Home | History | Annotate | Download | only in Utils
      1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is a utility pass used for testing the InstructionSimplify analysis.
     11 // The analysis is applied to every instruction, and if it simplifies then the
     12 // instruction is replaced by the simplification.  If you are looking for a pass
     13 // that performs serious instruction folding, use the instcombine pass instead.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/ADT/StringMap.h"
     20 #include "llvm/ADT/Triple.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/DiagnosticInfo.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/IRBuilder.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Module.h"
     30 #include "llvm/IR/PatternMatch.h"
     31 #include "llvm/Support/Allocator.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Analysis/TargetLibraryInfo.h"
     34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     35 
     36 using namespace llvm;
     37 using namespace PatternMatch;
     38 
     39 static cl::opt<bool>
     40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
     41                    cl::desc("Treat error-reporting calls as cold"));
     42 
     43 static cl::opt<bool>
     44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
     45                          cl::init(false),
     46                          cl::desc("Enable unsafe double to float "
     47                                   "shrinking for math lib calls"));
     48 
     49 
     50 //===----------------------------------------------------------------------===//
     51 // Helper Functions
     52 //===----------------------------------------------------------------------===//
     53 
     54 static bool ignoreCallingConv(LibFunc::Func Func) {
     55   switch (Func) {
     56   case LibFunc::abs:
     57   case LibFunc::labs:
     58   case LibFunc::llabs:
     59   case LibFunc::strlen:
     60     return true;
     61   default:
     62     return false;
     63   }
     64   llvm_unreachable("All cases should be covered in the switch.");
     65 }
     66 
     67 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
     68 /// value is equal or not-equal to zero.
     69 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
     70   for (User *U : V->users()) {
     71     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
     72       if (IC->isEquality())
     73         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
     74           if (C->isNullValue())
     75             continue;
     76     // Unknown instruction.
     77     return false;
     78   }
     79   return true;
     80 }
     81 
     82 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
     83 /// comparisons with With.
     84 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
     85   for (User *U : V->users()) {
     86     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
     87       if (IC->isEquality() && IC->getOperand(1) == With)
     88         continue;
     89     // Unknown instruction.
     90     return false;
     91   }
     92   return true;
     93 }
     94 
     95 static bool callHasFloatingPointArgument(const CallInst *CI) {
     96   for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
     97        it != e; ++it) {
     98     if ((*it)->getType()->isFloatingPointTy())
     99       return true;
    100   }
    101   return false;
    102 }
    103 
    104 /// \brief Check whether the overloaded unary floating point function
    105 /// corresponing to \a Ty is available.
    106 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
    107                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
    108                             LibFunc::Func LongDoubleFn) {
    109   switch (Ty->getTypeID()) {
    110   case Type::FloatTyID:
    111     return TLI->has(FloatFn);
    112   case Type::DoubleTyID:
    113     return TLI->has(DoubleFn);
    114   default:
    115     return TLI->has(LongDoubleFn);
    116   }
    117 }
    118 
    119 /// \brief Returns whether \p F matches the signature expected for the
    120 /// string/memory copying library function \p Func.
    121 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
    122 /// Their fortified (_chk) counterparts are also accepted.
    123 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
    124   const DataLayout &DL = F->getParent()->getDataLayout();
    125   FunctionType *FT = F->getFunctionType();
    126   LLVMContext &Context = F->getContext();
    127   Type *PCharTy = Type::getInt8PtrTy(Context);
    128   Type *SizeTTy = DL.getIntPtrType(Context);
    129   unsigned NumParams = FT->getNumParams();
    130 
    131   // All string libfuncs return the same type as the first parameter.
    132   if (FT->getReturnType() != FT->getParamType(0))
    133     return false;
    134 
    135   switch (Func) {
    136   default:
    137     llvm_unreachable("Can't check signature for non-string-copy libfunc.");
    138   case LibFunc::stpncpy_chk:
    139   case LibFunc::strncpy_chk:
    140     --NumParams; // fallthrough
    141   case LibFunc::stpncpy:
    142   case LibFunc::strncpy: {
    143     if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
    144         FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
    145       return false;
    146     break;
    147   }
    148   case LibFunc::strcpy_chk:
    149   case LibFunc::stpcpy_chk:
    150     --NumParams; // fallthrough
    151   case LibFunc::stpcpy:
    152   case LibFunc::strcpy: {
    153     if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
    154         FT->getParamType(0) != PCharTy)
    155       return false;
    156     break;
    157   }
    158   case LibFunc::memmove_chk:
    159   case LibFunc::memcpy_chk:
    160     --NumParams; // fallthrough
    161   case LibFunc::memmove:
    162   case LibFunc::memcpy: {
    163     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
    164         !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
    165       return false;
    166     break;
    167   }
    168   case LibFunc::memset_chk:
    169     --NumParams; // fallthrough
    170   case LibFunc::memset: {
    171     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
    172         !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
    173       return false;
    174     break;
    175   }
    176   }
    177   // If this is a fortified libcall, the last parameter is a size_t.
    178   if (NumParams == FT->getNumParams() - 1)
    179     return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
    180   return true;
    181 }
    182 
    183 //===----------------------------------------------------------------------===//
    184 // String and Memory Library Call Optimizations
    185 //===----------------------------------------------------------------------===//
    186 
    187 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
    188   Function *Callee = CI->getCalledFunction();
    189   // Verify the "strcat" function prototype.
    190   FunctionType *FT = Callee->getFunctionType();
    191   if (FT->getNumParams() != 2||
    192       FT->getReturnType() != B.getInt8PtrTy() ||
    193       FT->getParamType(0) != FT->getReturnType() ||
    194       FT->getParamType(1) != FT->getReturnType())
    195     return nullptr;
    196 
    197   // Extract some information from the instruction
    198   Value *Dst = CI->getArgOperand(0);
    199   Value *Src = CI->getArgOperand(1);
    200 
    201   // See if we can get the length of the input string.
    202   uint64_t Len = GetStringLength(Src);
    203   if (Len == 0)
    204     return nullptr;
    205   --Len; // Unbias length.
    206 
    207   // Handle the simple, do-nothing case: strcat(x, "") -> x
    208   if (Len == 0)
    209     return Dst;
    210 
    211   return emitStrLenMemCpy(Src, Dst, Len, B);
    212 }
    213 
    214 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
    215                                            IRBuilder<> &B) {
    216   // We need to find the end of the destination string.  That's where the
    217   // memory is to be moved to. We just generate a call to strlen.
    218   Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
    219   if (!DstLen)
    220     return nullptr;
    221 
    222   // Now that we have the destination's length, we must index into the
    223   // destination's pointer to get the actual memcpy destination (end of
    224   // the string .. we're concatenating).
    225   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
    226 
    227   // We have enough information to now generate the memcpy call to do the
    228   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    229   B.CreateMemCpy(CpyDst, Src,
    230                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
    231                  1);
    232   return Dst;
    233 }
    234 
    235 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
    236   Function *Callee = CI->getCalledFunction();
    237   // Verify the "strncat" function prototype.
    238   FunctionType *FT = Callee->getFunctionType();
    239   if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
    240       FT->getParamType(0) != FT->getReturnType() ||
    241       FT->getParamType(1) != FT->getReturnType() ||
    242       !FT->getParamType(2)->isIntegerTy())
    243     return nullptr;
    244 
    245   // Extract some information from the instruction
    246   Value *Dst = CI->getArgOperand(0);
    247   Value *Src = CI->getArgOperand(1);
    248   uint64_t Len;
    249 
    250   // We don't do anything if length is not constant
    251   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    252     Len = LengthArg->getZExtValue();
    253   else
    254     return nullptr;
    255 
    256   // See if we can get the length of the input string.
    257   uint64_t SrcLen = GetStringLength(Src);
    258   if (SrcLen == 0)
    259     return nullptr;
    260   --SrcLen; // Unbias length.
    261 
    262   // Handle the simple, do-nothing cases:
    263   // strncat(x, "", c) -> x
    264   // strncat(x,  c, 0) -> x
    265   if (SrcLen == 0 || Len == 0)
    266     return Dst;
    267 
    268   // We don't optimize this case
    269   if (Len < SrcLen)
    270     return nullptr;
    271 
    272   // strncat(x, s, c) -> strcat(x, s)
    273   // s is constant so the strcat can be optimized further
    274   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
    275 }
    276 
    277 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
    278   Function *Callee = CI->getCalledFunction();
    279   // Verify the "strchr" function prototype.
    280   FunctionType *FT = Callee->getFunctionType();
    281   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
    282       FT->getParamType(0) != FT->getReturnType() ||
    283       !FT->getParamType(1)->isIntegerTy(32))
    284     return nullptr;
    285 
    286   Value *SrcStr = CI->getArgOperand(0);
    287 
    288   // If the second operand is non-constant, see if we can compute the length
    289   // of the input string and turn this into memchr.
    290   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    291   if (!CharC) {
    292     uint64_t Len = GetStringLength(SrcStr);
    293     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
    294       return nullptr;
    295 
    296     return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
    297                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
    298                       B, DL, TLI);
    299   }
    300 
    301   // Otherwise, the character is a constant, see if the first argument is
    302   // a string literal.  If so, we can constant fold.
    303   StringRef Str;
    304   if (!getConstantStringInfo(SrcStr, Str)) {
    305     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
    306       return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
    307     return nullptr;
    308   }
    309 
    310   // Compute the offset, make sure to handle the case when we're searching for
    311   // zero (a weird way to spell strlen).
    312   size_t I = (0xFF & CharC->getSExtValue()) == 0
    313                  ? Str.size()
    314                  : Str.find(CharC->getSExtValue());
    315   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
    316     return Constant::getNullValue(CI->getType());
    317 
    318   // strchr(s+n,c)  -> gep(s+n+i,c)
    319   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
    320 }
    321 
    322 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
    323   Function *Callee = CI->getCalledFunction();
    324   // Verify the "strrchr" function prototype.
    325   FunctionType *FT = Callee->getFunctionType();
    326   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
    327       FT->getParamType(0) != FT->getReturnType() ||
    328       !FT->getParamType(1)->isIntegerTy(32))
    329     return nullptr;
    330 
    331   Value *SrcStr = CI->getArgOperand(0);
    332   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    333 
    334   // Cannot fold anything if we're not looking for a constant.
    335   if (!CharC)
    336     return nullptr;
    337 
    338   StringRef Str;
    339   if (!getConstantStringInfo(SrcStr, Str)) {
    340     // strrchr(s, 0) -> strchr(s, 0)
    341     if (CharC->isZero())
    342       return EmitStrChr(SrcStr, '\0', B, TLI);
    343     return nullptr;
    344   }
    345 
    346   // Compute the offset.
    347   size_t I = (0xFF & CharC->getSExtValue()) == 0
    348                  ? Str.size()
    349                  : Str.rfind(CharC->getSExtValue());
    350   if (I == StringRef::npos) // Didn't find the char. Return null.
    351     return Constant::getNullValue(CI->getType());
    352 
    353   // strrchr(s+n,c) -> gep(s+n+i,c)
    354   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
    355 }
    356 
    357 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
    358   Function *Callee = CI->getCalledFunction();
    359   // Verify the "strcmp" function prototype.
    360   FunctionType *FT = Callee->getFunctionType();
    361   if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
    362       FT->getParamType(0) != FT->getParamType(1) ||
    363       FT->getParamType(0) != B.getInt8PtrTy())
    364     return nullptr;
    365 
    366   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    367   if (Str1P == Str2P) // strcmp(x,x)  -> 0
    368     return ConstantInt::get(CI->getType(), 0);
    369 
    370   StringRef Str1, Str2;
    371   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    372   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
    373 
    374   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
    375   if (HasStr1 && HasStr2)
    376     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
    377 
    378   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
    379     return B.CreateNeg(
    380         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
    381 
    382   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
    383     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    384 
    385   // strcmp(P, "x") -> memcmp(P, "x", 2)
    386   uint64_t Len1 = GetStringLength(Str1P);
    387   uint64_t Len2 = GetStringLength(Str2P);
    388   if (Len1 && Len2) {
    389     return EmitMemCmp(Str1P, Str2P,
    390                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
    391                                        std::min(Len1, Len2)),
    392                       B, DL, TLI);
    393   }
    394 
    395   return nullptr;
    396 }
    397 
    398 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
    399   Function *Callee = CI->getCalledFunction();
    400   // Verify the "strncmp" function prototype.
    401   FunctionType *FT = Callee->getFunctionType();
    402   if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
    403       FT->getParamType(0) != FT->getParamType(1) ||
    404       FT->getParamType(0) != B.getInt8PtrTy() ||
    405       !FT->getParamType(2)->isIntegerTy())
    406     return nullptr;
    407 
    408   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    409   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
    410     return ConstantInt::get(CI->getType(), 0);
    411 
    412   // Get the length argument if it is constant.
    413   uint64_t Length;
    414   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    415     Length = LengthArg->getZExtValue();
    416   else
    417     return nullptr;
    418 
    419   if (Length == 0) // strncmp(x,y,0)   -> 0
    420     return ConstantInt::get(CI->getType(), 0);
    421 
    422   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
    423     return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
    424 
    425   StringRef Str1, Str2;
    426   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    427   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
    428 
    429   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
    430   if (HasStr1 && HasStr2) {
    431     StringRef SubStr1 = Str1.substr(0, Length);
    432     StringRef SubStr2 = Str2.substr(0, Length);
    433     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
    434   }
    435 
    436   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
    437     return B.CreateNeg(
    438         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
    439 
    440   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
    441     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    442 
    443   return nullptr;
    444 }
    445 
    446 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
    447   Function *Callee = CI->getCalledFunction();
    448 
    449   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
    450     return nullptr;
    451 
    452   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    453   if (Dst == Src) // strcpy(x,x)  -> x
    454     return Src;
    455 
    456   // See if we can get the length of the input string.
    457   uint64_t Len = GetStringLength(Src);
    458   if (Len == 0)
    459     return nullptr;
    460 
    461   // We have enough information to now generate the memcpy call to do the
    462   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
    463   B.CreateMemCpy(Dst, Src,
    464                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
    465   return Dst;
    466 }
    467 
    468 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
    469   Function *Callee = CI->getCalledFunction();
    470   // Verify the "stpcpy" function prototype.
    471   FunctionType *FT = Callee->getFunctionType();
    472 
    473   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
    474     return nullptr;
    475 
    476   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    477   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
    478     Value *StrLen = EmitStrLen(Src, B, DL, TLI);
    479     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
    480   }
    481 
    482   // See if we can get the length of the input string.
    483   uint64_t Len = GetStringLength(Src);
    484   if (Len == 0)
    485     return nullptr;
    486 
    487   Type *PT = FT->getParamType(0);
    488   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
    489   Value *DstEnd =
    490       B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
    491 
    492   // We have enough information to now generate the memcpy call to do the
    493   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
    494   B.CreateMemCpy(Dst, Src, LenV, 1);
    495   return DstEnd;
    496 }
    497 
    498 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
    499   Function *Callee = CI->getCalledFunction();
    500   FunctionType *FT = Callee->getFunctionType();
    501 
    502   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
    503     return nullptr;
    504 
    505   Value *Dst = CI->getArgOperand(0);
    506   Value *Src = CI->getArgOperand(1);
    507   Value *LenOp = CI->getArgOperand(2);
    508 
    509   // See if we can get the length of the input string.
    510   uint64_t SrcLen = GetStringLength(Src);
    511   if (SrcLen == 0)
    512     return nullptr;
    513   --SrcLen;
    514 
    515   if (SrcLen == 0) {
    516     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
    517     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
    518     return Dst;
    519   }
    520 
    521   uint64_t Len;
    522   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
    523     Len = LengthArg->getZExtValue();
    524   else
    525     return nullptr;
    526 
    527   if (Len == 0)
    528     return Dst; // strncpy(x, y, 0) -> x
    529 
    530   // Let strncpy handle the zero padding
    531   if (Len > SrcLen + 1)
    532     return nullptr;
    533 
    534   Type *PT = FT->getParamType(0);
    535   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
    536   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
    537 
    538   return Dst;
    539 }
    540 
    541 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
    542   Function *Callee = CI->getCalledFunction();
    543   FunctionType *FT = Callee->getFunctionType();
    544   if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
    545       !FT->getReturnType()->isIntegerTy())
    546     return nullptr;
    547 
    548   Value *Src = CI->getArgOperand(0);
    549 
    550   // Constant folding: strlen("xyz") -> 3
    551   if (uint64_t Len = GetStringLength(Src))
    552     return ConstantInt::get(CI->getType(), Len - 1);
    553 
    554   // strlen(x?"foo":"bars") --> x ? 3 : 4
    555   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
    556     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
    557     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
    558     if (LenTrue && LenFalse) {
    559       Function *Caller = CI->getParent()->getParent();
    560       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
    561                              SI->getDebugLoc(),
    562                              "folded strlen(select) to select of constants");
    563       return B.CreateSelect(SI->getCondition(),
    564                             ConstantInt::get(CI->getType(), LenTrue - 1),
    565                             ConstantInt::get(CI->getType(), LenFalse - 1));
    566     }
    567   }
    568 
    569   // strlen(x) != 0 --> *x != 0
    570   // strlen(x) == 0 --> *x == 0
    571   if (isOnlyUsedInZeroEqualityComparison(CI))
    572     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
    573 
    574   return nullptr;
    575 }
    576 
    577 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
    578   Function *Callee = CI->getCalledFunction();
    579   FunctionType *FT = Callee->getFunctionType();
    580   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
    581       FT->getParamType(1) != FT->getParamType(0) ||
    582       FT->getReturnType() != FT->getParamType(0))
    583     return nullptr;
    584 
    585   StringRef S1, S2;
    586   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    587   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    588 
    589   // strpbrk(s, "") -> nullptr
    590   // strpbrk("", s) -> nullptr
    591   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    592     return Constant::getNullValue(CI->getType());
    593 
    594   // Constant folding.
    595   if (HasS1 && HasS2) {
    596     size_t I = S1.find_first_of(S2);
    597     if (I == StringRef::npos) // No match.
    598       return Constant::getNullValue(CI->getType());
    599 
    600     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk");
    601   }
    602 
    603   // strpbrk(s, "a") -> strchr(s, 'a')
    604   if (HasS2 && S2.size() == 1)
    605     return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
    606 
    607   return nullptr;
    608 }
    609 
    610 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
    611   Function *Callee = CI->getCalledFunction();
    612   FunctionType *FT = Callee->getFunctionType();
    613   if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
    614       !FT->getParamType(0)->isPointerTy() ||
    615       !FT->getParamType(1)->isPointerTy())
    616     return nullptr;
    617 
    618   Value *EndPtr = CI->getArgOperand(1);
    619   if (isa<ConstantPointerNull>(EndPtr)) {
    620     // With a null EndPtr, this function won't capture the main argument.
    621     // It would be readonly too, except that it still may write to errno.
    622     CI->addAttribute(1, Attribute::NoCapture);
    623   }
    624 
    625   return nullptr;
    626 }
    627 
    628 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
    629   Function *Callee = CI->getCalledFunction();
    630   FunctionType *FT = Callee->getFunctionType();
    631   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
    632       FT->getParamType(1) != FT->getParamType(0) ||
    633       !FT->getReturnType()->isIntegerTy())
    634     return nullptr;
    635 
    636   StringRef S1, S2;
    637   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    638   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    639 
    640   // strspn(s, "") -> 0
    641   // strspn("", s) -> 0
    642   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    643     return Constant::getNullValue(CI->getType());
    644 
    645   // Constant folding.
    646   if (HasS1 && HasS2) {
    647     size_t Pos = S1.find_first_not_of(S2);
    648     if (Pos == StringRef::npos)
    649       Pos = S1.size();
    650     return ConstantInt::get(CI->getType(), Pos);
    651   }
    652 
    653   return nullptr;
    654 }
    655 
    656 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
    657   Function *Callee = CI->getCalledFunction();
    658   FunctionType *FT = Callee->getFunctionType();
    659   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
    660       FT->getParamType(1) != FT->getParamType(0) ||
    661       !FT->getReturnType()->isIntegerTy())
    662     return nullptr;
    663 
    664   StringRef S1, S2;
    665   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    666   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    667 
    668   // strcspn("", s) -> 0
    669   if (HasS1 && S1.empty())
    670     return Constant::getNullValue(CI->getType());
    671 
    672   // Constant folding.
    673   if (HasS1 && HasS2) {
    674     size_t Pos = S1.find_first_of(S2);
    675     if (Pos == StringRef::npos)
    676       Pos = S1.size();
    677     return ConstantInt::get(CI->getType(), Pos);
    678   }
    679 
    680   // strcspn(s, "") -> strlen(s)
    681   if (HasS2 && S2.empty())
    682     return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
    683 
    684   return nullptr;
    685 }
    686 
    687 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
    688   Function *Callee = CI->getCalledFunction();
    689   FunctionType *FT = Callee->getFunctionType();
    690   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
    691       !FT->getParamType(1)->isPointerTy() ||
    692       !FT->getReturnType()->isPointerTy())
    693     return nullptr;
    694 
    695   // fold strstr(x, x) -> x.
    696   if (CI->getArgOperand(0) == CI->getArgOperand(1))
    697     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
    698 
    699   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
    700   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
    701     Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
    702     if (!StrLen)
    703       return nullptr;
    704     Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
    705                                  StrLen, B, DL, TLI);
    706     if (!StrNCmp)
    707       return nullptr;
    708     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
    709       ICmpInst *Old = cast<ICmpInst>(*UI++);
    710       Value *Cmp =
    711           B.CreateICmp(Old->getPredicate(), StrNCmp,
    712                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
    713       replaceAllUsesWith(Old, Cmp);
    714     }
    715     return CI;
    716   }
    717 
    718   // See if either input string is a constant string.
    719   StringRef SearchStr, ToFindStr;
    720   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
    721   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
    722 
    723   // fold strstr(x, "") -> x.
    724   if (HasStr2 && ToFindStr.empty())
    725     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
    726 
    727   // If both strings are known, constant fold it.
    728   if (HasStr1 && HasStr2) {
    729     size_t Offset = SearchStr.find(ToFindStr);
    730 
    731     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
    732       return Constant::getNullValue(CI->getType());
    733 
    734     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
    735     Value *Result = CastToCStr(CI->getArgOperand(0), B);
    736     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
    737     return B.CreateBitCast(Result, CI->getType());
    738   }
    739 
    740   // fold strstr(x, "y") -> strchr(x, 'y').
    741   if (HasStr2 && ToFindStr.size() == 1) {
    742     Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
    743     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
    744   }
    745   return nullptr;
    746 }
    747 
    748 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
    749   Function *Callee = CI->getCalledFunction();
    750   FunctionType *FT = Callee->getFunctionType();
    751   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
    752       !FT->getParamType(1)->isIntegerTy(32) ||
    753       !FT->getParamType(2)->isIntegerTy() ||
    754       !FT->getReturnType()->isPointerTy())
    755     return nullptr;
    756 
    757   Value *SrcStr = CI->getArgOperand(0);
    758   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    759   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
    760 
    761   // memchr(x, y, 0) -> null
    762   if (LenC && LenC->isNullValue())
    763     return Constant::getNullValue(CI->getType());
    764 
    765   // From now on we need at least constant length and string.
    766   StringRef Str;
    767   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
    768     return nullptr;
    769 
    770   // Truncate the string to LenC. If Str is smaller than LenC we will still only
    771   // scan the string, as reading past the end of it is undefined and we can just
    772   // return null if we don't find the char.
    773   Str = Str.substr(0, LenC->getZExtValue());
    774 
    775   // If the char is variable but the input str and length are not we can turn
    776   // this memchr call into a simple bit field test. Of course this only works
    777   // when the return value is only checked against null.
    778   //
    779   // It would be really nice to reuse switch lowering here but we can't change
    780   // the CFG at this point.
    781   //
    782   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
    783   //   after bounds check.
    784   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
    785     unsigned char Max =
    786         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
    787                           reinterpret_cast<const unsigned char *>(Str.end()));
    788 
    789     // Make sure the bit field we're about to create fits in a register on the
    790     // target.
    791     // FIXME: On a 64 bit architecture this prevents us from using the
    792     // interesting range of alpha ascii chars. We could do better by emitting
    793     // two bitfields or shifting the range by 64 if no lower chars are used.
    794     if (!DL.fitsInLegalInteger(Max + 1))
    795       return nullptr;
    796 
    797     // For the bit field use a power-of-2 type with at least 8 bits to avoid
    798     // creating unnecessary illegal types.
    799     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
    800 
    801     // Now build the bit field.
    802     APInt Bitfield(Width, 0);
    803     for (char C : Str)
    804       Bitfield.setBit((unsigned char)C);
    805     Value *BitfieldC = B.getInt(Bitfield);
    806 
    807     // First check that the bit field access is within bounds.
    808     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
    809     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
    810                                  "memchr.bounds");
    811 
    812     // Create code that checks if the given bit is set in the field.
    813     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
    814     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
    815 
    816     // Finally merge both checks and cast to pointer type. The inttoptr
    817     // implicitly zexts the i1 to intptr type.
    818     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
    819   }
    820 
    821   // Check if all arguments are constants.  If so, we can constant fold.
    822   if (!CharC)
    823     return nullptr;
    824 
    825   // Compute the offset.
    826   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
    827   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
    828     return Constant::getNullValue(CI->getType());
    829 
    830   // memchr(s+n,c,l) -> gep(s+n+i,c)
    831   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
    832 }
    833 
    834 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
    835   Function *Callee = CI->getCalledFunction();
    836   FunctionType *FT = Callee->getFunctionType();
    837   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
    838       !FT->getParamType(1)->isPointerTy() ||
    839       !FT->getReturnType()->isIntegerTy(32))
    840     return nullptr;
    841 
    842   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
    843 
    844   if (LHS == RHS) // memcmp(s,s,x) -> 0
    845     return Constant::getNullValue(CI->getType());
    846 
    847   // Make sure we have a constant length.
    848   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
    849   if (!LenC)
    850     return nullptr;
    851   uint64_t Len = LenC->getZExtValue();
    852 
    853   if (Len == 0) // memcmp(s1,s2,0) -> 0
    854     return Constant::getNullValue(CI->getType());
    855 
    856   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
    857   if (Len == 1) {
    858     Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
    859                                CI->getType(), "lhsv");
    860     Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
    861                                CI->getType(), "rhsv");
    862     return B.CreateSub(LHSV, RHSV, "chardiff");
    863   }
    864 
    865   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
    866   StringRef LHSStr, RHSStr;
    867   if (getConstantStringInfo(LHS, LHSStr) &&
    868       getConstantStringInfo(RHS, RHSStr)) {
    869     // Make sure we're not reading out-of-bounds memory.
    870     if (Len > LHSStr.size() || Len > RHSStr.size())
    871       return nullptr;
    872     // Fold the memcmp and normalize the result.  This way we get consistent
    873     // results across multiple platforms.
    874     uint64_t Ret = 0;
    875     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
    876     if (Cmp < 0)
    877       Ret = -1;
    878     else if (Cmp > 0)
    879       Ret = 1;
    880     return ConstantInt::get(CI->getType(), Ret);
    881   }
    882 
    883   return nullptr;
    884 }
    885 
    886 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
    887   Function *Callee = CI->getCalledFunction();
    888 
    889   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
    890     return nullptr;
    891 
    892   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
    893   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
    894                  CI->getArgOperand(2), 1);
    895   return CI->getArgOperand(0);
    896 }
    897 
    898 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
    899   Function *Callee = CI->getCalledFunction();
    900 
    901   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
    902     return nullptr;
    903 
    904   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
    905   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
    906                   CI->getArgOperand(2), 1);
    907   return CI->getArgOperand(0);
    908 }
    909 
    910 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
    911   Function *Callee = CI->getCalledFunction();
    912 
    913   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
    914     return nullptr;
    915 
    916   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
    917   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
    918   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
    919   return CI->getArgOperand(0);
    920 }
    921 
    922 //===----------------------------------------------------------------------===//
    923 // Math Library Optimizations
    924 //===----------------------------------------------------------------------===//
    925 
    926 /// Return a variant of Val with float type.
    927 /// Currently this works in two cases: If Val is an FPExtension of a float
    928 /// value to something bigger, simply return the operand.
    929 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
    930 /// loss of precision do so.
    931 static Value *valueHasFloatPrecision(Value *Val) {
    932   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
    933     Value *Op = Cast->getOperand(0);
    934     if (Op->getType()->isFloatTy())
    935       return Op;
    936   }
    937   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
    938     APFloat F = Const->getValueAPF();
    939     bool losesInfo;
    940     (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
    941                     &losesInfo);
    942     if (!losesInfo)
    943       return ConstantFP::get(Const->getContext(), F);
    944   }
    945   return nullptr;
    946 }
    947 
    948 //===----------------------------------------------------------------------===//
    949 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
    950 
    951 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
    952                                                 bool CheckRetType) {
    953   Function *Callee = CI->getCalledFunction();
    954   FunctionType *FT = Callee->getFunctionType();
    955   if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
    956       !FT->getParamType(0)->isDoubleTy())
    957     return nullptr;
    958 
    959   if (CheckRetType) {
    960     // Check if all the uses for function like 'sin' are converted to float.
    961     for (User *U : CI->users()) {
    962       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
    963       if (!Cast || !Cast->getType()->isFloatTy())
    964         return nullptr;
    965     }
    966   }
    967 
    968   // If this is something like 'floor((double)floatval)', convert to floorf.
    969   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
    970   if (V == nullptr)
    971     return nullptr;
    972 
    973   // floor((double)floatval) -> (double)floorf(floatval)
    974   if (Callee->isIntrinsic()) {
    975     Module *M = CI->getParent()->getParent()->getParent();
    976     Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID();
    977     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
    978     V = B.CreateCall(F, V);
    979   } else {
    980     // The call is a library call rather than an intrinsic.
    981     V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
    982   }
    983 
    984   return B.CreateFPExt(V, B.getDoubleTy());
    985 }
    986 
    987 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
    988 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
    989   Function *Callee = CI->getCalledFunction();
    990   FunctionType *FT = Callee->getFunctionType();
    991   // Just make sure this has 2 arguments of the same FP type, which match the
    992   // result type.
    993   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
    994       FT->getParamType(0) != FT->getParamType(1) ||
    995       !FT->getParamType(0)->isFloatingPointTy())
    996     return nullptr;
    997 
    998   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
    999   // or fmin(1.0, (double)floatval), then we convert it to fminf.
   1000   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
   1001   if (V1 == nullptr)
   1002     return nullptr;
   1003   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
   1004   if (V2 == nullptr)
   1005     return nullptr;
   1006 
   1007   // fmin((double)floatval1, (double)floatval2)
   1008   //                      -> (double)fminf(floatval1, floatval2)
   1009   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
   1010   Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
   1011                                    Callee->getAttributes());
   1012   return B.CreateFPExt(V, B.getDoubleTy());
   1013 }
   1014 
   1015 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
   1016   Function *Callee = CI->getCalledFunction();
   1017   Value *Ret = nullptr;
   1018   if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
   1019     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1020   }
   1021 
   1022   FunctionType *FT = Callee->getFunctionType();
   1023   // Just make sure this has 1 argument of FP type, which matches the
   1024   // result type.
   1025   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1026       !FT->getParamType(0)->isFloatingPointTy())
   1027     return Ret;
   1028 
   1029   // cos(-x) -> cos(x)
   1030   Value *Op1 = CI->getArgOperand(0);
   1031   if (BinaryOperator::isFNeg(Op1)) {
   1032     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
   1033     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
   1034   }
   1035   return Ret;
   1036 }
   1037 
   1038 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
   1039   Function *Callee = CI->getCalledFunction();
   1040 
   1041   Value *Ret = nullptr;
   1042   if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
   1043     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1044   }
   1045 
   1046   FunctionType *FT = Callee->getFunctionType();
   1047   // Just make sure this has 2 arguments of the same FP type, which match the
   1048   // result type.
   1049   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
   1050       FT->getParamType(0) != FT->getParamType(1) ||
   1051       !FT->getParamType(0)->isFloatingPointTy())
   1052     return Ret;
   1053 
   1054   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
   1055   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
   1056     // pow(1.0, x) -> 1.0
   1057     if (Op1C->isExactlyValue(1.0))
   1058       return Op1C;
   1059     // pow(2.0, x) -> exp2(x)
   1060     if (Op1C->isExactlyValue(2.0) &&
   1061         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
   1062                         LibFunc::exp2l))
   1063       return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
   1064     // pow(10.0, x) -> exp10(x)
   1065     if (Op1C->isExactlyValue(10.0) &&
   1066         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
   1067                         LibFunc::exp10l))
   1068       return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
   1069                                   Callee->getAttributes());
   1070   }
   1071 
   1072   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
   1073   if (!Op2C)
   1074     return Ret;
   1075 
   1076   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
   1077     return ConstantFP::get(CI->getType(), 1.0);
   1078 
   1079   if (Op2C->isExactlyValue(0.5) &&
   1080       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
   1081                       LibFunc::sqrtl) &&
   1082       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
   1083                       LibFunc::fabsl)) {
   1084     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
   1085     // This is faster than calling pow, and still handles negative zero
   1086     // and negative infinity correctly.
   1087     // TODO: In fast-math mode, this could be just sqrt(x).
   1088     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
   1089     Value *Inf = ConstantFP::getInfinity(CI->getType());
   1090     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
   1091     Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
   1092     Value *FAbs =
   1093         EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
   1094     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
   1095     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
   1096     return Sel;
   1097   }
   1098 
   1099   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
   1100     return Op1;
   1101   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
   1102     return B.CreateFMul(Op1, Op1, "pow2");
   1103   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
   1104     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
   1105   return nullptr;
   1106 }
   1107 
   1108 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
   1109   Function *Callee = CI->getCalledFunction();
   1110   Function *Caller = CI->getParent()->getParent();
   1111 
   1112   Value *Ret = nullptr;
   1113   if (UnsafeFPShrink && Callee->getName() == "exp2" &&
   1114       TLI->has(LibFunc::exp2f)) {
   1115     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1116   }
   1117 
   1118   FunctionType *FT = Callee->getFunctionType();
   1119   // Just make sure this has 1 argument of FP type, which matches the
   1120   // result type.
   1121   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1122       !FT->getParamType(0)->isFloatingPointTy())
   1123     return Ret;
   1124 
   1125   Value *Op = CI->getArgOperand(0);
   1126   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
   1127   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
   1128   LibFunc::Func LdExp = LibFunc::ldexpl;
   1129   if (Op->getType()->isFloatTy())
   1130     LdExp = LibFunc::ldexpf;
   1131   else if (Op->getType()->isDoubleTy())
   1132     LdExp = LibFunc::ldexp;
   1133 
   1134   if (TLI->has(LdExp)) {
   1135     Value *LdExpArg = nullptr;
   1136     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
   1137       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
   1138         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
   1139     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
   1140       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
   1141         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
   1142     }
   1143 
   1144     if (LdExpArg) {
   1145       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
   1146       if (!Op->getType()->isFloatTy())
   1147         One = ConstantExpr::getFPExtend(One, Op->getType());
   1148 
   1149       Module *M = Caller->getParent();
   1150       Value *Callee =
   1151           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
   1152                                  Op->getType(), B.getInt32Ty(), nullptr);
   1153       CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
   1154       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
   1155         CI->setCallingConv(F->getCallingConv());
   1156 
   1157       return CI;
   1158     }
   1159   }
   1160   return Ret;
   1161 }
   1162 
   1163 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
   1164   Function *Callee = CI->getCalledFunction();
   1165 
   1166   Value *Ret = nullptr;
   1167   if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) {
   1168     Ret = optimizeUnaryDoubleFP(CI, B, false);
   1169   }
   1170 
   1171   FunctionType *FT = Callee->getFunctionType();
   1172   // Make sure this has 1 argument of FP type which matches the result type.
   1173   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1174       !FT->getParamType(0)->isFloatingPointTy())
   1175     return Ret;
   1176 
   1177   Value *Op = CI->getArgOperand(0);
   1178   if (Instruction *I = dyn_cast<Instruction>(Op)) {
   1179     // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
   1180     if (I->getOpcode() == Instruction::FMul)
   1181       if (I->getOperand(0) == I->getOperand(1))
   1182         return Op;
   1183   }
   1184   return Ret;
   1185 }
   1186 
   1187 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
   1188   Function *Callee = CI->getCalledFunction();
   1189 
   1190   Value *Ret = nullptr;
   1191   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
   1192                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
   1193     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1194 
   1195   // FIXME: For finer-grain optimization, we need intrinsics to have the same
   1196   // fast-math flag decorations that are applied to FP instructions. For now,
   1197   // we have to rely on the function-level unsafe-fp-math attribute to do this
   1198   // optimization because there's no other way to express that the sqrt can be
   1199   // reassociated.
   1200   Function *F = CI->getParent()->getParent();
   1201   if (F->hasFnAttribute("unsafe-fp-math")) {
   1202     // Check for unsafe-fp-math = true.
   1203     Attribute Attr = F->getFnAttribute("unsafe-fp-math");
   1204     if (Attr.getValueAsString() != "true")
   1205       return Ret;
   1206   }
   1207   Value *Op = CI->getArgOperand(0);
   1208   if (Instruction *I = dyn_cast<Instruction>(Op)) {
   1209     if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
   1210       // We're looking for a repeated factor in a multiplication tree,
   1211       // so we can do this fold: sqrt(x * x) -> fabs(x);
   1212       // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
   1213       Value *Op0 = I->getOperand(0);
   1214       Value *Op1 = I->getOperand(1);
   1215       Value *RepeatOp = nullptr;
   1216       Value *OtherOp = nullptr;
   1217       if (Op0 == Op1) {
   1218         // Simple match: the operands of the multiply are identical.
   1219         RepeatOp = Op0;
   1220       } else {
   1221         // Look for a more complicated pattern: one of the operands is itself
   1222         // a multiply, so search for a common factor in that multiply.
   1223         // Note: We don't bother looking any deeper than this first level or for
   1224         // variations of this pattern because instcombine's visitFMUL and/or the
   1225         // reassociation pass should give us this form.
   1226         Value *OtherMul0, *OtherMul1;
   1227         if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
   1228           // Pattern: sqrt((x * y) * z)
   1229           if (OtherMul0 == OtherMul1) {
   1230             // Matched: sqrt((x * x) * z)
   1231             RepeatOp = OtherMul0;
   1232             OtherOp = Op1;
   1233           }
   1234         }
   1235       }
   1236       if (RepeatOp) {
   1237         // Fast math flags for any created instructions should match the sqrt
   1238         // and multiply.
   1239         // FIXME: We're not checking the sqrt because it doesn't have
   1240         // fast-math-flags (see earlier comment).
   1241         IRBuilder<true, ConstantFolder,
   1242           IRBuilderDefaultInserter<true> >::FastMathFlagGuard Guard(B);
   1243         B.SetFastMathFlags(I->getFastMathFlags());
   1244         // If we found a repeated factor, hoist it out of the square root and
   1245         // replace it with the fabs of that factor.
   1246         Module *M = Callee->getParent();
   1247         Type *ArgType = Op->getType();
   1248         Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
   1249         Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
   1250         if (OtherOp) {
   1251           // If we found a non-repeated factor, we still need to get its square
   1252           // root. We then multiply that by the value that was simplified out
   1253           // of the square root calculation.
   1254           Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
   1255           Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
   1256           return B.CreateFMul(FabsCall, SqrtCall);
   1257         }
   1258         return FabsCall;
   1259       }
   1260     }
   1261   }
   1262   return Ret;
   1263 }
   1264 
   1265 static bool isTrigLibCall(CallInst *CI);
   1266 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
   1267                              bool UseFloat, Value *&Sin, Value *&Cos,
   1268                              Value *&SinCos);
   1269 
   1270 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
   1271 
   1272   // Make sure the prototype is as expected, otherwise the rest of the
   1273   // function is probably invalid and likely to abort.
   1274   if (!isTrigLibCall(CI))
   1275     return nullptr;
   1276 
   1277   Value *Arg = CI->getArgOperand(0);
   1278   SmallVector<CallInst *, 1> SinCalls;
   1279   SmallVector<CallInst *, 1> CosCalls;
   1280   SmallVector<CallInst *, 1> SinCosCalls;
   1281 
   1282   bool IsFloat = Arg->getType()->isFloatTy();
   1283 
   1284   // Look for all compatible sinpi, cospi and sincospi calls with the same
   1285   // argument. If there are enough (in some sense) we can make the
   1286   // substitution.
   1287   for (User *U : Arg->users())
   1288     classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
   1289                    SinCosCalls);
   1290 
   1291   // It's only worthwhile if both sinpi and cospi are actually used.
   1292   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
   1293     return nullptr;
   1294 
   1295   Value *Sin, *Cos, *SinCos;
   1296   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
   1297 
   1298   replaceTrigInsts(SinCalls, Sin);
   1299   replaceTrigInsts(CosCalls, Cos);
   1300   replaceTrigInsts(SinCosCalls, SinCos);
   1301 
   1302   return nullptr;
   1303 }
   1304 
   1305 static bool isTrigLibCall(CallInst *CI) {
   1306   Function *Callee = CI->getCalledFunction();
   1307   FunctionType *FT = Callee->getFunctionType();
   1308 
   1309   // We can only hope to do anything useful if we can ignore things like errno
   1310   // and floating-point exceptions.
   1311   bool AttributesSafe =
   1312       CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
   1313 
   1314   // Other than that we need float(float) or double(double)
   1315   return AttributesSafe && FT->getNumParams() == 1 &&
   1316          FT->getReturnType() == FT->getParamType(0) &&
   1317          (FT->getParamType(0)->isFloatTy() ||
   1318           FT->getParamType(0)->isDoubleTy());
   1319 }
   1320 
   1321 void
   1322 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
   1323                                   SmallVectorImpl<CallInst *> &SinCalls,
   1324                                   SmallVectorImpl<CallInst *> &CosCalls,
   1325                                   SmallVectorImpl<CallInst *> &SinCosCalls) {
   1326   CallInst *CI = dyn_cast<CallInst>(Val);
   1327 
   1328   if (!CI)
   1329     return;
   1330 
   1331   Function *Callee = CI->getCalledFunction();
   1332   StringRef FuncName = Callee->getName();
   1333   LibFunc::Func Func;
   1334   if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
   1335     return;
   1336 
   1337   if (IsFloat) {
   1338     if (Func == LibFunc::sinpif)
   1339       SinCalls.push_back(CI);
   1340     else if (Func == LibFunc::cospif)
   1341       CosCalls.push_back(CI);
   1342     else if (Func == LibFunc::sincospif_stret)
   1343       SinCosCalls.push_back(CI);
   1344   } else {
   1345     if (Func == LibFunc::sinpi)
   1346       SinCalls.push_back(CI);
   1347     else if (Func == LibFunc::cospi)
   1348       CosCalls.push_back(CI);
   1349     else if (Func == LibFunc::sincospi_stret)
   1350       SinCosCalls.push_back(CI);
   1351   }
   1352 }
   1353 
   1354 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
   1355                                          Value *Res) {
   1356   for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
   1357        I != E; ++I) {
   1358     replaceAllUsesWith(*I, Res);
   1359   }
   1360 }
   1361 
   1362 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
   1363                       bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
   1364   Type *ArgTy = Arg->getType();
   1365   Type *ResTy;
   1366   StringRef Name;
   1367 
   1368   Triple T(OrigCallee->getParent()->getTargetTriple());
   1369   if (UseFloat) {
   1370     Name = "__sincospif_stret";
   1371 
   1372     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
   1373     // x86_64 can't use {float, float} since that would be returned in both
   1374     // xmm0 and xmm1, which isn't what a real struct would do.
   1375     ResTy = T.getArch() == Triple::x86_64
   1376                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
   1377                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
   1378   } else {
   1379     Name = "__sincospi_stret";
   1380     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
   1381   }
   1382 
   1383   Module *M = OrigCallee->getParent();
   1384   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
   1385                                          ResTy, ArgTy, nullptr);
   1386 
   1387   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
   1388     // If the argument is an instruction, it must dominate all uses so put our
   1389     // sincos call there.
   1390     BasicBlock::iterator Loc = ArgInst;
   1391     B.SetInsertPoint(ArgInst->getParent(), ++Loc);
   1392   } else {
   1393     // Otherwise (e.g. for a constant) the beginning of the function is as
   1394     // good a place as any.
   1395     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
   1396     B.SetInsertPoint(&EntryBB, EntryBB.begin());
   1397   }
   1398 
   1399   SinCos = B.CreateCall(Callee, Arg, "sincospi");
   1400 
   1401   if (SinCos->getType()->isStructTy()) {
   1402     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
   1403     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
   1404   } else {
   1405     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
   1406                                  "sinpi");
   1407     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
   1408                                  "cospi");
   1409   }
   1410 }
   1411 
   1412 //===----------------------------------------------------------------------===//
   1413 // Integer Library Call Optimizations
   1414 //===----------------------------------------------------------------------===//
   1415 
   1416 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
   1417   Function *Callee = CI->getCalledFunction();
   1418   FunctionType *FT = Callee->getFunctionType();
   1419   // Just make sure this has 2 arguments of the same FP type, which match the
   1420   // result type.
   1421   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
   1422       !FT->getParamType(0)->isIntegerTy())
   1423     return nullptr;
   1424 
   1425   Value *Op = CI->getArgOperand(0);
   1426 
   1427   // Constant fold.
   1428   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
   1429     if (CI->isZero()) // ffs(0) -> 0.
   1430       return B.getInt32(0);
   1431     // ffs(c) -> cttz(c)+1
   1432     return B.getInt32(CI->getValue().countTrailingZeros() + 1);
   1433   }
   1434 
   1435   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
   1436   Type *ArgType = Op->getType();
   1437   Value *F =
   1438       Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
   1439   Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
   1440   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
   1441   V = B.CreateIntCast(V, B.getInt32Ty(), false);
   1442 
   1443   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
   1444   return B.CreateSelect(Cond, V, B.getInt32(0));
   1445 }
   1446 
   1447 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
   1448   Function *Callee = CI->getCalledFunction();
   1449   FunctionType *FT = Callee->getFunctionType();
   1450   // We require integer(integer) where the types agree.
   1451   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
   1452       FT->getParamType(0) != FT->getReturnType())
   1453     return nullptr;
   1454 
   1455   // abs(x) -> x >s -1 ? x : -x
   1456   Value *Op = CI->getArgOperand(0);
   1457   Value *Pos =
   1458       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
   1459   Value *Neg = B.CreateNeg(Op, "neg");
   1460   return B.CreateSelect(Pos, Op, Neg);
   1461 }
   1462 
   1463 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
   1464   Function *Callee = CI->getCalledFunction();
   1465   FunctionType *FT = Callee->getFunctionType();
   1466   // We require integer(i32)
   1467   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
   1468       !FT->getParamType(0)->isIntegerTy(32))
   1469     return nullptr;
   1470 
   1471   // isdigit(c) -> (c-'0') <u 10
   1472   Value *Op = CI->getArgOperand(0);
   1473   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
   1474   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
   1475   return B.CreateZExt(Op, CI->getType());
   1476 }
   1477 
   1478 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
   1479   Function *Callee = CI->getCalledFunction();
   1480   FunctionType *FT = Callee->getFunctionType();
   1481   // We require integer(i32)
   1482   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
   1483       !FT->getParamType(0)->isIntegerTy(32))
   1484     return nullptr;
   1485 
   1486   // isascii(c) -> c <u 128
   1487   Value *Op = CI->getArgOperand(0);
   1488   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
   1489   return B.CreateZExt(Op, CI->getType());
   1490 }
   1491 
   1492 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
   1493   Function *Callee = CI->getCalledFunction();
   1494   FunctionType *FT = Callee->getFunctionType();
   1495   // We require i32(i32)
   1496   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1497       !FT->getParamType(0)->isIntegerTy(32))
   1498     return nullptr;
   1499 
   1500   // toascii(c) -> c & 0x7f
   1501   return B.CreateAnd(CI->getArgOperand(0),
   1502                      ConstantInt::get(CI->getType(), 0x7F));
   1503 }
   1504 
   1505 //===----------------------------------------------------------------------===//
   1506 // Formatting and IO Library Call Optimizations
   1507 //===----------------------------------------------------------------------===//
   1508 
   1509 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
   1510 
   1511 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
   1512                                                  int StreamArg) {
   1513   // Error reporting calls should be cold, mark them as such.
   1514   // This applies even to non-builtin calls: it is only a hint and applies to
   1515   // functions that the frontend might not understand as builtins.
   1516 
   1517   // This heuristic was suggested in:
   1518   // Improving Static Branch Prediction in a Compiler
   1519   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
   1520   // Proceedings of PACT'98, Oct. 1998, IEEE
   1521   Function *Callee = CI->getCalledFunction();
   1522 
   1523   if (!CI->hasFnAttr(Attribute::Cold) &&
   1524       isReportingError(Callee, CI, StreamArg)) {
   1525     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
   1526   }
   1527 
   1528   return nullptr;
   1529 }
   1530 
   1531 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
   1532   if (!ColdErrorCalls)
   1533     return false;
   1534 
   1535   if (!Callee || !Callee->isDeclaration())
   1536     return false;
   1537 
   1538   if (StreamArg < 0)
   1539     return true;
   1540 
   1541   // These functions might be considered cold, but only if their stream
   1542   // argument is stderr.
   1543 
   1544   if (StreamArg >= (int)CI->getNumArgOperands())
   1545     return false;
   1546   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
   1547   if (!LI)
   1548     return false;
   1549   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
   1550   if (!GV || !GV->isDeclaration())
   1551     return false;
   1552   return GV->getName() == "stderr";
   1553 }
   1554 
   1555 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
   1556   // Check for a fixed format string.
   1557   StringRef FormatStr;
   1558   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
   1559     return nullptr;
   1560 
   1561   // Empty format string -> noop.
   1562   if (FormatStr.empty()) // Tolerate printf's declared void.
   1563     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
   1564 
   1565   // Do not do any of the following transformations if the printf return value
   1566   // is used, in general the printf return value is not compatible with either
   1567   // putchar() or puts().
   1568   if (!CI->use_empty())
   1569     return nullptr;
   1570 
   1571   // printf("x") -> putchar('x'), even for '%'.
   1572   if (FormatStr.size() == 1) {
   1573     Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
   1574     if (CI->use_empty() || !Res)
   1575       return Res;
   1576     return B.CreateIntCast(Res, CI->getType(), true);
   1577   }
   1578 
   1579   // printf("foo\n") --> puts("foo")
   1580   if (FormatStr[FormatStr.size() - 1] == '\n' &&
   1581       FormatStr.find('%') == StringRef::npos) { // No format characters.
   1582     // Create a string literal with no \n on it.  We expect the constant merge
   1583     // pass to be run after this pass, to merge duplicate strings.
   1584     FormatStr = FormatStr.drop_back();
   1585     Value *GV = B.CreateGlobalString(FormatStr, "str");
   1586     Value *NewCI = EmitPutS(GV, B, TLI);
   1587     return (CI->use_empty() || !NewCI)
   1588                ? NewCI
   1589                : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
   1590   }
   1591 
   1592   // Optimize specific format strings.
   1593   // printf("%c", chr) --> putchar(chr)
   1594   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
   1595       CI->getArgOperand(1)->getType()->isIntegerTy()) {
   1596     Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
   1597 
   1598     if (CI->use_empty() || !Res)
   1599       return Res;
   1600     return B.CreateIntCast(Res, CI->getType(), true);
   1601   }
   1602 
   1603   // printf("%s\n", str) --> puts(str)
   1604   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
   1605       CI->getArgOperand(1)->getType()->isPointerTy()) {
   1606     return EmitPutS(CI->getArgOperand(1), B, TLI);
   1607   }
   1608   return nullptr;
   1609 }
   1610 
   1611 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
   1612 
   1613   Function *Callee = CI->getCalledFunction();
   1614   // Require one fixed pointer argument and an integer/void result.
   1615   FunctionType *FT = Callee->getFunctionType();
   1616   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
   1617       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
   1618     return nullptr;
   1619 
   1620   if (Value *V = optimizePrintFString(CI, B)) {
   1621     return V;
   1622   }
   1623 
   1624   // printf(format, ...) -> iprintf(format, ...) if no floating point
   1625   // arguments.
   1626   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
   1627     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1628     Constant *IPrintFFn =
   1629         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
   1630     CallInst *New = cast<CallInst>(CI->clone());
   1631     New->setCalledFunction(IPrintFFn);
   1632     B.Insert(New);
   1633     return New;
   1634   }
   1635   return nullptr;
   1636 }
   1637 
   1638 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
   1639   // Check for a fixed format string.
   1640   StringRef FormatStr;
   1641   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
   1642     return nullptr;
   1643 
   1644   // If we just have a format string (nothing else crazy) transform it.
   1645   if (CI->getNumArgOperands() == 2) {
   1646     // Make sure there's no % in the constant array.  We could try to handle
   1647     // %% -> % in the future if we cared.
   1648     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
   1649       if (FormatStr[i] == '%')
   1650         return nullptr; // we found a format specifier, bail out.
   1651 
   1652     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
   1653     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   1654                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
   1655                                     FormatStr.size() + 1),
   1656                    1); // Copy the null byte.
   1657     return ConstantInt::get(CI->getType(), FormatStr.size());
   1658   }
   1659 
   1660   // The remaining optimizations require the format string to be "%s" or "%c"
   1661   // and have an extra operand.
   1662   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
   1663       CI->getNumArgOperands() < 3)
   1664     return nullptr;
   1665 
   1666   // Decode the second character of the format string.
   1667   if (FormatStr[1] == 'c') {
   1668     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
   1669     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
   1670       return nullptr;
   1671     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
   1672     Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
   1673     B.CreateStore(V, Ptr);
   1674     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
   1675     B.CreateStore(B.getInt8(0), Ptr);
   1676 
   1677     return ConstantInt::get(CI->getType(), 1);
   1678   }
   1679 
   1680   if (FormatStr[1] == 's') {
   1681     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
   1682     if (!CI->getArgOperand(2)->getType()->isPointerTy())
   1683       return nullptr;
   1684 
   1685     Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
   1686     if (!Len)
   1687       return nullptr;
   1688     Value *IncLen =
   1689         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
   1690     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
   1691 
   1692     // The sprintf result is the unincremented number of bytes in the string.
   1693     return B.CreateIntCast(Len, CI->getType(), false);
   1694   }
   1695   return nullptr;
   1696 }
   1697 
   1698 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
   1699   Function *Callee = CI->getCalledFunction();
   1700   // Require two fixed pointer arguments and an integer result.
   1701   FunctionType *FT = Callee->getFunctionType();
   1702   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
   1703       !FT->getParamType(1)->isPointerTy() ||
   1704       !FT->getReturnType()->isIntegerTy())
   1705     return nullptr;
   1706 
   1707   if (Value *V = optimizeSPrintFString(CI, B)) {
   1708     return V;
   1709   }
   1710 
   1711   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
   1712   // point arguments.
   1713   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
   1714     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1715     Constant *SIPrintFFn =
   1716         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
   1717     CallInst *New = cast<CallInst>(CI->clone());
   1718     New->setCalledFunction(SIPrintFFn);
   1719     B.Insert(New);
   1720     return New;
   1721   }
   1722   return nullptr;
   1723 }
   1724 
   1725 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
   1726   optimizeErrorReporting(CI, B, 0);
   1727 
   1728   // All the optimizations depend on the format string.
   1729   StringRef FormatStr;
   1730   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
   1731     return nullptr;
   1732 
   1733   // Do not do any of the following transformations if the fprintf return
   1734   // value is used, in general the fprintf return value is not compatible
   1735   // with fwrite(), fputc() or fputs().
   1736   if (!CI->use_empty())
   1737     return nullptr;
   1738 
   1739   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
   1740   if (CI->getNumArgOperands() == 2) {
   1741     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
   1742       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
   1743         return nullptr;        // We found a format specifier.
   1744 
   1745     return EmitFWrite(
   1746         CI->getArgOperand(1),
   1747         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
   1748         CI->getArgOperand(0), B, DL, TLI);
   1749   }
   1750 
   1751   // The remaining optimizations require the format string to be "%s" or "%c"
   1752   // and have an extra operand.
   1753   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
   1754       CI->getNumArgOperands() < 3)
   1755     return nullptr;
   1756 
   1757   // Decode the second character of the format string.
   1758   if (FormatStr[1] == 'c') {
   1759     // fprintf(F, "%c", chr) --> fputc(chr, F)
   1760     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
   1761       return nullptr;
   1762     return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
   1763   }
   1764 
   1765   if (FormatStr[1] == 's') {
   1766     // fprintf(F, "%s", str) --> fputs(str, F)
   1767     if (!CI->getArgOperand(2)->getType()->isPointerTy())
   1768       return nullptr;
   1769     return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
   1770   }
   1771   return nullptr;
   1772 }
   1773 
   1774 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
   1775   Function *Callee = CI->getCalledFunction();
   1776   // Require two fixed paramters as pointers and integer result.
   1777   FunctionType *FT = Callee->getFunctionType();
   1778   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
   1779       !FT->getParamType(1)->isPointerTy() ||
   1780       !FT->getReturnType()->isIntegerTy())
   1781     return nullptr;
   1782 
   1783   if (Value *V = optimizeFPrintFString(CI, B)) {
   1784     return V;
   1785   }
   1786 
   1787   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
   1788   // floating point arguments.
   1789   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
   1790     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1791     Constant *FIPrintFFn =
   1792         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
   1793     CallInst *New = cast<CallInst>(CI->clone());
   1794     New->setCalledFunction(FIPrintFFn);
   1795     B.Insert(New);
   1796     return New;
   1797   }
   1798   return nullptr;
   1799 }
   1800 
   1801 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
   1802   optimizeErrorReporting(CI, B, 3);
   1803 
   1804   Function *Callee = CI->getCalledFunction();
   1805   // Require a pointer, an integer, an integer, a pointer, returning integer.
   1806   FunctionType *FT = Callee->getFunctionType();
   1807   if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
   1808       !FT->getParamType(1)->isIntegerTy() ||
   1809       !FT->getParamType(2)->isIntegerTy() ||
   1810       !FT->getParamType(3)->isPointerTy() ||
   1811       !FT->getReturnType()->isIntegerTy())
   1812     return nullptr;
   1813 
   1814   // Get the element size and count.
   1815   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
   1816   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
   1817   if (!SizeC || !CountC)
   1818     return nullptr;
   1819   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
   1820 
   1821   // If this is writing zero records, remove the call (it's a noop).
   1822   if (Bytes == 0)
   1823     return ConstantInt::get(CI->getType(), 0);
   1824 
   1825   // If this is writing one byte, turn it into fputc.
   1826   // This optimisation is only valid, if the return value is unused.
   1827   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
   1828     Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
   1829     Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
   1830     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
   1831   }
   1832 
   1833   return nullptr;
   1834 }
   1835 
   1836 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
   1837   optimizeErrorReporting(CI, B, 1);
   1838 
   1839   Function *Callee = CI->getCalledFunction();
   1840 
   1841   // Require two pointers.  Also, we can't optimize if return value is used.
   1842   FunctionType *FT = Callee->getFunctionType();
   1843   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
   1844       !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
   1845     return nullptr;
   1846 
   1847   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
   1848   uint64_t Len = GetStringLength(CI->getArgOperand(0));
   1849   if (!Len)
   1850     return nullptr;
   1851 
   1852   // Known to have no uses (see above).
   1853   return EmitFWrite(
   1854       CI->getArgOperand(0),
   1855       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
   1856       CI->getArgOperand(1), B, DL, TLI);
   1857 }
   1858 
   1859 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
   1860   Function *Callee = CI->getCalledFunction();
   1861   // Require one fixed pointer argument and an integer/void result.
   1862   FunctionType *FT = Callee->getFunctionType();
   1863   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
   1864       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
   1865     return nullptr;
   1866 
   1867   // Check for a constant string.
   1868   StringRef Str;
   1869   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
   1870     return nullptr;
   1871 
   1872   if (Str.empty() && CI->use_empty()) {
   1873     // puts("") -> putchar('\n')
   1874     Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
   1875     if (CI->use_empty() || !Res)
   1876       return Res;
   1877     return B.CreateIntCast(Res, CI->getType(), true);
   1878   }
   1879 
   1880   return nullptr;
   1881 }
   1882 
   1883 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
   1884   LibFunc::Func Func;
   1885   SmallString<20> FloatFuncName = FuncName;
   1886   FloatFuncName += 'f';
   1887   if (TLI->getLibFunc(FloatFuncName, Func))
   1888     return TLI->has(Func);
   1889   return false;
   1890 }
   1891 
   1892 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
   1893                                                       IRBuilder<> &Builder) {
   1894   LibFunc::Func Func;
   1895   Function *Callee = CI->getCalledFunction();
   1896   StringRef FuncName = Callee->getName();
   1897 
   1898   // Check for string/memory library functions.
   1899   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
   1900     // Make sure we never change the calling convention.
   1901     assert((ignoreCallingConv(Func) ||
   1902             CI->getCallingConv() == llvm::CallingConv::C) &&
   1903       "Optimizing string/memory libcall would change the calling convention");
   1904     switch (Func) {
   1905     case LibFunc::strcat:
   1906       return optimizeStrCat(CI, Builder);
   1907     case LibFunc::strncat:
   1908       return optimizeStrNCat(CI, Builder);
   1909     case LibFunc::strchr:
   1910       return optimizeStrChr(CI, Builder);
   1911     case LibFunc::strrchr:
   1912       return optimizeStrRChr(CI, Builder);
   1913     case LibFunc::strcmp:
   1914       return optimizeStrCmp(CI, Builder);
   1915     case LibFunc::strncmp:
   1916       return optimizeStrNCmp(CI, Builder);
   1917     case LibFunc::strcpy:
   1918       return optimizeStrCpy(CI, Builder);
   1919     case LibFunc::stpcpy:
   1920       return optimizeStpCpy(CI, Builder);
   1921     case LibFunc::strncpy:
   1922       return optimizeStrNCpy(CI, Builder);
   1923     case LibFunc::strlen:
   1924       return optimizeStrLen(CI, Builder);
   1925     case LibFunc::strpbrk:
   1926       return optimizeStrPBrk(CI, Builder);
   1927     case LibFunc::strtol:
   1928     case LibFunc::strtod:
   1929     case LibFunc::strtof:
   1930     case LibFunc::strtoul:
   1931     case LibFunc::strtoll:
   1932     case LibFunc::strtold:
   1933     case LibFunc::strtoull:
   1934       return optimizeStrTo(CI, Builder);
   1935     case LibFunc::strspn:
   1936       return optimizeStrSpn(CI, Builder);
   1937     case LibFunc::strcspn:
   1938       return optimizeStrCSpn(CI, Builder);
   1939     case LibFunc::strstr:
   1940       return optimizeStrStr(CI, Builder);
   1941     case LibFunc::memchr:
   1942       return optimizeMemChr(CI, Builder);
   1943     case LibFunc::memcmp:
   1944       return optimizeMemCmp(CI, Builder);
   1945     case LibFunc::memcpy:
   1946       return optimizeMemCpy(CI, Builder);
   1947     case LibFunc::memmove:
   1948       return optimizeMemMove(CI, Builder);
   1949     case LibFunc::memset:
   1950       return optimizeMemSet(CI, Builder);
   1951     default:
   1952       break;
   1953     }
   1954   }
   1955   return nullptr;
   1956 }
   1957 
   1958 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
   1959   if (CI->isNoBuiltin())
   1960     return nullptr;
   1961 
   1962   LibFunc::Func Func;
   1963   Function *Callee = CI->getCalledFunction();
   1964   StringRef FuncName = Callee->getName();
   1965   IRBuilder<> Builder(CI);
   1966   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
   1967 
   1968   // Command-line parameter overrides function attribute.
   1969   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
   1970     UnsafeFPShrink = EnableUnsafeFPShrink;
   1971   else if (Callee->hasFnAttribute("unsafe-fp-math")) {
   1972     // FIXME: This is the same problem as described in optimizeSqrt().
   1973     // If calls gain access to IR-level FMF, then use that instead of a
   1974     // function attribute.
   1975 
   1976     // Check for unsafe-fp-math = true.
   1977     Attribute Attr = Callee->getFnAttribute("unsafe-fp-math");
   1978     if (Attr.getValueAsString() == "true")
   1979       UnsafeFPShrink = true;
   1980   }
   1981 
   1982   // First, check for intrinsics.
   1983   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
   1984     if (!isCallingConvC)
   1985       return nullptr;
   1986     switch (II->getIntrinsicID()) {
   1987     case Intrinsic::pow:
   1988       return optimizePow(CI, Builder);
   1989     case Intrinsic::exp2:
   1990       return optimizeExp2(CI, Builder);
   1991     case Intrinsic::fabs:
   1992       return optimizeFabs(CI, Builder);
   1993     case Intrinsic::sqrt:
   1994       return optimizeSqrt(CI, Builder);
   1995     default:
   1996       return nullptr;
   1997     }
   1998   }
   1999 
   2000   // Also try to simplify calls to fortified library functions.
   2001   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
   2002     // Try to further simplify the result.
   2003     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
   2004     if (SimplifiedCI && SimplifiedCI->getCalledFunction())
   2005       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
   2006         // If we were able to further simplify, remove the now redundant call.
   2007         SimplifiedCI->replaceAllUsesWith(V);
   2008         SimplifiedCI->eraseFromParent();
   2009         return V;
   2010       }
   2011     return SimplifiedFortifiedCI;
   2012   }
   2013 
   2014   // Then check for known library functions.
   2015   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
   2016     // We never change the calling convention.
   2017     if (!ignoreCallingConv(Func) && !isCallingConvC)
   2018       return nullptr;
   2019     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
   2020       return V;
   2021     switch (Func) {
   2022     case LibFunc::cosf:
   2023     case LibFunc::cos:
   2024     case LibFunc::cosl:
   2025       return optimizeCos(CI, Builder);
   2026     case LibFunc::sinpif:
   2027     case LibFunc::sinpi:
   2028     case LibFunc::cospif:
   2029     case LibFunc::cospi:
   2030       return optimizeSinCosPi(CI, Builder);
   2031     case LibFunc::powf:
   2032     case LibFunc::pow:
   2033     case LibFunc::powl:
   2034       return optimizePow(CI, Builder);
   2035     case LibFunc::exp2l:
   2036     case LibFunc::exp2:
   2037     case LibFunc::exp2f:
   2038       return optimizeExp2(CI, Builder);
   2039     case LibFunc::fabsf:
   2040     case LibFunc::fabs:
   2041     case LibFunc::fabsl:
   2042       return optimizeFabs(CI, Builder);
   2043     case LibFunc::sqrtf:
   2044     case LibFunc::sqrt:
   2045     case LibFunc::sqrtl:
   2046       return optimizeSqrt(CI, Builder);
   2047     case LibFunc::ffs:
   2048     case LibFunc::ffsl:
   2049     case LibFunc::ffsll:
   2050       return optimizeFFS(CI, Builder);
   2051     case LibFunc::abs:
   2052     case LibFunc::labs:
   2053     case LibFunc::llabs:
   2054       return optimizeAbs(CI, Builder);
   2055     case LibFunc::isdigit:
   2056       return optimizeIsDigit(CI, Builder);
   2057     case LibFunc::isascii:
   2058       return optimizeIsAscii(CI, Builder);
   2059     case LibFunc::toascii:
   2060       return optimizeToAscii(CI, Builder);
   2061     case LibFunc::printf:
   2062       return optimizePrintF(CI, Builder);
   2063     case LibFunc::sprintf:
   2064       return optimizeSPrintF(CI, Builder);
   2065     case LibFunc::fprintf:
   2066       return optimizeFPrintF(CI, Builder);
   2067     case LibFunc::fwrite:
   2068       return optimizeFWrite(CI, Builder);
   2069     case LibFunc::fputs:
   2070       return optimizeFPuts(CI, Builder);
   2071     case LibFunc::puts:
   2072       return optimizePuts(CI, Builder);
   2073     case LibFunc::perror:
   2074       return optimizeErrorReporting(CI, Builder);
   2075     case LibFunc::vfprintf:
   2076     case LibFunc::fiprintf:
   2077       return optimizeErrorReporting(CI, Builder, 0);
   2078     case LibFunc::fputc:
   2079       return optimizeErrorReporting(CI, Builder, 1);
   2080     case LibFunc::ceil:
   2081     case LibFunc::floor:
   2082     case LibFunc::rint:
   2083     case LibFunc::round:
   2084     case LibFunc::nearbyint:
   2085     case LibFunc::trunc:
   2086       if (hasFloatVersion(FuncName))
   2087         return optimizeUnaryDoubleFP(CI, Builder, false);
   2088       return nullptr;
   2089     case LibFunc::acos:
   2090     case LibFunc::acosh:
   2091     case LibFunc::asin:
   2092     case LibFunc::asinh:
   2093     case LibFunc::atan:
   2094     case LibFunc::atanh:
   2095     case LibFunc::cbrt:
   2096     case LibFunc::cosh:
   2097     case LibFunc::exp:
   2098     case LibFunc::exp10:
   2099     case LibFunc::expm1:
   2100     case LibFunc::log:
   2101     case LibFunc::log10:
   2102     case LibFunc::log1p:
   2103     case LibFunc::log2:
   2104     case LibFunc::logb:
   2105     case LibFunc::sin:
   2106     case LibFunc::sinh:
   2107     case LibFunc::tan:
   2108     case LibFunc::tanh:
   2109       if (UnsafeFPShrink && hasFloatVersion(FuncName))
   2110         return optimizeUnaryDoubleFP(CI, Builder, true);
   2111       return nullptr;
   2112     case LibFunc::copysign:
   2113     case LibFunc::fmin:
   2114     case LibFunc::fmax:
   2115       if (hasFloatVersion(FuncName))
   2116         return optimizeBinaryDoubleFP(CI, Builder);
   2117       return nullptr;
   2118     default:
   2119       return nullptr;
   2120     }
   2121   }
   2122   return nullptr;
   2123 }
   2124 
   2125 LibCallSimplifier::LibCallSimplifier(
   2126     const DataLayout &DL, const TargetLibraryInfo *TLI,
   2127     function_ref<void(Instruction *, Value *)> Replacer)
   2128     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
   2129       Replacer(Replacer) {}
   2130 
   2131 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
   2132   // Indirect through the replacer used in this instance.
   2133   Replacer(I, With);
   2134 }
   2135 
   2136 /*static*/ void LibCallSimplifier::replaceAllUsesWithDefault(Instruction *I,
   2137                                                              Value *With) {
   2138   I->replaceAllUsesWith(With);
   2139   I->eraseFromParent();
   2140 }
   2141 
   2142 // TODO:
   2143 //   Additional cases that we need to add to this file:
   2144 //
   2145 // cbrt:
   2146 //   * cbrt(expN(X))  -> expN(x/3)
   2147 //   * cbrt(sqrt(x))  -> pow(x,1/6)
   2148 //   * cbrt(sqrt(x))  -> pow(x,1/9)
   2149 //
   2150 // exp, expf, expl:
   2151 //   * exp(log(x))  -> x
   2152 //
   2153 // log, logf, logl:
   2154 //   * log(exp(x))   -> x
   2155 //   * log(x**y)     -> y*log(x)
   2156 //   * log(exp(y))   -> y*log(e)
   2157 //   * log(exp2(y))  -> y*log(2)
   2158 //   * log(exp10(y)) -> y*log(10)
   2159 //   * log(sqrt(x))  -> 0.5*log(x)
   2160 //   * log(pow(x,y)) -> y*log(x)
   2161 //
   2162 // lround, lroundf, lroundl:
   2163 //   * lround(cnst) -> cnst'
   2164 //
   2165 // pow, powf, powl:
   2166 //   * pow(exp(x),y)  -> exp(x*y)
   2167 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
   2168 //   * pow(pow(x,y),z)-> pow(x,y*z)
   2169 //
   2170 // round, roundf, roundl:
   2171 //   * round(cnst) -> cnst'
   2172 //
   2173 // signbit:
   2174 //   * signbit(cnst) -> cnst'
   2175 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
   2176 //
   2177 // sqrt, sqrtf, sqrtl:
   2178 //   * sqrt(expN(x))  -> expN(x*0.5)
   2179 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
   2180 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
   2181 //
   2182 // tan, tanf, tanl:
   2183 //   * tan(atan(x)) -> x
   2184 //
   2185 // trunc, truncf, truncl:
   2186 //   * trunc(cnst) -> cnst'
   2187 //
   2188 //
   2189 
   2190 //===----------------------------------------------------------------------===//
   2191 // Fortified Library Call Optimizations
   2192 //===----------------------------------------------------------------------===//
   2193 
   2194 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
   2195                                                          unsigned ObjSizeOp,
   2196                                                          unsigned SizeOp,
   2197                                                          bool isString) {
   2198   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
   2199     return true;
   2200   if (ConstantInt *ObjSizeCI =
   2201           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
   2202     if (ObjSizeCI->isAllOnesValue())
   2203       return true;
   2204     // If the object size wasn't -1 (unknown), bail out if we were asked to.
   2205     if (OnlyLowerUnknownSize)
   2206       return false;
   2207     if (isString) {
   2208       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
   2209       // If the length is 0 we don't know how long it is and so we can't
   2210       // remove the check.
   2211       if (Len == 0)
   2212         return false;
   2213       return ObjSizeCI->getZExtValue() >= Len;
   2214     }
   2215     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
   2216       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
   2217   }
   2218   return false;
   2219 }
   2220 
   2221 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
   2222   Function *Callee = CI->getCalledFunction();
   2223 
   2224   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
   2225     return nullptr;
   2226 
   2227   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2228     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   2229                    CI->getArgOperand(2), 1);
   2230     return CI->getArgOperand(0);
   2231   }
   2232   return nullptr;
   2233 }
   2234 
   2235 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
   2236   Function *Callee = CI->getCalledFunction();
   2237 
   2238   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
   2239     return nullptr;
   2240 
   2241   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2242     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
   2243                     CI->getArgOperand(2), 1);
   2244     return CI->getArgOperand(0);
   2245   }
   2246   return nullptr;
   2247 }
   2248 
   2249 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
   2250   Function *Callee = CI->getCalledFunction();
   2251 
   2252   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
   2253     return nullptr;
   2254 
   2255   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2256     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
   2257     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
   2258     return CI->getArgOperand(0);
   2259   }
   2260   return nullptr;
   2261 }
   2262 
   2263 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
   2264                                                       IRBuilder<> &B,
   2265                                                       LibFunc::Func Func) {
   2266   Function *Callee = CI->getCalledFunction();
   2267   StringRef Name = Callee->getName();
   2268   const DataLayout &DL = CI->getModule()->getDataLayout();
   2269 
   2270   if (!checkStringCopyLibFuncSignature(Callee, Func))
   2271     return nullptr;
   2272 
   2273   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
   2274         *ObjSize = CI->getArgOperand(2);
   2275 
   2276   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
   2277   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
   2278     Value *StrLen = EmitStrLen(Src, B, DL, TLI);
   2279     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
   2280   }
   2281 
   2282   // If a) we don't have any length information, or b) we know this will
   2283   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
   2284   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
   2285   // TODO: It might be nice to get a maximum length out of the possible
   2286   // string lengths for varying.
   2287   if (isFortifiedCallFoldable(CI, 2, 1, true))
   2288     return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
   2289 
   2290   if (OnlyLowerUnknownSize)
   2291     return nullptr;
   2292 
   2293   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
   2294   uint64_t Len = GetStringLength(Src);
   2295   if (Len == 0)
   2296     return nullptr;
   2297 
   2298   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
   2299   Value *LenV = ConstantInt::get(SizeTTy, Len);
   2300   Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
   2301   // If the function was an __stpcpy_chk, and we were able to fold it into
   2302   // a __memcpy_chk, we still need to return the correct end pointer.
   2303   if (Ret && Func == LibFunc::stpcpy_chk)
   2304     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
   2305   return Ret;
   2306 }
   2307 
   2308 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
   2309                                                        IRBuilder<> &B,
   2310                                                        LibFunc::Func Func) {
   2311   Function *Callee = CI->getCalledFunction();
   2312   StringRef Name = Callee->getName();
   2313 
   2314   if (!checkStringCopyLibFuncSignature(Callee, Func))
   2315     return nullptr;
   2316   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2317     Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   2318                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
   2319     return Ret;
   2320   }
   2321   return nullptr;
   2322 }
   2323 
   2324 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
   2325   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
   2326   // Some clang users checked for _chk libcall availability using:
   2327   //   __has_builtin(__builtin___memcpy_chk)
   2328   // When compiling with -fno-builtin, this is always true.
   2329   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
   2330   // end up with fortified libcalls, which isn't acceptable in a freestanding
   2331   // environment which only provides their non-fortified counterparts.
   2332   //
   2333   // Until we change clang and/or teach external users to check for availability
   2334   // differently, disregard the "nobuiltin" attribute and TLI::has.
   2335   //
   2336   // PR23093.
   2337 
   2338   LibFunc::Func Func;
   2339   Function *Callee = CI->getCalledFunction();
   2340   StringRef FuncName = Callee->getName();
   2341   IRBuilder<> Builder(CI);
   2342   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
   2343 
   2344   // First, check that this is a known library functions.
   2345   if (!TLI->getLibFunc(FuncName, Func))
   2346     return nullptr;
   2347 
   2348   // We never change the calling convention.
   2349   if (!ignoreCallingConv(Func) && !isCallingConvC)
   2350     return nullptr;
   2351 
   2352   switch (Func) {
   2353   case LibFunc::memcpy_chk:
   2354     return optimizeMemCpyChk(CI, Builder);
   2355   case LibFunc::memmove_chk:
   2356     return optimizeMemMoveChk(CI, Builder);
   2357   case LibFunc::memset_chk:
   2358     return optimizeMemSetChk(CI, Builder);
   2359   case LibFunc::stpcpy_chk:
   2360   case LibFunc::strcpy_chk:
   2361     return optimizeStrpCpyChk(CI, Builder, Func);
   2362   case LibFunc::stpncpy_chk:
   2363   case LibFunc::strncpy_chk:
   2364     return optimizeStrpNCpyChk(CI, Builder, Func);
   2365   default:
   2366     break;
   2367   }
   2368   return nullptr;
   2369 }
   2370 
   2371 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
   2372     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
   2373     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
   2374