Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class wraps target description classes used by the various code
     11 // generation TableGen backends.  This makes it easier to access the data and
     12 // provides a single place that needs to check it for validity.  All of these
     13 // classes abort on error conditions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "CodeGenTarget.h"
     18 #include "CodeGenIntrinsics.h"
     19 #include "CodeGenSchedule.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/TableGen/Error.h"
     24 #include "llvm/TableGen/Record.h"
     25 #include <algorithm>
     26 using namespace llvm;
     27 
     28 static cl::opt<unsigned>
     29 AsmParserNum("asmparsernum", cl::init(0),
     30              cl::desc("Make -gen-asm-parser emit assembly parser #N"));
     31 
     32 static cl::opt<unsigned>
     33 AsmWriterNum("asmwriternum", cl::init(0),
     34              cl::desc("Make -gen-asm-writer emit assembly writer #N"));
     35 
     36 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
     37 /// record corresponds to.
     38 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
     39   return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
     40 }
     41 
     42 std::string llvm::getName(MVT::SimpleValueType T) {
     43   switch (T) {
     44   case MVT::Other:   return "UNKNOWN";
     45   case MVT::iPTR:    return "TLI.getPointerTy()";
     46   case MVT::iPTRAny: return "TLI.getPointerTy()";
     47   default: return getEnumName(T);
     48   }
     49 }
     50 
     51 std::string llvm::getEnumName(MVT::SimpleValueType T) {
     52   switch (T) {
     53   case MVT::Other:    return "MVT::Other";
     54   case MVT::i1:       return "MVT::i1";
     55   case MVT::i8:       return "MVT::i8";
     56   case MVT::i16:      return "MVT::i16";
     57   case MVT::i32:      return "MVT::i32";
     58   case MVT::i64:      return "MVT::i64";
     59   case MVT::i128:     return "MVT::i128";
     60   case MVT::Any:      return "MVT::Any";
     61   case MVT::iAny:     return "MVT::iAny";
     62   case MVT::fAny:     return "MVT::fAny";
     63   case MVT::vAny:     return "MVT::vAny";
     64   case MVT::f16:      return "MVT::f16";
     65   case MVT::f32:      return "MVT::f32";
     66   case MVT::f64:      return "MVT::f64";
     67   case MVT::f80:      return "MVT::f80";
     68   case MVT::f128:     return "MVT::f128";
     69   case MVT::ppcf128:  return "MVT::ppcf128";
     70   case MVT::x86mmx:   return "MVT::x86mmx";
     71   case MVT::Glue:     return "MVT::Glue";
     72   case MVT::isVoid:   return "MVT::isVoid";
     73   case MVT::v2i1:     return "MVT::v2i1";
     74   case MVT::v4i1:     return "MVT::v4i1";
     75   case MVT::v8i1:     return "MVT::v8i1";
     76   case MVT::v16i1:    return "MVT::v16i1";
     77   case MVT::v32i1:    return "MVT::v32i1";
     78   case MVT::v64i1:    return "MVT::v64i1";
     79   case MVT::v1i8:     return "MVT::v1i8";
     80   case MVT::v2i8:     return "MVT::v2i8";
     81   case MVT::v4i8:     return "MVT::v4i8";
     82   case MVT::v8i8:     return "MVT::v8i8";
     83   case MVT::v16i8:    return "MVT::v16i8";
     84   case MVT::v32i8:    return "MVT::v32i8";
     85   case MVT::v64i8:    return "MVT::v64i8";
     86   case MVT::v1i16:    return "MVT::v1i16";
     87   case MVT::v2i16:    return "MVT::v2i16";
     88   case MVT::v4i16:    return "MVT::v4i16";
     89   case MVT::v8i16:    return "MVT::v8i16";
     90   case MVT::v16i16:   return "MVT::v16i16";
     91   case MVT::v32i16:   return "MVT::v32i16";
     92   case MVT::v1i32:    return "MVT::v1i32";
     93   case MVT::v2i32:    return "MVT::v2i32";
     94   case MVT::v4i32:    return "MVT::v4i32";
     95   case MVT::v8i32:    return "MVT::v8i32";
     96   case MVT::v16i32:   return "MVT::v16i32";
     97   case MVT::v1i64:    return "MVT::v1i64";
     98   case MVT::v2i64:    return "MVT::v2i64";
     99   case MVT::v4i64:    return "MVT::v4i64";
    100   case MVT::v8i64:    return "MVT::v8i64";
    101   case MVT::v16i64:   return "MVT::v16i64";
    102   case MVT::v2f16:    return "MVT::v2f16";
    103   case MVT::v4f16:    return "MVT::v4f16";
    104   case MVT::v8f16:    return "MVT::v8f16";
    105   case MVT::v1f32:    return "MVT::v1f32";
    106   case MVT::v2f32:    return "MVT::v2f32";
    107   case MVT::v4f32:    return "MVT::v4f32";
    108   case MVT::v8f32:    return "MVT::v8f32";
    109   case MVT::v16f32:   return "MVT::v16f32";
    110   case MVT::v1f64:    return "MVT::v1f64";
    111   case MVT::v2f64:    return "MVT::v2f64";
    112   case MVT::v4f64:    return "MVT::v4f64";
    113   case MVT::v8f64:    return "MVT::v8f64";
    114   case MVT::Metadata: return "MVT::Metadata";
    115   case MVT::iPTR:     return "MVT::iPTR";
    116   case MVT::iPTRAny:  return "MVT::iPTRAny";
    117   case MVT::Untyped:  return "MVT::Untyped";
    118   default: llvm_unreachable("ILLEGAL VALUE TYPE!");
    119   }
    120 }
    121 
    122 /// getQualifiedName - Return the name of the specified record, with a
    123 /// namespace qualifier if the record contains one.
    124 ///
    125 std::string llvm::getQualifiedName(const Record *R) {
    126   std::string Namespace;
    127   if (R->getValue("Namespace"))
    128      Namespace = R->getValueAsString("Namespace");
    129   if (Namespace.empty()) return R->getName();
    130   return Namespace + "::" + R->getName();
    131 }
    132 
    133 
    134 /// getTarget - Return the current instance of the Target class.
    135 ///
    136 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
    137   : Records(records) {
    138   std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
    139   if (Targets.size() == 0)
    140     PrintFatalError("ERROR: No 'Target' subclasses defined!");
    141   if (Targets.size() != 1)
    142     PrintFatalError("ERROR: Multiple subclasses of Target defined!");
    143   TargetRec = Targets[0];
    144 }
    145 
    146 CodeGenTarget::~CodeGenTarget() {
    147 }
    148 
    149 const std::string &CodeGenTarget::getName() const {
    150   return TargetRec->getName();
    151 }
    152 
    153 std::string CodeGenTarget::getInstNamespace() const {
    154   for (const CodeGenInstruction *Inst : instructions()) {
    155     // Make sure not to pick up "TargetOpcode" by accidentally getting
    156     // the namespace off the PHI instruction or something.
    157     if (Inst->Namespace != "TargetOpcode")
    158       return Inst->Namespace;
    159   }
    160 
    161   return "";
    162 }
    163 
    164 Record *CodeGenTarget::getInstructionSet() const {
    165   return TargetRec->getValueAsDef("InstructionSet");
    166 }
    167 
    168 
    169 /// getAsmParser - Return the AssemblyParser definition for this target.
    170 ///
    171 Record *CodeGenTarget::getAsmParser() const {
    172   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
    173   if (AsmParserNum >= LI.size())
    174     PrintFatalError("Target does not have an AsmParser #" +
    175                     Twine(AsmParserNum) + "!");
    176   return LI[AsmParserNum];
    177 }
    178 
    179 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
    180 /// this target.
    181 ///
    182 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
    183   std::vector<Record*> LI =
    184     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    185   if (i >= LI.size())
    186     PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
    187                     "!");
    188   return LI[i];
    189 }
    190 
    191 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
    192 /// available for this target.
    193 ///
    194 unsigned CodeGenTarget::getAsmParserVariantCount() const {
    195   std::vector<Record*> LI =
    196     TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
    197   return LI.size();
    198 }
    199 
    200 /// getAsmWriter - Return the AssemblyWriter definition for this target.
    201 ///
    202 Record *CodeGenTarget::getAsmWriter() const {
    203   std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
    204   if (AsmWriterNum >= LI.size())
    205     PrintFatalError("Target does not have an AsmWriter #" +
    206                     Twine(AsmWriterNum) + "!");
    207   return LI[AsmWriterNum];
    208 }
    209 
    210 CodeGenRegBank &CodeGenTarget::getRegBank() const {
    211   if (!RegBank)
    212     RegBank = llvm::make_unique<CodeGenRegBank>(Records);
    213   return *RegBank;
    214 }
    215 
    216 void CodeGenTarget::ReadRegAltNameIndices() const {
    217   RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
    218   std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
    219 }
    220 
    221 /// getRegisterByName - If there is a register with the specific AsmName,
    222 /// return it.
    223 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
    224   const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
    225   StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
    226   if (I == Regs.end())
    227     return nullptr;
    228   return I->second;
    229 }
    230 
    231 std::vector<MVT::SimpleValueType> CodeGenTarget::
    232 getRegisterVTs(Record *R) const {
    233   const CodeGenRegister *Reg = getRegBank().getReg(R);
    234   std::vector<MVT::SimpleValueType> Result;
    235   for (const auto &RC : getRegBank().getRegClasses()) {
    236     if (RC.contains(Reg)) {
    237       ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
    238       Result.insert(Result.end(), InVTs.begin(), InVTs.end());
    239     }
    240   }
    241 
    242   // Remove duplicates.
    243   array_pod_sort(Result.begin(), Result.end());
    244   Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
    245   return Result;
    246 }
    247 
    248 
    249 void CodeGenTarget::ReadLegalValueTypes() const {
    250   for (const auto &RC : getRegBank().getRegClasses())
    251     LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
    252 
    253   // Remove duplicates.
    254   std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
    255   LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
    256                                     LegalValueTypes.end()),
    257                         LegalValueTypes.end());
    258 }
    259 
    260 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
    261   if (!SchedModels)
    262     SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
    263   return *SchedModels;
    264 }
    265 
    266 void CodeGenTarget::ReadInstructions() const {
    267   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    268   if (Insts.size() <= 2)
    269     PrintFatalError("No 'Instruction' subclasses defined!");
    270 
    271   // Parse the instructions defined in the .td file.
    272   for (unsigned i = 0, e = Insts.size(); i != e; ++i)
    273     Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
    274 }
    275 
    276 static const CodeGenInstruction *
    277 GetInstByName(const char *Name,
    278               const DenseMap<const Record*,
    279                              std::unique_ptr<CodeGenInstruction>> &Insts,
    280               RecordKeeper &Records) {
    281   const Record *Rec = Records.getDef(Name);
    282 
    283   const auto I = Insts.find(Rec);
    284   if (!Rec || I == Insts.end())
    285     PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
    286   return I->second.get();
    287 }
    288 
    289 /// \brief Return all of the instructions defined by the target, ordered by
    290 /// their enum value.
    291 void CodeGenTarget::ComputeInstrsByEnum() const {
    292   // The ordering here must match the ordering in TargetOpcodes.h.
    293   static const char *const FixedInstrs[] = {
    294       "PHI",          "INLINEASM",     "CFI_INSTRUCTION",  "EH_LABEL",
    295       "GC_LABEL",     "KILL",          "EXTRACT_SUBREG",   "INSERT_SUBREG",
    296       "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE",
    297       "REG_SEQUENCE", "COPY",          "BUNDLE",           "LIFETIME_START",
    298       "LIFETIME_END", "STACKMAP",      "PATCHPOINT",       "LOAD_STACK_GUARD",
    299       "STATEPOINT",   "FRAME_ALLOC",
    300       nullptr};
    301   const auto &Insts = getInstructions();
    302   for (const char *const *p = FixedInstrs; *p; ++p) {
    303     const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
    304     assert(Instr && "Missing target independent instruction");
    305     assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
    306     InstrsByEnum.push_back(Instr);
    307   }
    308   unsigned EndOfPredefines = InstrsByEnum.size();
    309 
    310   for (const auto &I : Insts) {
    311     const CodeGenInstruction *CGI = I.second.get();
    312     if (CGI->Namespace != "TargetOpcode")
    313       InstrsByEnum.push_back(CGI);
    314   }
    315 
    316   assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
    317 
    318   // All of the instructions are now in random order based on the map iteration.
    319   // Sort them by name.
    320   std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
    321             [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
    322     return Rec1->TheDef->getName() < Rec2->TheDef->getName();
    323   });
    324 }
    325 
    326 
    327 /// isLittleEndianEncoding - Return whether this target encodes its instruction
    328 /// in little-endian format, i.e. bits laid out in the order [0..n]
    329 ///
    330 bool CodeGenTarget::isLittleEndianEncoding() const {
    331   return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
    332 }
    333 
    334 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
    335 /// encodings, reverse the bit order of all instructions.
    336 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
    337   if (!isLittleEndianEncoding())
    338     return;
    339 
    340   std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
    341   for (Record *R : Insts) {
    342     if (R->getValueAsString("Namespace") == "TargetOpcode" ||
    343         R->getValueAsBit("isPseudo"))
    344       continue;
    345 
    346     BitsInit *BI = R->getValueAsBitsInit("Inst");
    347 
    348     unsigned numBits = BI->getNumBits();
    349 
    350     SmallVector<Init *, 16> NewBits(numBits);
    351 
    352     for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
    353       unsigned bitSwapIdx = numBits - bit - 1;
    354       Init *OrigBit = BI->getBit(bit);
    355       Init *BitSwap = BI->getBit(bitSwapIdx);
    356       NewBits[bit]        = BitSwap;
    357       NewBits[bitSwapIdx] = OrigBit;
    358     }
    359     if (numBits % 2) {
    360       unsigned middle = (numBits + 1) / 2;
    361       NewBits[middle] = BI->getBit(middle);
    362     }
    363 
    364     BitsInit *NewBI = BitsInit::get(NewBits);
    365 
    366     // Update the bits in reversed order so that emitInstrOpBits will get the
    367     // correct endianness.
    368     R->getValue("Inst")->setValue(NewBI);
    369   }
    370 }
    371 
    372 /// guessInstructionProperties - Return true if it's OK to guess instruction
    373 /// properties instead of raising an error.
    374 ///
    375 /// This is configurable as a temporary migration aid. It will eventually be
    376 /// permanently false.
    377 bool CodeGenTarget::guessInstructionProperties() const {
    378   return getInstructionSet()->getValueAsBit("guessInstructionProperties");
    379 }
    380 
    381 //===----------------------------------------------------------------------===//
    382 // ComplexPattern implementation
    383 //
    384 ComplexPattern::ComplexPattern(Record *R) {
    385   Ty          = ::getValueType(R->getValueAsDef("Ty"));
    386   NumOperands = R->getValueAsInt("NumOperands");
    387   SelectFunc  = R->getValueAsString("SelectFunc");
    388   RootNodes   = R->getValueAsListOfDefs("RootNodes");
    389 
    390   // Parse the properties.
    391   Properties = 0;
    392   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
    393   for (unsigned i = 0, e = PropList.size(); i != e; ++i)
    394     if (PropList[i]->getName() == "SDNPHasChain") {
    395       Properties |= 1 << SDNPHasChain;
    396     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
    397       Properties |= 1 << SDNPOptInGlue;
    398     } else if (PropList[i]->getName() == "SDNPMayStore") {
    399       Properties |= 1 << SDNPMayStore;
    400     } else if (PropList[i]->getName() == "SDNPMayLoad") {
    401       Properties |= 1 << SDNPMayLoad;
    402     } else if (PropList[i]->getName() == "SDNPSideEffect") {
    403       Properties |= 1 << SDNPSideEffect;
    404     } else if (PropList[i]->getName() == "SDNPMemOperand") {
    405       Properties |= 1 << SDNPMemOperand;
    406     } else if (PropList[i]->getName() == "SDNPVariadic") {
    407       Properties |= 1 << SDNPVariadic;
    408     } else if (PropList[i]->getName() == "SDNPWantRoot") {
    409       Properties |= 1 << SDNPWantRoot;
    410     } else if (PropList[i]->getName() == "SDNPWantParent") {
    411       Properties |= 1 << SDNPWantParent;
    412     } else {
    413       errs() << "Unsupported SD Node property '" << PropList[i]->getName()
    414              << "' on ComplexPattern '" << R->getName() << "'!\n";
    415       exit(1);
    416     }
    417 }
    418 
    419 //===----------------------------------------------------------------------===//
    420 // CodeGenIntrinsic Implementation
    421 //===----------------------------------------------------------------------===//
    422 
    423 std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
    424                                                    bool TargetOnly) {
    425   std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
    426 
    427   std::vector<CodeGenIntrinsic> Result;
    428 
    429   for (unsigned i = 0, e = I.size(); i != e; ++i) {
    430     bool isTarget = I[i]->getValueAsBit("isTarget");
    431     if (isTarget == TargetOnly)
    432       Result.push_back(CodeGenIntrinsic(I[i]));
    433   }
    434   return Result;
    435 }
    436 
    437 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
    438   TheDef = R;
    439   std::string DefName = R->getName();
    440   ModRef = ReadWriteMem;
    441   isOverloaded = false;
    442   isCommutative = false;
    443   canThrow = false;
    444   isNoReturn = false;
    445   isNoDuplicate = false;
    446 
    447   if (DefName.size() <= 4 ||
    448       std::string(DefName.begin(), DefName.begin() + 4) != "int_")
    449     PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
    450 
    451   EnumName = std::string(DefName.begin()+4, DefName.end());
    452 
    453   if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
    454     GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
    455   if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
    456     MSBuiltinName = R->getValueAsString("MSBuiltinName");
    457 
    458   TargetPrefix = R->getValueAsString("TargetPrefix");
    459   Name = R->getValueAsString("LLVMName");
    460 
    461   if (Name == "") {
    462     // If an explicit name isn't specified, derive one from the DefName.
    463     Name = "llvm.";
    464 
    465     for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
    466       Name += (EnumName[i] == '_') ? '.' : EnumName[i];
    467   } else {
    468     // Verify it starts with "llvm.".
    469     if (Name.size() <= 5 ||
    470         std::string(Name.begin(), Name.begin() + 5) != "llvm.")
    471       PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
    472   }
    473 
    474   // If TargetPrefix is specified, make sure that Name starts with
    475   // "llvm.<targetprefix>.".
    476   if (!TargetPrefix.empty()) {
    477     if (Name.size() < 6+TargetPrefix.size() ||
    478         std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
    479         != (TargetPrefix + "."))
    480       PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
    481         TargetPrefix + ".'!");
    482   }
    483 
    484   // Parse the list of return types.
    485   std::vector<MVT::SimpleValueType> OverloadedVTs;
    486   ListInit *TypeList = R->getValueAsListInit("RetTypes");
    487   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    488     Record *TyEl = TypeList->getElementAsRecord(i);
    489     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    490     MVT::SimpleValueType VT;
    491     if (TyEl->isSubClassOf("LLVMMatchType")) {
    492       unsigned MatchTy = TyEl->getValueAsInt("Number");
    493       assert(MatchTy < OverloadedVTs.size() &&
    494              "Invalid matching number!");
    495       VT = OverloadedVTs[MatchTy];
    496       // It only makes sense to use the extended and truncated vector element
    497       // variants with iAny types; otherwise, if the intrinsic is not
    498       // overloaded, all the types can be specified directly.
    499       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
    500                !TyEl->isSubClassOf("LLVMTruncatedType")) ||
    501               VT == MVT::iAny || VT == MVT::vAny) &&
    502              "Expected iAny or vAny type");
    503     } else {
    504       VT = getValueType(TyEl->getValueAsDef("VT"));
    505     }
    506     if (MVT(VT).isOverloaded()) {
    507       OverloadedVTs.push_back(VT);
    508       isOverloaded = true;
    509     }
    510 
    511     // Reject invalid types.
    512     if (VT == MVT::isVoid)
    513       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    514 
    515     IS.RetVTs.push_back(VT);
    516     IS.RetTypeDefs.push_back(TyEl);
    517   }
    518 
    519   // Parse the list of parameter types.
    520   TypeList = R->getValueAsListInit("ParamTypes");
    521   for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
    522     Record *TyEl = TypeList->getElementAsRecord(i);
    523     assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    524     MVT::SimpleValueType VT;
    525     if (TyEl->isSubClassOf("LLVMMatchType")) {
    526       unsigned MatchTy = TyEl->getValueAsInt("Number");
    527       assert(MatchTy < OverloadedVTs.size() &&
    528              "Invalid matching number!");
    529       VT = OverloadedVTs[MatchTy];
    530       // It only makes sense to use the extended and truncated vector element
    531       // variants with iAny types; otherwise, if the intrinsic is not
    532       // overloaded, all the types can be specified directly.
    533       assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
    534                !TyEl->isSubClassOf("LLVMTruncatedType") &&
    535                !TyEl->isSubClassOf("LLVMVectorSameWidth") &&
    536                !TyEl->isSubClassOf("LLVMPointerToElt")) ||
    537               VT == MVT::iAny || VT == MVT::vAny) &&
    538              "Expected iAny or vAny type");
    539     } else
    540       VT = getValueType(TyEl->getValueAsDef("VT"));
    541 
    542     if (MVT(VT).isOverloaded()) {
    543       OverloadedVTs.push_back(VT);
    544       isOverloaded = true;
    545     }
    546 
    547     // Reject invalid types.
    548     if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
    549       PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
    550 
    551     IS.ParamVTs.push_back(VT);
    552     IS.ParamTypeDefs.push_back(TyEl);
    553   }
    554 
    555   // Parse the intrinsic properties.
    556   ListInit *PropList = R->getValueAsListInit("Properties");
    557   for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
    558     Record *Property = PropList->getElementAsRecord(i);
    559     assert(Property->isSubClassOf("IntrinsicProperty") &&
    560            "Expected a property!");
    561 
    562     if (Property->getName() == "IntrNoMem")
    563       ModRef = NoMem;
    564     else if (Property->getName() == "IntrReadArgMem")
    565       ModRef = ReadArgMem;
    566     else if (Property->getName() == "IntrReadMem")
    567       ModRef = ReadMem;
    568     else if (Property->getName() == "IntrReadWriteArgMem")
    569       ModRef = ReadWriteArgMem;
    570     else if (Property->getName() == "Commutative")
    571       isCommutative = true;
    572     else if (Property->getName() == "Throws")
    573       canThrow = true;
    574     else if (Property->getName() == "IntrNoDuplicate")
    575       isNoDuplicate = true;
    576     else if (Property->getName() == "IntrNoReturn")
    577       isNoReturn = true;
    578     else if (Property->isSubClassOf("NoCapture")) {
    579       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    580       ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
    581     } else if (Property->isSubClassOf("ReadOnly")) {
    582       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    583       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
    584     } else if (Property->isSubClassOf("ReadNone")) {
    585       unsigned ArgNo = Property->getValueAsInt("ArgNo");
    586       ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
    587     } else
    588       llvm_unreachable("Unknown property!");
    589   }
    590 
    591   // Sort the argument attributes for later benefit.
    592   std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
    593 }
    594