Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass moves instructions into successor blocks when possible, so that
     11 // they aren't executed on paths where their results aren't needed.
     12 //
     13 // This pass is not intended to be a replacement or a complete alternative
     14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
     15 // constructs that are not exposed before lowering and instruction selection.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     25 #include "llvm/CodeGen/MachineDominators.h"
     26 #include "llvm/CodeGen/MachineLoopInfo.h"
     27 #include "llvm/CodeGen/MachinePostDominators.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "machine-sink"
     38 
     39 static cl::opt<bool>
     40 SplitEdges("machine-sink-split",
     41            cl::desc("Split critical edges during machine sinking"),
     42            cl::init(true), cl::Hidden);
     43 
     44 static cl::opt<bool>
     45 UseBlockFreqInfo("machine-sink-bfi",
     46            cl::desc("Use block frequency info to find successors to sink"),
     47            cl::init(true), cl::Hidden);
     48 
     49 
     50 STATISTIC(NumSunk,      "Number of machine instructions sunk");
     51 STATISTIC(NumSplit,     "Number of critical edges split");
     52 STATISTIC(NumCoalesces, "Number of copies coalesced");
     53 
     54 namespace {
     55   class MachineSinking : public MachineFunctionPass {
     56     const TargetInstrInfo *TII;
     57     const TargetRegisterInfo *TRI;
     58     MachineRegisterInfo  *MRI;     // Machine register information
     59     MachineDominatorTree *DT;      // Machine dominator tree
     60     MachinePostDominatorTree *PDT; // Machine post dominator tree
     61     MachineLoopInfo *LI;
     62     const MachineBlockFrequencyInfo *MBFI;
     63     AliasAnalysis *AA;
     64 
     65     // Remember which edges have been considered for breaking.
     66     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
     67     CEBCandidates;
     68     // Remember which edges we are about to split.
     69     // This is different from CEBCandidates since those edges
     70     // will be split.
     71     SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
     72 
     73   public:
     74     static char ID; // Pass identification
     75     MachineSinking() : MachineFunctionPass(ID) {
     76       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
     77     }
     78 
     79     bool runOnMachineFunction(MachineFunction &MF) override;
     80 
     81     void getAnalysisUsage(AnalysisUsage &AU) const override {
     82       AU.setPreservesCFG();
     83       MachineFunctionPass::getAnalysisUsage(AU);
     84       AU.addRequired<AliasAnalysis>();
     85       AU.addRequired<MachineDominatorTree>();
     86       AU.addRequired<MachinePostDominatorTree>();
     87       AU.addRequired<MachineLoopInfo>();
     88       AU.addPreserved<MachineDominatorTree>();
     89       AU.addPreserved<MachinePostDominatorTree>();
     90       AU.addPreserved<MachineLoopInfo>();
     91       if (UseBlockFreqInfo)
     92         AU.addRequired<MachineBlockFrequencyInfo>();
     93     }
     94 
     95     void releaseMemory() override {
     96       CEBCandidates.clear();
     97     }
     98 
     99   private:
    100     bool ProcessBlock(MachineBasicBlock &MBB);
    101     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
    102                                      MachineBasicBlock *From,
    103                                      MachineBasicBlock *To);
    104     /// \brief Postpone the splitting of the given critical
    105     /// edge (\p From, \p To).
    106     ///
    107     /// We do not split the edges on the fly. Indeed, this invalidates
    108     /// the dominance information and thus triggers a lot of updates
    109     /// of that information underneath.
    110     /// Instead, we postpone all the splits after each iteration of
    111     /// the main loop. That way, the information is at least valid
    112     /// for the lifetime of an iteration.
    113     ///
    114     /// \return True if the edge is marked as toSplit, false otherwise.
    115     /// False can be returned if, for instance, this is not profitable.
    116     bool PostponeSplitCriticalEdge(MachineInstr *MI,
    117                                    MachineBasicBlock *From,
    118                                    MachineBasicBlock *To,
    119                                    bool BreakPHIEdge);
    120     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
    121     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
    122                                  MachineBasicBlock *DefMBB,
    123                                  bool &BreakPHIEdge, bool &LocalUse) const;
    124     MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
    125                bool &BreakPHIEdge);
    126     bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
    127                               MachineBasicBlock *MBB,
    128                               MachineBasicBlock *SuccToSinkTo);
    129 
    130     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
    131                                          MachineBasicBlock *MBB);
    132   };
    133 } // end anonymous namespace
    134 
    135 char MachineSinking::ID = 0;
    136 char &llvm::MachineSinkingID = MachineSinking::ID;
    137 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
    138                 "Machine code sinking", false, false)
    139 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    140 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    141 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    142 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
    143                 "Machine code sinking", false, false)
    144 
    145 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
    146                                                      MachineBasicBlock *MBB) {
    147   if (!MI->isCopy())
    148     return false;
    149 
    150   unsigned SrcReg = MI->getOperand(1).getReg();
    151   unsigned DstReg = MI->getOperand(0).getReg();
    152   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
    153       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
    154       !MRI->hasOneNonDBGUse(SrcReg))
    155     return false;
    156 
    157   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
    158   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
    159   if (SRC != DRC)
    160     return false;
    161 
    162   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    163   if (DefMI->isCopyLike())
    164     return false;
    165   DEBUG(dbgs() << "Coalescing: " << *DefMI);
    166   DEBUG(dbgs() << "*** to: " << *MI);
    167   MRI->replaceRegWith(DstReg, SrcReg);
    168   MI->eraseFromParent();
    169 
    170   // Conservatively, clear any kill flags, since it's possible that they are no
    171   // longer correct.
    172   MRI->clearKillFlags(SrcReg);
    173 
    174   ++NumCoalesces;
    175   return true;
    176 }
    177 
    178 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
    179 /// occur in blocks dominated by the specified block. If any use is in the
    180 /// definition block, then return false since it is never legal to move def
    181 /// after uses.
    182 bool
    183 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
    184                                         MachineBasicBlock *MBB,
    185                                         MachineBasicBlock *DefMBB,
    186                                         bool &BreakPHIEdge,
    187                                         bool &LocalUse) const {
    188   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    189          "Only makes sense for vregs");
    190 
    191   // Ignore debug uses because debug info doesn't affect the code.
    192   if (MRI->use_nodbg_empty(Reg))
    193     return true;
    194 
    195   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
    196   // into and they are all PHI nodes. In this case, machine-sink must break
    197   // the critical edge first. e.g.
    198   //
    199   // BB#1: derived from LLVM BB %bb4.preheader
    200   //   Predecessors according to CFG: BB#0
    201   //     ...
    202   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
    203   //     ...
    204   //     JE_4 <BB#37>, %EFLAGS<imp-use>
    205   //   Successors according to CFG: BB#37 BB#2
    206   //
    207   // BB#2: derived from LLVM BB %bb.nph
    208   //   Predecessors according to CFG: BB#0 BB#1
    209   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
    210   BreakPHIEdge = true;
    211   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
    212     MachineInstr *UseInst = MO.getParent();
    213     unsigned OpNo = &MO - &UseInst->getOperand(0);
    214     MachineBasicBlock *UseBlock = UseInst->getParent();
    215     if (!(UseBlock == MBB && UseInst->isPHI() &&
    216           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
    217       BreakPHIEdge = false;
    218       break;
    219     }
    220   }
    221   if (BreakPHIEdge)
    222     return true;
    223 
    224   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
    225     // Determine the block of the use.
    226     MachineInstr *UseInst = MO.getParent();
    227     unsigned OpNo = &MO - &UseInst->getOperand(0);
    228     MachineBasicBlock *UseBlock = UseInst->getParent();
    229     if (UseInst->isPHI()) {
    230       // PHI nodes use the operand in the predecessor block, not the block with
    231       // the PHI.
    232       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
    233     } else if (UseBlock == DefMBB) {
    234       LocalUse = true;
    235       return false;
    236     }
    237 
    238     // Check that it dominates.
    239     if (!DT->dominates(MBB, UseBlock))
    240       return false;
    241   }
    242 
    243   return true;
    244 }
    245 
    246 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
    247   if (skipOptnoneFunction(*MF.getFunction()))
    248     return false;
    249 
    250   DEBUG(dbgs() << "******** Machine Sinking ********\n");
    251 
    252   TII = MF.getSubtarget().getInstrInfo();
    253   TRI = MF.getSubtarget().getRegisterInfo();
    254   MRI = &MF.getRegInfo();
    255   DT = &getAnalysis<MachineDominatorTree>();
    256   PDT = &getAnalysis<MachinePostDominatorTree>();
    257   LI = &getAnalysis<MachineLoopInfo>();
    258   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
    259   AA = &getAnalysis<AliasAnalysis>();
    260 
    261   bool EverMadeChange = false;
    262 
    263   while (1) {
    264     bool MadeChange = false;
    265 
    266     // Process all basic blocks.
    267     CEBCandidates.clear();
    268     ToSplit.clear();
    269     for (MachineFunction::iterator I = MF.begin(), E = MF.end();
    270          I != E; ++I)
    271       MadeChange |= ProcessBlock(*I);
    272 
    273     // If we have anything we marked as toSplit, split it now.
    274     for (auto &Pair : ToSplit) {
    275       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
    276       if (NewSucc != nullptr) {
    277         DEBUG(dbgs() << " *** Splitting critical edge:"
    278               " BB#" << Pair.first->getNumber()
    279               << " -- BB#" << NewSucc->getNumber()
    280               << " -- BB#" << Pair.second->getNumber() << '\n');
    281         MadeChange = true;
    282         ++NumSplit;
    283       } else
    284         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
    285     }
    286     // If this iteration over the code changed anything, keep iterating.
    287     if (!MadeChange) break;
    288     EverMadeChange = true;
    289   }
    290   return EverMadeChange;
    291 }
    292 
    293 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
    294   // Can't sink anything out of a block that has less than two successors.
    295   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
    296 
    297   // Don't bother sinking code out of unreachable blocks. In addition to being
    298   // unprofitable, it can also lead to infinite looping, because in an
    299   // unreachable loop there may be nowhere to stop.
    300   if (!DT->isReachableFromEntry(&MBB)) return false;
    301 
    302   bool MadeChange = false;
    303 
    304   // Walk the basic block bottom-up.  Remember if we saw a store.
    305   MachineBasicBlock::iterator I = MBB.end();
    306   --I;
    307   bool ProcessedBegin, SawStore = false;
    308   do {
    309     MachineInstr *MI = I;  // The instruction to sink.
    310 
    311     // Predecrement I (if it's not begin) so that it isn't invalidated by
    312     // sinking.
    313     ProcessedBegin = I == MBB.begin();
    314     if (!ProcessedBegin)
    315       --I;
    316 
    317     if (MI->isDebugValue())
    318       continue;
    319 
    320     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
    321     if (Joined) {
    322       MadeChange = true;
    323       continue;
    324     }
    325 
    326     if (SinkInstruction(MI, SawStore))
    327       ++NumSunk, MadeChange = true;
    328 
    329     // If we just processed the first instruction in the block, we're done.
    330   } while (!ProcessedBegin);
    331 
    332   return MadeChange;
    333 }
    334 
    335 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
    336                                                  MachineBasicBlock *From,
    337                                                  MachineBasicBlock *To) {
    338   // FIXME: Need much better heuristics.
    339 
    340   // If the pass has already considered breaking this edge (during this pass
    341   // through the function), then let's go ahead and break it. This means
    342   // sinking multiple "cheap" instructions into the same block.
    343   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
    344     return true;
    345 
    346   if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
    347     return true;
    348 
    349   // MI is cheap, we probably don't want to break the critical edge for it.
    350   // However, if this would allow some definitions of its source operands
    351   // to be sunk then it's probably worth it.
    352   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    353     const MachineOperand &MO = MI->getOperand(i);
    354     if (!MO.isReg() || !MO.isUse())
    355       continue;
    356     unsigned Reg = MO.getReg();
    357     if (Reg == 0)
    358       continue;
    359 
    360     // We don't move live definitions of physical registers,
    361     // so sinking their uses won't enable any opportunities.
    362     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    363       continue;
    364 
    365     // If this instruction is the only user of a virtual register,
    366     // check if breaking the edge will enable sinking
    367     // both this instruction and the defining instruction.
    368     if (MRI->hasOneNonDBGUse(Reg)) {
    369       // If the definition resides in same MBB,
    370       // claim it's likely we can sink these together.
    371       // If definition resides elsewhere, we aren't
    372       // blocking it from being sunk so don't break the edge.
    373       MachineInstr *DefMI = MRI->getVRegDef(Reg);
    374       if (DefMI->getParent() == MI->getParent())
    375         return true;
    376     }
    377   }
    378 
    379   return false;
    380 }
    381 
    382 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
    383                                                MachineBasicBlock *FromBB,
    384                                                MachineBasicBlock *ToBB,
    385                                                bool BreakPHIEdge) {
    386   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
    387     return false;
    388 
    389   // Avoid breaking back edge. From == To means backedge for single BB loop.
    390   if (!SplitEdges || FromBB == ToBB)
    391     return false;
    392 
    393   // Check for backedges of more "complex" loops.
    394   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
    395       LI->isLoopHeader(ToBB))
    396     return false;
    397 
    398   // It's not always legal to break critical edges and sink the computation
    399   // to the edge.
    400   //
    401   // BB#1:
    402   // v1024
    403   // Beq BB#3
    404   // <fallthrough>
    405   // BB#2:
    406   // ... no uses of v1024
    407   // <fallthrough>
    408   // BB#3:
    409   // ...
    410   //       = v1024
    411   //
    412   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
    413   //
    414   // BB#1:
    415   // ...
    416   // Bne BB#2
    417   // BB#4:
    418   // v1024 =
    419   // B BB#3
    420   // BB#2:
    421   // ... no uses of v1024
    422   // <fallthrough>
    423   // BB#3:
    424   // ...
    425   //       = v1024
    426   //
    427   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
    428   // flow. We need to ensure the new basic block where the computation is
    429   // sunk to dominates all the uses.
    430   // It's only legal to break critical edge and sink the computation to the
    431   // new block if all the predecessors of "To", except for "From", are
    432   // not dominated by "From". Given SSA property, this means these
    433   // predecessors are dominated by "To".
    434   //
    435   // There is no need to do this check if all the uses are PHI nodes. PHI
    436   // sources are only defined on the specific predecessor edges.
    437   if (!BreakPHIEdge) {
    438     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
    439            E = ToBB->pred_end(); PI != E; ++PI) {
    440       if (*PI == FromBB)
    441         continue;
    442       if (!DT->dominates(ToBB, *PI))
    443         return false;
    444     }
    445   }
    446 
    447   ToSplit.insert(std::make_pair(FromBB, ToBB));
    448 
    449   return true;
    450 }
    451 
    452 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
    453   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
    454 }
    455 
    456 /// collectDebgValues - Scan instructions following MI and collect any
    457 /// matching DBG_VALUEs.
    458 static void collectDebugValues(MachineInstr *MI,
    459                                SmallVectorImpl<MachineInstr *> &DbgValues) {
    460   DbgValues.clear();
    461   if (!MI->getOperand(0).isReg())
    462     return;
    463 
    464   MachineBasicBlock::iterator DI = MI; ++DI;
    465   for (MachineBasicBlock::iterator DE = MI->getParent()->end();
    466        DI != DE; ++DI) {
    467     if (!DI->isDebugValue())
    468       return;
    469     if (DI->getOperand(0).isReg() &&
    470         DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
    471       DbgValues.push_back(DI);
    472   }
    473 }
    474 
    475 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
    476 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
    477                                           MachineBasicBlock *MBB,
    478                                           MachineBasicBlock *SuccToSinkTo) {
    479   assert (MI && "Invalid MachineInstr!");
    480   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
    481 
    482   if (MBB == SuccToSinkTo)
    483     return false;
    484 
    485   // It is profitable if SuccToSinkTo does not post dominate current block.
    486   if (!PDT->dominates(SuccToSinkTo, MBB))
    487     return true;
    488 
    489   // It is profitable to sink an instruction from a deeper loop to a shallower
    490   // loop, even if the latter post-dominates the former (PR21115).
    491   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
    492     return true;
    493 
    494   // Check if only use in post dominated block is PHI instruction.
    495   bool NonPHIUse = false;
    496   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
    497     MachineBasicBlock *UseBlock = UseInst.getParent();
    498     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
    499       NonPHIUse = true;
    500   }
    501   if (!NonPHIUse)
    502     return true;
    503 
    504   // If SuccToSinkTo post dominates then also it may be profitable if MI
    505   // can further profitably sinked into another block in next round.
    506   bool BreakPHIEdge = false;
    507   // FIXME - If finding successor is compile time expensive then cache results.
    508   if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
    509     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
    510 
    511   // If SuccToSinkTo is final destination and it is a post dominator of current
    512   // block then it is not profitable to sink MI into SuccToSinkTo block.
    513   return false;
    514 }
    515 
    516 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
    517 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
    518                                    MachineBasicBlock *MBB,
    519                                    bool &BreakPHIEdge) {
    520 
    521   assert (MI && "Invalid MachineInstr!");
    522   assert (MBB && "Invalid MachineBasicBlock!");
    523 
    524   // Loop over all the operands of the specified instruction.  If there is
    525   // anything we can't handle, bail out.
    526 
    527   // SuccToSinkTo - This is the successor to sink this instruction to, once we
    528   // decide.
    529   MachineBasicBlock *SuccToSinkTo = nullptr;
    530   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    531     const MachineOperand &MO = MI->getOperand(i);
    532     if (!MO.isReg()) continue;  // Ignore non-register operands.
    533 
    534     unsigned Reg = MO.getReg();
    535     if (Reg == 0) continue;
    536 
    537     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    538       if (MO.isUse()) {
    539         // If the physreg has no defs anywhere, it's just an ambient register
    540         // and we can freely move its uses. Alternatively, if it's allocatable,
    541         // it could get allocated to something with a def during allocation.
    542         if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
    543           return nullptr;
    544       } else if (!MO.isDead()) {
    545         // A def that isn't dead. We can't move it.
    546         return nullptr;
    547       }
    548     } else {
    549       // Virtual register uses are always safe to sink.
    550       if (MO.isUse()) continue;
    551 
    552       // If it's not safe to move defs of the register class, then abort.
    553       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
    554         return nullptr;
    555 
    556       // Virtual register defs can only be sunk if all their uses are in blocks
    557       // dominated by one of the successors.
    558       if (SuccToSinkTo) {
    559         // If a previous operand picked a block to sink to, then this operand
    560         // must be sinkable to the same block.
    561         bool LocalUse = false;
    562         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
    563                                      BreakPHIEdge, LocalUse))
    564           return nullptr;
    565 
    566         continue;
    567       }
    568 
    569       // Otherwise, we should look at all the successors and decide which one
    570       // we should sink to. If we have reliable block frequency information
    571       // (frequency != 0) available, give successors with smaller frequencies
    572       // higher priority, otherwise prioritize smaller loop depths.
    573       SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(),
    574                                                MBB->succ_end());
    575 
    576       // Handle cases where sinking can happen but where the sink point isn't a
    577       // successor. For example:
    578       //
    579       //   x = computation
    580       //   if () {} else {}
    581       //   use x
    582       //
    583       const std::vector<MachineDomTreeNode *> &Children =
    584         DT->getNode(MBB)->getChildren();
    585       for (const auto &DTChild : Children)
    586         // DomTree children of MBB that have MBB as immediate dominator are added.
    587         if (DTChild->getIDom()->getBlock() == MI->getParent() &&
    588             // Skip MBBs already added to the Succs vector above.
    589             !MBB->isSuccessor(DTChild->getBlock()))
    590           Succs.push_back(DTChild->getBlock());
    591 
    592       // Sort Successors according to their loop depth or block frequency info.
    593       std::stable_sort(
    594           Succs.begin(), Succs.end(),
    595           [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
    596             uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
    597             uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
    598             bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
    599             return HasBlockFreq ? LHSFreq < RHSFreq
    600                                 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
    601           });
    602       for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(),
    603              E = Succs.end(); SI != E; ++SI) {
    604         MachineBasicBlock *SuccBlock = *SI;
    605         bool LocalUse = false;
    606         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
    607                                     BreakPHIEdge, LocalUse)) {
    608           SuccToSinkTo = SuccBlock;
    609           break;
    610         }
    611         if (LocalUse)
    612           // Def is used locally, it's never safe to move this def.
    613           return nullptr;
    614       }
    615 
    616       // If we couldn't find a block to sink to, ignore this instruction.
    617       if (!SuccToSinkTo)
    618         return nullptr;
    619       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
    620         return nullptr;
    621     }
    622   }
    623 
    624   // It is not possible to sink an instruction into its own block.  This can
    625   // happen with loops.
    626   if (MBB == SuccToSinkTo)
    627     return nullptr;
    628 
    629   // It's not safe to sink instructions to EH landing pad. Control flow into
    630   // landing pad is implicitly defined.
    631   if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
    632     return nullptr;
    633 
    634   return SuccToSinkTo;
    635 }
    636 
    637 /// SinkInstruction - Determine whether it is safe to sink the specified machine
    638 /// instruction out of its current block into a successor.
    639 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
    640   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
    641   // be close to the source to make it easier to coalesce.
    642   if (AvoidsSinking(MI, MRI))
    643     return false;
    644 
    645   // Check if it's safe to move the instruction.
    646   if (!MI->isSafeToMove(TII, AA, SawStore))
    647     return false;
    648 
    649   // FIXME: This should include support for sinking instructions within the
    650   // block they are currently in to shorten the live ranges.  We often get
    651   // instructions sunk into the top of a large block, but it would be better to
    652   // also sink them down before their first use in the block.  This xform has to
    653   // be careful not to *increase* register pressure though, e.g. sinking
    654   // "x = y + z" down if it kills y and z would increase the live ranges of y
    655   // and z and only shrink the live range of x.
    656 
    657   bool BreakPHIEdge = false;
    658   MachineBasicBlock *ParentBlock = MI->getParent();
    659   MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge);
    660 
    661   // If there are no outputs, it must have side-effects.
    662   if (!SuccToSinkTo)
    663     return false;
    664 
    665 
    666   // If the instruction to move defines a dead physical register which is live
    667   // when leaving the basic block, don't move it because it could turn into a
    668   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
    669   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    670     const MachineOperand &MO = MI->getOperand(I);
    671     if (!MO.isReg()) continue;
    672     unsigned Reg = MO.getReg();
    673     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    674     if (SuccToSinkTo->isLiveIn(Reg))
    675       return false;
    676   }
    677 
    678   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
    679 
    680   // If the block has multiple predecessors, this is a critical edge.
    681   // Decide if we can sink along it or need to break the edge.
    682   if (SuccToSinkTo->pred_size() > 1) {
    683     // We cannot sink a load across a critical edge - there may be stores in
    684     // other code paths.
    685     bool TryBreak = false;
    686     bool store = true;
    687     if (!MI->isSafeToMove(TII, AA, store)) {
    688       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
    689       TryBreak = true;
    690     }
    691 
    692     // We don't want to sink across a critical edge if we don't dominate the
    693     // successor. We could be introducing calculations to new code paths.
    694     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
    695       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
    696       TryBreak = true;
    697     }
    698 
    699     // Don't sink instructions into a loop.
    700     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
    701       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
    702       TryBreak = true;
    703     }
    704 
    705     // Otherwise we are OK with sinking along a critical edge.
    706     if (!TryBreak)
    707       DEBUG(dbgs() << "Sinking along critical edge.\n");
    708     else {
    709       // Mark this edge as to be split.
    710       // If the edge can actually be split, the next iteration of the main loop
    711       // will sink MI in the newly created block.
    712       bool Status =
    713         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
    714       if (!Status)
    715         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    716               "break critical edge\n");
    717       // The instruction will not be sunk this time.
    718       return false;
    719     }
    720   }
    721 
    722   if (BreakPHIEdge) {
    723     // BreakPHIEdge is true if all the uses are in the successor MBB being
    724     // sunken into and they are all PHI nodes. In this case, machine-sink must
    725     // break the critical edge first.
    726     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
    727                                             SuccToSinkTo, BreakPHIEdge);
    728     if (!Status)
    729       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    730             "break critical edge\n");
    731     // The instruction will not be sunk this time.
    732     return false;
    733   }
    734 
    735   // Determine where to insert into. Skip phi nodes.
    736   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
    737   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
    738     ++InsertPos;
    739 
    740   // collect matching debug values.
    741   SmallVector<MachineInstr *, 2> DbgValuesToSink;
    742   collectDebugValues(MI, DbgValuesToSink);
    743 
    744   // Move the instruction.
    745   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
    746                        ++MachineBasicBlock::iterator(MI));
    747 
    748   // Move debug values.
    749   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
    750          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
    751     MachineInstr *DbgMI = *DBI;
    752     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
    753                          ++MachineBasicBlock::iterator(DbgMI));
    754   }
    755 
    756   // Conservatively, clear any kill flags, since it's possible that they are no
    757   // longer correct.
    758   MI->clearKillInfo();
    759 
    760   return true;
    761 }
    762