Home | History | Annotate | Download | only in Utils
      1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LowerSwitch transformation rewrites switch instructions with a sequence
     11 // of branches, which allows targets to get away with not implementing the
     12 // switch instruction until it is convenient.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/IR/CFG.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/LLVMContext.h"
     23 #include "llvm/Pass.h"
     24 #include "llvm/Support/Compiler.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "lower-switch"
     33 
     34 namespace {
     35   struct IntRange {
     36     int64_t Low, High;
     37   };
     38   // Return true iff R is covered by Ranges.
     39   static bool IsInRanges(const IntRange &R,
     40                          const std::vector<IntRange> &Ranges) {
     41     // Note: Ranges must be sorted, non-overlapping and non-adjacent.
     42 
     43     // Find the first range whose High field is >= R.High,
     44     // then check if the Low field is <= R.Low. If so, we
     45     // have a Range that covers R.
     46     auto I = std::lower_bound(
     47         Ranges.begin(), Ranges.end(), R,
     48         [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
     49     return I != Ranges.end() && I->Low <= R.Low;
     50   }
     51 
     52   /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
     53   /// instructions.
     54   class LowerSwitch : public FunctionPass {
     55   public:
     56     static char ID; // Pass identification, replacement for typeid
     57     LowerSwitch() : FunctionPass(ID) {
     58       initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
     59     }
     60 
     61     bool runOnFunction(Function &F) override;
     62 
     63     void getAnalysisUsage(AnalysisUsage &AU) const override {
     64       // This is a cluster of orthogonal Transforms
     65       AU.addPreserved<UnifyFunctionExitNodes>();
     66       AU.addPreservedID(LowerInvokePassID);
     67     }
     68 
     69     struct CaseRange {
     70       ConstantInt* Low;
     71       ConstantInt* High;
     72       BasicBlock* BB;
     73 
     74       CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
     75           : Low(low), High(high), BB(bb) {}
     76     };
     77 
     78     typedef std::vector<CaseRange> CaseVector;
     79     typedef std::vector<CaseRange>::iterator CaseItr;
     80   private:
     81     void processSwitchInst(SwitchInst *SI);
     82 
     83     BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
     84                               ConstantInt *LowerBound, ConstantInt *UpperBound,
     85                               Value *Val, BasicBlock *Predecessor,
     86                               BasicBlock *OrigBlock, BasicBlock *Default,
     87                               const std::vector<IntRange> &UnreachableRanges);
     88     BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
     89                              BasicBlock *Default);
     90     unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
     91   };
     92 
     93   /// The comparison function for sorting the switch case values in the vector.
     94   /// WARNING: Case ranges should be disjoint!
     95   struct CaseCmp {
     96     bool operator () (const LowerSwitch::CaseRange& C1,
     97                       const LowerSwitch::CaseRange& C2) {
     98 
     99       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
    100       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
    101       return CI1->getValue().slt(CI2->getValue());
    102     }
    103   };
    104 }
    105 
    106 char LowerSwitch::ID = 0;
    107 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
    108                 "Lower SwitchInst's to branches", false, false)
    109 
    110 // Publicly exposed interface to pass...
    111 char &llvm::LowerSwitchID = LowerSwitch::ID;
    112 // createLowerSwitchPass - Interface to this file...
    113 FunctionPass *llvm::createLowerSwitchPass() {
    114   return new LowerSwitch();
    115 }
    116 
    117 bool LowerSwitch::runOnFunction(Function &F) {
    118   bool Changed = false;
    119 
    120   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    121     BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
    122 
    123     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
    124       Changed = true;
    125       processSwitchInst(SI);
    126     }
    127   }
    128 
    129   return Changed;
    130 }
    131 
    132 // operator<< - Used for debugging purposes.
    133 //
    134 static raw_ostream& operator<<(raw_ostream &O,
    135                                const LowerSwitch::CaseVector &C)
    136     LLVM_ATTRIBUTE_USED;
    137 static raw_ostream& operator<<(raw_ostream &O,
    138                                const LowerSwitch::CaseVector &C) {
    139   O << "[";
    140 
    141   for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
    142          E = C.end(); B != E; ) {
    143     O << *B->Low << " -" << *B->High;
    144     if (++B != E) O << ", ";
    145   }
    146 
    147   return O << "]";
    148 }
    149 
    150 // \brief Update the first occurrence of the "switch statement" BB in the PHI
    151 // node with the "new" BB. The other occurrences will:
    152 //
    153 // 1) Be updated by subsequent calls to this function.  Switch statements may
    154 // have more than one outcoming edge into the same BB if they all have the same
    155 // value. When the switch statement is converted these incoming edges are now
    156 // coming from multiple BBs.
    157 // 2) Removed if subsequent incoming values now share the same case, i.e.,
    158 // multiple outcome edges are condensed into one. This is necessary to keep the
    159 // number of phi values equal to the number of branches to SuccBB.
    160 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
    161                     unsigned NumMergedCases) {
    162   for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI();
    163        I != IE; ++I) {
    164     PHINode *PN = cast<PHINode>(I);
    165 
    166     // Only update the first occurence.
    167     unsigned Idx = 0, E = PN->getNumIncomingValues();
    168     unsigned LocalNumMergedCases = NumMergedCases;
    169     for (; Idx != E; ++Idx) {
    170       if (PN->getIncomingBlock(Idx) == OrigBB) {
    171         PN->setIncomingBlock(Idx, NewBB);
    172         break;
    173       }
    174     }
    175 
    176     // Remove additional occurences coming from condensed cases and keep the
    177     // number of incoming values equal to the number of branches to SuccBB.
    178     SmallVector<unsigned, 8> Indices;
    179     for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
    180       if (PN->getIncomingBlock(Idx) == OrigBB) {
    181         Indices.push_back(Idx);
    182         LocalNumMergedCases--;
    183       }
    184     // Remove incoming values in the reverse order to prevent invalidating
    185     // *successive* index.
    186     for (auto III = Indices.rbegin(), IIE = Indices.rend(); III != IIE; ++III)
    187       PN->removeIncomingValue(*III);
    188   }
    189 }
    190 
    191 // switchConvert - Convert the switch statement into a binary lookup of
    192 // the case values. The function recursively builds this tree.
    193 // LowerBound and UpperBound are used to keep track of the bounds for Val
    194 // that have already been checked by a block emitted by one of the previous
    195 // calls to switchConvert in the call stack.
    196 BasicBlock *
    197 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
    198                            ConstantInt *UpperBound, Value *Val,
    199                            BasicBlock *Predecessor, BasicBlock *OrigBlock,
    200                            BasicBlock *Default,
    201                            const std::vector<IntRange> &UnreachableRanges) {
    202   unsigned Size = End - Begin;
    203 
    204   if (Size == 1) {
    205     // Check if the Case Range is perfectly squeezed in between
    206     // already checked Upper and Lower bounds. If it is then we can avoid
    207     // emitting the code that checks if the value actually falls in the range
    208     // because the bounds already tell us so.
    209     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
    210       unsigned NumMergedCases = 0;
    211       if (LowerBound && UpperBound)
    212         NumMergedCases =
    213             UpperBound->getSExtValue() - LowerBound->getSExtValue();
    214       fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
    215       return Begin->BB;
    216     }
    217     return newLeafBlock(*Begin, Val, OrigBlock, Default);
    218   }
    219 
    220   unsigned Mid = Size / 2;
    221   std::vector<CaseRange> LHS(Begin, Begin + Mid);
    222   DEBUG(dbgs() << "LHS: " << LHS << "\n");
    223   std::vector<CaseRange> RHS(Begin + Mid, End);
    224   DEBUG(dbgs() << "RHS: " << RHS << "\n");
    225 
    226   CaseRange &Pivot = *(Begin + Mid);
    227   DEBUG(dbgs() << "Pivot ==> "
    228                << Pivot.Low->getValue()
    229                << " -" << Pivot.High->getValue() << "\n");
    230 
    231   // NewLowerBound here should never be the integer minimal value.
    232   // This is because it is computed from a case range that is never
    233   // the smallest, so there is always a case range that has at least
    234   // a smaller value.
    235   ConstantInt *NewLowerBound = Pivot.Low;
    236 
    237   // Because NewLowerBound is never the smallest representable integer
    238   // it is safe here to subtract one.
    239   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
    240                                                 NewLowerBound->getValue() - 1);
    241 
    242   if (!UnreachableRanges.empty()) {
    243     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
    244     int64_t GapLow = LHS.back().High->getSExtValue() + 1;
    245     int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
    246     IntRange Gap = { GapLow, GapHigh };
    247     if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
    248       NewUpperBound = LHS.back().High;
    249   }
    250 
    251   DEBUG(dbgs() << "LHS Bounds ==> ";
    252         if (LowerBound) {
    253           dbgs() << LowerBound->getSExtValue();
    254         } else {
    255           dbgs() << "NONE";
    256         }
    257         dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
    258         dbgs() << "RHS Bounds ==> ";
    259         dbgs() << NewLowerBound->getSExtValue() << " - ";
    260         if (UpperBound) {
    261           dbgs() << UpperBound->getSExtValue() << "\n";
    262         } else {
    263           dbgs() << "NONE\n";
    264         });
    265 
    266   // Create a new node that checks if the value is < pivot. Go to the
    267   // left branch if it is and right branch if not.
    268   Function* F = OrigBlock->getParent();
    269   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
    270 
    271   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
    272                                 Val, Pivot.Low, "Pivot");
    273 
    274   BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
    275                                       NewUpperBound, Val, NewNode, OrigBlock,
    276                                       Default, UnreachableRanges);
    277   BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
    278                                       UpperBound, Val, NewNode, OrigBlock,
    279                                       Default, UnreachableRanges);
    280 
    281   Function::iterator FI = OrigBlock;
    282   F->getBasicBlockList().insert(++FI, NewNode);
    283   NewNode->getInstList().push_back(Comp);
    284 
    285   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
    286   return NewNode;
    287 }
    288 
    289 // newLeafBlock - Create a new leaf block for the binary lookup tree. It
    290 // checks if the switch's value == the case's value. If not, then it
    291 // jumps to the default branch. At this point in the tree, the value
    292 // can't be another valid case value, so the jump to the "default" branch
    293 // is warranted.
    294 //
    295 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
    296                                       BasicBlock* OrigBlock,
    297                                       BasicBlock* Default)
    298 {
    299   Function* F = OrigBlock->getParent();
    300   BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
    301   Function::iterator FI = OrigBlock;
    302   F->getBasicBlockList().insert(++FI, NewLeaf);
    303 
    304   // Emit comparison
    305   ICmpInst* Comp = nullptr;
    306   if (Leaf.Low == Leaf.High) {
    307     // Make the seteq instruction...
    308     Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
    309                         Leaf.Low, "SwitchLeaf");
    310   } else {
    311     // Make range comparison
    312     if (Leaf.Low->isMinValue(true /*isSigned*/)) {
    313       // Val >= Min && Val <= Hi --> Val <= Hi
    314       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
    315                           "SwitchLeaf");
    316     } else if (Leaf.Low->isZero()) {
    317       // Val >= 0 && Val <= Hi --> Val <=u Hi
    318       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
    319                           "SwitchLeaf");
    320     } else {
    321       // Emit V-Lo <=u Hi-Lo
    322       Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
    323       Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
    324                                                    Val->getName()+".off",
    325                                                    NewLeaf);
    326       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
    327       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
    328                           "SwitchLeaf");
    329     }
    330   }
    331 
    332   // Make the conditional branch...
    333   BasicBlock* Succ = Leaf.BB;
    334   BranchInst::Create(Succ, Default, Comp, NewLeaf);
    335 
    336   // If there were any PHI nodes in this successor, rewrite one entry
    337   // from OrigBlock to come from NewLeaf.
    338   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    339     PHINode* PN = cast<PHINode>(I);
    340     // Remove all but one incoming entries from the cluster
    341     uint64_t Range = Leaf.High->getSExtValue() -
    342                      Leaf.Low->getSExtValue();
    343     for (uint64_t j = 0; j < Range; ++j) {
    344       PN->removeIncomingValue(OrigBlock);
    345     }
    346 
    347     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    348     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    349     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
    350   }
    351 
    352   return NewLeaf;
    353 }
    354 
    355 // Clusterify - Transform simple list of Cases into list of CaseRange's
    356 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
    357   unsigned numCmps = 0;
    358 
    359   // Start with "simple" cases
    360   for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    361     Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
    362                               i.getCaseSuccessor()));
    363 
    364   std::sort(Cases.begin(), Cases.end(), CaseCmp());
    365 
    366   // Merge case into clusters
    367   if (Cases.size()>=2)
    368     for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
    369          J != Cases.end();) {
    370       int64_t nextValue = J->Low->getSExtValue();
    371       int64_t currentValue = I->High->getSExtValue();
    372       BasicBlock* nextBB = J->BB;
    373       BasicBlock* currentBB = I->BB;
    374 
    375       // If the two neighboring cases go to the same destination, merge them
    376       // into a single case.
    377       if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
    378         I->High = J->High;
    379         J = Cases.erase(J);
    380       } else {
    381         I = J++;
    382       }
    383     }
    384 
    385   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
    386     if (I->Low != I->High)
    387       // A range counts double, since it requires two compares.
    388       ++numCmps;
    389   }
    390 
    391   return numCmps;
    392 }
    393 
    394 // processSwitchInst - Replace the specified switch instruction with a sequence
    395 // of chained if-then insts in a balanced binary search.
    396 //
    397 void LowerSwitch::processSwitchInst(SwitchInst *SI) {
    398   BasicBlock *CurBlock = SI->getParent();
    399   BasicBlock *OrigBlock = CurBlock;
    400   Function *F = CurBlock->getParent();
    401   Value *Val = SI->getCondition();  // The value we are switching on...
    402   BasicBlock* Default = SI->getDefaultDest();
    403 
    404   // If there is only the default destination, just branch.
    405   if (!SI->getNumCases()) {
    406     BranchInst::Create(Default, CurBlock);
    407     SI->eraseFromParent();
    408     return;
    409   }
    410 
    411   // Prepare cases vector.
    412   CaseVector Cases;
    413   unsigned numCmps = Clusterify(Cases, SI);
    414   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
    415                << ". Total compares: " << numCmps << "\n");
    416   DEBUG(dbgs() << "Cases: " << Cases << "\n");
    417   (void)numCmps;
    418 
    419   ConstantInt *LowerBound = nullptr;
    420   ConstantInt *UpperBound = nullptr;
    421   std::vector<IntRange> UnreachableRanges;
    422 
    423   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
    424     // Make the bounds tightly fitted around the case value range, becase we
    425     // know that the value passed to the switch must be exactly one of the case
    426     // values.
    427     assert(!Cases.empty());
    428     LowerBound = Cases.front().Low;
    429     UpperBound = Cases.back().High;
    430 
    431     DenseMap<BasicBlock *, unsigned> Popularity;
    432     unsigned MaxPop = 0;
    433     BasicBlock *PopSucc = nullptr;
    434 
    435     IntRange R = { INT64_MIN, INT64_MAX };
    436     UnreachableRanges.push_back(R);
    437     for (const auto &I : Cases) {
    438       int64_t Low = I.Low->getSExtValue();
    439       int64_t High = I.High->getSExtValue();
    440 
    441       IntRange &LastRange = UnreachableRanges.back();
    442       if (LastRange.Low == Low) {
    443         // There is nothing left of the previous range.
    444         UnreachableRanges.pop_back();
    445       } else {
    446         // Terminate the previous range.
    447         assert(Low > LastRange.Low);
    448         LastRange.High = Low - 1;
    449       }
    450       if (High != INT64_MAX) {
    451         IntRange R = { High + 1, INT64_MAX };
    452         UnreachableRanges.push_back(R);
    453       }
    454 
    455       // Count popularity.
    456       int64_t N = High - Low + 1;
    457       unsigned &Pop = Popularity[I.BB];
    458       if ((Pop += N) > MaxPop) {
    459         MaxPop = Pop;
    460         PopSucc = I.BB;
    461       }
    462     }
    463 #ifndef NDEBUG
    464     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
    465     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
    466          I != E; ++I) {
    467       assert(I->Low <= I->High);
    468       auto Next = I + 1;
    469       if (Next != E) {
    470         assert(Next->Low > I->High);
    471       }
    472     }
    473 #endif
    474 
    475     // Use the most popular block as the new default, reducing the number of
    476     // cases.
    477     assert(MaxPop > 0 && PopSucc);
    478     Default = PopSucc;
    479     for (CaseItr I = Cases.begin(); I != Cases.end();) {
    480       if (I->BB == PopSucc)
    481         I = Cases.erase(I);
    482       else
    483         ++I;
    484     }
    485 
    486     // If there are no cases left, just branch.
    487     if (Cases.empty()) {
    488       BranchInst::Create(Default, CurBlock);
    489       SI->eraseFromParent();
    490       return;
    491     }
    492   }
    493 
    494   // Create a new, empty default block so that the new hierarchy of
    495   // if-then statements go to this and the PHI nodes are happy.
    496   BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
    497   F->getBasicBlockList().insert(Default, NewDefault);
    498   BranchInst::Create(Default, NewDefault);
    499 
    500   // If there is an entry in any PHI nodes for the default edge, make sure
    501   // to update them as well.
    502   for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
    503     PHINode *PN = cast<PHINode>(I);
    504     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    505     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    506     PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
    507   }
    508 
    509   BasicBlock *SwitchBlock =
    510       switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
    511                     OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
    512 
    513   // Branch to our shiny new if-then stuff...
    514   BranchInst::Create(SwitchBlock, OrigBlock);
    515 
    516   // We are now done with the switch instruction, delete it.
    517   BasicBlock *OldDefault = SI->getDefaultDest();
    518   CurBlock->getInstList().erase(SI);
    519 
    520   // If the Default block has no more predecessors just remove it.
    521   if (pred_begin(OldDefault) == pred_end(OldDefault))
    522     DeleteDeadBlock(OldDefault);
    523 }
    524