                       eg. MAddF64r32(t1, t2, t3, t4)
   1998       */
   1999       struct {
   2000         IRQop* details;
   2001       } Qop;
   2002 
   2003       /* A ternary operation.
   2004          ppIRExpr output: <op>(<arg1>, <arg2>, <arg3>),
   2005                       eg. MulF64(1, 2.0, 3.0)
   2006       */
   2007       struct {
   2008         IRTriop* details;
   2009       } Triop;
   2010 
   2011       /* A binary operation.
   2012          ppIRExpr output: <op>(<arg1>, <arg2>), eg. Add32(t1,t2)
   2013       */
   2014       struct {
   2015          IROp op;          /* op-code   */
   2016          IRExpr* arg1;     /* operand 1 */
   2017          IRExpr* arg2;     /* operand 2 */
   2018       } Binop;
   2019 
   2020       /* A unary operation.
   2021          ppIRExpr output: <op>(<arg>), eg. Neg8(t1)
   2022       */
   2023       struct {
   2024          IROp    op;       /* op-code */
   2025          IRExpr* arg;      /* operand */
   2026       } Unop;
   2027 
   2028       /* A load from memory -- a normal load, not a load-linked.
   2029          Load-Linkeds (and Store-Conditionals) are instead represented
   2030          by IRStmt.LLSC since Load-Linkeds have side effects and so
   2031          are not semantically valid IRExpr's.
   2032          ppIRExpr output: LD<end>:<ty>(<addr>), eg. LDle:I32(t1)
   2033       */
   2034       struct {
   2035          IREndness end;    /* Endian-ness of the load */
   2036          IRType    ty;     /* Type of the loaded value */
   2037          IRExpr*   addr;   /* Address being loaded from */
   2038       } Load;
   2039 
   2040       /* A constant-valued expression.
   2041          ppIRExpr output: <con>, eg. 0x4:I32
   2042       */
   2043       struct {
   2044          IRConst* con;     /* The constant itself */
   2045       } Const;
   2046 
   2047       /* A call to a pure (no side-effects) helper C function.
   2048 
   2049          With the 'cee' field, 'name' is the function's name.  It is
   2050          only used for pretty-printing purposes.  The address to call
   2051          (host address, of course) is stored in the 'addr' field
   2052          inside 'cee'.
   2053 
   2054          The 'args' field is a NULL-terminated array of arguments.
   2055          The stated return IRType, and the implied argument types,
   2056          must match that of the function being called well enough so
   2057          that the back end can actually generate correct code for the
   2058          call.
   2059 
   2060          The called function **must** satisfy the following:
   2061 
   2062          * no side effects -- must be a pure function, the result of
   2063            which depends only on the passed parameters.
   2064 
   2065          * it may not look at, nor modify, any of the guest state
   2066            since that would hide guest state transitions from
   2067            instrumenters
   2068 
   2069          * it may not access guest memory, since that would hide
   2070            guest memory transactions from the instrumenters
   2071 
   2072          * it must not assume that arguments are being evaluated in a
   2073            particular order. The oder of evaluation is unspecified.
   2074 
   2075          This is restrictive, but makes the semantics clean, and does
   2076          not interfere with IR optimisation.
   2077 
   2078          If you want to call a helper which can mess with guest state
   2079          and/or memory, instead use Ist_Dirty.  This is a lot more
   2080          flexible, but you have to give a bunch of details about what
   2081          the helper does (and you better be telling the truth,
   2082          otherwise any derived instrumentation will be wrong).  Also
   2083          Ist_Dirty inhibits various IR optimisations and so can cause
   2084          quite poor code to be generated.  Try to avoid it.
   2085 
   2086          In principle it would be allowable to have the arg vector
   2087          contain an IRExpr_VECRET(), although not IRExpr_BBPTR(). However,
   2088          at the moment there is no requirement for clean helper calls to
   2089          be able to return V128 or V256 values.  Hence this is not allowed.
   2090 
   2091          ppIRExpr output: <cee>(<args>):<retty>
   2092                       eg. foo{0x80489304}(t1, t2):I32
   2093       */
   2094       struct {
   2095          IRCallee* cee;    /* Function to call. */
   2096          IRType    retty;  /* Type of return value. */
   2097          IRExpr**  args;   /* Vector of argument expressions. */
   2098       }  CCall;
   2099 
   2100       /* A ternary if-then-else operator.  It returns iftrue if cond is
   2101          nonzero, iffalse otherwise.  Note that it is STRICT, ie. both
   2102          iftrue and iffalse are evaluated in all cases.
   2103 
   2104          ppIRExpr output: ITE(<cond>,<iftrue>,<iffalse>),
   2105                          eg. ITE(t6,t7,t8)
   2106       */
   2107       struct {
   2108          IRExpr* cond;     /* Condition */
   2109          IRExpr* iftrue;   /* True expression */
   2110          IRExpr* iffalse;  /* False expression */
   2111       } ITE;
   2112    } Iex;
   2113 };
   2114 
   2115 /* Expression auxiliaries: a ternary expression. */
   2116 struct _IRTriop {
   2117    IROp op;          /* op-code   */
   2118    IRExpr* arg1;     /* operand 1 */
   2119    IRExpr* arg2;     /* operand 2 */
   2120    IRExpr* arg3;     /* operand 3 */
   2121 };
   2122 
   2123 /* Expression auxiliaries: a quarternary expression. */
   2124 struct _IRQop {
   2125    IROp op;          /* op-code   */
   2126    IRExpr* arg1;     /* operand 1 */
   2127    IRExpr* arg2;     /* operand 2 */
   2128    IRExpr* arg3;     /* operand 3 */
   2129    IRExpr* arg4;     /* operand 4 */
   2130 };
   2131 
   2132 
   2133 /* Two special kinds of IRExpr, which can ONLY be used in
   2134    argument lists for dirty helper calls (IRDirty.args) and in NO
   2135    OTHER PLACES.  And then only in very limited ways.  */
   2136 
   2137 /* Denotes an argument which (in the helper) takes a pointer to a
   2138    (naturally aligned) V128 or V256, into which the helper is expected
   2139    to write its result.  Use of IRExpr_VECRET() is strictly
   2140    controlled.  If the helper returns a V128 or V256 value then
   2141    IRExpr_VECRET() must appear exactly once in the arg list, although
   2142    it can appear anywhere, and the helper must have a C 'void' return
   2143    type.  If the helper returns any other type, IRExpr_VECRET() may
   2144    not appear in the argument list. */
   2145 
   2146 /* Denotes an void* argument which is passed to the helper, which at
   2147    run time will point to the thread's guest state area.  This can
   2148    only appear at most once in an argument list, and it may not appear
   2149    at all in argument lists for clean helper calls. */
   2150 
   2151 static inline Bool is_IRExpr_VECRET_or_BBPTR ( const IRExpr* e ) {
   2152    return e->tag == Iex_VECRET || e->tag == Iex_BBPTR;
   2153 }
   2154 
   2155 
   2156 /* Expression constructors. */
   2157 extern IRExpr* IRExpr_Binder ( Int binder );
   2158 extern IRExpr* IRExpr_Get    ( Int off, IRType ty );
   2159 extern IRExpr* IRExpr_GetI   ( IRRegArray* descr, IRExpr* ix, Int bias );
   2160 extern IRExpr* IRExpr_RdTmp  ( IRTemp tmp );
   2161 extern IRExpr* IRExpr_Qop    ( IROp op, IRExpr* arg1, IRExpr* arg2,
   2162                                         IRExpr* arg3, IRExpr* arg4 );
   2163 extern IRExpr* IRExpr_Triop  ( IROp op, IRExpr* arg1,
   2164                                         IRExpr* arg2, IRExpr* arg3 );
   2165 extern IRExpr* IRExpr_Binop  ( IROp op, IRExpr* arg1, IRExpr* arg2 );
   2166 extern IRExpr* IRExpr_Unop   ( IROp op, IRExpr* arg );
   2167 extern IRExpr* IRExpr_Load   ( IREndness end, IRType ty, IRExpr* addr );
   2168 extern IRExpr* IRExpr_Const  ( IRConst* con );
   2169 extern IRExpr* IRExpr_CCall  ( IRCallee* cee, IRType retty, IRExpr** args );
   2170 extern IRExpr* IRExpr_ITE    ( IRExpr* cond, IRExpr* iftrue, IRExpr* iffalse );
   2171 extern IRExpr* IRExpr_VECRET ( void );
   2172 extern IRExpr* IRExpr_BBPTR  ( void );
   2173 
   2174 /* Deep-copy an IRExpr. */
   2175 extern IRExpr* deepCopyIRExpr ( const IRExpr* );
   2176 
   2177 /* Pretty-print an IRExpr. */
   2178 extern void ppIRExpr ( const IRExpr* );
   2179 
   2180 /* NULL-terminated IRExpr vector constructors, suitable for
   2181    use as arg lists in clean/dirty helper calls. */
   2182 extern IRExpr** mkIRExprVec_0 ( void );
   2183 extern IRExpr** mkIRExprVec_1 ( IRExpr* );
   2184 extern IRExpr** mkIRExprVec_2 ( IRExpr*, IRExpr* );
   2185 extern IRExpr** mkIRExprVec_3 ( IRExpr*, IRExpr*, IRExpr* );
   2186 extern IRExpr** mkIRExprVec_4 ( IRExpr*, IRExpr*, IRExpr*, IRExpr* );
   2187 extern IRExpr** mkIRExprVec_5 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
   2188                                 IRExpr* );
   2189 extern IRExpr** mkIRExprVec_6 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
   2190                                 IRExpr*, IRExpr* );
   2191 extern IRExpr** mkIRExprVec_7 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
   2192                                 IRExpr*, IRExpr*, IRExpr* );
   2193 extern IRExpr** mkIRExprVec_8 ( IRExpr*, IRExpr*, IRExpr*, IRExpr*,
   2194                                 IRExpr*, IRExpr*, IRExpr*, IRExpr*);
   2195 
   2196 /* IRExpr copiers:
   2197    - shallowCopy: shallow-copy (ie. create a new vector that shares the
   2198      elements with the original).
   2199    - deepCopy: deep-copy (ie. create a completely new vector). */
   2200 extern IRExpr** shallowCopyIRExprVec ( IRExpr** );
   2201 extern IRExpr** deepCopyIRExprVec ( IRExpr *const * );
   2202 
   2203 /* Make a constant expression from the given host word taking into
   2204    account (of course) the host word size. */
   2205 extern IRExpr* mkIRExpr_HWord ( HWord );
   2206 
   2207 /* Convenience function for constructing clean helper calls. */
   2208 extern
   2209 IRExpr* mkIRExprCCall ( IRType retty,
   2210                         Int regparms, const HChar* name, void* addr,
   2211                         IRExpr** args );
   2212 
   2213 
   2214 /* Convenience functions for atoms (IRExprs which are either Iex_Tmp or
   2215  * Iex_Const). */
   2216 static inline Bool isIRAtom ( const IRExpr* e ) {
   2217    return toBool(e->tag == Iex_RdTmp || e->tag == Iex_Const);
   2218 }
   2219 
   2220 /* Are these two IR atoms identical?  Causes an assertion
   2221    failure if they are passed non-atoms. */
   2222 extern Bool eqIRAtom ( const IRExpr*, const IRExpr* );
   2223 
   2224 
   2225 /* ------------------ Jump kinds ------------------ */
   2226 
   2227 /* This describes hints which can be passed to the dispatcher at guest
   2228    control-flow transfer points.
   2229 
   2230    Re Ijk_InvalICache and Ijk_FlushDCache: the guest state _must_ have
   2231    two pseudo-registers, guest_CMSTART and guest_CMLEN, which specify
   2232    the start and length of the region to be invalidated.  CM stands
   2233    for "Cache Management".  These are both the size of a guest word.
   2234    It is the responsibility of the relevant toIR.c to ensure that
   2235    these are filled in with suitable values before issuing a jump of
   2236    kind Ijk_InvalICache or Ijk_FlushDCache.
   2237 
   2238    Ijk_InvalICache requests invalidation of translations taken from
   2239    the requested range.  Ijk_FlushDCache requests flushing of the D
   2240    cache for the specified range.
   2241 
   2242    Re Ijk_EmWarn and Ijk_EmFail: the guest state must have a
   2243    pseudo-register guest_EMNOTE, which is 32-bits regardless of the
   2244    host or guest word size.  That register should be made to hold a
   2245    VexEmNote value to indicate the reason for the exit.
   2246 
   2247    In the case of Ijk_EmFail, the exit is fatal (Vex-generated code
   2248    cannot continue) and so the jump destination can be anything.
   2249 
   2250    Re Ijk_Sys_ (syscall jumps): the guest state must have a
   2251    pseudo-register guest_IP_AT_SYSCALL, which is the size of a guest
   2252    word.  Front ends should set this to be the IP at the most recently
   2253    executed kernel-entering (system call) instruction.  This makes it
   2254    very much easier (viz, actually possible at all) to back up the
   2255    guest to restart a syscall that has been interrupted by a signal.
   2256 */
   2257 typedef
   2258    enum {
   2259       Ijk_INVALID=0x1A00,
   2260       Ijk_Boring,         /* not interesting; just goto next */
   2261       Ijk_Call,           /* guest is doing a call */
   2262       Ijk_Ret,            /* guest is doing a return */
   2263       Ijk_ClientReq,      /* do guest client req before continuing */
   2264       Ijk_Yield,          /* client is yielding to thread scheduler */
   2265       Ijk_EmWarn,         /* report emulation warning before continuing */
   2266       Ijk_EmFail,         /* emulation critical (FATAL) error; give up */
   2267       Ijk_NoDecode,       /* current instruction cannot be decoded */
   2268       Ijk_MapFail,        /* Vex-provided address translation failed */
   2269       Ijk_InvalICache,    /* Inval icache for range [CMSTART, +CMLEN) */
   2270       Ijk_FlushDCache,    /* Flush dcache for range [CMSTART, +CMLEN) */
   2271       Ijk_NoRedir,        /* Jump to un-redirected guest addr */
   2272       Ijk_SigILL,         /* current instruction synths SIGILL */
   2273       Ijk_SigTRAP,        /* current instruction synths SIGTRAP */
   2274       Ijk_SigSEGV,        /* current instruction synths SIGSEGV */
   2275       Ijk_SigBUS,         /* current instruction synths SIGBUS */
   2276       Ijk_SigFPE_IntDiv,  /* current instruction synths SIGFPE - IntDiv */
   2277       Ijk_SigFPE_IntOvf,  /* current instruction synths SIGFPE - IntOvf */
   2278       /* Unfortunately, various guest-dependent syscall kinds.  They
   2279 	 all mean: do a syscall before continuing. */
   2280       Ijk_Sys_syscall,    /* amd64/x86 'syscall', ppc 'sc', arm 'svc #0' */
   2281       Ijk_Sys_int32,      /* amd64/x86 'int $0x20' */
   2282       Ijk_Sys_int128,     /* amd64/x86 'int $0x80' */
   2283       Ijk_Sys_int129,     /* amd64/x86 'int $0x81' */
   2284       Ijk_Sys_int130,     /* amd64/x86 'int $0x82' */
   2285       Ijk_Sys_sysenter    /* x86 'sysenter'.  guest_EIP becomes
   2286                              invalid at the point this happens. */
   2287    }
   2288    IRJumpKind;
   2289 
   2290 extern void ppIRJumpKind ( IRJumpKind );
   2291 
   2292 
   2293 /* ------------------ Dirty helper calls ------------------ */
   2294 
   2295 /* A dirty call is a flexible mechanism for calling (possibly
   2296    conditionally) a helper function or procedure.  The helper function
   2297    may read, write or modify client memory, and may read, write or
   2298    modify client state.  It can take arguments and optionally return a
   2299    value.  It may return different results and/or do different things
   2300    when called repeatedly with the same arguments, by means of storing
   2301    private state.
   2302 
   2303    If a value is returned, it is assigned to the nominated return
   2304    temporary.
   2305 
   2306    Dirty calls are statements rather than expressions for obvious
   2307    reasons.  If a dirty call is marked as writing guest state, any
   2308    pre-existing values derived from the written parts of the guest
   2309    state are invalid.  Similarly, if the dirty call is stated as
   2310    writing memory, any pre-existing loaded values are invalidated by
   2311    it.
   2312 
   2313    In order that instrumentation is possible, the call must state, and
   2314    state correctly:
   2315 
   2316    * Whether it reads, writes or modifies memory, and if so where.
   2317 
   2318    * Whether it reads, writes or modifies guest state, and if so which
   2319      pieces.  Several pieces may be stated, and their extents must be
   2320      known at translation-time.  Each piece is allowed to repeat some
   2321      number of times at a fixed interval, if required.
   2322 
   2323    Normally, code is generated to pass just the args to the helper.
   2324    However, if IRExpr_BBPTR() is present in the argument list (at most
   2325    one instance is allowed), then the baseblock pointer is passed for
   2326    that arg, so that the callee can access the guest state.  It is
   2327    invalid for .nFxState to be zero but IRExpr_BBPTR() to be present,
   2328    since .nFxState==0 is a claim that the call does not access guest
   2329    state.
   2330 
   2331    IMPORTANT NOTE re GUARDS: Dirty calls are strict, very strict.  The
   2332    arguments and 'mFx' are evaluated REGARDLESS of the guard value.
   2333    The order of argument evaluation is unspecified.  The guard
   2334    expression is evaluated AFTER the arguments and 'mFx' have been
   2335    evaluated.  'mFx' is expected (by Memcheck) to be a defined value
   2336    even if the guard evaluates to false.
   2337 */
   2338 
   2339 #define VEX_N_FXSTATE  7   /* enough for FXSAVE/FXRSTOR on x86 */
   2340 
   2341 /* Effects on resources (eg. registers, memory locations) */
   2342 typedef
   2343    enum {
   2344       Ifx_None=0x1B00,      /* no effect */
   2345       Ifx_Read,             /* reads the resource */
   2346       Ifx_Write,            /* writes the resource */
   2347       Ifx_Modify,           /* modifies the resource */
   2348    }
   2349    IREffect;
   2350 
   2351 /* Pretty-print an IREffect */
   2352 extern void ppIREffect ( IREffect );
   2353 
   2354 typedef
   2355    struct _IRDirty {
   2356       /* What to call, and details of args/results.  .guard must be
   2357          non-NULL.  If .tmp is not IRTemp_INVALID, then the call
   2358          returns a result which is placed in .tmp.  If at runtime the
   2359          guard evaluates to false, .tmp has an 0x555..555 bit pattern
   2360          written to it.  Hence conditional calls that assign .tmp are
   2361          allowed. */
   2362       IRCallee* cee;    /* where to call */
   2363       IRExpr*   guard;  /* :: Ity_Bit.  Controls whether call happens */
   2364       /* The args vector may contain IRExpr_BBPTR() and/or
   2365          IRExpr_VECRET(), in both cases, at most once. */
   2366       IRExpr**  args;   /* arg vector, ends in NULL. */
   2367       IRTemp    tmp;    /* to assign result to, or IRTemp_INVALID if none */
   2368 
   2369       /* Mem effects; we allow only one R/W/M region to be stated */
   2370       IREffect  mFx;    /* indicates memory effects, if any */
   2371       IRExpr*   mAddr;  /* of access, or NULL if mFx==Ifx_None */
   2372       Int       mSize;  /* of access, or zero if mFx==Ifx_None */
   2373 
   2374       /* Guest state effects; up to N allowed */
   2375       Int  nFxState; /* must be 0 .. VEX_N_FXSTATE */
   2376       struct {
   2377          IREffect fx:16;   /* read, write or modify?  Ifx_None is invalid. */
   2378          UShort   offset;
   2379          UShort   size;
   2380          UChar    nRepeats;
   2381          UChar    repeatLen;
   2382       } fxState[VEX_N_FXSTATE];
   2383       /* The access can be repeated, as specified by nRepeats and
   2384          repeatLen.  To describe only a single access, nRepeats and
   2385          repeatLen should be zero.  Otherwise, repeatLen must be a
   2386          multiple of size and greater than size. */
   2387       /* Overall, the parts of the guest state denoted by (offset,
   2388          size, nRepeats, repeatLen) is
   2389                [offset, +size)
   2390             and, if nRepeats > 0,
   2391                for (i = 1; i <= nRepeats; i++)
   2392                   [offset + i * repeatLen, +size)
   2393          A convenient way to enumerate all segments is therefore
   2394             for (i = 0; i < 1 + nRepeats; i++)
   2395                [offset + i * repeatLen, +size)
   2396       */
   2397    }
   2398    IRDirty;
   2399 
   2400 /* Pretty-print a dirty call */
   2401 extern void     ppIRDirty ( const IRDirty* );
   2402 
   2403 /* Allocate an uninitialised dirty call */
   2404 extern IRDirty* emptyIRDirty ( void );
   2405 
   2406 /* Deep-copy a dirty call */
   2407 extern IRDirty* deepCopyIRDirty ( const IRDirty* );
   2408 
   2409 /* A handy function which takes some of the tedium out of constructing
   2410    dirty helper calls.  The called function impliedly does not return
   2411    any value and has a constant-True guard.  The call is marked as
   2412    accessing neither guest state nor memory (hence the "unsafe"
   2413    designation) -- you can change this marking later if need be.  A
   2414    suitable IRCallee is constructed from the supplied bits. */
   2415 extern
   2416 IRDirty* unsafeIRDirty_0_N ( Int regparms, const HChar* name, void* addr,
   2417                              IRExpr** args );
   2418 
   2419 /* Similarly, make a zero-annotation dirty call which returns a value,
   2420    and assign that to the given temp. */
   2421 extern
   2422 IRDirty* unsafeIRDirty_1_N ( IRTemp dst,
   2423                              Int regparms, const HChar* name, void* addr,
   2424                              IRExpr** args );
   2425 
   2426 
   2427 /* --------------- Memory Bus Events --------------- */
   2428 
   2429 typedef
   2430    enum {
   2431       Imbe_Fence=0x1C00,
   2432       /* Needed only on ARM.  It cancels a reservation made by a
   2433          preceding Linked-Load, and needs to be handed through to the
   2434          back end, just as LL and SC themselves are. */
   2435       Imbe_CancelReservation
   2436    }
   2437    IRMBusEvent;
   2438 
   2439 extern void ppIRMBusEvent ( IRMBusEvent );
   2440 
   2441 
   2442 /* --------------- Compare and Swap --------------- */
   2443 
   2444 /* This denotes an atomic compare and swap operation, either
   2445    a single-element one or a double-element one.
   2446 
   2447    In the single-element case:
   2448 
   2449      .addr is the memory address.
   2450      .end  is the endianness with which memory is accessed
   2451 
   2452      If .addr contains the same value as .expdLo, then .dataLo is
   2453      written there, else there is no write.  In both cases, the
   2454      original value at .addr is copied into .oldLo.
   2455 
   2456      Types: .expdLo, .dataLo and .oldLo must all have the same type.
   2457      It may be any integral type, viz: I8, I16, I32 or, for 64-bit
   2458      guests, I64.
   2459 
   2460      .oldHi must be IRTemp_INVALID, and .expdHi and .dataHi must
   2461      be NULL.
   2462 
   2463    In the double-element case:
   2464 
   2465      .addr is the memory address.
   2466      .end  is the endianness with which memory is accessed
   2467 
   2468      The operation is the same:
   2469 
   2470      If .addr contains the same value as .expdHi:.expdLo, then
   2471      .dataHi:.dataLo is written there, else there is no write.  In
   2472      both cases the original value at .addr is copied into
   2473      .oldHi:.oldLo.
   2474 
   2475      Types: .expdHi, .expdLo, .dataHi, .dataLo, .oldHi, .oldLo must
   2476      all have the same type, which may be any integral type, viz: I8,
   2477      I16, I32 or, for 64-bit guests, I64.
   2478 
   2479      The double-element case is complicated by the issue of
   2480      endianness.  In all cases, the two elements are understood to be
   2481      located adjacently in memory, starting at the address .addr.
   2482 
   2483        If .end is Iend_LE, then the .xxxLo component is at the lower
   2484        address and the .xxxHi component is at the higher address, and
   2485        each component is itself stored little-endianly.
   2486 
   2487        If .end is Iend_BE, then the .xxxHi component is at the lower
   2488        address and the .xxxLo component is at the higher address, and
   2489        each component is itself stored big-endianly.
   2490 
   2491    This allows representing more cases than most architectures can
   2492    handle.  For example, x86 cannot do DCAS on 8- or 16-bit elements.
   2493 
   2494    How to know if the CAS succeeded?
   2495 
   2496    * if .oldLo == .expdLo (resp. .oldHi:.oldLo == .expdHi:.expdLo),
   2497      then the CAS succeeded, .dataLo (resp. .dataHi:.dataLo) is now
   2498      stored at .addr, and the original value there was .oldLo (resp
   2499      .oldHi:.oldLo).
   2500 
   2501    * if .oldLo != .expdLo (resp. .oldHi:.oldLo != .expdHi:.expdLo),
   2502      then the CAS failed, and the original value at .addr was .oldLo
   2503      (resp. .oldHi:.oldLo).
   2504 
   2505    Hence it is easy to know whether or not the CAS succeeded.
   2506 */
   2507 typedef
   2508    struct {
   2509       IRTemp    oldHi;  /* old value of *addr is written here */
   2510       IRTemp    oldLo;
   2511       IREndness end;    /* endianness of the data in memory */
   2512       IRExpr*   addr;   /* store address */
   2513       IRExpr*   expdHi; /* expected old value at *addr */
   2514       IRExpr*   expdLo;
   2515       IRExpr*   dataHi; /* new value for *addr */
   2516       IRExpr*   dataLo;
   2517    }
   2518    IRCAS;
   2519 
   2520 extern void ppIRCAS ( const IRCAS* cas );
   2521 
   2522 extern IRCAS* mkIRCAS ( IRTemp oldHi, IRTemp oldLo,
   2523                         IREndness end, IRExpr* addr,
   2524                         IRExpr* expdHi, IRExpr* expdLo,
   2525                         IRExpr* dataHi, IRExpr* dataLo );
   2526 
   2527 extern IRCAS* deepCopyIRCAS ( const IRCAS* );
   2528 
   2529 
   2530 /* ------------------ Circular Array Put ------------------ */
   2531 
   2532 typedef
   2533    struct {
   2534       IRRegArray* descr; /* Part of guest state treated as circular */
   2535       IRExpr*     ix;    /* Variable part of index into array */
   2536       Int         bias;  /* Constant offset part of index into array */
   2537       IRExpr*     data;  /* The value to write */
   2538    } IRPutI;
   2539 
   2540 extern void ppIRPutI ( const IRPutI* puti );
   2541 
   2542 extern IRPutI* mkIRPutI ( IRRegArray* descr, IRExpr* ix,
   2543                           Int bias, IRExpr* data );
   2544 
   2545 extern IRPutI* deepCopyIRPutI ( const IRPutI* );
   2546 
   2547 
   2548 /* --------------- Guarded loads and stores --------------- */
   2549 
   2550 /* Conditional stores are straightforward.  They are the same as
   2551    normal stores, with an extra 'guard' field :: Ity_I1 that
   2552    determines whether or not the store actually happens.  If not,
   2553    memory is unmodified.
   2554 
   2555    The semantics of this is that 'addr' and 'data' are fully evaluated
   2556    even in the case where 'guard' evaluates to zero (false).
   2557 */
   2558 typedef
   2559    struct {
   2560       IREndness end;    /* Endianness of the store */
   2561       IRExpr*   addr;   /* store address */
   2562       IRExpr*   data;   /* value to write */
   2563       IRExpr*   guard;  /* Guarding value */
   2564    }
   2565    IRStoreG;
   2566 
   2567 /* Conditional loads are a little more complex.  'addr' is the
   2568    address, 'guard' is the guarding condition.  If the load takes
   2569    place, the loaded value is placed in 'dst'.  If it does not take
   2570    place, 'alt' is copied to 'dst'.  However, the loaded value is not
   2571    placed directly in 'dst' -- it is first subjected to the conversion
   2572    specified by 'cvt'.
   2573 
   2574    For example, imagine doing a conditional 8-bit load, in which the
   2575    loaded value is zero extended to 32 bits.  Hence:
   2576    * 'dst' and 'alt' must have type I32
   2577    * 'cvt' must be a unary op which converts I8 to I32.  In this
   2578      example, it would be ILGop_8Uto32.
   2579 
   2580    There is no explicit indication of the type at which the load is
   2581    done, since that is inferrable from the arg type of 'cvt'.  Note
   2582    that the types of 'alt' and 'dst' and the result type of 'cvt' must
   2583    all be the same.
   2584 
   2585    Semantically, 'addr' is evaluated even in the case where 'guard'
   2586    evaluates to zero (false), and 'alt' is evaluated even when 'guard'
   2587    evaluates to one (true).  That is, 'addr' and 'alt' are always
   2588    evaluated.
   2589 */
   2590 typedef
   2591    enum {
   2592       ILGop_INVALID=0x1D00,
   2593       ILGop_Ident64,   /* 64 bit, no conversion */
   2594       ILGop_Ident32,   /* 32 bit, no conversion */
   2595       ILGop_16Uto32,   /* 16 bit load, Z-widen to 32 */
   2596       ILGop_16Sto32,   /* 16 bit load, S-widen to 32 */
   2597       ILGop_8Uto32,    /* 8 bit load, Z-widen to 32 */
   2598       ILGop_8Sto32     /* 8 bit load, S-widen to 32 */
   2599    }
   2600    IRLoadGOp;
   2601 
   2602 typedef
   2603    struct {
   2604       IREndness end;    /* Endianness of the load */
   2605       IRLoadGOp cvt;    /* Conversion to apply to the loaded value */
   2606       IRTemp    dst;    /* Destination (LHS) of assignment */
   2607       IRExpr*   addr;   /* Address being loaded from */
   2608       IRExpr*   alt;    /* Value if load is not done. */
   2609       IRExpr*   guard;  /* Guarding value */
   2610    }
   2611    IRLoadG;
   2612 
   2613 extern void ppIRStoreG ( const IRStoreG* sg );
   2614 
   2615 extern void ppIRLoadGOp ( IRLoadGOp cvt );
   2616 
   2617 extern void ppIRLoadG ( const IRLoadG* lg );
   2618 
   2619 extern IRStoreG* mkIRStoreG ( IREndness end,
   2620                               IRExpr* addr, IRExpr* data,
   2621                               IRExpr* guard );
   2622 
   2623 extern IRLoadG* mkIRLoadG ( IREndness end, IRLoadGOp cvt,
   2624                             IRTemp dst, IRExpr* addr, IRExpr* alt,
   2625                             IRExpr* guard );
   2626 
   2627 
   2628 /* ------------------ Statements ------------------ */
   2629 
   2630 /* The different kinds of statements.  Their meaning is explained
   2631    below in the comments for IRStmt.
   2632 
   2633    Those marked META do not represent code, but rather extra
   2634    information about the code.  These statements can be removed
   2635    without affecting the functional behaviour of the code, however
   2636    they are required by some IR consumers such as tools that
   2637    instrument the code.
   2638 */
   2639 
   2640 typedef
   2641    enum {
   2642       Ist_NoOp=0x1E00,
   2643       Ist_IMark,     /* META */
   2644       Ist_AbiHint,   /* META */
   2645       Ist_Put,
   2646       Ist_PutI,
   2647       Ist_WrTmp,
   2648       Ist_Store,
   2649       Ist_LoadG,
   2650       Ist_StoreG,
   2651       Ist_CAS,
   2652       Ist_LLSC,
   2653       Ist_Dirty,
   2654       Ist_MBE,
   2655       Ist_Exit
   2656    }
   2657    IRStmtTag;
   2658 
   2659 /* A statement.  Stored as a tagged union.  'tag' indicates what kind
   2660    of expression this is.  'Ist' is the union that holds the fields.
   2661    If an IRStmt 'st' has st.tag equal to Iex_Store, then it's a store
   2662    statement, and the fields can be accessed with
   2663    'st.Ist.Store.<fieldname>'.
   2664 
   2665    For each kind of statement, we show what it looks like when
   2666    pretty-printed with ppIRStmt().
   2667 */
   2668 typedef
   2669    struct _IRStmt {
   2670       IRStmtTag tag;
   2671       union {
   2672          /* A no-op (usually resulting from IR optimisation).  Can be
   2673             omitted without any effect.
   2674 
   2675             ppIRStmt output: IR-NoOp
   2676          */
   2677          struct {
   2678 	 } NoOp;
   2679 
   2680          /* META: instruction mark.  Marks the start of the statements
   2681             that represent a single machine instruction (the end of
   2682             those statements is marked by the next IMark or the end of
   2683             the IRSB).  Contains the address and length of the
   2684             instruction.
   2685 
   2686             It also contains a delta value.  The delta must be
   2687             subtracted from a guest program counter value before
   2688             attempting to establish, by comparison with the address
   2689             and length values, whether or not that program counter
   2690             value refers to this instruction.  For x86, amd64, ppc32,
   2691             ppc64 and arm, the delta value is zero.  For Thumb
   2692             instructions, the delta value is one.  This is because, on
   2693             Thumb, guest PC values (guest_R15T) are encoded using the
   2694             top 31 bits of the instruction address and a 1 in the lsb;
   2695             hence they appear to be (numerically) 1 past the start of
   2696             the instruction they refer to.  IOW, guest_R15T on ARM
   2697             holds a standard ARM interworking address.
   2698 
   2699             ppIRStmt output: ------ IMark(<addr>, <len>, <delta>) ------,
   2700                          eg. ------ IMark(0x4000792, 5, 0) ------,
   2701          */
   2702          struct {
   2703             Addr   addr;   /* instruction address */
   2704             UInt   len;    /* instruction length */
   2705             UChar  delta;  /* addr = program counter as encoded in guest state
   2706                                      - delta */
   2707          } IMark;
   2708 
   2709          /* META: An ABI hint, which says something about this
   2710             platform's ABI.
   2711 
   2712             At the moment, the only AbiHint is one which indicates
   2713             that a given chunk of address space, [base .. base+len-1],
   2714             has become undefined.  This is used on amd64-linux and
   2715             some ppc variants to pass stack-redzoning hints to whoever
   2716             wants to see them.  It also indicates the address of the
   2717             next (dynamic) instruction that will be executed.  This is
   2718             to help Memcheck to origin tracking.
   2719 
   2720             ppIRStmt output: ====== AbiHint(<base>, <len>, <nia>) ======
   2721                          eg. ====== AbiHint(t1, 16, t2) ======
   2722          */
   2723          struct {
   2724             IRExpr* base;     /* Start  of undefined chunk */
   2725             Int     len;      /* Length of undefined chunk */
   2726             IRExpr* nia;      /* Address of next (guest) insn */
   2727          } AbiHint;
   2728 
   2729          /* Write a guest register, at a fixed offset in the guest state.
   2730             ppIRStmt output: PUT(<offset>) = <data>, eg. PUT(60) = t1
   2731          */
   2732          struct {
   2733             Int     offset;   /* Offset into the guest state */
   2734             IRExpr* data;     /* The value to write */
   2735          } Put;
   2736 
   2737          /* Write a guest register, at a non-fixed offset in the guest
   2738             state.  See the comment for GetI expressions for more
   2739             information.
   2740 
   2741             ppIRStmt output: PUTI<descr>[<ix>,<bias>] = <data>,
   2742                          eg. PUTI(64:8xF64)[t5,0] = t1
   2743          */
   2744          struct {
   2745             IRPutI* details;
   2746          } PutI;
   2747 
   2748          /* Assign a value to a temporary.  Note that SSA rules require
   2749             each tmp is only assigned to once.  IR sanity checking will
   2750             reject any block containing a temporary which is not assigned
   2751             to exactly once.
   2752 
   2753             ppIRStmt output: t<tmp> = <data>, eg. t1 = 3
   2754          */
   2755          struct {
   2756             IRTemp  tmp;   /* Temporary  (LHS of assignment) */
   2757             IRExpr* data;  /* Expression (RHS of assignment) */
   2758          } WrTmp;
   2759 
   2760          /* Write a value to memory.  This is a normal store, not a
   2761             Store-Conditional.  To represent a Store-Conditional,
   2762             instead use IRStmt.LLSC.
   2763             ppIRStmt output: ST<end>(<addr>) = <data>, eg. STle(t1) = t2
   2764          */
   2765          struct {
   2766             IREndness end;    /* Endianness of the store */
   2767             IRExpr*   addr;   /* store address */
   2768             IRExpr*   data;   /* value to write */
   2769          } Store;
   2770 
   2771          /* Guarded store.  Note that this is defined to evaluate all
   2772             expression fields (addr, data) even if the guard evaluates
   2773             to false.
   2774             ppIRStmt output:
   2775               if (<guard>) ST<end>(<addr>) = <data> */
   2776          struct {
   2777             IRStoreG* details;
   2778          } StoreG;
   2779 
   2780          /* Guarded load.  Note that this is defined to evaluate all
   2781             expression fields (addr, alt) even if the guard evaluates
   2782             to false.
   2783             ppIRStmt output:
   2784               t<tmp> = if (<guard>) <cvt>(LD<end>(<addr>)) else <alt> */
   2785          struct {
   2786             IRLoadG* details;
   2787          } LoadG;
   2788 
   2789          /* Do an atomic compare-and-swap operation.  Semantics are
   2790             described above on a comment at the definition of IRCAS.
   2791 
   2792             ppIRStmt output:
   2793                t<tmp> = CAS<end>(<addr> :: <expected> -> <new>)
   2794             eg
   2795                t1 = CASle(t2 :: t3->Add32(t3,1))
   2796                which denotes a 32-bit atomic increment
   2797                of a value at address t2
   2798 
   2799             A double-element CAS may also be denoted, in which case <tmp>,
   2800             <expected> and <new> are all pairs of items, separated by
   2801             commas.
   2802          */
   2803          struct {
   2804             IRCAS* details;
   2805          } CAS;
   2806 
   2807          /* Either Load-Linked or Store-Conditional, depending on
   2808             STOREDATA.
   2809 
   2810             If STOREDATA is NULL then this is a Load-Linked, meaning
   2811             that data is loaded from memory as normal, but a
   2812             'reservation' for the address is also lodged in the
   2813             hardware.
   2814 
   2815                result = Load-Linked(addr, end)
   2816 
   2817             The data transfer type is the type of RESULT (I32, I64,
   2818             etc).  ppIRStmt output:
   2819 
   2820                result = LD<end>-Linked(<addr>), eg. LDbe-Linked(t1)
   2821 
   2822             If STOREDATA is not NULL then this is a Store-Conditional,
   2823             hence:
   2824 
   2825                result = Store-Conditional(addr, storedata, end)
   2826 
   2827             The data transfer type is the type of STOREDATA and RESULT
   2828             has type Ity_I1. The store may fail or succeed depending
   2829             on the state of a previously lodged reservation on this
   2830             address.  RESULT is written 1 if the store succeeds and 0
   2831             if it fails.  eg ppIRStmt output:
   2832 
   2833                result = ( ST<end>-Cond(<addr>) = <storedata> )
   2834                eg t3 = ( STbe-Cond(t1, t2) )
   2835 
   2836             In all cases, the address must be naturally aligned for
   2837             the transfer type -- any misaligned addresses should be
   2838             caught by a dominating IR check and side exit.  This
   2839             alignment restriction exists because on at least some
   2840             LL/SC platforms (ppc), stwcx. etc will trap w/ SIGBUS on
   2841             misaligned addresses, and we have to actually generate
   2842             stwcx. on the host, and we don't want it trapping on the
   2843             host.
   2844 
   2845             Summary of rules for transfer type:
   2846               STOREDATA == NULL (LL):
   2847                 transfer type = type of RESULT
   2848               STOREDATA != NULL (SC):
   2849                 transfer type = type of STOREDATA, and RESULT :: Ity_I1
   2850          */
   2851          struct {
   2852             IREndness end;
   2853             IRTemp    result;
   2854             IRExpr*   addr;
   2855             IRExpr*   storedata; /* NULL => LL, non-NULL => SC */
   2856          } LLSC;
   2857 
   2858          /* Call (possibly conditionally) a C function that has side
   2859             effects (ie. is "dirty").  See the comments above the
   2860             IRDirty type declaration for more information.
   2861 
   2862             ppIRStmt output:
   2863                t<tmp> = DIRTY <guard> <effects>
   2864                   ::: <callee>(<args>)
   2865             eg.
   2866                t1 = DIRTY t27 RdFX-gst(16,4) RdFX-gst(60,4)
   2867                      ::: foo{0x380035f4}(t2)
   2868          */
   2869          struct {
   2870             IRDirty* details;
   2871          } Dirty;
   2872 
   2873          /* A memory bus event - a fence, or acquisition/release of the
   2874             hardware bus lock.  IR optimisation treats all these as fences
   2875             across which no memory references may be moved.
   2876             ppIRStmt output: MBusEvent-Fence,
   2877                              MBusEvent-BusLock, MBusEvent-BusUnlock.
   2878          */
   2879          struct {
   2880             IRMBusEvent event;
   2881          } MBE;
   2882 
   2883          /* Conditional exit from the middle of an IRSB.
   2884             ppIRStmt output: if (<guard>) goto {<jk>} <dst>
   2885                          eg. if (t69) goto {Boring} 0x4000AAA:I32
   2886             If <guard> is true, the guest state is also updated by
   2887             PUT-ing <dst> at <offsIP>.  This is done because a
   2888             taken exit must update the guest program counter.
   2889          */
   2890          struct {
   2891             IRExpr*    guard;    /* Conditional expression */
   2892             IRConst*   dst;      /* Jump target (constant only) */
   2893             IRJumpKind jk;       /* Jump kind */
   2894             Int        offsIP;   /* Guest state offset for IP */
   2895          } Exit;
   2896       } Ist;
   2897    }
   2898    IRStmt;
   2899 
   2900 /* Statement constructors. */
   2901 extern IRStmt* IRStmt_NoOp    ( void );
   2902 extern IRStmt* IRStmt_IMark   ( Addr addr, UInt len, UChar delta );
   2903 extern IRStmt* IRStmt_AbiHint ( IRExpr* base, Int len, IRExpr* nia );
   2904 extern IRStmt* IRStmt_Put     ( Int off, IRExpr* data );
   2905 extern IRStmt* IRStmt_PutI    ( IRPutI* details );
   2906 extern IRStmt* IRStmt_WrTmp   ( IRTemp tmp, IRExpr* data );
   2907 extern IRStmt* IRStmt_Store   ( IREndness end, IRExpr* addr, IRExpr* data );
   2908 extern IRStmt* IRStmt_StoreG  ( IREndness end, IRExpr* addr, IRExpr* data,
   2909                                 IRExpr* guard );
   2910 extern IRStmt* IRStmt_LoadG   ( IREndness end, IRLoadGOp cvt, IRTemp dst,
   2911                                 IRExpr* addr, IRExpr* alt, IRExpr* guard );
   2912 extern IRStmt* IRStmt_CAS     ( IRCAS* details );
   2913 extern IRStmt* IRStmt_LLSC    ( IREndness end, IRTemp result,
   2914                                 IRExpr* addr, IRExpr* storedata );
   2915 extern IRStmt* IRStmt_Dirty   ( IRDirty* details );
   2916 extern IRStmt* IRStmt_MBE     ( IRMBusEvent event );
   2917 extern IRStmt* IRStmt_Exit    ( IRExpr* guard, IRJumpKind jk, IRConst* dst,
   2918                                 Int offsIP );
   2919 
   2920 /* Deep-copy an IRStmt. */
   2921 extern IRStmt* deepCopyIRStmt ( const IRStmt* );
   2922 
   2923 /* Pretty-print an IRStmt. */
   2924 extern void ppIRStmt ( const IRStmt* );
   2925 
   2926 
   2927 /* ------------------ Basic Blocks ------------------ */
   2928 
   2929 /* Type environments: a bunch of statements, expressions, etc, are
   2930    incomplete without an environment indicating the type of each
   2931    IRTemp.  So this provides one.  IR temporaries are really just
   2932    unsigned ints and so this provides an array, 0 .. n_types_used-1 of
   2933    them.
   2934 */
   2935 typedef
   2936    struct {
   2937       IRType* types;
   2938       Int     types_size;
   2939       Int     types_used;
   2940    }
   2941    IRTypeEnv;
   2942 
   2943 /* Obtain a new IRTemp */
   2944 extern IRTemp newIRTemp ( IRTypeEnv*, IRType );
   2945 
   2946 /* Deep-copy a type environment */
   2947 extern IRTypeEnv* deepCopyIRTypeEnv ( const IRTypeEnv* );
   2948 
   2949 /* Pretty-print a type environment */
   2950 extern void ppIRTypeEnv ( const IRTypeEnv* );
   2951 
   2952 
   2953 /* Code blocks, which in proper compiler terminology are superblocks
   2954    (single entry, multiple exit code sequences) contain:
   2955 
   2956    - A table giving a type for each temp (the "type environment")
   2957    - An expandable array of statements
   2958    - An expression of type 32 or 64 bits, depending on the
   2959      guest's word size, indicating the next destination if the block
   2960      executes all the way to the end, without a side exit
   2961    - An indication of any special actions (JumpKind) needed
   2962      for this final jump.
   2963    - Offset of the IP field in the guest state.  This will be
   2964      updated before the final jump is done.
   2965 
   2966    "IRSB" stands for "IR Super Block".
   2967 */
   2968 typedef
   2969    struct {
   2970       IRTypeEnv* tyenv;
   2971       IRStmt**   stmts;
   2972       Int        stmts_size;
   2973       Int        stmts_used;
   2974       IRExpr*    next;
   2975       IRJumpKind jumpkind;
   2976       Int        offsIP;
   2977    }
   2978    IRSB;
   2979 
   2980 /* Allocate a new, uninitialised IRSB */
   2981 extern IRSB* emptyIRSB ( void );
   2982 
   2983 /* Deep-copy an IRSB */
   2984 extern IRSB* deepCopyIRSB ( const IRSB* );
   2985 
   2986 /* Deep-copy an IRSB, except for the statements list, which set to be
   2987    a new, empty, list of statements. */
   2988 extern IRSB* deepCopyIRSBExceptStmts ( const IRSB* );
   2989 
   2990 /* Pretty-print an IRSB */
   2991 extern void ppIRSB ( const IRSB* );
   2992 
   2993 /* Append an IRStmt to an IRSB */
   2994 extern void addStmtToIRSB ( IRSB*, IRStmt* );
   2995 
   2996 
   2997 /*---------------------------------------------------------------*/
   2998 /*--- Helper functions for the IR                             ---*/
   2999 /*---------------------------------------------------------------*/
   3000 
   3001 /* For messing with IR type environments */
   3002 extern IRTypeEnv* emptyIRTypeEnv  ( void );
   3003 
   3004 /* What is the type of this expression? */
   3005 extern IRType typeOfIRConst ( const IRConst* );
   3006 extern IRType typeOfIRTemp  ( const IRTypeEnv*, IRTemp );
   3007 extern IRType typeOfIRExpr  ( const IRTypeEnv*, const IRExpr* );
   3008 
   3009 /* What are the arg and result type for this IRLoadGOp? */
   3010 extern void typeOfIRLoadGOp ( IRLoadGOp cvt,
   3011                               /*OUT*/IRType* t_res,
   3012                               /*OUT*/IRType* t_arg );
   3013 
   3014 /* Sanity check a BB of IR */
   3015 extern void sanityCheckIRSB ( const  IRSB*  bb,
   3016                               const  HChar* caller,
   3017                               Bool   require_flatness,
   3018                               IRType guest_word_size );
   3019 extern Bool isFlatIRStmt ( const IRStmt* );
   3020 
   3021 /* Is this any value actually in the enumeration 'IRType' ? */
   3022 extern Bool isPlausibleIRType ( IRType ty );
   3023 
   3024 
   3025 /*---------------------------------------------------------------*/
   3026 /*--- IR injection                                            ---*/
   3027 /*---------------------------------------------------------------*/
   3028 
   3029 void vex_inject_ir(IRSB *, IREndness);
   3030 
   3031 
   3032 #endif /* ndef __LIBVEX_IR_H */
   3033 
   3034 /*---------------------------------------------------------------*/
   3035 /*---                                             libvex_ir.h ---*/
   3036 /*---------------------------------------------------------------*/
   3037